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36 ABSTRACT 
 
37 Howler monkeys (genus Alouatta) are large folivorous primates living in South America. We tested for the 
 
38 application of both Rensch’s rule and Bergmann’s rule to body size variation in Alouatta. We found that 
 
39 Rensch’s rule does apply in howlers. In Alouatta, males exploit dominance rank competition, and take advantage 
 

40 from seasonal abundance of high nutritious fruit supply in their diet. This mating system and dietary 

 

41 charateristics suggest positive male selection for body size is responsible for Rensch’s rule. However, since 
 
42 folivory favors large body size in primates (to lower mass specific metabolic rate) and it is the primary dietary  
 
43 habitus in howlers, larger species do occur in the Amazon basin, originating a reversed Bergmann ’s rule pattern 
 
44 for both males and females at the interspecific level. The spatial and phylogenetic components of such body size  
 
45 patterns of variation are both important, implying Alouatta ecomorphological differences to occur above the 
 
46 species level, justifying their non-overlapping geographic distribution. 
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66 INTRODUCTION 
 

67 In 1847, Carl Bergmann observed that, among endothermic species, individuals living at high latidudes  

 

68 tend to be larger than those standing closer to the equator (Bergmann 1847). This was once explained with the  
 
69 higher body surface-to-volume ratio in smaller animals, which helps dissipating heat in warm habitats (Meiri et 
 
70 al. 2007). The heat conservation hypothesis is not a sufficient explanation for it, and further justifications regard  
 
71 fasting endurance (Linstedt and Boyce  1985), environmental predictability (Calder 1974), and productivity  
 
72 (James 1970). 
 
73 Whatever the reason for Bergmann’s rule is, its application is not as universal as the term ‘rule’ would suggest 
 
74 (Meiri, 2011). In small-sized animals, like rodents, there are several cases of reverse Bergmannian pattern  
 
75 (Maestri et al. 2015; Medina et al. 2007; Belk and Houston 2002; Gohli and Vojie 2016). In the Neotropics, 
 
76 Martínez  et  al.  (2013)  recorded  a  Bergmann’s  rule  like  pattern  South  to  the  equator  for  crab-eating  fox 
 
77 Cerdocyon, while the reverse applies North to it. These examples suggest that, perhaps unsurprisingly, the 
 
78 relationship between body size and the geography is far more complicated than a simplistic rule would suggest.  
 

79 While Bergmann's rule describes a latitudinal size cline, Rensch's rule predicts that sexual dimorphism 

 

80 (SSD) increases with body size for species whose males are larger, and the opposite if females are (Rensch 1950, 
 
81 Fairbairn 1997, 2007, 2013; Weckerly 1998; Fairbairn et al. 2007). Male body size is in fact expected to be the  
 
82 primary locus of selection for Rensch’s rule, due to male-male competition for mates (Blanckenhorn 2006; 
 
83 Gordon 2004). 
 

84 Since Bergmann's rule predicts larger body size with latitude, and Rensch ’s rule predicts larger SSD 

 

85 with males larger than females, the effect of the two patterns may conflate, provided the largest species occur 
 
86 farther from the equator (Eweleit et al. 2014; Werner et al. 2016). Thus, under Rensch ’s rule, the latitudinal trend 
 
87 in male body size may steepen (Blanckenhorn et al. 2006). 
 

88 In primates, both Bergmann's and Rensch's rules were explored a number of times (Gordon 2004;  

 

89 Clauss et al 2013). Harcourt and Schreier (2009) found support for Bergmann ’s rule, and Smith and Cheverud 
 
90 (2002) found Primate as a whole to obey Rensch’s rule. Yet, when the model is controlled for the phylogeny, the 
 
91 relationship disappears for both Platyrrhini and Strepsirhini. 
 

92 Howler monkeys (genus Alouatta) are an ideal study model to test Bergmann's rule, Rensch's rules, and  

 

93 their potential interaction. Howlers are highly sexually dimorphic (Ford 1994), and widely distributed in South  
 
94 America. Alouatta belongs to the Atelidae family. The genus comprises 11 species, which diversified during the  
 
95 Miocene, when their common ancestor expanded its geographical range through the Andean Cordillera (Meloro 
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96 et al. 2014; Lynch-Alfaro et al. 2012). Biogeographically, there are two distinct, monophiletic groups of howlers. 
 

97 Trans-Andean  Alouatta  include  species  distributed  over Central America  and  Trans -Andean  Colombia  and 
 

98 Equador. Cis-Andean Alouatta include the South American species (Cortes -Ortiz et al. 2003). Although widely 
 

99 distributed, most Alouatta species are restricted to a single biome and show little geographic overlap with each  
 
100 other (i.e. they tend to be parapatric). Howler monkeys are highly-specialized leafs feeders. As with many 
 
101 folivorous  taxa,  these  monkeys  tend  to  have  a  low  activity  pattern  as  compared  to  other  South -American 
 
102 primates such as capuchins (Cortes -Ortiz et al. 2003; Lynch-Alfaro et al. 2012a). 
 

103 We tested whether Rensch’s and Bergmann’s rules apply to Alouatta species and their interaction. We 

 

104 focused upon the Cis-Andean clade we have studied in the field. This is welcome because only Cis -Andean 
 
105 Alouatta occurs outside the Tropics, and occupy, as a group, a much wider latitudinal range than the Trans - 
 
106 Andean clade, making them better suited to study latitudinal effects on body size variation. We used latitude as  
 
107 the predictor variable in both cases, but since latitude is just a proxy for environmental variables (see Martinez et  
 
108 al. 2013; Maestri et al. 2016), such as temperature, precipitation and vegetation type, we further tested for the  
 
109 impact of these variables. Specifically, we stated three explicit hypotheses: 
 
110 1 – Alouatta species follow Rensch's rule. In these primates, males tend to be larger than females and compete  
 
111 with each other (Meloro et al. 2014). Thus, we expect a stronger relationship between sexual dimorphism and the  
 
112 size of males rather than the size of females (i.e. male-driven increased SSD with size). 
 
113 2 – Alouatta species follow Bergmann's rule at the interspecific level (Pincheira-Donoso 2010; Meiri 2011). 
 
114 3 – Sexual size dimorphism (SSD) varies with the latitude. This hypothesis follows form hypotheses 1 and 2. If 
 
115 Rensch’s and Bergmann’s rule both apply in Alouatta, then sexual dimorphism will also correlate with latitude 
 
116 (as well as with the environmental variables latitude is a proxy for). 
 

117 
 

118 MATERIALS AND METHODS 
 

119 
 

120 We collected data for 227 skulls of Alouatta, belonging to the following six different species, A. 

 

121 belzebul, A. caraya, A. guariba, A. macconelli, A. nigerrima and A. seniculus (with the exclusion of A. sara 
 
122 because of the lack of specimens in the museums we visited) housed in the main Brazilian museums: Museu  
 
123 Nacional (MNRJ), Museu Paraense Emílio Goeldi (MPEG), Museu de Zoologia da Universidade de São Paulo  
 
124 (MZUSP), Museu de História Natural Capão da Imbuia (MHNCI), Coleção Científica de Mastozoologia da 
 
125 UFPR (DZUP), Museu de ciências naturais da Fundação Zoobotânica do Rio Grande do Sul (MCN/FZB). We  
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126 included only specimens for which collection locality geographical coordinates were available. Unfortunately,  
 
127 body size data were not reported in most cases. We therefore relied on geometric morphometrics techniques to  
 
128 retrieve size information from the collected specimens. In geometric morphometrics, landmarks (placed on  
 
129 specimens’ anatomically homologus points) are placed all along the struc ture of interest (in this case the skull). 
 
130 The specimen centroid size (a measure of the size of the landmarks configuration) is a very good proxy for body  
 
131 size  (Zelditch et al. 2002). The data-acquisition protocol includes taking skull photographs taken at a fixed 
 
132 distance (1 m) to the digital camera appling zoom to correct possible deformations due to lenses (Meloro et al.  
 
133 2008). Then, digital photographs were landmarked by a single investigator (N.C.), in order to prevent inter- 
 
134 observer error, using the software tpsDig2 2.16 (Rohlf, 2015). When taking photos, we positioned a scale bar 
 
135 adjacent to the specimen in order to transform digital pixels into linear measurements, allowing us to compute  
 
136 skull size directly from the configuration of landmarks. Twenty-three homologous landmarks were identified and 
 
137 digitized in order to extract skull size information, in the form of the natural logarithm of centroid size (LnCS, 
 
138 see configuration of landmarks used at Meloro et al. 2014). The protocol concluds with analytical and geometric 
 
139 transformation that reduce acquisition error and scales all the measured specimens to the unity (Rohlf and Slice  
 
140 1990). 
 

141 In order to study the geographical patterns of species body size and SSD, we collated geographically the 

 

142 specimens by performing a classic spatial sampling protocol. We overlaid the geographic dataset (sampling  
 
143 points) with a grid and then computed mean female body size, mean male body size, and SSD per species per  
 
144 each cell of the grid. This way, each body size mean and SSD datapoints acquire the geographical coordinates of 
 
145 the cell centroid they belong, separately for each species. We used a grid with a 250 x 250 km cell resolution in  
 
146 order to maximize the number of useful cells as to have at leas t one individual of both sexes for each species in a 
 
147 cell. In the end, the original dataset reduced from 227 specimens to 82 samples distributed in 38 total useful cells  
 
148 following the criteria explained above (Figure. 1; see also Figure S1 and Table S1). 
 

149 
 

150 
 

151 ENVIRONMENTAL VARIABLES 
 
152 For each specimen, we recorded the geographic coordinates of its collection locality and a set of four related  
 
153 environmental  variables:  Annual  Mean  Temperature  (BIO1),  Temperature  Seasonality  (BIO4),  Annual 
 
154 Precipitation (BIO12) and Precipitation Seasonality (BIO15) (Hijmans et al. 2005). These variables are provided  
 
155 as grogrphical raster grids at 50x50 km cell resolution (WorldClim raster database, worldclim.org). Temperature  
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156 and precipitation, together with their variability, determine the dominant climate of a region. Two additional 
 
157 variables were taken from the Atlas of the Biosphere [net primary productivity (NPP) and evapotranspiration,  
 

158 https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php], by using DIVA-GIS 7.5 software 

 

159 (http://www.divagis.org/download). These variables are informative as per the energy (biomass) available to  
 
160 species, which may impact on sexual dimorphism in primates (Plavcan et al. 2013). 
 

161 
 

162 STATISTICAL ANALYSES 
 
163 First, we used the cell-averaged LnCS to test for differences in sex and species (and their interaction) by using a  
 
164 two-way ANOVA. To test the existence of Rensch’s rule, we computed the Sexual Size Dimorphism (SSD) for 
 
165 each species in each cell as the difference between male and female LnCS and used it as response variable versus 
 
166 female and male LnCS as covariates in a linear regression. Then, to test for Bergmann ’s rule, we used the cell- 
 
167 averaged female and male mean LnCS for each species against latitude of the cells centroids. Similarly, to test 
 
168 for  a  potential  role  of  climate  on  these  species  skull  size  variability,  we  ran  regression  models  including 
 
169 environmental variables as predictors and the sex-averaged LnCS for each species in each cell as response. The 
 
170 interaction between Rensch’s and Bergmann’s rule was tested by using SDD per cell as the response variable, 
 
171 and the latitude of the cell centroid, plus environmental variables in separate regression models (one for each  
 
172 predictor). 
 

173 
 

174 Controlling for the spatial autocorrelation and phylogenetic relatedness 
 
175 When dealing with geographically distributed variables, their spatial autocorrelation must be accounted for  
 
176 (Diniz-Filho et al. 2003). To this aim, we computed Moran’s Index on both cell averaged SSD and male and 
 
177 female LnCS by using the software Sam v.4.0 (Rangel et al. 2010). In the case of the detection of a significant  
 
178 spatial autocorrelation, we took it into account in our analyses by including a new set of variables describing the 
 
179 spatial structure of the variables. This is done by performing the Eigenvector-based Spatial Filtering (Griffith, 
 
180 2013), which is a method that uses a distance or connectivity matrix to perform a Principal Coordinate Analysis  
 
181 (PCOA). Then, the method selects the eigenvectors iteratively as to minimize spatial autocorrelation in the  
 
182 residuals (Griffith and Peres-Neto 2006). The algorithm starts by using the eigenvectors as explanatory variables  
 
183 in an Ordinary Least Square (OLS) regress ion with the trait (here cell averaged male, female LnCS, or SSD, 
 
184 alternatively) as the response variable. The residual autocorrelation is computed and the eigenvector in the model 
 
185 with smallest Moran's I coefficient is selected and becomes fixed. The algorithm proceeds iteratively by adding 
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186 new eigenvectors in the (multiple) regression until the residuals autocorrelation is below a given threshold for p - 
 
187 values, usually 0.05 (Diniz-Filho et al. 2012; Carotenuto et al. 2015). Once the algorithm finds the most relevant 
 
188 eigenvectors, we can include them as additional covariates (herein named “spatial finters”) in the regression 
 
189 modes The algorithm described above was performed by using the software SAM (Rangel et al. 2010). 
 

190 Due to species shared ancestry, we also needed to take into account possible phylogenetic effects. We 

 

191 used as a reference the Alouatta tree provided by Cortes-Ortiz et al. (2003). The tree was trimmed to our dataset 
 
192 (i.e. by including Cis-Andean clade species only) using the Mesquite 2.75 software (Maddison and Maddison 
 
193 2011)  (Figure  S2).  We  excluded  A.  nigerrima  from  the  phylogenetic  analyses  because  of  its  unstable 
 
194 phylogenetic positioning. Branch lengths were based on the estimated minimum ages, as reported in  Cortes-Ortiz 
 
195 et al. (2003). The ages of undated nodes were estimated using the BLADJ algorithm (branch length adjustment;  
 
196 Webb et al 2008) in the Phylocom software. Since specimens were used as our sample base for the phylogeny,  
 
197 polytomies within each species were employed when more than one specimen per species was in the tree, 
 
198 conventionally  setting  tips  within  species  at  0.1  Ma.  The  inclusion  of  multiple  specimens  per  species  is  
 
199 particularly important here, since potential within-species variation related to sex, geographical distribution and  
 
200 climate  are  the  focus  of  the  present  paper.  The  multispecimens  phylogenetic  regressions  were  performed  
 
201 applying phylogenetic generalized least squares regressions (Ives et al. 2007), between environmental variables  
 
202 and the cell averaged values of SSD, of male LnCS, and of female LnCS, respectively,  while accounting for 
 
203 interspecific variability, using the function pgls.SEy in ‘phytools’ (Revell 2012). 
 
204 We performed all the regressions in four ways: by using Ordinary Least Squares (OLS); OLS with the spatial 
 
205 filters  as  additional  covariates  to  account  for  spatial  autocorrelation;  performing  PGLSs  to  account  for 
 
206 phylogenetic relatedness; and drawing a more complex set  of models by performing PGLS regressions including  
 
207 spatial filters as additional covariates to account for both phylogenetic relatedness and spatial autocorrelation at  
 
208 the same time. 
 

209 
 

210 
 

211 
 

212 
 

213 RESULTS 
 
214 By grouping specimens using the 250 x 250 km cell resolution grid we identified 38 cells. Where a species was  
 
215 present with individuals of one sex only it was excluded. By this criterion, the number of cells available to  
 
216 testing reduced to 34. 
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217 In the two-way ANOVA model using species and sex as factors, we found size to be significantly 

 

218 different for both factors (Species: F = 15.626, Df = 5, P < 0.001; Sex: F = 392.251, Df = 1, P < 0.001), with no  
 
219 interaction between them (F = 0.801; Df = 5, P = 0.553). Males are larger than females in all species, with A. 
 
220 macconnelli and A. seniculus being the largest overall (Figure 2). 
 

221 
 

222 Hypothesis 1. Rensch’s Rule. 
 
223 We found strong evidence in favour of Rensch’s rule (Table 2, Figure 3). Males skull size is significantly related  
 
224 to SSD, the same applies under PGLS, and when spatial filtering is applied. No significant  result was found for 
 
225 females (Table 2, Figure 3). 
 

226 
 

227 Hypothesis 2. Begmann’s rule 
 
228 Against hypothesis 2, we found the reverse of Bergmann ’s rule to apply to both females and males in Alouatta 
 
229 when using the Ordinary Least Squares regression model (Table 3, Figure 4). The slope is positive, which means  
 
230 a decrease of males and females ’ LnCS southward. For males, the same applies when accounting for spatial and  
 
231 phylogenetic effects (Table 3). For females, Bergmann’s rule disappeared under PGLS, and under PGLS plus  
 
232 spatial filter (Table 3). As regards the relationship between males LnCS and the environmental variables we  
 
233 found that when considering the BIO1 as covariate, all the four models were positive but significant only with  
 
234 the OLS and the OLS plus spatial filter (Table S3). When we considered the BIO4 as predictor, the model was  
 
235 always positive and significant for all the models. All the models were negative and significant when considering 
 
236 BIO12 as predictor, whereas no model was significant when considering BIO15. The relationships between male  
 
237 LnCS and evapotranspiration were all positive and significant, whereas no significant result was found when  
 
238 considering net primary productivity (Table S3). 
 
239 For females, the relationship between LnCS and BIO1 was significant and positive only when considering the  
 
240 spatial information. The relationships beteween females LnCS and BIO4 were negative and significant only for 
 
241 the OLS and the OLS + spatial filter models, and the same applied when considering BIO4 except for the sign of 
 
242 the slope. The relationship between BIO12 and females LnCS was positive and significant only for the OLS and  
 
243 OLS + spatial filter, whereas no significant relationships were found for BIO15. Evapotranspiration was positive  
 
244 and significant for the first two models (Table S3), whereas no model was singnificant when considering net  
 
245 primary productivity as predictor (see Table S3). 
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247 Hypothesis 3. Sexual size dimorphism and latitude 
 
248 There is no significant relationship between the degree of sexual size dimorphism and latitude, irrespective of 
 
249 whether spatial autocorrelation, or phylogeney are accounted for (Table 4). The same applies with environ mental 
 
250 variables (see Table S3). 
 

251 
 

252 Discussion 
 

253 The  body  size  of  individuals  within  species  can  be  shaped  by  environmental  (Bergmann ’s  rule), 

 

254 ethological, or ecological factors, like character displacement, or the mating system (Bubad ue et al. 2016; 
 
255 Carotenuto et al. 2015; Lisle and Rowe 2015; Meiri et al. 2014; Schuster and Wade 2003; Lande 1980). The way  
 
256 individuals of both sexes within a species react to these drivers over the evolutionary time determines the degree  
 
257 of sexual dimorphism, and how it unfolds over space. 
 

258 South American howler monkeys are folivorous primates. They are large, which helps food digestion  

 

259 and lowers mass specific metabolic rates (Meloro et al. 2014a; Cáceres et al. 2014) as compared to other South - 
 
260 American primates, such as capuchins (Cáceres et al. 2014; Canale et al. 2009; Fragaszy et al. 2004). Howler 
 
261 monkeys show dominance rank competition between males (Kay et al. 1988) meaning the intensity of male/male  
 
262 context over mates is strong, which promotes sexual dimorphism (Kelaita et al. 2011; Plavcan et al. 1997; Ford, 
 
263 1994). In general terms, folivory and arboreality correlate to little sexual size dimorphism in primates (Plavcan et  
 
264 al. 1997), but Alouatta possibly makes an exception (Plavcan et al. 1997; Ford 1994). Competition takes place 
 
265 between Alouatta species (Peres 1994), meaning the scope for sexual dimorphism is potentially counterbalanced  
 
266 by interspecific competition pressure (so far as size overlap between species is minimized to av oid competition, 
 
267 Dayan and Simberloff 2005). However, dietary differences between sexes are negligible in Alouatta species 
 
268 (Pavelka et al. 2004; Glander and Tedford 1995; Bicca-Marques et al. 1994) meaning there is little competition 
 
269 for food between males and females. Therefore, the positive relationship between male size and sexual size  
 
270 dimorphism we found (in keeping with Rensch`s rule) must be driven by male/male interactions, at least to some  
 
271 extent. Ravosa and Ross (1994) found evidence for Rensh’s rule in Alouatta, and similarly related their findings  
 
272 to the prolonged growth of males in this genus. It has been suggested that an even distribution of resources  
 
273 through the year decreases sexual dimorphism in polyginous species (Isaac and Johnson 2003). As Alouatta 
 
274 experience a seasonal abundance of fruit in their diet (Bicca-Marques et al. 1994; Peres 1994), it is possible that 
 
275 males are better in securing this occasional resource surplus than females, which would burst their growth  
 
276 (Weckerly 1998) and help intrasexual competition over mates. We found that Brown howler monkeys A. guariba 
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277 follows Bergmann’s rule. It is interesting noticing that the percentage of leaves in the diet of the brown howler 
 
278 decreases with latitude in Belize (Chaves and Bicca-Marques 2013). Assuming this to be true for other species as 
 
279 well, it suggests that folivory decreases body size differences with latitude within species, but increases it  
 
280 between species. This would help explaining why we found evidence for a reverse Bergmann’s pattern for both 
 
281 males and females (Table 4),  and why larger species do occur in the Amazon basin (Figure 1). 
 

282 In summary, our results indicate that body size variation in Alouatta follows Rensch’s rule. A possible 

 

283 explanation of such a pattern can be addressed to the Howler monkeys ’ dominance rank competition mate 
 
284 system (Kay et al. 1988) that, coupled with the seasonal abundance of fruits supply in the Amazon basin, favours  
 
285 selection for large sized males in equatorial species. We found a reverse Bergmann’s rule pattern between 
 
286 species, although Bergmman’s rule may be still valid within some individual species. This possibly depends on  
 
287 the relative consumption of leaves versus fruit in the diet, which is higher in the Amazon bas in. Whereas larger 
 
288 howlers are folivorous, the occasional inclusion of fruit in the diet may increase body size within species,  
 
289 especially in males. 
 

290 
 

291 Limitation of the study 
 
292 We urge the reader to consider that the results we found are valid for some one half  of the living Howler 
 
293 species. While this does not weaken the validity and the soundness of our findings, it would be interesting to  
 
294 explore, in the future, whether the same patterns accrue to Trans -Andean howlers. 
 

295 
 

296 Acknowledgment 
 
297 We want to acknowledge the editor and two anonymous referees whose comments helped us in improving the  
 
298 readability of the manuscript. 
 

299 
 

300 References 
 
301 Andersson M. 1994. Sexual Selection. Princeton University Press .Princeton, NJ. 
 
 
302 Ashton KG, Tracy MC Tracy, Queiroz A de. 2000. Is Bergmann’s rule valid for mammals? American Naturalist. 
 
303 156: 390–415. 
 
 
304 Badyaev AV, Hill GE, Whittingham LA. 2002. Population consequences of maternal effects: sex-bias in egg- 
 
305 laying order facilitates divergence in sexual dimorphism between bird populations. Journal of Evolutionary  

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 

306 Biology. 15: 997–1003. 
 
 
307 Belk MC, Houston D. 2002. Bergmann’s Rule in Ectotherms: A Test Using Freshwater Fishes. The American  
 
308 Naturalist. 160(6). 
 
 
309 Bicca-Marques JC, Calegaro-Marques C. 1994. Activity budget and diet of Alouatta caraya: an age-sex analysis. 
 
310 Folia Primatol 63:216–220. 
 
 
311 Bidau CJ, Martinez PA. 2016. Sexual size dimorphism and Rensch's rule in Canidae. Biological Journal of the  
 
312 Linnean Society. 1-15. 
 
 
313 Blackburn TM, Gaston KJ, Loder N. 1999. Geographic gradients in body size: a clarification of Bergmann's rule. 
 
314 Diversity and Distributions. 5: 165–174. 
 
 
315 Blanckenhorn WU, Stillwell RC, Young KA, Fox CW, Ashton KG. 2006. When Rensch meets Bergmann: does  
 
316 sexual size dimorphism change systematically with latitude? Evolution. 60(10):2004-11. 
 
 
317 Blomberg SP, Garland T, Ives AR. 2003. Testing for Phylogenetic Signal in Comparative Data: Behavioral 
 
318 Traits are More Labile. Evolution. 57: 717-745. 
 
 
319 Bonvicino CR, Lemos B, Seuánez HN, 2001. Molecu lar phylogenetics of howler monkeys (Alouatta, 
 
320 Platyrrhini). Chromosoma. 110: 241–246. 
 
 
321 Brown, W. L., & Wilson, E. O. 1956. Character displacement. Systematic zoology, 5(2), 49-64. 
 
 
322 Bubadué J, Cáceres N, dos Santos Carvalho, R. 2016. Ecogeographical Variation in Skull Shape of South- 
 
323 American Canids: Abiotic or Biotic Processes? Evol Biol 43: 145. 
 
 
324 Cáceres N, Meloro C, Carotenuto F, Passaro F, Sponchiado J, Melo GL, Raia, P. 2014. Ecogeographical 
 
325 variation in skull shape of capuchin monkeys. Journal of Biogeography. 41:501–512. 
 
 
326 Calder, W.A. 1974. Consequences of body size for avian energetics. Avian energetics (ed. by R.A.PaynterJr), pp.  
 
327 86–151. Nuttall Ornithological Club, Cambridge, MA. 
 
 
328 Canale GR, Guidorizzi CE, Kierulff MCM, Gatto C. 2009. Firs t record of tool use by wild popula-tions of the 
 
329 yellow-breasted capuchin monkey (Cebus xanthosternos ) and new records for thebearded capuchin (Cebus 

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 

330 libidinosus ). Am J Primatol. 71(5):366–372. 
 
 
331 Carotenuto, F., Diniz-Filho, J. A. F., & Raia, P. 2015. Space and time: The two dimensions of Artiodactyla body 
 
332 mass evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 18-25. 
 
 
333 Chaves, O. M., & CÉSAR BICCA-MARQUES, J. Ú. L. I. O. 2013. Dietary flexibility of the brown howler 
 
334 monkey throughout its geographic distribution. American journal of primatology, 75(1), 16-29. 
 
 
335 Clauss M, Dittmann MT, Müller DWH, Meloro C, Codron D. 2013. Bergmann ′s rule in mammals: a cross- 
 
336 species interspecific pattern. Oikos, 122: 1465–1472. 
 
 
337 Cortés-Ortiz, L., Bermingham, E., Rico, C., Rodrıguez-Luna, E., Sampaio, I., & Ruiz-Garcıa, M. (2003). 
 
338 Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Molecular phylogenetics  
 
339 and evolution, 26(1), 64-81. 
 
 
340 De Lisle, S. P., & Rowe, L. 2015. Ecological character displacement between the sexes. The American  
 
341 Naturalist, 186(6), 693-707. 
 
 
342 Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. 
 
343 Global Ecology and Biogeography. 12(1): 53-64. 
 
 
344 Dray S, Legendre P, Blanchet G. 2007. Forward selection with permutation (Canoco p.46) (Version 0.0–7). 
 
345 http://r-forge.r-project.org/R/?group_id=195. 
 
 
346 Eweleit, L., & Reinhold, K. 2014. Body size and elevation: do Bergmann's and Rensch's rule apply in the  
 
347 polytypic bushcricket Poecilimon veluchianus?. Ecological Entomology, 39(1), 133-136. 
 
 
348 Fairbairn DJ 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in  
 
349 males and females. Annual review of ecology and systematics. 659-687. 
 
 
350 Fairbairn DJ. 2007. Introduction: the enigma of sexual size dimorphism. Sex, Size & Gender Roles: 
 
351 Evolutionary Studies of Sexual Size Dimorphism, 1-10. 
 
 
352 Fairbairn DJ. 2013. Odd Couples. Extraordinary Differences Between the Sexes in the Animal Kingdom. 
 
353 Princeton University Press. 

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 

354 Fairbairn D, Blanckenhorn W, Szekely T. 2007. Sex, Size and gender Roles. Evolutionary Studies of Sexual Size  
 
355 Dimorphism. Oxford University Press. 
 
 
356 Ford, S. M. 1994. Evolution of sexual dimorphism in body weight in platyrrhines. American Journal of 
 
357 Primatology, 34(2), 221-244. 
 
 
358 Fragaszy D, Visalberghi E, Fedigan L. 2004. The complete capuchin. Cambridge: Cambridge University Press. 
 
359 339 p. 
 
 
360 Glander KE, Teaford ME. 1995. Seasonal, sexual, and habitat effects on feeding rates of Alouatta palliata. Am 
 
361 Primatol 36:124–125. 
 
 
362 Gohli, J., & Voje, K. L. 2016. An interspecific assessment of Bergmann ’s rule in 22 mammalian families. BMC 
 
363 evolutionary biology, 16(1), 222. 
 
 
364 Gordon AD. 2004. Evolution of body size and sexual size dimorphism in the order Primates: Rench’s rule, 
 
365 quantitative genetics, and phylogenetic effects. PhD dissertation, University of Texas, Austin. 
 
 
366 Gregory-Wodzicki KM. 2000. Uplift history of the central and northern Andes: a review. Geol. Soc. Amer. 
 
367 Bullet. 112: 1091–1105 
 
 
368 Harcourt AH, Schreier BM .2009. Diversity, Body Mass, and Latitudinal Gradients in Primates . Internaional 
 
369 Journal of Primatology. 30: 283. 
 
 
370 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis, A. 2005. Very high resolu tion interpolated climate 
 
371 surfaces for global land areas. International Journal of Climatology. 25: 1965–1978. 
 
 
372 Isaac, J. L. 2005. Potential causes and life history consequences of sexual size dimorphism in mammals. 
 
373 Mammal Review, 35(1), 101-115. 
 
 
374 Isaac, J. L., & Johnson, C. N. 2003. Sexual dimorphism and synchrony of breeding: variation in polygyny  
 
375 potential among populations in the common brushtail possum, Trichosurus vulpecula. Behavioral Ecology, 
 
376 14(6), 818-822. 
 
 
377 Ives, A. R., P. E. Midford, and T. Garland Jr. 2007. Within-species measurement error in phylogenetic 
 
378 comparative methods. Systematic Biology, 56, 252-270. 

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 

379 James, F.C. 1970. Geographic size variation in birds and its relationship to climate. Ecology, 51, 365–390. 
 
 
380 Kay, R. F., Plavcan, J. M., Glander, K. E., & Wright, P. C. 1988. Sexual selection and canine dimorphism in  
 
381 New World monkeys. American Journal of Physical Anthropology, 77(3), 385-397. 
 
 
382 Kelaita, M., Dias, P. A. D., Aguilar Cucurachi, M., Canales Espinosa, D., & Cortés Ortiz, L. 2011. Impact of 
 
383 intrasexual selection on sexual dimorphism and testes size in the Mexican howler monkeys Alouatta palliata and 
 
384 A. pigra. American journal of physical anthropology, 146(2), 179-187. 
 
 
385 Lande, R. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution, 34(2), 
 
386 292-305. 
 
 
387 Lindstedt, S. L., & Boyce, M. S. 1985. Seasonality, fasting endurance, and body size in mammals. - The 
 
388 American Naturalist, 125: 873-878. 
 
 
389 Lynch-Alfaro JW. 2012. How Different Are Robust and Gracile Capuchin Monkeys? An Argument for the Use 
 
390 of Sapajus and Cebus. Am J Primatol. 74(4):273-86. 
 
 
391 Maddison WP, Maddison DR. 2011. Mesquite: a modular system for evolutionary analysis, version 2.75. 
 
392 http://mesquiteproject.org. 
 
 
393 Maestri R, Luza AL, de Barros LD, Hartz SM, Ferrari A, de Freitas TRO, Duarte LDS. 2016. Geographical 
 
394 variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of  
 
395 communities. J. Biogeogr. 43: 1192–1202. 
 
 
396 Martinez PA, Marti DA, Molina WF, Bidau CJ. 2013. Bergmann’s rule across the equator: A case study in 
 
397 Cerdocyon thous (Canidae). Journal of Animal Ecology. 82: 997–1008. 
 
 
398 Medina AI, Martí DA, Bidau CJ. 2007. Subterranean rodents of the genus Ctenomys (Caviomorpha, 
 
399 Ctenomyidae) follow the converse to Bergmann's rule. Journal of Biogeography. 34: 1439–1454. 
 
 
400 Meiri, S. 2011. Bergmann's Rule–what's in a name?. Global Ecology and Biogeography, 20(1): 203-207. 
 
 
401 Meiri S, Yom-Tov Y, Geffen E. 2007. What determines conformity to Bergmann's rule?. Global Ecology and 
 
402 Biogeography. 16: 788–794. 

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 

403 Meiri, S., Kadison, A. E., Novosolov, M., Pafilis, P., Foufopoulos, J., Itescu, Y., ... & Pincheira Donoso, D. 
 
404 2014. The number of competitor species is unlinked to sexual dimorphis m. Journal of Animal Ecology, 83(6), 
 
405 1302-1312. 
 
 
406 Meloro C, Cáceres N, Carotenuto F, Passaro F, Sponchiado J, Melo GL, Raia P. 2014a. Ecogeographical 
 
407 variation in skull morphometry of howler monkeys (Primates: Atelidae). Zoologischer Anzeiger - A Journal of 
 
408 Comparative Zoology. 253: 345–359. 
 
 
409 Meloro C, Cáceres N, Carotenuto F, Sponchiado J, Melo GL, Passaro F, Raia P .2014b. In and out the  
 
410 Amazonia: evolutionary ecomorphology in howler and capuchin monkeys. Evolutionary Biology. 41:38–51. 
 
 
411 Pavelka, M. S., & Knopff, K. H. 2004. Diet and activity in black howler monkeys (Alouatta pigra) in southern 
 
412 Belize: does degree of frugivory influence activity level?. Primates, 45(2), 105-111. 
 
 
413 Peres, C. A. 1997. Effects of habitat quality and hunting pressure on  arboreal folivore densities in neotropical 
 
414 forests: a case study of howler monkeys (Alouatta spp.). Folia Primatologica, 68(3-5), 199-222. 
 
 
415 Pincheira-Donoso, D. 2010. The balance between predictions and evidence and the search for universal 
 
416 macroecological patterns: taking Bergmann’s rule back to its endothermic origin. Theory in Biosciences, 129(4), 
 
417 247-253. 
 
 
418 Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team. 2016. _nlme: Linear and Nonlinear Mixed Effects  
 
419 Models. R package version 3.1-128. http://CRAN.R-project.org/package=nlme. 
 
 
420 Plavcan, J. M., & Van Schaik, C. P. 1997. Intrasexual competition and body weight dimorphism in anthropoid  
 
421 primates. American Journal of Physical Anthropology, 103(1), 37-68. 
 
 
422 Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: a comprehensive application for Spatial Analysis in  
 
423 Macroecology. Ecography. 33(1): 46-50. 
 
 
424 Rensch, B. 1950. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner Zoologische  
 
425 Beiträge. 1:58-69. 
 
 
426 Revell LJ. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in  
 
427 Ecology and Evolution. 3: 217-223. 

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 

428 Rohlf FJ. 2015. The tps series of software. Hystrix, The Italian Journal of Mammalogy. 
 
 
429 Rohlf FJ, Slice DE. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. 
 
430 Systematic Zoology. 39: 40–59. 
 
 
431 Rodríguez MÁ, Olalla-Tárraga1 MA, Bradford AH. 2008. Bergmann’s rule and the geography of mammal body 
 
432 size in the Western Hemisphere. Global Ecology and Biogeography. 17: 274–283. 
 
 
433 Rosenberger AL. 1992. Evolution of feeding niches in new world monkeys. Am. J. Phys. Anthropol. 88: 525– 
 
434 562. 
 
 
435 Shine R. 1989. Constraints, Allometry, and Adaptation: Food Habits and Reproductive Biology of Australian  
 
436 Brownsnakes (Pseudonaja: Elapidae). Herpetologica. 45(2): 195-207. 
 
 
437 Shuster, S. M., & Wade, M. J. 2003. Mating systems and strategies. Princeton University Press. 
 
 
438 Smith, R. J., & Cheverud, J. M. 2002. Scaling of sexual dimorphism in body mass: a phylogenetic analysis of 
 
439 Rensch's rule in primates. International Journal of Primatology, 23(5), 1095-1135. 
 
 
440 Strier KB, 1992. Atelinae adaptations: behavioral strategies and ecological con-straints. Am. J. Phys. Anthrop. 
 
441 88: 515–524 
 
 
442 Wallace AR. 1852. On the monkeys of the Amazon. Proceedings of the Zoological Society of London. 20:107- 
 
443 110. 
 
 
444 Webb CO, Ackerly DD, Kembel, SW. 2008. Phylocom: software for the analysis of community phylogenetic  
 
445 structure and trait evolution, version 4.0.1. http://www.phylodiversity.net/phy locom. 
 
 
446 Weckerly FW. 1998. Sexual-size dimorphism: influence of mass and mating systems in the most dimorphic  
 
447 mammals. Journal of Mammalogy. 79: 33–52. 
 
 
448 Werner, Y. L., Korolker, N., Sion, G., & Göçmen, B. 2016. Bergmann's and Rensch's rules and the spur thighed 
 
449 tortoise (Testudo graeca). Biological Journal of the Linnean Society, 117(4), 796-811. 
 
 
450 Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. 2012. Geometric morphometrics for biologists: a primer. 
 
451 Academic Press. 

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 

452 
 

453 
 

454 

452

453

454

https://www.editorialsystem.com/pdf/download/602206/9b91f878bf24d19da1bcc1ee9307a0a2/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (4.33 MB)

 
Table 1. Skull sample size for the six Alouatta species considered in this study. The data reported are referred 

to the whole sample of specimens and the reduced dataset after the spatial sampling by cell grid. 

Species #Specime  #Femal #Mal #Specime #Femal #Male Average females per cell  Average males per cell 

 ns  es es ns in cells es in s in       

      cells cells       

Alouatta belzebul (L innaeus, 1766)    65 36 29  16 8  8 1 1 
             

Alouatta caraya (Humboldt, 1812)   44 19 25  22 11  11 1.1 1.1 
             

A louatta guariba (Humb ol dt, 1812)   47 19 28  18 9  9 1 1 
             

Alouatta macconelli Elliot, 1910   11 5 6  6 3  3 1 1 
             

A louatta nigerri ma L önnberg, 1941    10 5 5  2 1  1 1 1 
            

Alouatta seniculus (Linnaeus, 1766)  50 29 21  20 9  9 1 1 
               

Total     227 113 114  84 42  42   
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Table 2. Results of regressions between body size and the degree of sexual dimorphism in Alouatta, 

 

performed separately for males and females, respectively. male LnCS = natural logarithm of males’ 

 

centroid size, female LnCS = natural logarithm of females ’ centroid size, SSD = sexual size dimorphism. 

 

The specification ‘PGLS’ indicates phylogenetic generalized least squares regression results. The 

 

specification  ‘s.filter’ indicates spatial filtering was imposed  on  the regressor to account for spatial  

 

autocorrelation. 
 
 
 
 
 

 

 male LnCS vs male LnCS vs SSD + male LnCS vs SSD in male LnCS vs SSD + s.filter 

Slope 

SSD s.filter PGLS in PGLS 

0.843 0.830 0.588 0.601 

st.error 0.181 0.177 0.112 0.114 

t 4.659 4.689 5.242 5.286 

p 0.000 0.000 0.000 0.000 

logLik 62.701 64.135 68.288 66.316 

 
 
 

 female LnCS vs female LnCS vs SSD + female LnCS vs SSD in female LnCS vs SSD + s.filter 

Slope 

SSD s.filter PGLS in PGLS 

-0.156 -0.169 -0.323 -0.331 

st.error 0.185 0.181 0.171 0.176 

t -0.845 -0.937 -1.893 -1.882 

p 0.403 0.355 0.066 0.068 

logLik 61.873 63.291 59.911 57.861 
 
 

 

 male LnCS vs male LnCS vs female male LnCS vs female male LnCS vs female LnCS +  

Slope 

female LnCS LnCS + s.filter LnCS in PGLS s.filter in PGLS 

0.807 0.784 0.382 0.368 

st.error 0.151 0.157 0.121 0.122 

t 5.355 4.983 3.164 3.010 

p 0.000 0.000 0.003 0.005 

logLik 64.890 65.068 65.573 63.672 
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Table 3. Results of regressions between body size latitude in Alouatta, performed separately for males and 

 

females, respectively. male LnCS = natural logarithm of males ’ centroid size, female LnCS = natural 

 

logarithm  of  females’  centroid  size,  Latitude  =  latitude  of  the  grid  cell  in  decimal  degrees.  The 

 

specification ‘PGLS’ indicates phylogenetic generalized least squares regression results. The specification 

 

‘s.filter’ indicates spatial filtering was imposed on the regressor to account for spatial autocorrelation. 
 
 
 

 

 Latitude vs Latitude vs male Latitude vs male Latitude vs male LnCS +  

Slope 

male LnCS LnCS + s.filter LnCS in PGLS s.filter in PGLS 

84.723 85.950 0.002 0.002 

st.error 21.199 22.112 0.001 0.001 

t 3.997 3.887 2.298 2.104 

p 0.000 0.000 0.027 0.042 

logLik -135.817 -135.788 51.671 49.722 
 
 

 

 Latitude vs Latitude vs female Latitude vs female Latitude vs female LnCS +  

Slope 

female LnCS LnCS + s.filter LnCS in PGLS s.filter in PGLS 

88.925 90.029 0.001 0.001 

st.error 27.315 28.637 0.001 0.001 

t 3.256 3.144 1.423 1.119 

p 0.002 0.003 0.163 0.271 

logLik -137.903 -137.891 57.165 55.322 
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Table 4. The degree of sexual dimorphism (ssd) regressed against latitude in Alouatta. Regressions were 

performed separately for males and females, respectively. lat = latitude in decimal degrees. The 

specification ‘PGLS’ indicates phylogenetic generalized least squares regression results. The specification 

‘SF’ indicates spatial filtering was imposed on the regressor to account for spatial autocorrelation. 

 

 
 Latitude vs Latitude vs SSD + Latitude vs SSD in Latitude vs SSD + s.filter in  

Slope 

SSD s.filter PGLS PGLS 

47.288 46.432 0.001 0.001 

st.error 34.289 34.649 0.001 0.001 

t 1.379 1.340 1.125 1.202 

p 0.176 0.189 0.268 0.237 

logLik -141.838 -141.672 53.671 51.760 
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Figure 1. Map of South America showing the geographic distribution of Alouatta specimens. Sampling localities  

of different species and sexes are shown by different symbols. 

 

Figure 2. Box plot with standardized deviation of natural log transformed centroid size (LnCS) across sexes.  

Black string: median, white box: first interquartile, bar: second interquartile. Different species and sexes are 

shown by different symbols. 

 
 

Figure 3. Regression plots for Rensch’s sexual size dimorphism and female and male natural log transformed  

centroid size (LnCS). Species and sexes are labelled by different symbols. 

 

Figure 4. Regression plots for Bergmann’s rule on its original form, latitude, and female and male natural log  

transformed centroid size (LnCS). Species and sexes are labelled by different symbols. 
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Supplemental information 

 

Figure S1. The 250x250 cell resolution geographical grid used to average morphological and environmental 

variables related to the recorded specimens. Red points indicate sampling localities, blue points ind icate 

centres of the related cells. 

 
 

Figure S2. Phylogenetic tree used in all the phylogenetic informed analyses. The colour of the branches  

represents the mapped Sexual Size Dimorhism (SSD). States of internal nodes are reconstructed via Maximum 

Likelihood Estimation. 

 

 
Table S1. The dataset used in this study. 

 

Table S2. Spatial autocorrelation results. 

 

Table S3. Results of the regressions between males and females ’LnCS and the environmental variables. 
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