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Blazar spectral variability as explained by a twisting inho-
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Blazar emission is dominated by non-thermal radiation from a
relativistic jet pointing toward us, therefore undergoing Doppler
beaming'. This is responsible for flux enhancement and con-
traction of the variability time scales, so that most blazars ap-
pear as luminous sources characterized by noticeable and fast flux
changes at all frequencies. The mechanisms producing their un-
predictable variability are debated and include injection, acceler-
ation and cooling of particles?, with possible intervention of shock
waves>? or turbulence®. Changes in the viewing angle of the emit-
ting knots or jet regions have also been suggested to explain flaring
678910 or specific properties such as intraday variability!!,
quasi-periodicities'?!3, or the delay of radio flux variations relative
to optical changes'*. However, such a geometric interpretation has
not been universally accepted because alternative explanations
based on changes of physical conditions can also work in many
cases'®!6, Here we report the results of optical-to-radio monitor-
ing of the blazar CTA 102 by the Whole Earth Blazar Telescope
Collaboration and show that the observed long-term flux and spec-
tral variability is best explained by an inhomogeneous, curved jet
that undergoes orientation changes. We propose that magneto-
hydrodynamic instabilities'” or rotation of a twisted jet® cause
different jet regions to change their orientation and hence their
relative Doppler factors. In particular, the recent extreme optical
outburst (six magnitudes) occurred when the corresponding jet
emitting region acquired a minimum viewing angle.

events

CTA 102 belongs to the flat-spectrum radio quasar (FSRQ) subclass of
blazars. Its redshift z = 1.037 corresponds to a luminosity distance of
about 7000 Mpc (assuming a flat Universe and a Hubble constant Hy =
70kms~! Mpc™1).

The Whole Earth Blazar Telescope (WEBT) Collaboration started to
monitor the source multiwavelength behaviour in 2008. Data up to 2013
January were included in [9]. In Methods we give some details on the obser-
vations and in Extended data Fig. [I| we show the optical and near-infrared
light curves in 2013-2017 built with data from 39 telescopes in 28 observa-
tories.

A period of relatively low activity has recently been interrupted by a sud-
den rise of the source brightness in late 2016, with a jump of 6-7 magnitudes
with respect to the minima in the optical and near-infrared bands.

The peak of the outburst was observed on December 28, with an R-
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Figure 1: The observed optical light curve of CTA 102 in the last
two observing seasons. R-band magnitudes are shown as a function of the
Julian Date. Different colours and symbols distinguish the various telescopes
contributing to the WEBT campaign. Bars represent 1 s.d. measure errors.
The peak of the 2016-2017 outburst was observed on December 28 and
implies a ~ 6 mag brightness increase with respect to the faintest state.



band magnitude of 10.82 £ 0.04 (see Fig. |1)), corresponding to a luminos-
ity (k-corrected but without a beaming correction) of log(vL,) = 48.12
[ergs™1]. This represents the most luminous optical blazar state ever de-
tected. The previous record was held by the FSRQ 3C 454.3, that during
the big outburstl observed in 2005 reached log(vL,) = 47.54.

Inspection of the light curves reveals that the variability amplitude is
larger in the near-infrared than in the optical band. This is a consequence
of the source emitting not only synchrotron radiation from the jet, but also
thermal radiation from the accretion disd@ that feeds the super-massive
black hole of the active galactic nucleus (AGN). The more stable light from
the disc makes a larger contribution to the overall source flux at optical
wavelengths than in the near-IR. Further evidence of disc thermal radia-
tion comes from the analysis of colour indices and spectroscopic data (see
Methods and Extended Data Figs. |3| and .

In order to analyse the jet synchrotron emission, we must first model
the thermal component, usually referred to as the “big blue bump” (BBB).
Besides the disc radiation, the BBB includes the contribution of emission
lines from the broad-line region of the AGN; in particular, Mg II and Ha
lines, redshifted to the optical V' and near-infrared J bands, respectively.
Details on the BBB modelling are given in Methods. In summary, we built
the spectral energy distribution (SED) of a putative synchrotron minimum
brightness state and then subtracted it from the flux minima in all optical
and near-infrared bands to get the BBB contribution. We also added a
dust torus emission component in the mid—far infrared, as dust emission in
CTA 102 has been detected with the IRASZ and Spitzei® satellites. The
results are shown in Fig. 2]

Having a model for the thermal contribution to the source flux, we sub-
tract it from the near-infrared and optical flux densities and get the jet
synchrotron flux. Fig. [3| shows the optical R-band, millimetric (230 GHz)
and radio (37 GHz) light curves in the period 2008-2017. The jet optical
flux density ranges from 0.047 to 166 mJy, with a maximum flux ratio of
more than 3500. We note that both the 2012 flare and the 2016-2017 out-
burst were accompanied by radio activity, but the flux ratios at the peaks
of the two events are very different in the various bands. Moreover, in 2012,
peaks at lower frequencies were following those at higher frequencies, as is
often observed in blazars™. In contrast, the last optical outburst was pre-
ceded by activity at 37 GHz. Fig. 3 also shows that the high flux densities
registered at 37 GHz in 2008-2009 correspond to a “quiescent” optical state.
This complex optical-radio correlation suggests that the emission in these
two bands is produced in different jet regions. Explaining the multiwave-



LI B O

a 5

7691

7654
6959

log (VF,) [erg cm?s™]

S T rrrrrrrrrrr ot

Lo v v by Ly

T Y ‘\II\\\Il\‘ll\\\\ll\‘ll\\\\ll\!II\

b

TITT T T T TX

N ?
S, E ]
o 4F =
2t =
OZ ) ) ) ) ‘ ]
11 12 13 14 15
log v [Hz]

Figure 2: Spectral energy distributions of CTA 102 and orientation
of the jet emitting regions. a, Small grey circles highlight the observed
variability ranges. The black dashed line represents the putative minimum
synchrotron SED, black squares (hexagons) the minimum synchrotron flux
densities fitted (derived). Black solid line and asterisks show the thermal
emission model and its contributions to the near-infrared and optical bands.
The dot-dashed red line represents the base-level synchrotron SED for the
geometrical interpretation. Coloured big circles and lines display observed
data and spectra and model predictions for selected epochs (labelled with
JD — 2450000). Measure errors (1 s.d.) are smaller than the symbols size.
b, The viewing angles of the jet emitting region producing the (bulk of the)
radiation at the frequency v at the epochs in the upper panel.
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length light curves in terms of intrinsic processes would require very different
physical conditions along the jet at various epochs. Therefore, we look for
an alternative scenario and try to see if the observed source behaviour can
rather be ascribed to orientation changes in the jet.

In the light curves, especially in the optical and near-infrared bands, we
can distinguish fast flares superimposed on a long-term trend. We adopt
cubic spline interpolations through the binned data to represent the long-
term behaviour of the well-sampled light curves in the R band and at 230
and 37 GHz. For the radio and mm light curves, which are characterised by
smooth variations, we use a fixed time bin of 30 days. In the optical, the
fast flares are more rapid and pronounced when the source is brighter. This
is what is expected if the long-term trend is due to a variable Doppler factor
6, which affects both the flux variation amplitudes and the time scales. In
Methods we summarize the basic concepts of the relativistic beaming theory
and verify the contraction of variability time scales during the brightest
optical states. Accordingly, we adopted a variable bin size, which goes from
an initial value of 24 days in low flux states to 3.4 days in the most dramatic
phases of the 2016-2017 outburst. Nevertheless, the dispersion (root mean
square) of the optical flux densities around the spline in the various observing
seasons goes from 0.03 mJy, to 1.1 mJy at the time of the 2012 flare, and
to 18 mJy during the 2016—2017 outburst. This confirms that fast flares are
amplified during high flux states, strongly indicating that the long-term flux
changes are likely due to Doppler factor variations.

If we accept this, we can trace the behaviour of § in time (see Fig. [3])
at the three reference frequencies. We must take into account that, because
of the Doppler beaming, what we observe at a given frequency is emitted
by the source at a lower frequency. To correct for this effect we use the
relativistic invariant F),/v? (see e.g. [22]), where F), is the flux density at
frequency v. We build a base-level synchrotron spectrum for the long-term
flux variations by fitting a log-parabolic model to the spline minima at 37
and 230 GHz and in the R band (see Fig. . This is what we assume to be
the source SED subject to the minimum Doppler factor dp,se. Starting from
here, for each observed F, we look for the corresponding frequency vpaee in
the base-level spectrum so that F,(v)/v? = F, pase(Vbase)/Viase: ONCE Vhase
is found, we can infer the Doppler factor as ¢ = dpase (V/Vbase). The trends
of § shown in Fig. [3| were obtained assuming typical values® for the bulk
Lorentz factor I' = 20 and for the maximum viewing angle 0,,,x = 9°, so that
Opase = 3.7. Other choices for I' and 0.« do not alter the general results.
Data constrain the ratio 6(t)/dpase, while the choice of Oy constrains I' to
yield a reasonable f,i,. In the light of what is known for blazars, values of
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Figure 3: Multifrequency behaviour of the CTA 102 jet emission in
2008—2017. a-c, The R-band, 230 GHz and 37 GHz light curves contain
10462, 170 and 576 flux density points, respectively. Bars represent 1 s.d.
measure errors. Grey solid lines are cubic spline interpolations through the
binned light curves. d-e, The trend of the Doppler factor § and viewing
angle 6 of the optical (red), 230 GHz (blue) and 37 GHz (green) jet emitting
regions according to the geometrical model. f, The R-band flux densities
corrected for the variable beaming effect; they were obtained for a constant
8§ = Obase- The vertical lines indicate the epochs considered in Fig. 2|
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Omax between about 5° and 15°, corresponding to values of I' between 35
and 10, are possible.

The Doppler factor depends on the bulk Lorentz factor and on the view-
ing angle. While changes of I" both along the jet (see Methods) and in
time are in principle possible, they would require large differential accelera-
tions/decelerations of the bulk flow in the various jet regions to explain the
extreme flux changes in CTA 102. Instead, we favour Doppler factor varia-
tions caused by orientation changes, which is also supported by the develop-
ment of non-axisymmetric instabilities in magnetohydrodynamic (MHD) jet
simulations™ and by the VLBI observations (though on much larger, parsec
scales) of swirling jets® or helical jet structured?, also in the case of CTA
10228,

Having §(t) and a guess for I', we can then derive the viewing angle as
a function of time. This is shown in Fig. [3| for the three reference bands.
Flux enhancements are seen at a given frequency when the corresponding jet
emitting region becomes better aligned with the line of sight. This happens
in particular in the optical at the time of the 2016-2017 outburst.

If we now correct the flux densities for the variable ¢ effect (see Methods),
we obtain what we would observe in the case that the jet had a constant
orientation in time, and the same for all its emitting regions, i.e. a constant 4.
The residual variability corresponds to the fast flares that are possibly caused
by intrinsic, energetic processes. The fast flares show similar amplitudes
over the whole 20082017 period. The dispersion in the various observing
seasons is reduced to a factor 2 (0.009-0.022 mJy), compared to a factor
600 if energetic processes within the jet exclusively explain the observed
variability.

The above scenario implies that the emission at different frequencies
comes from different regions along a continuous jet (i.e., the jet is inhomo-
geneous), with different orientations with respect to the line of sight, and
that the orientation is variable in time. A schematic representation of our
model is given in Fig. [

The variations in 6, ¢, and flux (Figs. [2 and [3) have smaller amplitudes
and are smoother in the radio and mm bands compared to those seen at
shorter wavelengths. Within the model, this is most likely due to the fact
that the radio and mm emitting regions are significantly more extended
along the curved jet than the regions emitting the optical and near-IR light.
Less dramatic variability would be expected from a larger emission region
since the observations average the emission over a greater span of angles to
the line of sight.

We tested the proposed geometrical model by comparing predicted and
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accretion disc

Figure 4: A schematic representation of the proposed inhomoge-
neous jet model. Photons of different frequencies come from diverse jet
regions. Because of the jet curvature, these regions have different orienta-
tion. Therefore, the corresponding emission is more/less beamed depending
on the better/worse alignment with the line of sight. The jet structure is
dynamic, so that the orientation of each region changes in time. The two
observing eyes on the right represent two different alignments of the line
of sight relative to the jet. The “upper” observer will see enhanced optical
activity and relatively low mm-radio flux, while for the “lower” observer the
most beamed radiation is the mm one.
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observed SEDs (Fig. [2). For a given epoch, the predicted SED is obtained
by summing the thermal emission model with a synchrotron SED that is
derived by beaming the base-level SED with a frequency-dependent §(v).
Details are given in Methods. The agreement between model and data is
very good.

We also analysed optical polarimetric data (see Methods and Extended
Data Fig. @ The polarization percentage shows strong variability over all
the considered period, but no general correlation with the flux, suggesting
a mainly stochastic process due to turbulencé® or a variable jet direction?d,
On the other side, the polarization angle undergoes wide rotations and in
some cases its behaviour is consistent with the picture of a rotating twisted
jet.
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Methods
Observations.

Born in 1997, the Whole Earth Blazar Telescope (WEBT) is an interna-
tional collaboration of astronomers monitoring blazars in the optical, near-
infrared, mm and radio bands to investigate these highly active objects. Op-
tical data for this paper were acquired at the following observatories: Abas-
tumani (Georgia), AstroCamp (Spain), Belogradchik (Bulgaria), Calar Alto
(Spain), Campo Imperatore (Italy), Crimean (Russia), Kitt Peak (USA),
Lowell (USA; 70 cm, DCT and Perkins telescopes), Lulin (Taiwan), Michael
Adrian (Germany), Mt. Maidanak (Uzbekistan), New Mexico Skies (USA),
Osaka Kyoiku (Japan), Polakis (USA), Roque de los Muchachos (Spain; Liv-
erpool, NOT and TNG telescopes), ROVOR (USA), Rozhen (Bulgaria; 200
and 50/70 cm telescopes), San Pedro Martir (Mexico), Sirio (Italy), Skinakas
(Greece), Steward (USA; Kuiper, Bok, and Super-LOTIS), St. Petersburg
(Russia), Teide (Spain), Tien Shan (Kazakhstan), Tijarafe (Spain), Tucson
(USA), Valle d’Aosta (Italy), Vidojevica (Serbia) within a WEBT project.
The source magnitude was calibrated using common photometric standard
stars in the source field (Star 1 and Star 2 by , with the addition of
other stars from , when needed). This minimises possible offsets among
different data sets. Observations were performed in the Johnson-Cousins’
BV RI bands, except for those at the NOT and Liverpool telescopes. The
NOT data were provided in the Sloan Digital Sky Survey ugriz filters and
then converted with the transformations by . The Liverpool data were
taken with the “Red” (770-1000 nm), “Green” (650-760 nm) and “Blue”
(350-640 nm) cameras of the RINGO3 instrument; they were transformed
to the nearest conventional Johnson-Cousins bands via shifts derived from
periods of overlapping data with other instruments.

Near-infrared data were taken in the JH K filters at the Campo Impera-
tore, Lowell (Perkins) and Teide observatories. Data reduction is described
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in [19).

Extended Data Fig. [I|shows the optical and near-infrared light curves of
CTA 102 in the last four observing seasons. During the most dramatic
phases of the 2016-2017 outburst some episodes of noticeable and well-
sampled intranight variability have been observed. Four of them are shown
in Extended Data Fig. [2]

Observations in the radio and mm bands were performed with the 14-m
radio telescope of the Metsdhovi Radio Observatory (37 GHz) in Finland,
by the 30-m IRAM telescope (86 and 230 GHz) in Spain, and by the Sub-
millimeter Array (230 GHz) in Hawaii, USA. For details of the radio data

analysis see .

Spectral behaviour.

The optical spectral behaviour of CTA 102 in the same period of Ex-
tended Data Fig. [T is shown in Extended Data Fig. [3| where B — R colour
indices (and spectral slopes « of the F' oc v~ law) are obtained by coupling
data taken by the same telescope within 15 minutes. A redder-when-brighter
trend until R ~ 15 (Spearman’s rank correlation coefficient p = —0.82) is
followed by a slight bluer-when-brighter trend (p = 0.26) as the source
flux increases. This has previously been noticed™® for 3C 454.3 and means
that as the source brightens the disc contribution becomes negligible and
then the spectrum becomes bluer again, possibly because of changes in the
Doppler factol®d. In particular, we note that in faint states, when the source
is “blue”, the B-band brightness is much more stable than that in the R-
band, which means that the B-band flux is dominated by the disc emission,
but the R-band flux still receives important synchrotron contribution from
the jet, which makes the colour index significantly vary also in these states.

Spectroscopic observations in the optical band were carried out at the
Steward (Kuiper, Bok, and MMT telescopes) and Roque de los Muchachos
(TNG and NOT telescopes) observatories. A selection of these spectra is
shown in Extended Data Fig. Those taken during faint states show in
particular a prominent, broad Mg II emission feature and hard spectral
shape; the lines gradually disappear and the spectra soften as the bright-
ness rises, as a consequence of the increasing importance of the featureless
synchrotron continuum over the BBB. At the highest flux levels the opti-
cal spectra harden again, consistent with the bluer-when-brighter behaviour
noticed above.

Modelling the thermal emission component.
To model the BBB, whose contribution is assumed to remain constant

15



throughout the period of study, we examine the flux variability ranges in the
monitored bands. In Fig. [2] we plot all data acquired in the 20082017 pe-
riod by the WEBT observers in the radio-mm (37, 86 and 230 GHz), in the
near-infrared (K H.J) and in the optical (I RV B) bands. When passing from
observed magnitudes to flux densities we corrected for Galactic extinction
using the prescriptions of the NASA /IPAC Extragalactic Database (NED).
We build the SED of a putative synchrotron minimum brightness state by
fitting a log-parabolic model through the observed radio—-mm minimum flux
densities and a minimum synchrotron flux density in K band, which is ob-
tained by assuming that the observed minimum flux density in that band
receives equal synchrotron and thermal contributions. The adequacy of
a log-parabolic model to describe the broad-band synchrotron emission of
blazars has been discussed by e.g. and this model is widely used. The
thermal contribution from the BBB in all near-infrared and optical bands
is then obtained by subtracting the model minimum synchrotron flux from
the observed flux minima. The result is in agreement with that derived for
the same object by using a QSO template.

To complete the AGN model toward the mid—far infrared, we also added
the emission contribution from the dust torus as obtained by , even if it
is always negligible, except for the case when the source is very faint.

Relativistic beaming theory

The Doppler factor is defined as 6 = [['(1 — Bcos#)] ™!, where 3 is the
emitting source bulk velocity in units of the speed of light, I' = (1 — 32)~1/2
is the corresponding Lorentz factor, and 6 is the viewing angle. Any time
interval is shortened in the observer’s frame as At = At’/§, while frequencies
are blue-shifted as v = §1// (primed quantities refer to the source rest frame).

For a continuous jet with isotropic emission in the rest frame, the ob-
served and rest-frame flux densities are linked by F),(v) = §°T* F/,(v), with
Fl o (V)" B3,

As a consequence, for a given beaming state characterized by a Doppler
factor &, the flux variability amplitude due to possible intrinsic processes
AF, o 81, Therefore, a stronger beaming enhances not only the flux, but
also the variability amplitude of the intrinsic variations (fast flares), beside
shortening the variability time scale.

We can correct the observed flux densities at a given frequency for the
variable Doppler beaming effect according to: FS = F, (600t /gvar)2+av
where F2°" represent the values that we would observe in case the jet had a
constant orientation resulting in §<°"t. In Fig. |3| we present FS' in the R
band under the choice §S"" = G e
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Variability time scales.

Inspection of the optical light curves reveals that variability time scales
shorten when the source is brighter, which is a robust indication that the
long-term flux changes are due to Doppler factor variations. This can be
verified quantitatively by performing time series analysis, i.e. investigating
the time structure of flux variations. In order to avoid possible bias due to
the long-term trend and related difference in flux amplitude, we applied the
analysis to the flux densities corrected for the variable relativistic beaming
effect (see Fig. . We separated the dataset in two subsamples, correspond-
ing to bright (0 > dmax/2) and faint (§ < dmax/2) states, thus essentially
separating the huge 2016-2017 outburst from the rest of the data. For the
two subsamples we calculated the structure function@8 (SF), which mea-
sures the square mean difference in the flux densities as a function of the
time separation 7. The results are shown in Extended Data Fig. [5| where
the minimum variability time scale corresponds to the SF first peak, which
is about 4 days for the bright states, and about 8 days for the faint ones.
This doubling of the time scales matches very well the d-halving criterion
adopted to separate the two subsamples (At oc 6~ 1). We checked the SF re-
sults by means of discrete autocorrelation function2 (ACF), which is shown
in the same figure. Here time scales are given by ACF minima. The shortest
time scales for the high (low) flux states are confirmed to be about 4 (8)
days.

We finally applied the Kolmogorov-Smirnov (K-S) statistic to check
whether the SFs and ACFs of the two subsamples are drawn from the same
distribution. The values of the K-S statistic are 0.67 for the SFs and 0.39 for
the ACFs. Their significance levels are 1.1 x 107 for the SFs and 1.0 x 10™4
for the ACF's; such small values mean that the two distributions are signifi-
cantly different.

In view of these results and in agreement with the relativistic beaming
theory, to model the optical long-term trend we set an adaptive bin size that
reduces the time bin by a factor n as the flux increases by a factor n?T,
with n = 2,3,4,5,6,7 and o = 1.7, the slope of the minimum synchrotron
spectrum in the R band.

Assumption on the Lorentz factor.

We have assumed a single I'" value throughout the jet region of interest.
Other scenarios, with I' varying along, or transversally to, the jet are in
principle possible and have been adopted in some cases.

However, the portion of the jet we are considering, i.e. that emitting the
bulk of photons from the optical band down to 37 GHz, is inside the very
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inner core of the radio images, so that we can easily guess that the Lorentz
factor does not change significantly along this region. On the other side,
transverse velocity gradients, for which there is no observing evidence for the
inner zones of blazar jets, are sometimes introduced to explain the properties
of high-energy, Comptonized radiationP¥Y, but they would represent an
unnecessary complication for the purposes of our model.

Comparison between predicted and observed SEDs.

The frequency-dependent trend of the Doppler factor necessary to obtain
a model SED for a given epoch is derived by interpolating/extrapolating the
values of § at 37 GHz, 230 GHz and in the R band at that epoch (Fig.|3) in
the d versus log v space, after correcting frequencies for the different beaming
affecting the base-level SED and the model SED for the considered epoch.
We perform linear interpolation of the Doppler factor in the § versus log v
space by minimizing the chi-square error statistic. In case the unreduced
chi-square goodness-of-fit statistic was greater than 1.2, indicating poor fit,
we also performed a parabolic interpolation and took the average fit between
the two. This occurred three times, for the epochs JD — 2,450,000 = 7637,
7654, 7691.

In Fig. [2] ten SEDs are displayed, corresponding to selected epochs
spanning the source variability range. The predicted and observed SEDs
are in very good agreement. In particular, the spectral slope of the op-
tical part of the models matches very well those of the observed optical
spectra. The offset between the optical and near-infrared data at epoch
JD — 2,450,000 = 7717 is likely due to non perfect simultaneity of the
observations coupled with strong intranight variability. In the figure we
also show the corresponding viewing angle as a function of frequency for all
epochs. The brightest state during the 20162017 optical outburst corre-
sponds to the maximum difference of orientation (maximum misalignment)
between the radio and optical emitting zones when the optical zone has the
best alignment with the line of sight.

Polarization.

Optical polarimetric data were acquired by seven observatories: Calar
Alto, Crimean, Lowell (Perkins), ROVOR, San Pedro Martir, Steward, St.
Petersburg. The temporal behaviour of the jet polarization percentage Pict
and electric vector polarization angle (EVPA) are shown in Extended Data
Fig. [0]

Pt was obtained from the observed polarization degree P by correcting
for the dilution effect of the BBB unpolarized emission: Piet = P x F'/Fjey,
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where I is the de-absorbed flux density, and Fj; is the same quantity after
subtraction of the BBB flux contribution. In the figure we also plot the
mean value of Pi for the whole period and the mean values and standard
deviations for each observing season. The EVPA was adjusted for the +n x
(n € N) ambiguity by requiring that the angle difference between subsequent
points within the same observing season is minimum.

Strong variability of Pt and wide rotations of EVPA both in the clock-
wise and anticlockwise direction are observed over all the considered period.
No general correlation is found with the observed flux or with the flux vari-
ations that are left after correction for the variable Doppler beaming (see
Fig. [3). The only hint of correlation between polarization and flux vari-
ations is given by the concomitance of minima in the viewing angle (flux
peaks) with either fast rotation of EVPA (at JD ~ 2,457,300) or inversion
of its direction of rotation (at JD ~ 2,456,200 and JD ~ 2,457,750, i.e.
during the peaks of the 201290 and 2016-2017 outbursts). Both situations
may occur when considering a rotating helical jet with longitudinal mag-
netic field. As the helix rotates and the emitting region approaches the line
of sight, the EVPA undergoes a fast rotation or a change of the rotation
direction depending on whether the angle between the line of sight and the
helix axis is smaller or larger than the helix pitch angle, respectively. How-
ever, some turbulence must be presemIE to explain the scrambled behaviour
of Pei. Alternatively, showed that apparent random behaviour of P
(and F) can accompany large EVPA swings in a jet with helical magnetic
field and variable propagation direction.

Comparison with a standard one-zone model.

We have shown that the CTA 102 long-term multiwavelength variability
is well explained by changes of the Doppler factor. We now investigate
whether also commonly used one-zone models can explain the source spectral
changes in this way. In Extended Data Fig.[7] we present the results obtained
with the standard one-zone model developed by . We started to fit
the SED at JD = 2,457,637, which represents an intermediate flux level.
The physical parameters used are: blob radius log R = 17.8 [cm]; magnetic
field B = 0.08 G; Doppler factor § = 21.5; number of emitting electrons
N = 30cm™3; electron energies between logvyin, = 1 and logymax = 5
and a power-law-+cut-off electron energy distribution with @ = 2.15 and
log Yeut = 3.6.

We then tried to fit the highest and the lowest optical levels shown in
Fig. [2l by changing only §, which from our results is the essential parameter
to be changed. The brightest state requires § = 40 and the faintest § = 9.5.
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However, the model fits do not match the lower-frequency data; in particular,
the flux in the mm band is largely over- or under-produced. Of course, better
fits could be obtained with the one-zone model, but at the cost of changing
a number of parameters, in particular the electron energy distribution. One
should then check if a reasonable temporal evolution of all these parameters
can be found to explain the multiwavelength light curves.
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Figure 1: Observed light curves of CTA 102 in the optical BV RI and
near-infrared JH K bands. They are built with data from 39 telescopes
(marked with different symbols and colours) in 28 observatories participating
to the WEBT project. Measure errors (1 s.d.) are smaller than the symbols
size.
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Figure 2: Four episodes of noticeable and well-sampled intranight
variability. Enlargements of the R-band light curve of Fig. [1| during the
most dramatic phases of the 2016—2017 optical outburst reveal very fast
brightness changes. Error bars represent 1 s.d. measure errors.
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Figure 3: Colour behaviour of CTA 102. a, The R-band light curve; red
dots highlight the data points used to build colour indices. b-c, The B — R
colour index as a function of time and of the R-band magnitude. Error bars
on colours are obtained by summing in quadrature the 1 s.d. measure errors
of the corresponding B and R data. The dashed line indicates the average
B — R value. The parameter « is the spectral index of the F' o« v~ law.
The redder-when-brighter trend characterizing faint source states (R > 15)
turns into a slight bluer-when-brighter trend as the source flux increases.
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Figure 4: A selection of optical spectra of CTA 102 in different
brightness states. Data are from the Steward (blue) and Roque de los
Muchachos (TNG-black and NOT-red) observatories and have been cor-
rected for Galactic extinction. Observing epochs are given on the right as
Julian Date—2, 450, 000. The main broad emission lines (more visible in faint
states) are indicated. As the flux increases the source spectrum first soft-
ens (redder-when-brighter trend) and then gradually hardens (bluer-when-
brighter).
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Figure 7: One-zone model fits to spectral energy distributions of
CTA 102. The standard one-zone model by has been used to fit
three SEDs in an intermediate, high and low brightness state (see also Fig.
. Once the blob physical parameters are fixed to reproduce the inter-
mediate state, the other two model fits are obtained by changing only the
Doppler factor to match the optical data. As a result, the mm flux is largely
over- or under-produced. In all model fits the thermal component (accre-
tion disc+torus; black line and symbols) was added to the one-zone model
synchrotron component.
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