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    Abstract– Dynamic cardiac single photon emission computed 
tomography (SPECT) offers an effective way for observing 
fundamental physiological functions of organs and could aid in 
the early diagnosis of cardiovascular disease, in particular, for 
those patients with minimal disease. This would improve the 
chances of recovery by initiating appropriate therapy and an 
altered life style. To make dynamic cardiac SPECT viable with 
present clinical scanners methods need to be developed that 
reconstruct time activity curves from dynamically moving organs 
representing the change of tracer concentration as a function of 
time from projection data acquired from slowly rotating gamma 
cameras. This type of data analysis faces the challenge of 
modeling both rigid and non-rigid body deformation as well as 
modeling of a time varying tracer concentration. In the work 
presented here, we develop methods for segmenting the beating 
heart using an approach based upon level sets, which can deal 
naturally with topological changes. A variational formulation of 
the level set method was implemented. This allowed the inclusion 
of a priori information and was computationally efficient. The 
algorithm was first evaluated with simulated dynamic cardiac 
image data. The MCAT phantom was used to generate data 
containing 32 time frames over one cardiac cycle. Each frame 
had a matrix size of 64×64×32 voxels with a resolution of 6.25 
mm. Starting with an initial estimate of the boundary, the 
algorithm then converged to an accurate segmentation of the 
deforming heart. The initial estimate was not important and we 
could segment simultaneously both interior and exterior 
boundaries. This algorithm forms the foundation for the 
segmentation of the boundary of the deforming myocardium 
directly from projection data. 
 

I. INTRODUCTION 

An estimated 80,000,000 American adults (one out of 
three) suffer from one or more types of cardiovascular 
disease (CVD), with half of them estimated to be age 60 
or older. Nearly 2,400 Americans die of CVD each day, 
which gives an average of one death every 37 seconds. 
CVD overall death toll accounted for about 56% of all 
deaths in 2005 [1]. 
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Dynamic single photon emission computed 
tomography is a nuclear imaging modality [2] that offers 
an effective way for observing fundamental 
physiological functions of organs. For example, it offers 
the ability to quantify myocardial perfusion of a tracer 
injected into the blood [4]. The observations involve the 
quantification of temporal changes of the concentration 
of the radionuclide tracer in the targeted organs. Data 
acquisition is usually performed with slow rotating 
gamma cameras. Model-based data analysis is used to 
estimate physiological compartment parameters 
representing the wash-in and wash-out of the 
radiopharmaceutical from the organ of interest. It is 
anticipated that dynamic cardiac SPECT could aid in the 
early diagnosis of cardiovascular disease and in 
particular for those patients with minimal disease. This 
could improve the chances of recovery by initiating 
therapy and an altered life style. 

The overall objective of this research is to implement 
algorithms that are able to reconstruct three dimensional 
(3D) dynamically moving organs and time activity 
curves (TAC) representing the change in concentration 
of a radiopharmaceutical in the organ. This estimation of 
dynamic parameters that model the deformation of the 
organ, as a function of time, and the change of the tracer 
concentration, as a function of time, from projections, is 
referred to as 5D tomography [3]. 

To segment and define boundaries of the beating heart, 
we use level set methods. Level set methods have been 
used with success in a variety of domains, image 
processing and medical imaging, in particular, being 
among them [7]. Promising results obtained in positron 
emission tomography (PET) [10] encouraged us to 
utilize this framework. 

This study is an extension of our work in four 
dimensional (4D) tomography [4] reconstructing 
dynamically deforming organs. It faces the challenge of 
modeling both rigid and non-rigid body deformation, 
together with the difficult task of modeling of a time 
varying tracer concentration from tomographic 
projections. This paper is organized as follows. In 
Section 2 we give a short introduction to level set 
methods. In Section 3 we describe our methods for 
segmenting cardiac boundaries from images of a 
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deforming myocardium and segmenting them from the 
projections of a deforming object. In Section 4 we 
present simulation results. Finally, Section 5 presents 
conclusions and future work. 

II. LEVEL SETS 

The segmentation of the heart is accomplished by 
determining boundaries of deforming organs. Suppose 

one has to divide a domain of nℜ  into multiple 
subdomains. In order to do that, an interface must be 
defined to bind the subdomains. Note that the 

subdomains are subsets of nℜ  while the interface is a 

subset of 1−ℜn . In an explicit interface representation, 
one needs to define explicitly each point belonging to 
the interface, whereas an implicit interface 
representation defines the interface as the isocontour of a 
function. An interface C  can be represented by the zero 

level set of a function { }0),,(),()(: == yxtyxtC φφ . 

To add dynamics to the evolution of the interface, an 
evolution equation was introduced by Osher and Sethian 
[6], the Eulerian formulation of which is given by 
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where F is called the speed function, which can depend 
on a number of factors: with one of them being the 
curvature [7]. This formulation has the important 
advantage of handling topological changes naturally. 
However, it can develop `shocks' and `rarefaction fans' 
[5] when using simple difference schemes because it is a 
hyperbolic equation. In order to deal with this issue, a 
common usage is to initialize (and re-initialize, after a 
number of steps) the function φ  as a signed distance 
function; hence rendering the equation parabolic. 

The re-initialization step can be computationally 
costly. Our algorithm is similar to the variational level 
set method presented in [8]. This formulation has the 
advantage of incorporating shape-prior information. It 
also does not require a re-initialization ofφ . 

III. METHODS 

A. Segmenting Cardiac Boundaries from Images of a 
Deforming Myocardium 

In this section we present a curve evolution method for 
segmenting cardiac boundaries from images of a 
deforming myocardium. 

Let us define an energy function unifying external 
energy, internal energy, and energy terms incorporating 
prior information as follows 
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                                                                                      (2) 
where μ , λ , ν , ξ , and α  are parameters controlling 
the relative weights of the energy terms, g is the edge 

indicator function, )(φgL  expresses the length of the 

zero level curve of φ , )(φgA is the weighted area of 

}0),(),{( <=Ω− yxyx φφ , )(φsE  imposes spatial 

smoothness, and )(φtE  assures temporal smoothness 

[9]. The gradient flow, which minimizes E , is given by 
φφ ∂∂−=∂∂ Et  . The right hand side of this equation 

can be expressed by calculus of variation in terms of φ  
and its derivatives [11]. This yields a partial differential 
equation (PDE) in the form )(φφ Ft =∂∂ . This PDE 

gives the evolution of the level set function φ  whose 
zero level will evolve towards the boundary of the heart. 
Temporal smoothness issues were not treated in this 
study. 
  Next we explain the terms mentioned above. A signed 

distance function φ  satisfies 1=∇φ and any function 

f  satisfying 1=∇f  is a signed distance function. The 

metric 

( ) dxdyP
2
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2
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was introduced to measure the deviation of φ  from a 
signed distance function [8]. The edge detector function 
is defined by 
 

    ( )
2

),(),(1

1
),(

yxIyxG
yxIg

∗∇+
≡∇

σ

 ,    (4) 

 
where I  is an image and σG is the Gaussian kernel with 

standard deviationσ : 
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The function )),(( yxIg ∇  is positive in homogeneous 

regions and zero at the edges. The surface integral of a 
function f  over the boundary Ω∂  is given by 
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where δ  is the Dirac function. Hence, in 2ℜ  we define 
)(φgL  as 

 

�Ω ∇≡ dxdygLg φφδφ )()(  .                     (7) 

 
The volume integral of a function f over the interior 

region −Ω is 
 

�Ω − '))'((1)('( xdxHxf
���

φ  ,                     (8) 

 

where H  is the Heaviside function. Hence, in 2ℜ , we 
define 
 

dxdygHAg �Ω −≡ )()( φφ                        (9) 

 
These two terms, )(φgL  and )(φgA , drive the zero level 

set towards the object boundaries. )(φsE  is defined as 

the sum of length of all curves 
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where { }Kk ,...,2,1∈ represents the time step of a 

dynamic tomographic reconstruction and kC is the zero 

level set of φ at time k . 
 

B. Segmenting Boundaries from Projections 

In this section we present a curve evolution method for 
segmenting boundaries of a deforming object from 
projections of the deforming object. 

Let C  denote the object boundaries and β  the 
different intensities. With these notations we can express 
the projection at a certain angle and at a certain time as 
follows 
 

� += ii
k
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with Mi ,...,1=  the angles of the acquisition, ih  the 

projection kernel, and ie  the error assumed to be 

Poisson noise. In order to reconstruct C  and β  we use 
the expression for the energy 
 

( ) �+−=
C
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By minimizing the first term, we maximize the 
likelihood of the observed data, and by minimizing the 
second term, which represents the length of C , we 
obtain smooth curves. Taking into account temporal 
boundary smoothness and temporal intensity smoothness 
the previous energy function becomes 
 

iittssd EEEEE λλλ +++=   ,               (13) 

 
where dE  is the data fidelity term; sE  is the spatial 

boundary smoothness term; tE  is the temporal boundary 

smoothness term; iE  is the temporal intensity 

smoothness term; and sλ , tλ  and iλ are constant weight 

parameters. For an imaging problem the number of 
photons emitted from each image pixel is a Poisson 
random variable and each measurement can be treated as 
the summation of these Poisson variables. We can set up 
the likelihood function as the joint probably mass 
function of all Poisson distributed random variables and 
by taking the logarithm of this likelihood function we 
can express dE  as  
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with Mi ,...,1=  the acquisition angles and Kk ,...,1=  
the time frame. The constant part of the logarithm of the 
likelihood function is ignored as it does not depend on 
the variables we are looking for. The spatial boundary 
smoothness term is expressed as previously,  
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A two step coordinate descent algorithm was used. First 
we assumed C  fixed and minimize E  with respect to 
β  and secondly we assumed β  fixed and minimized E  

with respect toC . 

IV. RESULTS  

A. Segmenting Cardiac Boundaries from Images of a 
Deforming Myocardium 

Using the MCAT phantom [12] we generated a full 
cardiac cycle, representing the blood pools of beating 
left and right ventricles with lung motion. This resulted 
in 32 time frames of 64×64×32. Figure 1 shows the 
interior (blue) and exterior (red) segmentation of slice 11 
from the time step 5 at 4 different iterations steps. 
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Figure 1. Segmentation results form images of a deforming 
myocardial blood pool. From left to right, top to bottom, 
results are shown for iteration 50, 200, 800, and 1500. 
 

B. Segmenting Boundaries from Projections 

Taking into account only the first two terms of the 
energy term in Eq. (13), the two step gradient descent 
algorithm was able to reconstruct both C  and β  for a 
simple numerical phantom. We simulated projections of 
a square of a given uniform intensity which was used to 
test the algorithm. Figure 2 shows on the left side our 
phantom, a square of intensity 10 and our initial guess, a 
circle of intensity -2. The initial guess does not influence 
the outcome of the algorithm: it could be of any shape 
and size. On the right side of Figure 2, we see the result 
of the algorithm. Due to the superposition of the two 
figures, we had to lower the alpha component, which 
alters the figures intensity scale. The intensity was 
accurately reconstructed, obtaining in the end a uniform 
intensity of 9.8. 

 
 

 
 
Figure 2: Left: initial guess; Right: reconstructed shape and 
intensity 

V. CONCLUSION AND FUTURE WORK  

In this work, we presented a level set method to 
segment the beating heart. The proposed algorithm is 
computationally efficient and has been tested on both 
simulated images and real data. In the near future our 
efforts will be oriented towards incorporating temporal 
smoothness and intensity dynamics constraints into the 
algorithm.  

This algorithm forms the foundation for our future 
work involving the segmentation of the boundary of the 
deforming myocardium directly from projection data and 
allows the incorporation of mechanical models of the 
myocardium that can be used as a prior in the estimation 
of the time evolution of tracer time activity curves. 
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