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Environmental context. Episodic extreme rainfall events may affect metal dynamics in rivers flowing within
historical metal mining areas. This study provides an analysis of the water chemistry and geochemical processes
associated with mobilisation of metals during episodic rainfall events. Findings could be used to assess the
environmental quality of streams draining spoil waste areas with similar geochemical conditions, and thereby
be used to guide future management strategies.

Abstract. The increasing frequency and magnitude of episodic rainfall events may affect historical metal mining areas

by remobilisation and deposition of metal-rich sediments and enhancing metal-rich run off, impacting river water quality.
This study assesses the effects of episodic rainfall in a Carboniferous headwater catchment contaminated by historical Pb
and Zn mining. Comprehensive hourly water chemistry measurements combined with modelling using PHREEQC,

WHAM/Model VII and WHAM-FTOX were used in this assessment. For the episodic event, we measured flow increases
from a baseline of 0.05 to 2.12 m3 s�1 at peak flow. Changes in metal concentration were most marked for ephemeral
tributary, with Pb increasing from a baseline concentration of 55 mg L�1 to a peak of 576 mg L�1. Behaviour for Pb showed

great affinity to form organic complexes or bind to colloidal Al and Fe oxides, whereas for Zn and the tributary flowing
subsurface a more complex behaviour was observed. For example, the dissolution of secondary metal carbonate minerals
(e.g. smithsonite (ZnCO3)) is likely constrained by higher concentrations of carbonate and bicarbonate derived from
increased bedrock weathering under flow conditions induced by episodic rainfall. The abundance of secondary mineral

sources and circumneutral pH present during episodic rainfall are important factors controlling the mobilisation of Pb and
Zn. Furthermore, episodic rainfall events could enhancemetal toxicity but there are aggravating andmitigating factors that
depend on site-specific chemical changes. Overall, this study highlighted the complexity of metal mobility and toxicity

during these events.
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Changes in climate affect the hydrological cycle (either from
natural variability or anthropogenically induced changes).
Extreme events like droughts and floods may have significant

impacts on the quantity and quality of water bodies, with direct or
indirect effects on ecosystems.[1–3] In river systems, headwater
streams, ephemeral ponds and ditches are most sensitive to cli-

matic variations because severe alterations in temperature and
precipitation could affect evapotranspiration, flow, soil moisture
and groundwater recharge.[4–6] Floods can be effective agents of
contaminant dispersal by triggering primary pollution or remo-

bilisation of depositedmaterial.[7] Primary pulses are produced by
major rainstorms after periods of extended drought, when soluble
salts concentrated on the surface of mine wastes and spoils are

quickly dissolved and flushed into receiving surface waters.[8]

Runoff from watersheds draining metal-mining areas is consi-
dered an acute problem as exposed tailings produce metal-rich

overflow that is often redistributed downstream.[9,10] Once in

sediments, metals can remain in floodplains for decades to cen-
turies until their remobilisation by erosion, creating a long-lived
contamination problem.[11]

For theUK, there is good evidence that the frequency of longer
(5–10 days) extreme rainfall events is increasing (e.g. Fowler and
Kilsby[12] and reference therein); this is supported by modelling
predictions of record regional winter rainfalls in future years.[13]

Additionally, recent years have seen new 24- and 48-h rainfall
records being established for the British Isles.[14,15] In terms of
shorter timescale and higher-intensity episodic events, there is

some evidence of increasing frequency;[16] however, there is an
urgent need formore detailedmeta-analyses. Anecdotally, there is
evidence to suggest an increase in such events, such as water

flowing from a cliff in theUKYorkshireDales for ‘the first time in
living memory’.[17]

CSIRO PUBLISHING

Environ. Chem.

https://doi.org/10.1071/EN17133

Journal compilation � CSIRO 2018 Open Access CC BY-NC-ND www.publish.csiro.au/journals/envA

Rapid communication

http://creativecommons.org/licenses/by-nc-nd/4.0/
tan13r
Typewritten Text
21 March 2018



In the UK, the floods of autumn 2000 provided clear

evidence of the potential effects of extreme weather events on
diffuse pollution in formerly mined river catchments.[18,19] The
excessive flux ofmetals generated by the legacy ofmetal mining

has significantly increased the levels of metal pollution in many
catchments.[20] Consequently, these catchments represent a
challenge in achieving ‘good ecological and chemical status’
as required by the European UnionWater Framework Directive

(WFD) or other national legislation. In addition to climate-
influenced factors, the dispersal of metals depends on the
dynamics of each catchment.[21] For example, where rivers flow

over limestone bedrock, the pH is buffered, exerting controls
over mineral solubility, metal transport and bioavailabi-
lity.[22,23] However, rainfall (e.g. acid rain) may produce shifts

in the pH, affecting the buffering capacity of the river chemistry,
allowing desorption of metals from sediments or soils.[24]

Mitigating the impact of metals on water quality requires
knowledge of the biogeochemistry of metal in solid and solution

phases, as well as a local understanding of major sources of
pollutant metals.[2,25–28]

The limited primary data about episodic high rainfall limits

our understanding of its effect on metal dynamics. Thus, the
present study seeks to evaluate the effects of extreme episodic
rainfall on Pb and Zn dynamics at differing points within a

catchment. Results are compared with those obtained from a
previous comprehensive annual analysis of monthly surveys
under non-episodic conditions.[22,23] From this assessment, the

mobilisation and potential toxicity of dissolved metals under
flow conditions derived from episodic rainfall will provide
important information regarding key rainfall-induced processes
in the behaviour of pollutant metals, supporting future risk

mitigation strategies in similar catchments.
This study focusses on the Hebden Beck catchment in

northern England, where the underlying geology consists of a

succession of sandstone and mudstone (Millstone Grit) and
carboniferous limestone (Fig. S1, available as Supplementary
material to this paper). This headwater stream is affected by

metal contamination derived from historical lead mining, where
galena (PbS), sphalerite (ZnS) and barite (BaSO4) were the
profitable minerals. The catchment chemistry has previously
been characterised[22] and assessed with respect to water quality

and ecotoxicology under seasonal conditions.[23] Three sam-
pling stations were selected for the present study: an ephemeral
tributary (ET) located in the most upstream zone, draining an

area of mine spoil wastes; a perennial tributary (PT) of an
undergroundmine channel located inmiddle of the stream; and a
site located downstream on the main channel (MC) 2.27 km

from the River Wharfe confluence and adjacent to a flow
gauging station (Table S1, available as Supplementary material).
Higher metal concentrations in upstream reaches may tend to be

diluted by inputs from non-affected tributaries lower down the
catchment; however, inputs from mine adits will also have an
effect, depending on their chemical characteristics.

UK Meteorological Office daily rainfall data[29] were

obtained for Pateley Bridge Ravens Nest (54804001.200N
1846001.200W) in order to present local seasonal drought and
rainfall events for the month of August 2016 (.12 mm during

high-rainfall days) (Fig. S2). The sampling campaign began at
1230 hours on 19 August and ended after a maximum of 96 h at
1250 hours on 23 August 2016. Automated water samplers

(model 6712, Teledyne-ISCO, Lincoln, Nebraska, USA) were
set to collect at 1- or 2-h intervals in each site. Subsamples from
each time interval were filtered in the field using syringe filters

(0.45 mm, polyethersulfone – hydrophilic, Sartorious) for metals

(Pb, Ba, Cd, Sr, As, Zn, Cu, Co, Ni, Fe, Mn, Al), and major ions
(Ca2þ, Mg2þ, Cl�, NO3

� SO4
2�) and for dissolved organic and

inorganic carbon (DICandDOC) (0.45-mmnylon–polypropylene,

Avonchem). Sample handling and in situ water qualitymeasure-
ments (temperature and pH) followed previously used methods
described in Valencia-Avellan et al.[22] (detailed in the Supple-
mentary material). Hourly rainfall data fromGrimwith reservoir

(code: 62046; 54804016.400N 1854047.700W; 3 km east of Hebden
Beck) and flow data from a gauging station in the main river
channel (code: F1960; 54804027.800N 1857048.500W) were

obtained from the UK Environment Agency for the dates 18 to
23 August (Fig. S3). Several flow stages were identified; low-
flow (LF), base-flow (BF), peak-flow (PF) and post peak-flow

(PPF). Full details are in the Supplementary material. In ET, the
first four measurements were under stagnant conditions, with
the sampler positioned in a small pool near the confluence with
the main channel. In PT andMC, data were collected fromwell-

mixed areaswith continuous flow. For assessing the influence of
flow in the sampling sites, flow measurements from MC were
used for ET and PT. Metal analysis was conducted via Induc-

tively coupled plasma mass spectrometry (Thermo Fisher
iCAPQc) using Certified ReferenceMaterial (SLRS-5, National
Research Council, Canada) as a quality control andwith specific

limits of detection (Pb: 0.47 mg L�1, Ba: 1.45 mg L�1, Cd:
0.03 mg L�1, Sr: 1.09 mg L�1, As: 0.02 mg L�1, Zn: 2.28 mg L�1,
Cu: 0.05 mg L�1, Co: 0.014 mg L�1, Ni: 0.06 mg L�1,

Fe: 1.43 mg L�1, Mn: 0.15 mg L�1, Al: 1.77 mg L�1). In addition,
two replicates per site and four field blanks were taken for
procedural quality control. Activity of metals and solubility of
relevant mineral phases were calculated from saturation of

mineral forms through dissolution reactions using PHREEQC

(version 3)[30] and the WATEQ4F database[31] where site-
specific chemical data and major physicochemical parameters

were considered as input data. Changes in DOC concentrations
during episodic events may influence the concentration of
metal–organic complexes; therefore, to investigate chemical

speciation, we applied the Windermere Humic Aqueous Model
(WHAM/Model VII).[32] Both this model and PHREEQC are
used independently to evaluate different aspects of the water
chemistry. In addition, toxicity of metal mixtures including

protons (Hþ) and metals (Al3þ, Zn2þ, Pb2þ and Cu2þ) was
estimated usingWHAM-FTOX.

[33] Procedures forWHAM/Model
VII and WHAM-FTOX were followed as described in Valencia-

Avellan et al.,[23] detailed in the Supplementary material.
Results indicated that the catchment hydrology responded

rapidly to rainfall. Flow levels started to increase within 2 h after

the first period of rain (5mmh�1), indicating that runoff processes
are likely occurring at the surface (overland flow) and subsurface
(interflow) (Fig. S3). This rapid response has been reported when

rainfall exceeds the infiltration capacity of the soil, especially in
peat soils where the water infiltration is low.[34]

Contrasting responses were identified for Pb and Zn under
increasing flow conditions (Fig. S4). Concentrations of Pb are

directly influenced by flow variations, showing a peak concen-
tration of 690.3 mg L�1, corresponding with peak flow in ET.
Contrary to ET, a slow rise in concentrations was evident in PT,

with maximum values (211.7 mg L�1) reached at PPF. The
delayed response to episodic rainfall in PT could be due to the
subsurface runoff (interflow) percolating through mine chan-

nels.[35] Peak Pb concentrations in MC (153.7 mg L�1) showed
similar responses to ET but were lower in magnitude (Fig. 1a).
Zinc concentrations showed an inverse relationship with
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episodic rainfall and flow variations (Fig. 1b), although con-
centrations in ET showed mixed patterns. For instance, in ET at
PF, concentrations immediately decreased (55%) but increased

at PPF (194%). This can be associated with large masses of
mine wastes exposed to water producing high concentrations of
dissolved Zn.[36] Less marked dilutions (47 and 35%) were

identified in sites PT and MC, perhaps due to discrete rainwater
inflow in PT, and MC having the lowest concentrations of the
three sites. Maximum Zn concentrations were measured in ET

(5017 mg L�1) at PPF, followed by lower concentrations in PT
(1069 mg L�1) at low and base flow, and in MC (694 mg L�1)
at BF. The observed trends suggest that metal dilution is
occurring during episodic rainfall as metal concentrations

reported by Valencia-Avellan et al. [22] from a non-impacted
site andMC reflected lower concentrations than ET. In addition,
results revealed greater relative increases in concentrations of

dissolved Pb than dissolved Zn. Furthermore, kinetics factors
are likely to influencemetal behaviour, and this will be related to
specific mineral dissolution kinetics and other water chemistry

variables such as DIC, which will directly affect the saturation
indices of the minerals and will be site-specific.

Runoff did not alter the typical circumneutral conditions of

the catchment (pH 7–8.1). Thus, geochemical signatures of each
tributary are controlling their major ion chemistries (e.g. SO4

2�,
DIC and DOC) (Table S2).[22,37] Correlation analysis showed

diverse relationships at different flow conditions. Generally,
stronger positive correlationswere present in ET between Pb, Zn
and SO4

2�, likewise in PT, where positive correlations were
identified mainly between Zn, DIC and SO4

2�, whereas in MC,

Pb showed strong correlations with DOC (Table S3).
Runoff has an effect on weathering processes such as erosion

of spoil heaps, size sorting of spoil particles and promoting
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mineral dissolution through exposure to undersaturated solution.
Our results suggest that Pb and Zn concentrations are regulated by
the presence and dissolution kinetics of cerussite (PbCO3) and

smithsonite (ZnCO3), and dilution bywater not contacting soluble
minerals. Fig. 2 shows closer saturation of Pb thanZn, particularly
in ET[22] and MC. This may be due to the slower dissolution

kinetics of the smithsonite versus cerussite.[38] Previous work in
the catchment fromValencia-Avellan et al.[22] indicated that sites
with longer residence times (e.g. source pond) showed free ion

concentrations closer to the theoretical saturation levels. Results
agreedwith prior studies[22,23,39] and emphasise the importance of
smithsonite and cerussite in controlling metal mobility and
transport.[40]

The ET data highlight the significance of extensive open
spoil as a metal source during episodic flow. Relationship
between flow and Pb concentrations appears initially to be

linear but is less clear at flows .0.5 m3 s�1. For Zn concentra-
tions, the behaviour was different, potentially owing to kinetic
factors (Fig. 3). This suggests a bimodal response of metals to

flow, possible related to the exponential fall of DIC concentra-
tions with increasing flow in ET and MC (Fig. S5), influencing
the relative saturation of the secondary minerals, principally for

cerussite. Further evidence is given in Fig. S6a as the saturation
index (SI) of cerussite increased with flow. Figs S6b and S7
show that the SI of smithsonite decreased when flow increased.

The behaviour of smithsonite in PT agreed with studies from
Pokrovsky et al.[38] regarding geochemical processes under
circumneutral conditions, indicating that high flow may
increase the concentrations of carbonate and bicarbonate ions,

which act as inhibitors of smithsonite dissolution, reducing the
equilibrium activity for Zn (Fig. S5 and Fig. 2). Although this
behaviour is observed for PT potentially owing to its subsurface
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nature, the other sites (ET and MC) presented a reduction in the
DIC with flow, coupled with an associated decrease in the SIs of

smithsonite (Figs S5 and S6b). Carrol et al.[41] also stated the
relevance of carbonate minerals in the sorption of metals as they
function as long-term sinks, competing with other reactive

minerals such as iron oxyhydroxides. Previous study of metal
speciation in this catchment has identified that Pb is strongly
associated with both particulate and colloidal Fe and Al oxides,

whereas Zn is present mainly as inorganic complexes.[22,23]

Thus, during high flood periods, the resuspension of sediments

may increase the total concentrations of Pb (from particulate
forms, and thus potentially available for the dissolved phase),
whereas this will be a minor potential source of Zn.[42,43]

At all sites, the highest concentrations of Pb–organic
complexes and oxide-bound Pb were calculated to occur at
PPF. This could be explained by increased concentrations of
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DOC, and colloidal Fe and Al oxides (as predicted by WHAM/

Model VII) at peak and post peak flow (Table S2). Nordstrom
et al.[44] indicated that sorption isotherms of metals onto freshly
formed Fe and Al oxides at circumneutral pH occurred in the

following sequence: Pb. Cu. Zn. This low affinity of Zn for
surface sorption to oxide minerals is predicted here from the
abundance of Zn inorganic complexes (Fig. 4). In addition,
estimations in the absence and presence of oxides precipitated

show similar concentrations for Zn complexes (inorganic and
organic) whereas Pb has a large tendency to be bound to DOC
and Al and Fe oxides (Fig. S8) and agreeing with speciation of

Zn and Pb reported by Valencia-Avellan et al.[23]

The impacts of climatic events on contaminant transport and
water quality are complex because of localised effects. Current

results are consistent with previous research on the transport and
pollution of Pb occurring through particulate material, enhanced
by episodic rainfall.[45] Likewise Gozzard et al.[46] reported the
attenuation effect on Zn pollution during peak rainfall. Compari-

son of metal mobilisation under episodic rainfall conditions
revealed that local conditions such as the abundance of secondary
mineral sources and circumneutral pH are key factors controlling

the mobilisation of Pb and Zn, whereas flow variations could be
anenhancing factor, particularly for increasing the concentrationof
dissolved Pb. Thus, these results provide insight into other catch-

ments where streams drain mine spoil under similar conditions.
The potential adverse effects of episodic-related chemistry

changes in macroinvertebrate species was estimated using

WHAM-FTOX, a model that assumes (based on evidence) that
humic acid can be used as a proxy for organism metal binding.
The model relates this metal binding to toxicity with parame-
terised values for the toxic potency of eachmetal and is based on

field macroinvertebrate species data.[33] We considered two
previously fitted conditions for calculating total toxicity func-
tion values (Total_FTOX): (i) Total_FTOX # 2.33, no toxic

effects occur; and (ii) Total_FTOX . 2.33, toxicity reflects a
risk of diminished macroinvertebrate species diversity, until no
species are predicted to be present at a value of 5.20. Under flow

conditions induced by episodic rainfall, toxicity function was
calculated in ET showing values from,3.2 to,3.6 that would
reflect a reduction in species diversity. Lower toxicity function
values predicted in PT (#2.1) and MC (#1.7) suggest no toxic

effects from dissolved metals (Figs S9, S10, S11). For ET,
calculations during episodic flow showed that short-term fluctua-
tions in metal concentrations are slightly reflected in changes to

the predicted acute toxicity to aquatic organisms. This will be due
to several factors that have contrasting effects on the FTOX value,
including those that would be expected to reduce the value, such

as increases in DOC and a decrease in Zn concentrations, and
those thatmay increase the value, such as higher Pb, lower Ca and
Fe (competing ion) concentrations and lower concentrations of

other ligands (DIC and SO4
2�) (Table S2). Future work would be

better focussed on siteswith predicted ecologically harmful levels
of metal and perennial tributaries from spoil runoff areas, includ-
ing abetter understandingof climate variability during seasonal as

well as episodic flow conditions.
In conclusion, episodic rainfall events are not altering the

circumneutral conditions of the catchment. Concentrations of

Pb showed a greater relative response to flow changes than Zn.
The effect of surface and subsurface flow in the transport of
metal–organic complexes and the dissolution ofmetal carbonate

minerals will likely regulate the mobilisation of Pb and Zn.
Metal toxicity can be influenced by site-specific chemical
interactions occurring during episodic events.

Supplementary material

Supplementary material and data in support of this paper can be
found on the journal’s website.
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