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A Probabilistic Fusion Framework for 3D
Reconstruction Using Heterogeneous Sensors
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Abstract—This letter proposes a framework to perform 3D re-
construction using a heterogeneous sensor network, with potential
use in augmented reality (AR), human behavior understanding,
smart-room implementations, robotics, and many other applica-
tions. We fuse orientation measurements from inertial sensors,
images from cameras and depth data from Time of Flight (ToF)
sensors within a probabilistic framework in a synergistic manner
to obtain robust reconstructions. A fully probabilistic method is
proposed to efficiently fuse the multi-modal data of the system.

Index Terms—Multi-modal fusion, heterogeneous sensor net-
work, 3D reconstruction, probabilistic.

I. INTRODUCTION

IN the context of 3D reconstruction, camera networks are
capable of providing multi-view images, with the further

advantages of being passive sensors and of yielding additional
information, such as surface color; however, 3D reconstruction
using these sensors is sensitive to illumination, shadows, and
homogeneous textures [1], [2]. On the other hand, Time-of-
flight (ToF) depth sensors are able to provide depth infor-
mation of a scene with much fewer degree of dependency
on texture, however they do not provide color information.
Therefore fusion of these disparate modalities in a synergic
manner removes each of their individual shortcomings, while
allowing for the overall harvesting of their advantages [3].
Moreover, using an appropriate probabilistic fusion approach
would give a better result because of the inherent ability of
probabilistic models in dealing with low-level heterogeneous
information [4].

In this work, we propose a framework for volumetric 3D
reconstruction using a network of heterogeneous sensors. A
network of cameras, inertial sensors (known as IMU or IS),
and ToF is considered to sense and gather information from
the scene. Each camera is rigidly coupled to an IS. The 3D
orientation provided by IS in each couple is used to define
a virtual camera whose axis are aligned to the earth cardinal
directions, and as a result, has a horizontal image plane. Using
this 3D orientation, a set of virtual planes are defined in the
scene (without any planar ground assumption) for the purpose
of heterogeneous data registration. In order to fuse these
heterogeneous data, a probabilistic fusion model is proposed.
Experimental results showcase the practical advantages of the
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Fig. 1. Proposed approach uses sensor level fusion and probabilistic data
level fusion.

geometrical solution of using inertial-based parallel planes to
support independent 2D occupancy grids at sensor-level, and
the robustness of the data-level probabilistic fusion model.

II. PROPOSED APPROACH

A. 3D Data Registration

Each camera within the network is rigidly coupled with an
IS. Using fusion of inertial and visual information it becomes
possible to consider a virtual camera instead of each couple.
Such a virtual camera has a horizontal image plane and its
optical axis is parallel to the gravity and is downward- looking.
As a result, the image plane is aligned to the earth fixed
reference frame, see Fig. 1. In order to obtain image plane of
virtual camera, a homography-based approach described in [5]
has been used which fuses inertial data from IS and image
plane of real camera to produce the corresponding virtual
cameras image plane.

By taking the advantage of inertial data, a horizontal world
plane πref , common between all virtual cameras, has been
defined in the world reference frame{W}, see Fig. 2(a). The
idea is to register virtual image data on the reference plane
πref . The reference 3D plane πref is defined such a way that
it spans the X and Y axis of {W} and it has a normal parallel
to the Z. In this proposed method, we do not use any real 3D
plane inside the scene for estimating homography.

A 3D point X = [X Y Z 1]T lying on πref is projected
on virtual image plane as x = πrefHvX, where πrefHv is
a homography matrix that maps the πref to the virtual image
plane,

πrefHv = K [ r1 r2 t ] (1)

in which K is the camera calibration matrix, r1 and r2 are
the first and second columns of the 3×3 rotation matrix and t
is the translation vector between πref and camera center [6].



2 PREPRINT TO BE SUBMITTED TO IEEE SENSORS

B. Integrating Depth (ToF)

We utilize an occlusion criteria to register the depth data
from ToF sensor onto the reference plane πref . Simple inter-
section of 3D points RX from ToF and πref is not suitable
since if we fuse this intersection (RX∩πref ) with the shadows
created by cameras (using homography) then just the points on
the boundary of the object (green arc in Fig. 2(b)) will remain
as the result. We would like to keep the whole intersection
between the object and the plane πref . Thus, we use the
criterion that the point x will be mapped as “shadow” if
and only if it lies on one of the range rays passing through
the sensor’s center and an object’s surfacial point like X.
Otherwise it will be mapped as “not-shadow”.

C. Probabilistic data fusion

Probabilistic data fusion from heterogeneous sensors [7]
is utilized to compute the occupancy grid corresponding to
reference plane πref , denoted as Yπref

. If we let Z = [X, Y,
S] denote complete sensor measurement vector of a sensor
with [S = 1] shadow, [S = 0] not-shadow flag, and X ,
Y are the 2D coordinates from the sensor. The Bayesian
sensor fusion modeling for N independent measurements by
the sensor network at time t is given by,

P (Zt1 . . . Z
t
N , O

t
c) = P (Otc)

N∏
i=1

P (Zti |Otc), (2)

where Oc (i.e. the occupancy Oc of each independent cell
c ∈ Yπref

) is a binary variable signaling the occupancy of
cell c, with [Oc = 1] - occupied, and [Oc = 0] - empty. The
probability of cell c being occupied, P ([Otc = 1]|zt1 . . . ztN ),
can then be inferred, assuming that the prior knowledge on
occupancy is given by the cell’s state in the previous time in-
stant, P (Otc) ≡ P (Ot−1

c |zt−1
1 . . . zt−1

N ) (i.e. a simple temporal
Bayesian filter update). Therefore, applying Bayes’ rule and
marginalization to Eqn. (2) , and denoting otc ≡ [Otc = 1] and
ōtc ≡ [Otc = 0], we obtain

P (otc|zt1 . . . ztN ) =
P (otc)

∏N
i=1 P (zti |otc)

P (zt1 . . . z
t
N )

=
P (otc)

∏N
i=1 P (zti |otc)

P (otc)
∏N
i=1 P (zti |otc) + P (ōtc)

∏N
i=1 P (zti |ōtc)

,

(3)

which can be computed analytically, using an efficient, closed-
form expression. Repeating this operation for all cells consti-
tuting Yπref

, the full state Ot of the occupancy grid can be
estimated for a particular time instant t.

III. EXPERIMENTAL RESULTS

We utilized synchronized AVT Prosilica GC650C GigE
Color cameras with rigidly coupled Xsens MTx IS. The IS
provided the 3D orientation to obtain the virtual camera, and
horizontal planes. Microsoft Kinect sensor was used as a
ToF sensor. An efficient GPU-CUDA implementation provides
real-time 3D reconstructions. Figure 3 shows an example
output obtained by our system of a dynamically moving
person. Totally, 57 inertial-based virtual planes were used
for registering 3D data on the scene using the homography

(a) yyy (b) xxx

Fig. 2. (a) Image intensity registration and virtual plane creation with
homographies. (b) A ToF observing a cylinder. The intention is to register the
intersection of the object and the reference plane πref using homography.

(a) Intensity images

(b) Before depth fusion (c) ToF Depth (d) After depth fusion

Fig. 3. The raw data recorded by sensors network (a and c) and the 3D
reconstruction output (b and d).

method, and the geometrical solution obtained provides 2D oc-
cupancy grids. The methodology is also a natural and efficient
way to integrate data yielded by heterogeneous sensors, by
intrinsically and explicitly taking into account the uncertainty
of measurements provided by each sensor. Further, it offers
elegant solution via probabilistic fusion for the fusing data
from a network of heterogeneous sensors.

IV. CONCLUSIONS

We considered a geometric framework for volumetric 3D
reconstruction using a network of heterogeneous sensors. A
network of cameras, inertial and ToF sensors were used to
derive local depth maps. A data-level probabilistic fusion was
performed to efficiently fuse the heterogeneous data with the
ability to take into account the uncertainty of each measure-
ment. The framework proposed here has applications in human
behavior understanding, tracking, human-robot-interaction etc.
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