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Abstract

In order to meet increasingly strict regulations on vehicle emissions, manu-

facturers are seeking ways to produce vehicles that emit less pollution and

consume less fuel. Eco-driving is the optimisation of velocity and gear se-

lection in existing vehicles to reduce fuel consumption and such reductions

can be made at relatively low development costs compared to powertrain

modification. However, the driving experience of a premium vehicle could

be compromised if the vehicle behaviour differs from that which is expected

by the driver and the acceptance of such fuel saving measures may be di-

minished. Therefore, in order to maintain the driving experience the con-

tribution of this work is the development and implementation of an optimal

control algorithm based on Dynamic Programming which optimises, in real

time, the vehicle velocity and gear selection based on a vehicle and upcoming

road model while consideration is given to objective measures of driveabil-

ity. The algorithm is deployed on a Raspberry Pi miniature computer with

connection to the vehicle data network. Fuel savings and time savings are

identified with the optimisation algorithm both with and without violat-

ing constraints on driveability, first in simulation and finally in a real-time,

in-vehicle eco-driving feedback system. Primarily the application of this sys-

tem is in internal combustion engine passenger vehicles in both urban and

extra-urban road situations, however the approach is deliberately flexible to

allow development for other powertrain configurations.
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Chapter 1

Introduction

The increasing level of CO2 in the Earth’s atmosphere is known to be one of

the leading causes of global warming [1]. Combustion of diesel automotive

fuel produces CO2 along with H2O, CO, H2, O2, NOx, N2, and unburned

hydrocarbons [2]. In order to reduce the impact of passenger vehicle CO2

emissions on global warming, regulations have been put in place by govern-

ments across the globe [3] and are increasingly being tightened. Similarly,

local air pollution due to passenger vehicle emissions is an area increasingly

being regulated, particularly the emissions of CO, NOx and particulate mat-

ter (PM) [4]. The health effects of such local air pollution are beginning to

be understood by governments [5]. In addition to regulation of emissions,

there is an economic incentive to reduce fuel consumption in passenger vehi-

cles. With finite resources for hydrocarbon fuels, the cost to vehicle owners

has risen and fuel economy is now one of the biggest selling points for new

vehicles, as seen in [6] between 2002 and 2007 when US gasoline prices in-

creased from $1.75 to $2.86 per gallon and US market share for large sports

utility vehicle (SUV) decreased from 18.3% to 12% as this class of vehicle

represents some of the least fuel efficient vehicles. Depending on the class

of vehicle, the importance placed by purchasers on fuel economy differs but

it is clear that it plays a role in the majority of vehicle purchasing decisions

and in customer satisfaction during ownership.

In the executive, luxury and SUV segments of the vehicle market the

minimum absolute fuel consumption that is achievable is restricted by the
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requirements for cabin space, engine power and overall quality of components

which all add to the weight of the vehicle. The above mentioned market

segments will be grouped under the label “premium” for the purposes of

this thesis.

The aim of this project is to study the problem of real world fuel economy

and propose, implement and test a method for improving fuel economy while

maintaining the driving experience of a premium vehicle. The key questions

for the project are then :

• what affects driving experience in relation to longitudinal vehicle be-

haviour?

• what fuel saving measures are possible without compromising the driv-

ing experience?

• how can these measures be controlled to maximise the benefits within

the constraints of maintaining driving experience?

1.1 Hypotheses

To investigate this problem, a number of hypotheses are considered in this

work as follows :

(a) Fuel savings can be made by utilising optimal control methods to con-

trol vehicle speed and gear selection in real-time, based on instanta-

neous vehicle and road data.

(b) Driving experience, in relation to a vehicle’s longitudinal performance,

can be quantified and applied to an optimisation algorithm.

(c) Fuel savings can be made as above, without compromising the driving

experience and this can be verified across a range of real driving data.

1.2 Objectives

To investigate the hypotheses stated above the following objectives are to

be achieved :
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• Review literature to identify fuel savings possible by optimal control

of vehicle velocity.

• Develop an optimisation algorithm that uses an accurate and efficient

passenger vehicle model to optimise velocity and gear selection for a

given journey, in real-time.

• Develop an objective metric for longitudinal driveability of a vehicle

based on the correlation of subjective assessments of driveability and

quantifiable vehicle data.

• Incorporate driveability metrics as constraints on the optimisation al-

gorithm.

• Develop a catalogue of real world driving scenarios using real data

that encompass a range of roads and driving characteristics to test the

algorithm.

• Implement real-time optimisation algorithm on hardware and deploy

in a production vehicle.

1.3 Contributions

After a thorough literature review and ongoing study of relevant new pub-

lications the contributions of this project to the field are as follows :

• Development of a dynamic programming algorithm to optimise, in

real-time, vehicle velocity and gear selection to minimise real world

fuel consumption and journey time by utilising road and traffic infor-

mation, applicable for all legal speed limit roads.

• Production of a sensitivity analysis of vehicle model and algorithm

variables quantifying the influence on optimisation results.

• Integration of objective driveability constraints into the optimisation

strategy to balance fuel savings with ensuring driver satisfaction.

• Deployment of real-time vehicle velocity and gear optimisation algo-

rithm on widely available hardware.

8



1.3.1 Publications

In the course of this research the following articles were produced for con-

ference proceedings and journal publication :

• Levermore, T., Ordys, A., and Deng, J. “A review of driver mod-

elling”, 2014 UKACC International Conference on Control (CON-

TROL). IEEE, 2014.

– T. Levermore - Literature research, manuscript production

– A. Ordys - Conceptual advice, manuscript reviewing

– J. Deng - Manuscript reviewing

• Levermore, T., Ordys, A., and Deng, J. “A review of fuel efficient con-

trol strategies in the automotive industry”, International Conference

on Modern Auto Technology and Services (ICMATS), 2014

– T. Levermore - Literature research, manuscript production

– A. Ordys, J. Deng - Conceptual advice, manuscript reviewing

• Levermore, T., Sahinkaya, M. N., Zweiri, Y., and Neaves, B. “Real-

Time Velocity Optimization to Minimize Energy Use in Passenger Ve-

hicles”, Energies 2017 [7].

– T. Levermore - Literature research, manuscript production, algo-

rithm development, in-vehicle system development, testing and

deployment.

– M. N. Sahinkaya, Y. Zweiri - Supervision, manuscript reviewing

– B. Neaves - Supply of vehicle and test driver

1.4 Methodology

In order to test the hypotheses noted previously, an optimal control method

is to be identified that can be made suitable for real time implementation. A

dynamic programming algorithm is to be developed and in conjunction with

a control oriented vehicle model is to be used to identify fuel savings that can

be made by following an optimal velocity and gear selection profile. Initially
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simple artificial road profiles such as fixed gradients are to be considered to

verify the behaviour of the algorithm. Real road data is then to be used to

assess benefits of algorithm under realistic conditions. Road profile data is

to be extracted from existing sources as well as from journeys using onboard

instrumentation to measure position and road elevation. The assessment of

fuel saving is to be made in comparison to a number of baseline scenarios

including maintaining a fixed speed, speed limit following and real driving

data.

Data is to be recorded from a specific vehicle type during a range of

journeys that covers motorways and main roads as well varying road layout

and traffic conditions. The vehicle behaviour from these journeys is to be

examined in conjunction with driveability research, in order that boundaries

of acceptable driving experience can be established. Once quantified these

boundaries are to be incorporated into the optimal control algorithm to

ensure driveability is maintained. The results from the initial optimisation

algorithm are to be compared to that of the optimisation which is bounded

by driveability constraints, to test hypothesis (c).

1.5 Thesis Overview

To ensure ease of navigation a brief overview of the thesis structure is pro-

vided here. A literature review of research associated with the topic of this

thesis is presented in chapter 2. An introduction to the pertinent economic

and environmental issues relating to petroleum fuelled internal combustion

engine vehicles is followed by details of the internal combustion engine and

associated emissions. Legislation and other external pressures influencing

the automotive industry are then summarised followed by an assessment of

the factors that impact fuel consumption. The relevant publications in the

field of optimisation and vehicle modelling are then covered to complete the

background work related to this thesis.

Development of the optimisation method used in this thesis is the focus

of chapter 3, with the application of Dynamic Programming (DP) described.

The development and implementation of a DP algorithm in both a simula-

tion environment and deployed in a vehicle is described in chapter 4. In the
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final section of chapter 4 the focus shifts to applying the DP algorithm in a

number of simulation scenarios and comparing the results with an alterna-

tive optimisation method that while only suitable for offline operation will

be able to provide a performance baseline to assess the performance of the

DP algorithm against.

The results of the DP algorithm implementation are discussed in chap-

ter 5. The vehicle model using the algorithm is validated against real vehicle

data to ensure the accuracy of results and then a sensitivity analysis is pre-

sented to identify how the algorithm is influenced by different variables and

scenarios. Finally, real driving data is used to quantify the effect of im-

plementing the DP algorithm in real journey scenarios. In chapter 6 the

conclusions of the work are provided with reference to the initial hypotheses

and findings from the project. Further work is considered in chapter 7 that

would lead on from this project.

Note

This project is funded by Jaguar Land Rover and the knowledge and re-

sources of the Diesel Powertrain Research department as well as other rele-

vant departments were a vital part of the project.
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Chapter 2

Background

With more than 900 million passenger vehicles currently in use around

the world [8] and demand for personal transportation rising, particularly

in China, the impact of these vehicles on society and the environment is in-

creasing. A significant portion of this impact is due to the use of petroleum

based fuels in the internal combustion engines (ICE) that have powered the

overwhelming majority of vehicles for more than one hundred years. The

finite nature of this fuel source, its importance to a wide variety of indus-

tries and its uneven global distribution has led to petroleum being the focus

of much attention in fields as diverse as environmental science, economics,

politics as well as engineering. Along with the economic benefit of reducing

fuel consumption, it also impacts the amount of emissions produced from

vehicles. In the United Kingdom 47.1% of new passenger vehicles sales were

for diesel fuelled models [9] during the first quarter of 2016. Complete com-

bustion of diesel under ideal conditions with pure oxygen produces carbon

dioxide (CO2), water and heat [10]. In reality combustion in compression

ignition ICEs using diesel fuel produces carbon monoxide, unburned hy-

drocarbons, nitrogen oxides (NOx), particulate matter amongst a number

of other emission components. There are two main issues related to these

emissions, the effect of harmful emissions on local air quality and the ef-

fect of CO2 emissions on the atmosphere. Local air pollution consisting of

particulate matter less than 2.5 µm (PM2.5) and NO2 has been linked to

436,000 and 68,000 premature deaths, respectively in 2013 across the EU-28

12



group of countries [5]. Diesel fuelled vehicles contribute to both of these

types of pollution as well as particulate matter in the range 2.5 µm to 10 µm

(PM10). Road transport accounted for 14% and 13% of PM10 and PM2.5

emissions, respectively, in the UK in 2015 [11].

The increasing levels of CO2 in the atmosphere have been identified as a

leading cause of global warming [1] due to the absorption of infra-red energy

which is partially radiated back to warm the Earth but would otherwise

have escaped the atmosphere. The contribution of the transport sector

globally to CO2 emissions is estimated to be 23% of which road transport

was responsible for three quarters in 2013 [12]. In order to combat this,

legislation to limit vehicle CO2 emissions is in place in the nations that make

up the majority of passenger vehicle sales [13–15]. In Europe, for example,

the average of all a manufacturer’s registered new vehicle CO2 emissions was

required to be less than 130 g km−1 by 2015 (with adjustments for heavier

vehicles) and the target is to be reduced to 95 g km−1 for 2020 [14]. Where

a manufacturer’s average exceeds the limit a financial penalty as high as

e95 per g km−1 per vehicle sold is imposed which gives manufacturers a

great incentive to minimise CO2 emissions. As the fuel consumption in a

compression ignition engine is linked to CO2, [16]. This link is crucial to

reducing vehicle CO2 emissions as fuel consumption can be a deciding factor

for consumer purchasing decisions and is a major on-going cost of vehicle

ownership. Whether drivers are aiming to be more environmentally friendly

or simply more frugal the result is a lower fuel consumption and CO2 output.

2.1 Internal Combustion Engine

To reduce fuel consumption and or emissions from a vehicle with a conven-

tional powertrain it is important to understand the mechanisms that drive

fuel use and emission formation. For the purposes of this project we are fo-

cussed solely on vehicles powered by compression-ignition engines fuelled by

diesel, however, as discussed later, the project lends itself to being extended

to petrol, hybrid or electric vehicles. The compression-ignition engine is

considered to have a greater fuel conversion efficiency relative to an equiva-

lent spark-ignition engine [2] so is the more suitable combustion process for
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a vehicle where fuel economy is a primary concern.

Efficiency

The fundamental purpose of the engine in a vehicle is to provide propulsion,

however not all the energy available in the fuel can be utilised for this pur-

pose. The power as measured at the engine output shaft is known as the

brake power (bp) and the power developed by fuel combustion in the engine

cylinders is known as indicated power (ip). The difference between bp and

ip is known as friction power (fp) and is a general term to cover all losses

within the engine. Brake Specific Fuel Consumption (BSFC) is a measure of

fuel consumed per unit of brake power developed. This is used to compare

efficiency of internal combustion engines of different sizes and typically the

units are g kW−1 h−1.

2.2 Environmental Legislation

In order to meet internationally agreed Greenhouse Gas (GHG) and global

warming targets and with the contribution of passenger transportation to

GHG outputs, countries around the world have implemented national legis-

lation to limit the GHG emissions of new vehicles. In the European Union

regulations are in place [14] that have limited manufacturer fleet CO2 av-

erages to less than 130 g km−1 in 2015 and 95 g km−1 in 2021. This figure

is based on the New European Driving Cycle (NEDC) tests. In the United

States, the Environmental Protection Agency (EPA) has established the

Corporate Average Fuel Economy (CAFE) standards that require a fleet

average across light duty vehicles (less than 4500 kg) of 163 g/mile CO2 by

2025 [17]. Japan has implemented standards of manufacturer fleet CO2 av-

erages of less than 115 g km−1 by 2020 [18]. These standards are presented in

comparable units in Table 2.1 as reproduced from [18]. With the widespread

implementation of such standards manufacturers have legal and financial in-

centives for reducing their vehicle fleet fuel consumption regardless of their

global sales distribution.
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CO2 (g km−1)

Standard NEDC CAFE

EU 2021 95 90

US 2025 120 100.9

Japan 2020 105 100

China 2021 117 115.9

Table 2.1: CO2 Emissions Standards Comparison [18]

2.3 Fuel Consumption Reduction

There are a number of approaches manufacturers can take to reduce fuel

consumption from first principles, reducing the vehicle mass [19], aerody-

namic drag [20] and rolling resistance. More innovative concepts to reduce

fuel consumption have been implemented in the last decade such as stop-

start systems [21] that turn off the engine when the vehicle is stationary,

reducing the losses associated with idling which are reported to account for

40 billion litres of fuel used in the United States [22]. Another concept that

continues to change the automotive sector is hybridisation of the powertrain

with electric motors [23] to adjust the load on the ICE such that it is used

more efficiently or not at all. The approaches to fuel consumption reduction

can be grouped in two types, the first as described above involving changes

to the mechanical design of the vehicle. The second type of approach in-

volves modifying driver behaviour by such means as navigation systems that

select the most economical route, car sharing and training or guidance to

improve the style of driving [24].

While mechanical design changes such as mass reduction and hybridisa-

tion can lead to significant energy savings [23] they can only be introduced

as part of the normal cycle of vehicle replacement which was every 16 years

and increasing in the United States in 1990 [25] and also they require sub-

stantial investment by the manufacturer and often by the consumer as well.

Behaviour modification, on the other hand, can have an immediate impact

on the existing vehicle fleet as the vehicles themselves are not changing but

rather the way in which they are used. In [26] such behavioural modifica-
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tion involve three types of decision, firstly, a strategic choice of what vehicle

type to use or purchase, secondly, route selection and finally, operational

decisions that make up driving behaviour. The first decision is out of the

scope of this project but the other two will be considered in more detail.

Behaviour modification by the use of map data to identify the most eco-

nomical route for a journey is known as eco-routing. In [27] an average fuel

reduction of 8.2% could be made by choosing a more economic route for

a given journey and for 46% of the journeys in the study such an alterna-

tive route was available. An economic route in this case was considered to

minimise the occurrence of junctions controlled by traffic lights, traffic calm-

ing measure and high speed limits. The eco-routing concept has grown in

use since the wide spread deployment of Global Positioning System (GPS)

satellite navigation systems in vehicles, with more than 25 million In-Vehicle

System (IVS) sold in 2013 [28]. The first developments in this field required

an accurate vehicle fuel consumption model combined with road information

to simulate the fuel used for each possible route and thus allow an informed

selection to be made [29]. One road property that is used to make such a

selection is the road gradient and its effect is investigated in [30]. It was

found that an increase in fuel consumption of 18% is seen when the road

gradient increases from 0% to 1% for a velocity of 75 km h−1. These figures

were based on a light duty vehicle of average weight according to US sales

data. While quantifying the difference in fuel consumption at different ve-

locities and gradients is an important finding the reality of driving is that

there are always constraints on the vehicle velocity and gradients are a fun-

damental feature of road networks. An obvious constraint is the presence of

legal speed limits assigned to the overwhelming majority of roads, however a

more dynamic restriction on velocity is the presence of other vehicles. In [27]

the availability of traffic data is noted as a potential aid to fuel-saving in

high traffic density areas. Historic traffic data, real time traffic data and

traffic flow metrics can be used for this purpose.

While the most economical route for a journey can be calculated us-

ing these methods there are still fuel savings that can be made during the

journey itself in the way the vehicle is driven.

16



2.3.1 Eco-driving

It has been shown that fuel efficiency is maximised between 60 km h−1 and

80 km h−1 [31] for vehicles produced in the mid-nineties however this is not

optimal when considering journey time and traffic speeds on roads in Europe

of up to 130 km h−1. Driving efficiently therefore requires a more complex

solution than simply slower driving and conveying this information in an

understandable format to drivers requires training. Driver training with the

goal of encouraging economical driving habits has been investigated in [24]

with the finding that 10% fuel savings were achieved across a number of

programmes. Similar studies show 15% fuel reduction [32] and [33] finds a

5.8% reduction in fuel consumption for 10 drivers following an eco-driving

training course. A variety of cars were used in the test and the change in

fuel consumption varied by driver as 20% or participants achieved no fuel

saving. Pollutant emissions are considered in additional to fuel consumption

in the investigation of eco-driving in [34].

Aside from training, it is noted in [35] that there can be three oppor-

tunities to encourage eco-driving - before, during and after a journey. An

overview of manufacturer eco-driving systems is presented in [36] covering

during and after a journey. The driving behaviour during the journey will

be the focus of this work.

The work presented in [37] focuses on modifying driver behaviour during

driving solely in relation to acceleration by modifying the accelerator pedals

of four cars to increase resistance when the driver attempts to accelerate

forcefully. The vehicles were used for delivering post along a number of set

routes and only one of these routes showed improvement in fuel consump-

tion with the modified pedal, leading the author to conclude that rate of

acceleration is not the sole factor in fuel consumption reduction. Despite

this, Nissan have implemented a similar feature in Japan, as investigated

in [38].

As driving styles vary and sensitivity of fuel efficiency to driving style

depends on vehicle power-to-weight ratio [39], there is not a universal solu-

tion to efficient driving. However following general rules were presented in

an EcoWILL publication [40] for providers of driver training
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1. Anticipate Traffic flow

2. Maintain a steady speed at low engine speed

3. Shift up early

The ability to anticipate traffic flow depends on the road layout and visi-

bility amongst other factors and therefore is unreasonable to be expected

consistently of a driver, however as noted earlier the use of real time traffic

data is becoming more prevalent in modern vehicles. Relying on a connected

system to anticipate traffic for the driver allows more economic driving to

be undertaken with a reduced mental workload on the driver. Currently in

Europe it is a requirement for new manual transmission passenger vehicles

to include a gear shift indicator (GSI) [41] to aid the driver in applying the

last two rules, however this indication is based on current engine speed and

makes no consideration for road conditions or upcoming situations. Despite

this drawback it is calculated in [42] that CO2 reductions of between 3.5%

and 4.5% could be achieved with GSI on the NEDC. The NEDC is the test

cycle used to assess the fuel economy and emissions of passenger vehicles

being approved for use in Europe. Both of the last two rules can be followed

more easily with knowledge about the road situation, including speed limits

and road gradient which again can be made available from a connected sys-

tem. The rules also lend themselves to a degree of automation, for example,

adaptive cruise control and automatic transmission. If the ability to control

speed and gear selection is made available to an on board controller then

the question is raised of how the control setpoints are generated and what is

the goal of such setpoints? If the goal was to save fuel it must be balanced

with a requirement to reach the journey’s destination in a reasonable time,

such a balance can be treated as an optimisation problem.

2.3.2 Coasting

As noted previously, a significant portion of energy loss in an internal com-

bustion engine is due to overcoming friction in the engine. During driving

when the transmission is engaged and couples a rotating axle with the en-

gine output shaft, if no fuel is injected then the energy required to rotate
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the engine must come from the kinetic energy of the vehicle, thus reducing

the velocity; this is known as engine braking. If it is not desirable to reduce

speed then it is possible to disengage the transmission and remove the effect

of engine braking, allowing the vehicle to coast with only gradient, rolling

resistance and drag to overcome. A number of manufacturers have devel-

oped such coasting abilities [43]. A decision has to be made with the engine

disengaged from kinetic energy of the vehicle as to whether to supply fuel to

run the engine at idle speed or to turn off the engine completely and restart

when required. Historically an array of vital components were powered di-

rectly from the engine including belt driven power steering hydraulic fluid

supply pumps and so turning off the engine was not a possibility. With the

increasing electrification of vehicle components such as power steering this

issue can be avoided and with the deployment of stop/start technology the

reliability of restarting the engine is greatly increased. In [44] a compromise

is proposed that uses the torque converter in an automatic transmission to

partially decouple the engine during coasting but allow sufficient torque to

be supplied from the wheels to maintain the engine at idle speed but with

fewer losses than if the engine was running at the higher speed when com-

pletely coupled. The decision of when to initiate a coasting operation is not

one that can be added to the driver’s mental workload and so along with

the driving behaviours above is a decision that is best taken by a system

designed to optimise the vehicle behaviour to reduce fuel consumption. In-

corporating coasting strategies into the framework of eco-driving described

in subsection 2.3.1 further highlights the requirement for optimisation meth-

ods to be applied to the control of the vehicle velocity and gear selection.

2.4 Optimisation in Automotive Control

Optimal control is the selection of system parameters such that a quantity

indicating performance is either minimised or maximised [45]. Three types

of optimisation are noted in [46] as relevant to the task of designing vehicle

propulsion systems. In a hierarchical order these are

• selection of the best powertrain component combination, such as a

conventional, hybrid electric or fully electric powertrain
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• optimisation of the component parameters for the chosen powertrain

structure, such as the rating of the electric motors in a fully electric

vehicle [47]

• optimisation of the supervisory control system to best utilise the com-

ponents in the powertrain

It is this third level of optimisation that will be the focus of the following

section.

While the topic of vehicle fuel consumption has been detailed in the

previous section and has a long history, the idea of using optimal control for

such an application is more recent. In 1977, Schwarzkopf et al. [48] published

an algorithm based on the Pontryagin maximum principle [49] to minimise

fuel consumption over a number of artificial road profiles of fixed up and

downslopes of 10%. This method requires that the engine fuel consumption

performance can be described by a polynomial function which limits the

quality of results as the complexity of modern engine efficiency is lost in this

approximation. The use of Pontryagin’s maximum principle for fuel optimal

velocity control is extended in [50] and compared with maintaining a fixed

velocity.

Another early and influential publication was produced by Hooker et

al. [51] in 1983. This work investigated control of vehicle speed for fuel

economy in three scenarios; accelerating to a cruising speed, driving with an

average speed over roads with gradients and driving between stop signs. The

technique used was based on the seminal work of Bellman [52] on Dynamic

Programming (DP) and presented two algorithms, one controlling acceler-

ation and another that controls both acceleration and gearshifting. In [53]

this work was extended by the same author to consider fifteen different vehi-

cle models and it is shown that the optimal control for one vehicle may differ

considerably from that of another vehicle on the same road. To identify this

previously would have required multiple test runs with each vehicle under

identical conditions which presents a number of challenges. The benefit of

the vehicle simulation proposed in the above mentioned work is clear when

considered against this previous testing procedure. The conclusions drawn

from this work were that the potential for fuel saving by economical driving
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was much greater with gradients and stop / start traffic than for cruising at

a fixed average speed on a flat road section.

2.4.1 Heavy Goods Vehicles

More recently the focus of such work has moved to Heavy Goods Vehicles

(HGVs) as fuel makes up a significant portion of a haulage company’s oper-

ating costs [54] and the weight of HGVs means that a suboptimal speed over

gradients has a much greater impact on fuel consumption than for a passen-

ger vehicle. These are the motivating factors for focussing on HGVs. In [55]

the optimal control strategy for a truck traversing a series of simple linear

road profiles is considered and analytical solutions are found which can be

used to compare with alternative optimisation methods, such as DP. In [56]

the non linearity of a modern engine’s specific fuel consumption (SFC) map

is studied to identify the impact of this on the optimisation results. Two

objective functions are evaluated, the first considering a time constraint and

the second using a weighting factor between fuel and time. The research on

HGVs focuses on highway cruising speeds with a limited window of possible

speeds and accelerations, which make up a major portion of HGV journey.

In [57] only speeds in the range 79 km h−1 to 89 km h−1 are considered. This

restricts the scope of possible velocity profiles and therefore the complex-

ity of the algorithm however for a passenger vehicle a much larger range is

necessary. Model predictive control is applied in [58] to control both cruise

control speed and gear selection in a HGV. The length of the horizon over

which the prediction takes place varies is proportional to velocity resulting

in a fixed time period over which the prediction operates.

2.4.2 Hybrid Electric Vehicles

A related area of research that is more focussed on passenger vehicles has

been the application of optimisation methods to Hybrid Electric Vehicles

(HEV) control policies where torque can be provided by either an electric

motor, an ICE or a combination of both. An overview of this topic can be

found in [59] which lists the optimisation methods used by various research

groups. A common approach is what is known as equivalent consumption
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minimization strategies (ECMS) and was first presented in [60]. Assuming

a charge sustaining policy where the battery charge is the same at the end

of a journey as at the start, the ECMS considers a deficient battery charge

as the equivalent of a future fuel use to recharge the battery either from the

engine directly or from regenerative braking to reduce a velocity that was

produced by the engine. Similarly an excess battery charge is the equivalent

of a future fuel saving as it can be used to reduce the work required of

the ICE. By considering both elements of the powertrain in terms of fuel

consumption it allows a comparison of different control actions.

This concept is used in [61–63] however the application of ECMS in opti-

misation differs. In [61] a DP algorithm is considered but deemed unsuitable

for real time application due to knowledge of the future driving situation

being required. A different approach is taken in [63], where the problem

is considered as a single-objective linear optimisation problem, the single

objective being minimising the equivalent energy consumption rate. This

shows that even where the ECMS concept is common, there is a variety

of approaches taken to implementing the concept in optimisation. Various

optimisation methods are compared in [64] to highlight their suitability for

use in HEV control strategies. A table summarising the conclusions of this

publication on global optimisation methods is reproduced in Table 2.2. Two

types of DP are considered in the analysis. The first assumes that the up-

coming situation is entirely known and is referred to as deterministic DP,

whereas for the second type the future situation is not known but proba-

bilities can be applied to a number of possibilities and the optimisation can

incorporate these probabilities; this second approach is known as stochastic

DP. The only method considered to be suitable for real-time application in

Table 2.2 is stochastic DP as the other methods rely on a complete velocity

profile to be followed so that the HEV can be controlled optimally.

2.4.3 Stochastic Dynamic Programming

In a real-time application the velocity profile is unknown and there will be

uncertainty over future power demands as this will vary with driving style

and road situation. One solution as proposed in [65] is to use determinis-
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Computational Load Robustness Real-time

Linear Programming + + - - -

Optimal Control - - - - -

Dynamic Programming - - -

Stochastic DP - - - +

Genetic Algorithm - - + -

Table 2.2: Global optimisation method comparison with respect to com-

putation load, robustness and real-time applicability. For a hybrid vehicle

optimisation system and each particular category, suitable and very suitable

methods are indicated by + and + +, respectively, and similarly, - and - -,

indicate unsuitable and very unsuitable methods.

tic DP for a specific drive cycle and use the results from this to produce

a heuristic rule based strategy. It was shown that this strategy produced

results that were between 50% and 70% of the performance of the determin-

istic DP algorithm. The performance of such a system on unseen driving

cycles is unpredictable and real driving can differ greatly from standard

driving cycles. A solution to this problem is improved driver modelling and

prediction. In [66] the driver’s control requests, represented by a power

demand, are modelled by a Markov chain. At a specific wheel speed a prob-

ability distribution represents the likelihood of the next demanded speed,

the distribution is dependent only on the current speed and not on previ-

ous speed, this being a property of a Markov chain [67]. The probability

distributions are calculated based on data from a number of drive cycles,

however the performance of the algorithm in unrelated situations cannot be

predicted. This distribution represents a stochastic variable which cannot

be predicted with absolute confidence but can be modelled from prior data.

Rather than the driver demand being the stochastic variable, in [68] a lead

vehicle velocity in a traffic scenario is considered as such. A slightly differ-

ent approach is applied in [69] where rather than the future velocity being

a random variable, a deterministic approach is taken to produce a complete

velocity profile for the upcoming road section. A stochastic element is used

however for the expected fuel consumption of a given state, due to road
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conditions and drivers varying from the prescribed velocity profile.

In addition to varying by journey, driver demands also vary greatly be-

tween drivers; they are also hard to predict and can even vary for a single

driver at different times. Despite the attention on the driver, a far greater

influence on the future velocity profile comes from the road environment, pri-

marily speed limit and local traffic speed. The current and upcoming speed

limit requires no prediction, only access to a database and knowledge of the

route ahead [70] and while traffic speed is difficult to predict in advance, if

it is measured for the route ahead then a prediction can be made with much

greater confidence. Such road information may not have been envisaged as

being available when the authors of [66] published their work but the cur-

rent state of the art allows that the first assumption of knowledge of the

upcoming situation can be made a with a high level of confidence. Another

approach then, is to apply this knowledge of the upcoming road situation

that will be available in connected vehicles of the near future. Assuming

the driver obeys the legal speed limits and conforms with traffic flow speeds,

then due to the availability of road data on both there is a limitation on the

uncertainty of future driver demands. Alternatively, the task of regulating

vehicle speed can be automated. Such a concept has been present in vehicles

since the first implementation of a cruise control system and removes the

need to predict driver behaviour. This also enables several of the optimisa-

tion methods deemed unsuitable for real-time applications in Table 2.2 to

be applicable. The removal of the uncertainty caused by driver behaviour

provides an opportunity to apply the deterministic implementation of DP.

2.4.4 Deterministic Dynamic Programming

The assumption of automated velocity control allows the stochastic element

of the future velocity to be replaced by a velocity profile that can be com-

pletely determined by the optimisation algorithm.

This approach is taken in [57] for HGVs with the deterministic DP algo-

rithm producing a fuel saving of 3.5% with no loss in time. It was noted also

that the number of gear shift operations reduced by 42% due to anticipation

of gradient changes due to road information. In [71] DP is applied to a con-
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ventional powertrain vehicle and a three dimensional search space is used

with time, velocity and distance as variables. Knowing two of the three

variables allows you to calculate the third so this redundancy is removed

in a following publication by the same authors [72]. This publication also

includes an assessment of the impact of traffic on the optimisation by consid-

ering a time margin between of two and four seconds to the vehicle ahead.

The effect reported was to reduce the fuel consumption saving from 34%

to 28% and 15% for two and four seconds time margin, respectively when

compared to unrestricted optimisation. The work in [73] does not consider

traffic and gear shifting is according to a fixed schedule but introduces an

iterative approach to DP where the algorithm is initially computed with a

velocity resolution of 2 mph that reduces the computational load as there

are fewer velocity choices than a 1 mph resolution would produce. Once

the initial velocity profile is produced a narrow search space is constructed

around it which is used for a second iteration of the DP algorithm using a

higher resolution. It is highlighted in the publication that the fuel consump-

tion following the profile calculated using 2 mph (0.89 m s−1) is only 0.35%

higher than that of the profile calculated using 1 mph (0.45 m s−1) so the

benefit is minimal for this second iteration. The horizon over which the DP

operates is divided into 250 m sections. This iterative approach is expanded

in several publications by Wahl [74], and [75] make use of DP where the

algorithms that are applied to the HEV use an iterative approach where ini-

tially a coarse search grid is used to identify where the optimal solution lies.

Subsequent iterations of the DP algorithm use a finer search space centred

on the initial solution to improve the accuracy of the optimal solution. The

benefit of using this iterative approach is that the computation time for the

coarse grid is significantly lower than the equivalent search area with a finer

grid size, but the following iterations can benefit from a finer grid without

the associated computational load.

An issue for all the optimisation methods mentioned previously is the

domain in which the horizon is considered, the movement of a vehicle can

be described in the time domain and also in the spatial domain. The time

domain was used in [51] and is often used in adaptive cruise control velocity

optimisation such as [76] and particularly in urban scenarios where other
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Author Vehicle Domain Horizon
Velocity

Interval

Hellström [57] HGV Spatial
1500 m

50 m steps

0.2 km h−1

(0.06 m s−1)

Wollaeger [73] Conv Spatial 250 m steps
1mph

(0.45 m s−1)

Mensing [86] Conv Temporal
300 m

5 m steps
0.2 m s−1

Wahl [74] HEV Spatial 3000 m -

Luu [79] Conv Spatial
1000 m

10 m steps
-

Gausemeier [84] Conv Spatial
2500 m

50 m steps

1 km h−1

(0.28 m s−1)

Dib [87] EV Spatial - -

Levermore Conv Spatial
1500 m

50 m steps
0.1 m s−1

Table 2.3: Dynamic Programming vehicle velocity optimisation applications

traffic is considered [77]. Optimisation of vehicle speed to synchronise with

traffic light timing also often takes place in the time domain [78].

The spatial domain is intrinsically linked to the road topography and

so is well suited for vehicle velocity optimisation on stretches of road with

varying gradient [57, 74, 79–81]. The drawback of this approach is the in-

ability to consider stationary periods [82], which are likely to occur in urban

environments. The decision of what domain to operate in dictates how the

final state is specified, in the spatial domain the horizon length and therefore

the final distance are fixed however the final time can be unconstrained as

in [82, 83] or minimised as in [57, 84]. In the case of [85] a range of final

times are acceptable based on traffic light timings. A summary of DP algo-

rithms used to implement vehicle velocity control in a variety of vehicles is

presented in Table 2.3 along with the values used in this work.
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2.4.5 Genetic Algorithm

The theory of a Genetic Algorithm (GA) was developed in the 1960s and

formally presented in [88]. Taking inspiration from the natural world and

evolution’s “survival of the fittest”, a GA aims to mimic this process to

achieve an optimum or fittest solution. A GA requires two parts [89] which

are similar to the DP algorithm requirements

• a pseudo genetic representation of solutions known as a “genotype” or

a “chromosome”

• a function to calculate the “fitness” of solution, equivalent to the cost

function used in DP.

A population of chromosomes are assessed using the fitness function and

a variety of operations can be undertaken to produce the next generation

of chromosomes from the initial population. The conclusion of the GA is

decided by a range of criteria, such as a maximum number of populations

to produce or reaching a threshold fitness value.

The application of GA to optimal control problems was described in [90]

and a simple example problem is presented in which the distance travelled by

a push-cart in a given time, minus the effort required to push the cart, is to

be maximised. This is similar to the problem of optimal velocity control of

a vehicle which has been tackled with DP above, however the GA method is

noted as being better suited than DP to problems with a moderate number

of dimensions. This GA method is applied in [91,92] to optimise the energy

management in a HEV with the fitness function being the weighted sum of

fuel consumption and ICE emissions carbon monoxide, hydrocarbons and

oxides of nitrogen. The switching points for turning off the ICE, the amount

of torque used to charge the batteries and the upper and lower limits of bat-

tery charge are the parameters that make up the chromosome representation

to be optimised. This work is developed in [93] with the powertrain param-

eters expanded to include peak power of ICE, Motor rated power, battery

capacity, final drive ratio with the same fitness function. A different strategy

is taken in [94] as the total energy consumption on a journey is the single

variable in the fitness function and the genetic representation contains a
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control command at every discrete distance in the road section. The control

command is limited to one of three states, maximum acceleration, maintain-

ing velocity and coasting with no propulsion force. GA is used in [95] to

select the topology of a battery electric vehicle to optimise cost, efficiency

and performance for a range of greater than 175 km of the NEDC.

The use of GA to optimise vehicle velocity is proposed in [96] albeit

with a train used as the vehicle investigated as opposed to a car. The cost

function comprised of the electrical energy consumption as well as the time

taken for a given section of track of known gradient and speed limit. No

mention is made of the computation time for the GA as the results were

computed offline, not implemented in a time critical application. A similar

approach is taken in [97], with a constraint on computation cut-off time of

30 seconds applied when running on a high performance personal computer.

It is noted that despite the similarities in the optimisation problem being

solved for either car or train, the GA approach is more commonly applied

to the train problem. The regular scheduling of operation for a given train

lessens the impact of the long computation times associated with GA and

results can be calculated offline which would be unsuitable for the more

unpredictable journey requirements of a car.

2.5 Vehicle Modelling

Fundamental to the design of any optimisation method is the accurate mod-

elling of the system that is to be controlled. Vehicle modelling is a field

of research that has a number of applications each concerned with different

aspects of vehicle behaviour [98]. It is necessary to identify exactly what

is required from a vehicle model and when the drawbacks of increasing the

level of detail outweigh the benefits. Consider a vehicle moving in three

dimensions relative to a road section, movement in the vertical plane does

not contribute significantly to fuel consumption other than through the in-

crease of the rolling resistance losses, as discussed later, but is vital for Noise,

Vibration and Harshness (NVH) analysis. As noted in [99], to simplify a

vehicle model the vertical dynamics are often separated from the model un-

der analysis and can be disregarded. Modelling of vehicle lateral motion is
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of particular interest to handling and safety research in lane departure [100]

and at the limits of vehicle performance. Under normal driving conditions

the lateral motion of a vehicle is not considered to contribute significantly to

fuel consumption in [101], however in [102] a formula is presented that lon-

gitudinal drag due to cornering increases exponentially with vehicle velocity

as well as increasing with slip angle and inverse of curve radius.

2.5.1 Longitudinal Model

There are two main approaches to vehicle longitudinal simulation [103], the

first, is known as a backward-facing vehicle model or quasi-static inverse

model [104] and in which the entire velocity profile to be simulated is known.

From this using a model of the wheel dimensions, the wheel speed can be

calculated, followed by driveshaft, transmission, and finally, engine speed.

In parallel with this the torque required to follow the velocity profile is

calculated for each component in the powertrain. In [105] this concept is

presented with a simple formula for calculating torque using acceleration, the

square of velocity and lumped coefficients to represent resistive forces such

as aerodynamic drag. Using static efficiency tables populated by test data

the fuel consumption for a given engine speed and torque can be found.The

advantages of the backward-facing approach is the speed of calculation which

due to the use of lookup tables can be relatively quick. The drawbacks can

be attributed to the inflexible nature of a model based on velocity profiles

which cannot account for variation in driving style or driver ability. Dynamic

effects such as those resulting from exhaust gas recirculation (EGR) and

turbo charger behaviour are also not considered in the model as the efficiency

tables are based on static test measurements.

τ , ω

Control

Velocity

τ , ωτ , ωτ , ω

Engine Transmission Driveline Vehicle

Figure 2.1: Vehicle model backward-facing calculation sequence with torque,

τ and rotational speed ω used to link the elements of the model.
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τ , ω
τ , ωτ , ω

τ , ωControl

Velocity
Engine Transmission Driveline Vehicle

Figure 2.2: Vehicle model forward-facing calculation sequence with torque,

τ and rotational speed ω used to link the elements of the model.

The second approach is the forward-facing model where the sequence of

calculations works in the opposite direction. At the input to the model is a

speed controller for the vehicle, representing either a driver or a cruise con-

trol system that provides a control input to the engine model (and brakes)

which generates a torque and rotational speed as an input to the transmis-

sion model, followed by the driveshaft, the wheels and finally the vehicle

speed can be calculated. The forward-facing approach commonly relies on

differential equations to describe the behaviour of system component fre-

quencies high enough to capture the dynamics of components such as air

path variations. This high frequency leads to an increased computation

time compared to the first approach, with benefits for example for pollutant

formation simulation that relies on high frequency modelling [46]. Fuel con-

sumption is less influenced by these high frequency variations and so results

can be comparable for both approaches.

2.6 Performance and driveability

The perception of the driving experience is very subjective but progress has

been made in recent years to quantify this under a title of driveability. This

topic can be divided into two areas, first that of NVH dealing with the chas-

sis, suspension and other mechanical design implications. The second area is

that of the dynamic behaviour of a vehicle powertrain during various driving

scenarios and the impact of this on driveability. Approaches to objectively

measure driveability are developed independently in [106] and [107] with the

aim of automating vehicle development using software that can provide a

driveability rating based on the objective metrics developed. In [107] the
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focus is on tip-in and tip-out, where the driver presses the accelerator pedal

sharply and similarly releases the pedal. A correlation is shown between the

subjective rating of a vehicle performance and acceleration overshoot expe-

rienced during a tip-in manoeuvre, which can be measured directly. More

detail is provided in [106] considering the derivative of acceleration, known

as jerk during the same situation. A neural network approach is proposed to

predict driveability assessment based on vehicle and engine measurements.

As both publications are from the commercial sector the details are limited.

A more detailed investigation is presented in [108] with assessment of

three vehicles in three scenarios, starting from rest, heavy traffic conditions

at low speeds and overall performance. The correlation between jerk and

performance perception is highlighted as being stronger than that between

acceleration and performance perception. This work is expanded in [109]

with seven vehicles, five continuously variable transmission vehicle and two

with automatic transmissions.

The behaviour of automatic transmissions is considered in respect to

driveability in [110] during the development of an hybrid vehicle optimal

energy management system. Shifting too frequently is noted as undesirable

behaviour as well the varying shift timings. The authors implement a limit

on the total number of gear shift occurrences and similarly engine restarts

for the optimal control system. In [111] the development of these limits is

detailed with a number of factors being approximated by the number of gear

shifts and engine starts.

Performance and driveability are both considered in [112] where perfor-

mance is objectively measured in a number of ways including acceleration

times, top speed and gradeability which is the maximum gradient that a

vehicle can maintain a given speed. Driveability is objectively defined by

vibration and noise measurements as well as tip-in, tip-out response and

jerk. In [113] only tip-in, tip-out and gearshift are considered in relation-

ship to powertrain driveability. The perception of driveability is taken one

step further in [114] where not just the longitudinal acceleration of the vehi-

cle chassis is considered but also that of the driver’s headrest as ultimately

the human perception of driveability is what is of interest.
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2.7 Electronic Horizon

In order to implement an optimisation algorithm that subscribes to the eco-

driving rules noted in subsection 2.3.1 there is a requirement for knowledge

of the upcoming road section. This requirement is shared with a number of

automotive applications that are in development in the field of vehicle safety

such as Adaptive Speed Recommendation [115] based on road information

such as speed limit, road curvature, junctions and Adaptive Front-lighting

[116] which directs the front headlight beam according to the upcoming road

geometry to better illuminate the way. A system to provide information on

the upcoming road section is commonly referred to as an electronic horizon.

Due to the number and variety of applications that would benefit from

an electronic horizon system it is necessary for all relevant parties to collab-

orate on the design of such a system. This is the goal of the Advanced

Driver Assistance System Interface Specification (ADASIS) forum [117],

which brings together major vehicle manufacturers such as BMW,Daimler,

Ford and Jaguar Land Rover, mapping companies such as TomTom and

Here, as well as automotive original equipment manufacturers (OEMs) such

as Bosch and Continental. The specification ADASIS v2 Protocol [118], pro-

duced by this forum, dictates the type and format of the signals available

from an ADAS Horizon Provider (Av2HP) and thus allows any equipment

connected via the Controller Area Network (CAN) bus to request and inter-

pret the data to reconstruct a road model for a particular application. Each

application is able to request specific items from the Av2HP and a Horizon

Reconstructor (Av2HR) is made specifically for that application using only

the relevant data. Of relevance to vehicle speed optimisation, road slope

data is listed in the specification as well as the speed limit, which can either

be the signed legal speed limit, or variable speed limits depending on the

source of information. By adhering to the specification it ensures that any

suppliers Av2HP can communicate with any other suppliers Av2HR thus

reducing the costs associated with developing new applications and allowing

specialists in areas such as navigation to focus solely on their area of inter-

est. For example if the vehicle does not have a predefined destination then

all the associated ADAS applications are reliant on the navigation system
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to predict a most probable path that the vehicle will take, a problem that

can be tackled with a number of approaches each of which if satisfactory

will not impact the operation of the ADAS application.

While the ADASIS protocol provides isolation between the two compo-

nents of the system, the horizon provider and the application, it is impor-

tant to investigate the quality of the information provided. For instance,

intelligent cruise control that relies on speed limit information being up to

date and accurate much more than a system that simply informs the driver

of speed limit information. Similarly an eco-feedback system that relies on

road gradient information to optimise vehicle speed will require much greater

accuracy in gradient data than for a conventional navigation system, and

much greater again if the application is HGVs [119] rather than passenger

vehicles due to the significantly increased vehicle weight. In [120] this is

investigated with a commercial ADAS map database compared to a Digital

Elevation Model (DEM) of the United States for both elevation and gradient

accuracy.

2.8 Summary

This chapter has provided background information to the motivation for

this project, the reduction of fuel consumption and CO2 production from

internal combustion engine passenger vehicles. Approaches to achieve this

are briefly described including the optimisation of vehicle control which is

then described in further detail. In order to implement practical optimisa-

tion systems an accurate and efficient vehicle model is required and this field

is then described. Finally the concept of driveability is tackled with details

of the current state of research in this area. The application of this back-

ground knowledge in the implementation of a vehicle velocity optimisation

algorithm is covered in the following chapter.

33



Chapter 3

Optimal Control Algorithm

The development of in-vehicle systems to provide road data, engine data

and driver information has brought many benefits to automotive innovation

such as satellite navigation and eco-driving feedback systems. To combine

the wealth of information that will be available in a vehicle in the near

future with specific component control to achieve for instance lower fuel

consumption requires a high level algorithm. Accurate vehicle models aid

in the prediction of how different control strategies will influence the fuel

consumption and the selection of the most appropriate control policy. This

is considered an application of Optimal Control, defined in [121] as the

minimising (or maximising) of a performance measure. In order to minimise

both journey time and fuel consumption, the vehicle speed and by virtue of

gear selection, the engine speed, are required to be optimised. A number of

optimal control algorithms have been discussed in chapter 2 and common

to all of them is the importance of formulating the problem suitably for

the chosen optimisation method. This process is described in the following

section. The optimisation’s effectiveness is directly linked to the accuracy of

the vehicle model applied in the algorithm and the vehicle model is detailed

in section 3.3. The implementation of the algorithm in software code is

covered in chapter 4 along with an analysis of how different configurations

of the optimisation algorithm influence the output and the algorithm is

compared to alternative optimisation methods to verify the optimality of

the results.
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3.1 Optimisation Problem Formulation

In [122] a dynamic programming (DP) problem is presented as having two

main features, a cost function that increases cumulatively and a system that

can be described by a discrete time model. The problem under investigation

here centres on the multi-stage decision process of how best to traverse an

infinite road network for a journey of unknown distance while minimising

both fuel consumption and journey time. The system then is a vehicle

model that calculates both fuel and time at discrete intervals. The state of

the system at each interval of the discretisation is described by x. As the

goal of optimisation is to maximise or minimise a function, known as the

cost function, this approach can be applied to this problem with the cost

function representing a combination of the fuel consumed and journey time.

In this case the cost function is to be minimised and the optimal control

strategy is to be found and applied to u, the control variable. As the road

elevation changes as a function of distance then it is first proposed in [123]

and subsequently consideerd in [80–82,124] to consider the formulae in terms

of road position as opposed to the more common approach of using time.

The cost function, J , is then formulated here with respect to distance, s.

min
u(s)

J(u(s)) (3.1)

The cost function can be described by the following equation as modified

from [121] in the time domain to the spatial domain

J(u(s)) = G(x(sf )) +

∫ sf

0
H(x(s), u(s), s) ds. (3.2)

where H is the cost at each position, s, along the road, integrated with the

respect to position, s to give the sum of all the costs. This is added to

G(x(sf )), a terminal cost associated with the state, x, of the system at the

final distance considered, sf . The distance between s and sf is referred to

as the horizon over which the optimisation is applied. The terminal cost is

used to approximate the cost incurred beyond sf for the remaining journey

of unknown distance. This approximation is required to balance the impact

of decisions made in the current horizon on subsequent horizons. Without

which short term benefits in the current horizon may be selected at the

expense of subsequent horizons.
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In order to apply the methods of dynamic programming it is required for

the continuous system of interest to be approximated with a discrete-time

representation. This takes the form

xk+1 = fk(xk, uk, zk), k = 0, 1, ...., N − 1 (3.3)

where N is the number of distance intervals that make up the road section

under consideration and xk is the state vector which is defined as

xk =


s

v

g

 (3.4)

where s is position (m), v is velocity (m s−1) and g is the gear selection, a

discrete number with no units. The control vector, uk is defined as

uk =

uv
ug

 (3.5)

where uv is the control variable for vehicle velocity (m s−1) and ug is the

discrete control variable representing the selected gear number. The distur-

bance, zk is defined as

zk =

slope
wind

 (3.6)

The continuous cost function (3.2) can be approximated in the discrete do-

main as

J = g(xN ) +
N−1∑
k=0

h(xk, uk, zk) (3.7)

where g(xN ) is the terminal cost of the final state, xN .

3.1.1 Constraints

State Constraints

To ensure that solutions are physically realisable some restrictions must be

applied to the state space, as described in (3.4). Distances that can be

considered are limited by

s0 < sk ≤ smax (3.8)
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where s0 and smax are the minimum and maximum distances allowed in the

current horizon. The gears that can be considered are limited by

gmin ≤ gk ≤ gmax (3.9)

where ggmin and ggmax are the lowest and highest gears, respectively and

the gears are integer values of the set

gk ∈ G = {0, 1, 2..., gmax} (3.10)

The velocities considered for each gear are limited by

vmin(g) ≤ vk ≤ vmax(g) (3.11)

where vmin(g) and vmax(g) are the minimum and maximum velocities al-

lowed in a given gear, g.

Control Constraints

Along with state constraints, it is required to restrict the control variables

to those that are physically realisable with the following constraints

vmin(g) ≤ uv(s) ≤ vmax(g, s) (3.12)

where vmin is the minimum velocity (m s−1) in a given gear and vmax is the

maximum velocity at a given position in a given gear. The selection of gears

is constrained as follows

gmin ≤ ug ≤ gmax (3.13)

where gmin and gmax are the lowest and highest selectable gears.

3.1.2 Cost Function

The cost function is the core of the DP algorithm and is developed from

[123,124] with the addition of a variable normalisation factor.

J =

[
λ
µ1

1−λ
µ2

ζ
] 

Jt

Jf

Jc

 (3.14)
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where Jt, Jf and Jc are the costs associated with time, fuel and comfort,

respectively. λ is a weighting factor to adjust the cost function to favour

either fuel or journey time and µ1, µ2 are scaling factors to normalise each

part of the cost function. ζ is the weighting factor for the comfort cost. The

cost functions components, Jt, Jf and Jc, are calculated as follows

Jt =
∆s

vavg
(3.15)

Jf = ṁf

(
∆s

vavg

)
(3.16)

where ṁf is the mass fuel flow in g s−1 and is multiplied by time, as calcu-

lated in (3.15) to give total fuel used in g).

Jc = ∆τ

(
vavg
∆s

)
(3.17)

where ∆τ is the change in torque in N m. This is used to penalise large

changes in the derivative of torque with respect to time which could lead to

sharp acceleration and impact driver comfort and satisfaction.

Normalisation

As the cost function is a combination of time and fuel costs which are not

in directly comparable units, it is important to normalise these functions

to ensure that a change in weighting factor λ has an even effect on both of

these cost function elements. In order to do this, the values of µ1 and µ2

are to be carefully selected. A minimum value for time and fuel economy is

decided and the µ1 and µ2 values are selected to ensure the fuel and time cost

components range from 0 to 1. The minimum time that would be acceptable

varies depending on the speed limits on the upcoming road sections and so

the normalisation factors need to be recalculated at each repetition of the

algorithm using the road data. The minimum time is calculated assuming

the speed limit is followed as closely as the vehicle performance will allow.

The minimum acceptable fuel economy is also calculated in this manner. In

Figure 3.1 the effect of varying λ is shown with desired behaviour for both

the fuel and time values. As the λ value rises the increase in fuel used is

proportional to the decrease in time, which is to be expected as increasing
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λ adjusts the cost function to penalise time costs more heavily leading to

shorter travel times.

3.1.3 Assumptions

When considering the formulation of the optimisation problem it is impor-

tant to highlight the assumptions that have been made in order to limit

its complexity. With the discretisation of the system in section 3.1 it is

beneficial to assume the behaviour of the vehicle and road section within

one discrete interval can be simplified. Considering a gear shift operation

which occurs over the course of two discrete intervals, after the first interval

determining the state of the vehicle during a gear shift is a complex task as

noted in [100]. As the average time taken to complete a gearshift can be

ascertained and the maximum permissible velocity of the vehicle is known,

the distance covered during a single gearshift operation can be calculated.

It is assumed that a discrete distance interval will be selected that is greater

than this gearshift distance and therefore gearshifts will be completed within

one discrete distance interval. The road gradient and speed limit between

intervals are assumed to be static so as to ensure that the vehicle model is

only required to be evaluated once per interval. Aside from discretisation,

it is noted that the frame of reference for distance travelled makes some as-

sumptions. Conventionally the distance between two pairs of longitude and

latitude coordinates assumes a straight line in two dimensions, neglecting

the effect of any elevation variation occurring while traversing between the

two points. Using on-board sensors such as wheel speed sensors, it is possi-

ble to provide a more accurate representation of the actual distance covered

by the vehicle between the two positions in three dimensions. By making

these assumptions, the responsibility for ensuring the accuracy of the system

model lies with the choice of discretisation interval which is considered in

chapter 5.
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Figure 3.1: Fuel and time values varying as a function of λ (top), total cost

as a function of λ (second) for road elevation profile (third) and associated

velocity profiles (bottom)
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Figure 3.2: Road gradient specification

3.2 Road Model

The road gradient is calculated with reference to Figure 3.2 as

α = arctan

(
h

∆s

)
(3.18)

where α is the angle of road inclination (rad), h is the change in elevation (m)

for the distance interval considered and ∆s is the horizontal distance (m).

This road model is applicable for paved roads only. The discretisation in-

terval is assumed to be greater than the wheelbase of the vehicle and the

gradient static within an interval thus negating the problems of rapidly

changing gradient noted in [125] for off-road situations.

3.3 Vehicle Model

The accuracy of the model of the system under study, in this case the vehicle,

is fundamental to the quality of the DP algorithm results. The development

of the model is described in this section.

3.3.1 Model Type

As noted in chapter 2 there are two types of vehicle longitudinal models.

In the DP algorithm a backward-facing model is to be used as, at the al-

gorithm’s core, is the repeated calculation of the cost function for different

velocity profiles and so the use of velocity as the model input is the most

efficient approach. Rather than a complete velocity profile being analysed,
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individual steps are investigated in isolation with a start and end velocity

considered and step size sufficiently small that a constant acceleration can

be assumed between these two velocities.

3.3.2 Vehicle Dynamics

In order to calculate the vehicle movement, the force transmitted to the road

by the wheels is compared with the other forces acting on the vehicle to find

the net propulsion force required to achieve a given change in velocity. These

forces are used as follows

mv
dv

dt
= Ft(u)− (Fa(t) + Fr(t) + Fg(t) + Fd(t)) (3.19)

where mv is the vehicle mass including inertial equivalent mass (kg), v(t) is

the vehicle velocity, Ft is the tractive force (N) applied by the driven wheel

tyres that is a function of the control inputs that form u. Fa is the aerody-

namic drag force of the vehicle (N), Fr is the rolling resistance (N), Fg is the

gravitational force acting on the vehicle (N), Fd is the force of additional

disturbances that are not modelled in detail (N). These disturbances include

alternator load required to power ancillary items such as lighting, climate

control as well as disturbances due to changes in environmental conditions

such as wind speed, air pressure or road surface. This formula, with distur-

bances neglected is presented visually as a Sankey diagram in Figure 3.3.

For a given acceleration the required tractive force needs to be found by

making it the subject of the formula and calculating the remaining forces.

As proposed in [123] it is beneficial to relate formulae to position rather

than time. As the road state changes with position and this can be mea-

sured directly rather than estimated based on velocity and time there are

advantages to presenting the model with position as an input variable. The

drawback with this is that standard equations with time as a variable need

to be converted to consider position instead. The relationship noted in [123]

using the chain rule is used here

dv

dt
=
ds

dt

dv

ds
= v

dv

ds
(3.20)

This results in an equivalent to (3.19), with disturbances neglected, as fol-
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Figure 3.3: Forces acting on a vehicle to resist the tractive force, Ft in

producing an acceleration.

lows

mvv(s)
dv

ds
= Ft(u)− (Fa(v, vw) + Fr(α(s)) + Fg(α(s))) (3.21)

Each component is described in the following sections.

Aerodynamics

As detailed in [46] the complex behaviour of air resistance on a moving

vehicle can be approximated by a simple object with a cross sectional area

and drag coefficient travelling at a given speed through air of a fixed density.

This resistance is calculated as follows

Fa(v, vw) =
1

2
.ρa.Af .cd.(v + vw)2 (3.22)

where ρa is the density of ambient air (kg m−3), Af is the frontal area of

the vehicle (m2), cd is the vehicle coefficient of drag and v is the velocity of

the vehicle (m s−1) and vw is the headwind speed (m s−1) representing wind

opposing the vehicles direction of travel. With the exception of the velocity,

all the other elements of (3.22) are fixed according to the vehicle, so the Fa

is a function of velocity, v. The coefficient of drag, cd is assumed to be a

constant for the range of scenarios considered in this project.
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Rolling Resistance

The deformation of the tyres due to the load of the vehicle produces what

can be represented as a resistive force acting against the direction of vehicle

movement [100].

Fr(s) = cr(v, p, ...).mv.g. cos(α(s)), v > 0, (3.23)

where cr is the rolling friction coefficient (dimensionless), p is the tyre pres-

sure and α is the road gradient rad [46]. The effect of tyre pressure and

velocity on the rolling friction coefficient is to be neglected here in order to

strike a balance between accuracy and computation time. With the excep-

tion of α, all the other elements of (3.23) are considered fixed for a specific

vehicle and α is dependent on the current position, so Fr is a function of

position, s.

Force due to gradient

When a mass is located on an incline there are force components perpendic-

ular and parallel to the inclined slope that combine to equal the force due

to gravity. The parallel component is of relevance for calculating the forces

acting on the vehicle as

Fg(s) = mv.g. sin(α(s)). (3.24)

As mv is assumed fixed for a given vehicle, only α will vary and as α is

dependent on the current position, Fg is then a function of position, s. The

road gradient is as described in section 3.2.

Resistive Forces

In order to accelerate the vehicle the tractive force Ft must be greater than

the sum of all the resistive forces in Equation 3.21. The contribution of each

component to the total resistive force and their variation is highlighted in

Figure 3.4. At low speeds with zero gradient the rolling resistance, Fr has

the biggest contribution of all the resistive forces. When any of the vehicle

speed, headwind speed or road gradient increase the resulting forces begin

44



Vehicle Velocity (ms!1)
10 15 20 25 30

F
or

ce
(N

)

0

100

200

300

400

500

600

700

Fa 0ms!1

Fa 5ms!1

Fg 0%

Fg 1%

Fg 2%

Vehicle Velocity (ms!1)
10 15 20 25 30

F
or

ce
(N

)
252

254

256

258

260

262

264

266

Fr 0%

Fr 1%

Fr 2%

Figure 3.4: The resistive forces, Fa, Fr, and Fg are compared at vehicle

speeds from 10 m s−1 to 30 m s−1, headwind speeds of 0 m s−1 and 5 m s−1

and road gradients of 0%, 1% and 2%.

to dominate the resistive force and the rolling resistance becomes less signif-

icant. It can also be seen in Figure 3.4 that at the road gradients occurring

under normal conditions the rolling resistance does not vary significantly

due to road gradient. The sensitivity of each of these forces to variation in

their arguments is investigated in chapter 4.

3.3.3 Engine Model

With the tractive force, Ft, required for a given transition described in Equa-

tion 3.21, the engine speed and torque are required in order to find the fuel

consumption from the BSFC map used in the engine model. For a transition

between v0 and v1 the acceleration can be calculated using Equation 3.20

and used in Equation 3.21 along with Equation 3.22, Equation 3.23 and

Equation 3.24 to find the required traction force at the wheels, Ft. Using

this force and the wheel radius, rw, the torque equivalent is

τw = rwFt (3.25)
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This traction torque is related to the torque available from the engine via

the final drive and transmission ratios. The following formula describes this

τeb =
τw

RtrRdr
, (3.26)

where τeb is the engine brake torque (N m), τw is the torque at the wheels

(N m) and Rtr and Rdr are the ratios of the transmission and driveshaft,

respectively. The useable torque available from the engine is referred to by

convention as the engine brake torque as opposed to the engine indicated

torque which is the theoretical torque produced by the engine not considering

friction and other losses. The engine speed is also calculated using the

transmission ratios

ωe =
60ωwRtrRdr

2π
, (3.27)

where ωe is the engine rotational speed (rpm) and ωw is the rotational speed

of the wheels (rad s−1).

Torque Curve

A compression ignition engine has an upper limit on the torque it can pro-

duce that varies with engine speed. In order to reflect this limitation the

engine torque and speed must be compared to the upper limit and transi-

tions that require engine operating points above the limit are disregarded

as infeasible. The torque curve used in the engine model is shown in ap-

pendix A.

Engine efficiency

The efficiency of a compression ignition engine varies over a range of con-

ditions, most notably engine speed. The maximum efficiency of the engine

considered in this vehicle model is 39%. As the losses can be attributed to

a number of factors as seen in chapter 2 to model this behaviour in detail

requires much greater complexity and fidelity than can be afforded in the

optimisation algorithm. These complex modelling issues can be avoided by

using empirical data of the measured fuel flow at a number of engine brake

torques and speeds to create a table that can be quickly accessed to estimate

engine efficiency.
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3.3.4 Fuel Consumption

To model the fuel consumption of the vehicle there are three options, as

described in [46], the average operating point approach, the quasistatic ap-

proach and the dynamic approach. The first approach estimates the fuel

consumption based on that resulting from the engine run at an operating

point that is the average of a range. This approach does not allow for varia-

tion of fuel consumption by optimising the engine operating point and thus

cannot be used here. The dynamic approach requires mathematical models

to be developed that accurately reflect the behaviour of the engine typically

in the form of ordinary differential equations. The quasistatic approach in-

volves calculating the fuel consumption at intervals over the entire profile.

At each interval the engine torque and speed is assumed constant. This

approach is well suited for use in a DP application due to its reliance on

calculations occurring at intervals which in this case are inherent in the DP

algorithm. This method does not consider the influence of engine dynamics

but rather considers the fuel consumption at each operating point from a

table at a number of engine brake mean effective pressures (BMEP) and

speeds. The table is a discrete approximation of the following equation,

modified from [2]

sfc =
3.6×106ṁ

τebωe
(3.28)

where sfc is the specific fuel consumption (g kW−1 h−1), ṁ is the mass flow

of fuel (g s−1). The total fuel consumption for the horizon can then be

calculated as follows

M =

∫ sf

0

1

v
ṁ(ωe, Pme) ds (3.29)

with the discrete equivalent

M =
N∑
k=1

1

vk
ṁ(ωek , Pmek)∆s (3.30)

As the engine BSFC data is provided at discrete intervals of BMEP and

engine speed that may not correspond exactly to the values required by the

model it is necessary to interpolate the table data. The two-dimensional

interpolation method used is bilinear interpolation.

f(x, y) = a00 + a10x+ a01y + a11xy (3.31)
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Figure 3.5: Brake Specific Fuel Consumption with engine coolant 90 ◦C

where darker colour indicates lower efficiency

a00 = f(0, 0)

a10 = f(1, 0)− f(0, 0)

a01 = f(0, 1)− f(0, 0)

a11 = f(1, 1) + f(0, 0)− (f(1, 0) + f(0, 1))

where x is the engine speed required and y is the BMEP value required.

The BSFC data used is shown in Figure 3.5 as measured when the engine

coolant temperature was 90 ◦C and provided by the vehicle manufacturer.

The temperature of this coolant is directly related to that of the engine and

therefore of the engine lubrication fluids. The viscosity of the lubrication

fluids reduces with increasing temperatures which leads to a reduction in

engine friction as the engine warms up. Above the optimum operating tem-

perature the lubricants begin to degrade and the engine friction increases.

Separate BSFC maps are provided for engine coolant temperatures of

30 ◦C, and 50 ◦C, and an investigation into the effect of different BSFC

maps is detailed in chapter 5.
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3.3.5 Time

In order to calculate the time for each step we use the equation

v =
ds

dt
(3.32)

The time taken then becomes

t =

∫ sf

0

1

v
ds. (3.33)

which in discrete form is represented by

t =
N∑
k=1

1

vk
∆s (3.34)

The vehicle model as described produces both the fuel and time values that

are required for the calculation of the cost function (3.14). In order for the

vehicle model to be implemented in the DP algorithm it is required to be

discretised.

3.3.6 Discretisation

The continuous system described in (3.21) is required to be discretised, or

numerically approximated and there are many methods for the numerical

approximation of ordinary differential equations such as this. The well used

Euler method is a first order method of numerical approximation and there

are two approaches that can be taken, using either a forward or a backward

method. Each is investigated to identify which is more suitable for this

application. The forward approach is presented as

vi+1 − vi
∆s

=
1

mvvi
(Ft(ui)− Fd(vi, si)) (3.35)

where Fd is used to represent the combination of all the resistive forces in

(3.21). The backward approach is presented as

vi+1 − vi
∆s

=
1

mvvi+1
(Ft(ui)− Fd(vi+1, si+1)) (3.36)

To compare the two methods a test scenario is considered with a road sec-

tion of zero gradient, a fixed start (v0) and end speed (v2) and an inter-

mediate step of variable speed (v1). The work done is calculated using the
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Figure 3.6: Euler forward and backward discretisation methods comparison.

force required to overcome the resistive forces and propel the vehicle over

a fixed discretisation interval distance, ∆s. Rolling resistance is neglected

for this scenario. The work done as calculated by Euler forward and back-

ward discretisation methods is shown in Figure 3.6, with a two step section

considered with identical start and end velocity (in this case 15 m s−1) and

a variable intermediate velocity. A discretisation interval of 10 m is shown

for two curves and for an interval of 50 m for two curves, as labelled. It can

be seen that using the backward Euler method estimates the work required

increases when the velocity, v1, is increased compared to the constant speed.

However the forward method estimates that the work required decreases as

the intermediate velocity increases, which does not reflect reality. The dis-

cretisation interval also influences the results as shown by the work done as

estimated with an interval of 50 m compared to 10 m. Even for the back-

wards method, at the larger interval the work done is briefly below that of

constant speed as v1 decreases from 15 m s−1 to 14.6 m s−1 which again does

not reflect reality. Despite this issue at higher interval sizes the output of

the backwards method is consistently more representative of reality and so

is applied in this case as opposed to the forward method or more complex

discretisation methods.
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Discretisation Interval

The process of converting the continuous system to a discrete system re-

quires consideration of the interval period used in the discretisation. For a

fixed horizon length, reducing the interval distance will require an increased

number of calculations. In [123] a distance interval of 20 m is used in sim-

ulations for roads with rolling gradients and 10 m is used in simulations of

cruising scenarios. The interval used in [124] is 50 m with 30 steps giving

a total horizon of 1500 m. In [81] where a cloud-based optimisation is con-

sidered, the discretisation interval is dependent on the speed limit of the

given section. For sections limited to 30 mph or below the interval is 50 m

and for speed limits above this the interval is 150 m. While this approach

can reduce the total number of search space calculations for a given horizon

distance, the complexity of implementing the varying interval sizes is a sig-

nificant drawback. Basing the interval distance on the speed limit neglects

to consider situations where the vehicle speed varies significantly from the

legal speed limit, for instance during heavy traffic or at traffic lights. In

these scenarios it may be desirable to maintain a reduced interval distance

regardless of the legal speed limit. Also in [81], the gradient is discretised

with intervals of 0.5◦. This stands out from other publications as elsewhere

the gradient calculation is assumed to occur in advance of the optimisa-

tion and cost function computations involve trigonometric functions that do

not benefit from a discretised interval in gradient. The computation time

of a trigonometric function is constant regardless of the angle of gradient

involved, thus providing no benefit to discretising the gradient in this way.

Velocity

Aside from gear selection which is inherently discrete the other dimension

in the search space that is to be discretised is that of the vehicle velocity.

In order to minimise the size of the search space, a sufficient discretisation

interval is to be applied to the available velocity choices. The effect on an

optimisation output of varying the velocity interval is examined in [73] where

it is proposed that a resolution of 2 mph produces fuel consumption results

less than 1% higher than at 1 mph. This result relates to a small sample
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size and further investigation of this issue is covered in chapter 5.

3.3.7 Assumptions

The computation time of the algorithm is a function of the dimensions of

the search space and the computation time of each calculation of the vehi-

cle model. Restrictions of the dimensions of the search space are detailed in

subsection 3.4.1. To limit the computation time of the vehicle model a num-

ber of assumptions are made that reduce its complexity while maintaining

sufficient accuracy.

Vehicle mass and distribution

Within the volume of the vehicle there are many components that are able to

move with varying degrees of independence from each other which contribute

to the movement of the vehicle body. As noted in [126], where there is a

requirement to reduce the complexity of a vehicle model it is common to

consider all the components as one entity, referred to as a lumped mass.

This convention is implemented in the vehicle model with a single point

mass, including the wheels, representing the centre of gravity at the origin

of the vehicle reference frame.

Prior to the start of a journey the vehicle mass is not always the same and

the effect of this is studied in section 4.8.1. However the mass of the vehicle is

assumed to remain constant for the duration of a given journey, as although

the use of fuel will reduce the weight, no occupants or luggage should change.

A typical fuel tank of 50 l of diesel has a mass of 42.5 kg. When considering

vehicle acceleration, the mass of the vehicle includes the equivalent mass due

to the inertia of rotational elements in the drivetrain and the wheels [126].

This equivalent mass is approximated with the addition of a fixed mass to

the overall vehicle mass. The equivalent mass due to inertia decreases as

the gear ratios decrease at higher gears where there is less variation in gear

ratio and thus equivalent mass, allowing a fixed approximation to be used.
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Fixed acceleration

When considering two adjacent interval steps, s1 and s2, where a gear tran-

sition does not occur, the velocity profile between the two steps is considered

to be a linear gradient due to a fixed acceleration. This ensures that no fur-

ther subdivision of the vehicle behaviour during the step interval is required

thus restricting the complexity of the model. As discussed previously the

key to this assumption is the correct implementation of the discretisation

process to ensure minimal deviation from the vehicles true behaviour.

Wheels and tyres

The modelling of vehicle wheels and in particular tyres as noted in chap-

ter 2 is a rich subject with many models developed with specific purposes

in mind, such as calculating the lateral acceleration limits. This level of

detail required for those models is unnecessary for the application studied

here and so a rigid tyre body with fixed dimensions, pressure and coefficient

of friction is used. The rolling resistance, as described by (3.23), assumes a

lumped mass for the vehicle with weight consistently distributed evenly be-

tween the front and rear axles, thus ensuring that variation between rolling

resistance of front and rear tyres, as described in [100], can be neglected in

favour of one single all encompassing term. Longitudinal slip is the differ-

ence between vehicle velocity and the translational equivalent of the wheel

rotational velocity and leads to additional losses in the propulsion system.

The longitudinal slip varies under high acceleration and deceleration forces

and is neglected here due to the calculation overhead and the absence of such

extreme driving behaviour that the longitudinal slip will vary significantly.

Efficiencies

The engine efficiency is considered in subsection 3.3.3 but the efficiency

of each component in the powertrain also impacts the fuel consumption

to varying degrees and the efficiency can vary with rotational speed and

temperature.

The transmission of power through the gear box incurs losses from a

variety of effects such as mesh friction of the gears, bearing friction and

53



pumping losses in the torque converter. The overall efficiency of the trans-

mission in each gear is assumed to be fixed at 97% for the purposes of

minimising computation time without compromising model accuracy. The

torque converter used in the automatic transmission can be mechanically

locked to prevent the losses associated with the transfer of power through

the fluid of the torque converter. The lockup clutch is applied whenever the

torque converter impeller and turbine are rotating synchronously which is

assumed to be any time other than starting from stationary and during a

gear shift.

Environmental variables

The vehicle is affected by a number of environmental variables some of which

are considered in the model and some of which are neglected. The aerody-

namic drag force as described in (3.22) neglects the influence of wind speed

and direction. In [127] it is estimated that wind conditions can reduce fuel

economy by 2-3% compared to test cycles undertaken in test laboratories.

Even with a uniform distribution of wind directions that produce a net zero

wind direction over the course of a journey, a headwind will have a greater

effect than a tailwind due to the squared velocity value in (3.22) and re-

sult in a reduced fuel economy. Due to the absence of wind measurement

equipment in a production vehicle it is considered impractical to estimate

this in detail, however average wind conditions for a given location can be

used. Wind speed data is recorded for meteorological purposes however air

flows local to the vehicle can vary greatly and rapidly compared to the wind

speed data measurement.

Changes in atmospheric pressure and temperature will influence aero-

dynamics, as the density of air is directly related to both by the ideal gas

law. While the air density can be estimated from the vehicle pressure and

temperature sensors, it is assumed that it will not vary during the course of

a specific journey. Analysis of the fuel consumption sensitivity to air density

is seen in chapter 5. Such atmospheric changes will also have an effect on

engine operation, however the engine efficiency data recorded to produce

the BSFC map were collected under standard atmospheric conditions and
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such conditions are assumed.

The material and condition of the road surface will also have an impact

on rolling resistance due to the coefficient of friction which represents the

interface between road and tyre. As road surface condition measurement is

not commonly available on production vehicles such data is not considered

here. Therefore, it is assumed that all journeys will take place on conven-

tional highway road surfaces and the weather conditions will be such that

the coefficient of friction is not affected.

The road gradient is considered to change over an interval much greater

than the length of the vehicle ensuring that the vehicle body is always as-

sumed to be parallel to the road surface. This assumes that all road surfaces

are smooth, well maintained and designed according to [128] to avoid sharp

changes in gradient. Superelevation due to road camber is not considered in

the road.

With these assumptions in place the vehicle model can be used within the

framework of the optimisation algorithm to produce a cost optimal velocity

and gear profile for the upcoming road section.

3.4 Forward Dynamic Programming

With a suitably discretised optimisation problem state of the system can be

calculated at each discrete interval. The Dynamic Programming implemen-

tation can approach this either in reverse chronological order from a final

velocity to a known initial velocity, or in the opposite direction from the

initial velocity to multiple possible end velocities of different total costs. In

order for the DP algorithm to work optimally in real-time it is not possible

to know what the final velocity should be before undertaking the optimi-

sation and so the forward DP algorithm is used in this application. From

the current initial velocity the possible future velocities are considered at

each fixed interval in the upcoming road, thus building a grid of possibilities

known as the search space.
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Figure 3.7: Dynamic Programming search space with transitions (a) in-

creasing velocity and selecting a higher gear, (b) decreasing velocity and (c)

maintaining velocity and selecting a lower gear.

3.4.1 Search Space

The cost function is to be evaluated at each node of the search space, where

each node represents a unique state of the system as defined in (3.4). The

search space is represented diagrammatically in Figure 3.7 with three transi-

tions illustrating velocity and gear changes, where transition a is to a higher

velocity while shifting to a higher gear, b is to a lower velocity while remain-

ing in the same gear and c is maintaining velocity while shifting to a lower

gear. Using the constraints noted in subsection 3.1.1 the limits of the search

space can be defined in all dimensions. The search space size is directly

linked to the algorithm computation time and any reduction in size that

can take place prior to transition calculations proceeding will ensure a re-

duction in the time to produce a result. The complexity of the optimisation

algorithm (O) can be calculated from the dimensions of the search space

O(Ns ·N2
v ·N2

g ) (3.37)

where Ns is the number of distance intervals between s0 and smax, Nv is the

number of velocity intervals between vmin and vmax and Ng is the number of
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gears between gmin and gmax. As can be seen the number of distance inter-

vals has a linear relationship with complexity as opposed to the velocity and

gear intervals which both have an exponential relationship with complexity.

The gear interval spacing is fixed by the discrete nature of the automatic

transmission, however the relationship described in (3.37) assumes that all

gears Ng are available from each of the gears which in reality is not feasible.

To ensure feasible solutions while also reducing the search space complexity

a restriction is imposed on the gear selection allowing a maximum differ-

ence of two between consecutive gears with the exception of coasting in gear

zero. In a similar manner, the road speed limit can be used to reduce the

upper boundary of the velocity search space to only allow legal speeds. The

physical performance limits of the vehicle can also be used, as the maxi-

mum possible acceleration from the point of origin will immediately exclude

velocity nodes above that reached by the maximum acceleration. Similarly

with the maximum possible deceleration as dictated by the braking force,

provides a lower boundary on the velocity search space. The engine speed

boundaries can also be used to limit the search space for each gear as the

engine speed limits relate to vehicle speed limits via the transmission and

driveline ratios and wheel radius, this being an implementation of the con-

straint noted in (3.11). The search space is made up of nodes that contain

the following information about that particular state

• lowest cost to reach node

• previous node on lowest cost path (i.e. velocity and gear) to allow the

optimal profile to be reconstructed at the conclusion of the algorithm.

The process of executing the DP algorithm can be separated into two parts.

Firstly, the cost of each transition from the point of origin in sequence by

distance interval to the end of the current horizon need to be calculated

individually. Once this is completed, the lowest cost at the end of the

current horizon is identified and the lowest cost path is traced back to the

point of origin to complete the optimal path.
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3.4.2 Forward Process

The first stage of the DP algorithm calculates the cost from the point of

origin to all of the available first step points. In order to calculate this, the

following information is required by the vehicle model

• road gradient and speed limit between the point of origin and step one

• current velocity

• current gear selection

• current torque

Using this information each gear is taken in turn and the upper and lower

velocity limits are calculated with the range dictated by the engine speed

limits, vehicle acceleration limits and speed limits. Where the current gear

and aim gear are different and a shift is required the calculation for vehicle

acceleration limits include a shift time which reduces the maximum possible

velocity. Following this, the possible future states are known and the search

space boundaries are set so the transition costs can be calculated for each

possible state. If a gear shift is not required the transition cost is calculated

as in subsection 3.4.3 otherwise the cost incurred when a gear shift occurs

is calculated as in subsection 3.4.4.

3.4.3 Transition Cost

In order to calculate the cost for a transition between two nodes as shown

in the left of Figure 3.8 with a given start and end velocity, v0 and v1,

respectively and gear selection maintained, the associated acceleration with

respect to distance is found using (3.20). This is then used in (3.21) and

(3.25) to find firstly the tractive force, then the torque necessary to achieve

the required acceleration. The current gear and final drive ratios are used to

calculate the required engine torque and engine speed using (3.26) and (3.27)

respectively. These engine values are used in conjunction with the BSFC

table as described in subsection 3.3.4 to provide a corresponding fuel flow

rate. Finally the transition time is calculated using (3.34) and together with

the fuel flow rate can be used to calculate the total fuel used and therefore
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Figure 3.8: Transition cost example with gear shift (right) and without

(left). The distance necessary to complete the gear shift operation is noted

as st followed by the remaining distance over which the final velocity, v1 is

to be reached.

the overall cost function can be calculated using (3.14).

The cost of this transition is added to the lowest cost to reach the start

node to give the total cost to reach the end node. If this is lower than

the current lowest cost assigned to the end node then the new lowest cost

is assigned to the node along with the relevant data associated with the

transition including the coordinates of the start node.

3.4.4 Transition Cost with Gear Change

A similar, but expanded, subroutine is required to calculate the transition

cost when a gear change occurs as shown in the right of Figure 3.8. The

start and end velocity are still provided but the calculation is broken into

two sections. Firstly the period during shifting is considered and then the

behaviour once the new gear is engaged. During the initial period of the

shift when the engine is disengaged, no positive torque can be provided

at the wheels and so (3.21) can be calculated with Ft equal to zero. The

subsequent acceleration (which could be negative) is used to find the velocity

at the point of engine re-engagement. From this velocity at re-engagement

to the specified end velocity the required acceleration for this final portion

of the transition can be calculated. The fuel and time for each portion of

the transition are calculated as in subsection 3.4.3. The costs for each of
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these portions are then combined to give the overall transition cost.

3.4.5 Terminal Cost

On completion of the transition cost calculations and allocation to the rele-

vant search space nodes the final costs can be assessed. As the optimisation

is only required to act upon the horizon provided there is no consideration

for what happens after the horizon and as such it is likely that the opti-

mal velocity profile will end with a sharp reduction in velocity at the end

of the horizon. Due to the reduction occurring briefly at the end of the

velocity profile the time element of the cost function is only minimally in-

creased while the fuel penalty can be zero as opposed to the fuel required to

maintain a steady velocity for instance. As the algorithm is to be executed

repeatedly in a vehicle where the journey may be further than the length

of the horizon then this velocity reduction will present an issue for the next

horizon and some consideration has to be made for this issue. As described

in section 3.1 the use of a terminal cost is a way to minimise this problem. In

this case the terminal cost is calculated in the same manner as a single step

transition as in subsection 3.4.3 with the start and end velocity equal and

a flat road considered [76]. The cost for this single step is then multiplied

by the number of potential future steps that are being considered for the

terminal cost. The influence of the terminal cost, in particular the number

of future steps considered, is investigated in depth in chapter 5.

3.4.6 Coasting

An additional benefit of incorporating gear shifting into the DP algorithm

is that it allows the possibility of utilising a neutral gear to implement a

coasting strategy where beneficial. As discussed in subsection 2.3.2 the

benefits of coasting have been shown in a number of publications. The

process of assessing the cost of starting a coasting operation is the same

as that described in section 3.4.7 however gear zero is the destination gear

after the transition and torque cannot be provided from the engine. The

force generated by the transfer of gravitational potential energy to kinetic

energy on a descending road slope is the only available option to increase or
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maintain the vehicle speed against the drag forces in (3.21) therefore limiting

the maximum velocity. For nodes below this velocity a sufficient amount of

braking force can be assumed where required to ensure the transition reaches

each desired velocity. The operating policy when the engine is disengaged

is to either supply sufficient fuel to keep the engine running at idle speed,

or to completely turn off the engine and restart it when required. This

decision is not considered part of the optimisation process and is set during

the optimisation initialisation. There is a safety implication of coasting, in

the event that torque is required from the engine for an evasive manoeuvre

there will be a delay while re-engaging the engine. This is not considered

in the optimisation as safety is assumed to be managed by an independent

process in a production vehicle.

3.4.7 Driveability

Torque variation limitations

In order to maintain driver comfort it is noted in section 2.6 that vehicle lon-

gitudinal acceleration and jerk are important considerations in this regard.

Rapid changes in torque supplied by the engine are directly related to jerk

behaviour that is detrimental to driver comfort and so are to be penalised

through the use of the cost function factor noted in Equation 3.17.

Gear shifting

The transition calculation with a gear change can, under specific circum-

stances, produce a lower cost than an equivalent transition without a gear

change due to the period of driveline disconnect being followed by a short

period of higher torque applied to reach the end velocity which allows the

engine to operate at a higher efficiency. This lower cost can lead to the op-

timal strategy including frequent gear changes which may not be acceptable

for driver comfort as noted in section 2.6. In [110] the gear shifting is limited

by the use of a cost function considering total number of gear change events

over the journey. As the total number of gear events is being considered

this will not prevent a small number of gear changes over a short period of

time, which would still be undesirable for driver comfort so an alternative
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is required. It is proposed to prevent gear changes in consecutive steps, al-

though the effectiveness of this depends on the vehicle velocity. At higher

velocities one step will be completed in a shorter time than at lower veloci-

ties so fixing a time period between consecutive gear shifts must consider the

maximum velocity and thus shortest time. At lower velocities such a gear

shift restriction would lead to large time intervals between allowed shifts.

The two additions to the optimal control algorithm noted above represent

proof of hypothesis (b) which states

(b) Driving experience, in relation to a vehicle’s longitudinal performance,

can be quantified and applied to an optimisation algorithm.

The results of these two additions are examined in chapter 5.

3.5 Summary

The optimisation of future vehicle velocity and gear selection profiles to

minimise fuel, time and driver discomfort are presented as a cost function to

be minimised by applying a dynamic programming algorithm. The models

used in the algorithm to describe the road, vehicle longitudinal dynamics

and engine performance are detailed along with the structure and sequential

process of the algorithm.
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Chapter 4

Implementation

While the approach of DP aims to represent problems in a format that is

suited to evaluation by a computer program, the process of implementing

such a program to solve the DP problem still involves several obstacles. Two

situations were considered where the DP algorithm would have to be imple-

mented, the first being a simulation environment to allow testing of various

scenarios and the second being implementation on a hardware platform ca-

pable of running the algorithm in real time in a test vehicle. Matlab and

Simulink are utilised across many academic and industrial fields, particu-

larly the automotive industry [129] for modelling and simulation work and

it was intended that this software would be used to simulate the DP algo-

rithm for testing. To run the DP algorithm in a vehicle a hardware platform

was required that was compact, portable, had a flexible operating system

and enough processing power to run the necessary software and compatibility

with hardware components required to make up the complete system. There

are a number of products available that would suit this purpose, including

the BeagleBone Black [130], Arduino/Genuino Mega [131] and Raspberry

Pi 2B [132]. The Raspberry Pi 2B single board computer was chosen as

the intended hardware target for the algorithm due to the quad core pro-

cessor allowing parallel processing of different modules of the system, the

lower cost and the abundance of documentation available for incorporating

the GPS, CAN bus and 4G mobile connection accessories necessary for the

system. The specification of the hardware is detailed in Table 4.1. The soft-
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Raspberry Pi 2 B BeagleBone Black

Processor 900 MHz Quad-core 1 GHz Single Core

RAM 1 GB 512 MB

Connections

4 x USB

HDMI

Ethernet

General Purpose IO

1 x USB

HDMI

Ethernet

General Purpose IO

Power Source Mini USB Mini USB or 5V Jack

Cost £30 £40

Table 4.1: Hardware comparison of miniature computers considered for

project.

ware implementation of the algorithm therefore had to be flexible enough to

perform adequately in both scenarios and the programming language used

to execute the algorithm is a crucial factor in this.

4.1 Programming Language

Simulink is able to run code that has been produced in MATLAB R©, C,

C++, or Fortran and compiled using the Matlab executable (MEX) com-

piler. Writing software in Matlab limits portability as only systems with

Matlab can run this type of program. The C programming language has a

long history of use in the automotive industry [133], giving it an advantage

over the two remaining alternatives.

The Raspberry Pi 2B has a Debian [134] based operating system pre-

installed called Raspbian [135] and this means that a wide variety of pro-

gramming languages can be considered, however, again the advantages of C

also apply here. While the core of the DP algorithm was to be written in C,

an interface with external inputs such as GPS position was required. This

interface was written as a Python script due to the ease of development and

existing libraries for interacting with peripherals such as GPS receivers [136]

and CAN Bus interfaces [137]. The DP algorithm C code was compiled us-

ing the GNU Compiler Collection (GCC) [138] which is pre-installed with
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Figure 4.1: Functional decomposition of the developed real-time eco-

guidance system with Interfaces (GUI and audio), DP algorithm, eHorizon

replicator and data collection consisting of live road data, vehicle position

and live vehicle data.

the Raspbian operating system.

4.2 Structure

The overall eco-guidance system software package developed considers the

acquisition of current data, accessing a database of road information, the

integration of the DP algorithm, data logging and the displaying of relevant

data on a Graphical User Interface (GUI) along with audible feedback. In

order to provide each of these tasks with sufficient computational power the

multiple cores of the Raspberry Pi 2 were utilised with the multiprocessing

standard library in Python [139]. The individual processes are shown in the

overall structure in Figure 4.1.

4.3 Road Data

In order to test the DP algorithm in realistic scenarios and ultimately deploy

a real-time in-vehicle optimisation system real road data would have to

be available to the system. As noted in chapter 2 digital map providers
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and automotive suppliers are able to provide solutions to access real road

information based on current location and predicted route. In order to

minimise cost and complexity for this project it was proposed to develop an

equivalent road information provider with functionality limited to providing

only the relevant information for the optimisation algorithm. This module

is developed in two operations, firstly the collection and processing of road

data to develop a database of test roads. Secondly, deploying this database

in the python program and using the current location from the GPS device

to extract the relevant road data to be presented as a road horizon for the

optimisation algorithm.

4.3.1 Road Data Collection

To collect road data, two methods have been implemented to increase the

number of roads available for simulation and testing. Firstly a bespoke road

data logger was developed and implemented on the Raspberry Pi hardware

detailed in Table 4.1. The second method used the data from a number of

vehicles using commercial vehicle dataloggers which was available not only

for driver analysis and fuel consumption comparisons but as the dataloggers

are equipped with Global Positioning System (GPS) receivers, the location

data can be used to reconstruct road profiles.

4.3.2 Bespoke Road Data Logger

To reconstruct the road profile a GPS receiver is used to measure the test

vehicle’s longitude, latitude and elevation as it traverses the road. The

Raspberry Pi hardware is utilised along with a USB GPS receiver [140]. The

GlobalSat WorldCom Corporation model BU-353-S4 as seen in Figure 4.6 is

used with an existing Python library [136] that provides a conversion from a

variety of GPS communication protocols to a standard, readable JavaScript

Object Notation (JSON) format. This library presents the GPS data in a

single object such that individual attributes such as latitude can be accessed

separately. The required data is then extracted and logged for later post-

processing.
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Figure 4.2: GPS signal error

4.3.3 Road Data Processing

Due to the nature of receiving GPS signals in a moving vehicle under varying

environmental conditions such systems can be prone to positioning errors.

The bespoke road data logger is capable of recording GPS data with a

frequency of 5 Hz which ensures that any errors in signal processing do not

extend for large sections of road while any loss of signal is quickly rectified on

return of the connection. The commercial data logger, while recording GPS

data at a similar frequency (4 Hz), produced data that was more prone to

errors such as that seen in Figure 4.2. Due to the presence of such errors the

data must be filtered and a Savitzky-Golay filter [141] is used for this in line

with the method presented in [120]. This low pass filter is used to remove

noise and the Matlab script used for this filtering was presented in [142].

Distance Calculation

As the algorithm considers road elevation to be a function of road distance

it is necessary to calculate the road distance from the recorded position

information. Using longitude and latitude coordinate pairs the distance

between two road data points can be calculated using the haversine formula

[143] used in navigation. This formula is used to calculate the distance

between two points on a sphere, which approximates the shape of the Earth

and was implemented as a Matlab script.
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Discretisation

The smoothed data is required to be discretised prior to reconstructing the

road data for use by the DP algorithm to reduce computational overhead

associated with the road database and extracting the required data from

said database. An example of discretised road data is shown in Figure 4.3,

in this instance 50 m intervals are used.

Gradient Calculation

With the elevation data smoothed and the road data discretised, the gradient

can be calculated at each step interval in the road using the difference in

both elevation and distance as in Figure 3.2. An example of the gradient

calculated from real road data is given in Figure 4.3.

Additional Road Information

Along with elevation data it is necessary for the optimisation system to

have access to legal speed limit data to ensure that the optimal velocity

profile is within these limits. In order to add this information at each

step interval in the road data, the longitude and latitude are used to query

the speed limit on the given section of road. There are many commer-

cial providers of speed limit map data [144] as well as crowd sourced ser-

vices such as Open Street Maps (OSM) [145] however due to the cost of

commercial providers and the complexity of extracting data from OSM,

the free, limited usage routing service of Here [146] was used. This ser-

vice allows a registered user to make 15,000 requests per month. From

a Python script running the bespoke road data logger software, a request

is sent to http://route.st.nlp.nokia.com/routing/6.2/getlinkinfo.

json?app_id={APP_ID}&app_code={APP_CODE} for each pair of coordinates

on the current road section. The response is parsed to extract the SpeedLimit

data which contains a speed in m s−1. The speed limit information is then

appended to the road data.
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Figure 4.3: Road data processing beginning with raw data (top), filtered

and discretised data (middle) and gradient (bottom).
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main

init_veh init_road init_ss dp residual get_opt

step_one step_next

Figure 4.4: Dynamic Programming software structure

4.4 Algorithm Development

The development of the algorithm in C code is detailed here sequentially,

in the order that the code is executed. Both the simulation work and in-

vehicle implementation use the same C code at the core with variation only

in the code that defines the interface with the higher level language, either

Simulink or Python, respectively. The functions that make up the dynamic

programming algorithm are represented in Figure 4.4 starting with the en-

try point for the program, the main function, taking in input arguments

described in subsection 4.4.1. The vehicle and road data are initialised in

init veh and init road as described in subsection 4.4.2. Similarly, the search

space, init ss in subsection 4.4.4. The core of the dynamic programming al-

gorithm is contained in the dp function, which includes repeated use of the

step next function for each step in the search space, with the exception of the

first step which is considered in step one and described in subsection 4.4.5.

On completion of cost calculations at each step a terminal, or residual, cost

is applied in function residual described in subsection 4.4.6. Finally from

the complete set of costs including terminal cost, the optimal trajectory is

selected by the function get opt which is described in subsection 4.4.7.

4.4.1 Input arguments

The starting point of the algorithm considers the input of essential data

formatted for use in the algorithm. These input arguments and their data
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Structure Item Type

Road Data

Distance (m) Float

Elevation (m) Float

Slope (%) Float

Speed limit (m s−1) Float

Initial

Conditions

Velocity (m s−1) Float

Gear Int

Torque (Nm) Float

Algorithm

Parameters

λ Float

µ1 Float

µ2 Float

ζ Float

Horizon length (steps) Int

Velocity interval (m s−1) Float

Wind Velocity (m s−1) Float

Table 4.2: Algorithm input arguments with data types

type are listed in Table 4.2. Structure data types are used to organise

related variables into an easily accessible group, such as road data which

would include distance along the road section, elevation, slope and speed

limit at each step. The variables in Table 4.2 are of data type float or

integer depending on what they represent, for instance the horizon length

is an integer value as it represents the number of steps used which must

be a whole number, similarly with gear number. Typical values for the

horizon length and distance intervals are thirty steps and 50 m, respectively,

although the selection of these values is investigated in subsection 4.8.2.

4.4.2 Road and Vehicle Initialisation

As the parameters of the vehicle model do not change during the operation

of the algorithm and are required in a number of functions the important

parameters such as gear ratio, and wheel radius are set as external constants

that can be read from anywhere in the program. These fixed vehicle param-
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Item Type

Gear ratios Float

Front surface area (m2) Float

Air density (kg m−3) Float

Wheel radius (m) Float

Vehicle mass (kg) Float

Coefficient of friction Float

Table 4.3: Vehicles constants with data types.

eters are listed along with data type in Table 4.3. To improve the efficiency

of the program some fixed values are precalculated for each gear such as the

conversion factor from engine torque to propulsion force at the wheels as

described by Equation 3.25 and Equation 3.26.

The road data is allocated to a structure type variable of a fixed size of 4

sets of 200 fields that are populated with position, elevation, slope and speed

limit data as provided from the road database. The amount of road data

supplied is dependent on the horizon length provided as an input argument

and only the required number from the 200 available fields are populated.

The 4 fields at each position are float values, of 4 Bytes, resulting in a

memory requirement of 3.2KB.

4.4.3 Memory Allocation

Due to the safety critical nature and the high reliability demanded of auto-

motive control software, the Motor Industry Software Reliability Association

(MISRA) produced a software development guide for C language automotive

software [147]. A set of mandatory and advisory rules are contained within

the guide. One key aspect of the MISRA standard for the DP algorithm is

that dynamic allocation of memory is prohibited. Dynamic memory alloca-

tion is the process of managing memory during the lifetime of the program,

allocating space as and when required and can lead to memory leak and

unexpected behaviour. Static memory allocation, in contrast, requires that

memory is allocated at compile-time and remains fixed for the duration of
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Structure Item Type

Search space, ss

Cost Float

Gear Int

Path Int

Fuel Float

Velocity Float

Table 4.4: Search space variables with data types.

the program. The implication for the DP algorithm is that the search space

size and resolution have to be fixed at compile time and cannot be changed

after.

4.4.4 Search Space Initialisation

The search space is configured as a three-dimensional array of structures

based on gear selection, position and velocity. Each node in this search space

is represented by a structure type containing the information as detailed in

subsection 3.4.1 and Table 4.4. The maximum size of the array is fixed at

compile-time as per MISRA guidelines but the amount of the array that is

used depends on the horizon length as defined by runtime arguments. To

give an example the search space for a gear that has a velocity range of

15 m s−1, a velocity interval of 1 m s−1 and 30 steps in the horizon would

require 9KB of memory. On the Raspberry Pi hardware both float and

integer C types are 4 bytes.

The absolute velocity limits for each gear are fixed and the search space

upper and lower indices for each gear are set according to the velocity dis-

cretisation interval. The search space nodes are then initialised with zero

values in each field, with the exception of the cost field which is allocated a

value of sufficient magnitude to prohibit selection as a minimum. This value

is a practical representation of an infinite cost for infeasible regions which

will be replaced by a calculated cost if the node is reachable. The velocity

of each node is set according to the minimum and maximum velocity for the

given gear and the velocity interval as defined by the runtime argument of

the same name.
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For each gear an upper and lower boundary for velocities is initialised,

this is updated during the running of the algorithm. At each step in the

algorithm, for a given velocity the upper and lower boundaries for possible

velocities in each gear can be updated based on the maximum positive and

negative torque translating to a maximum and minimum velocity that can

be achieved from the given initial velocity.

4.4.5 Cost Calculation

With the search space initialised the nodes of the first step can be considered

for cost calculation. As the initial conditions are fixed the first step only has

to consider transitions from this single initial node. The calculation process

is repeated for each gear and all feasible velocities within that gear search

space. To find the limits of feasible velocity the gradient and speed limit

for the current step are required to be extracted from the road data. The

process by which the upper and lower limits are calculated differs depending

on whether a gear shift is required. This sequence is shown in Figure 4.5.

Initially the lowest gear is selected and is to be incremented until the

highest gear calculations are completed. If the gear selected for calculation

is different from the initial gear in step zero of the search space then a gear

shift is required (indicated in the left branch of Figure 4.5). If the gear

selected for calculation is the same as that in step zero then the upper and

lower velocity limits for step one are calculated. This calculation uses the

vehicle model, gradient and speed limit to ascertain the physically realisable

velocities. Starting from the lowest realisable velocity and incrementing until

the highest, the transition cost is calculated and the search space updated.

The transition cost function uses the road slope, start and end velocity,

gear, torque and step distance. The output of this function is a structure of

the format described in Table 4.5.

4.4.6 Terminal Cost Calculation

Once each of the feasible nodes has been assessed an optimal path can be

traced back from the lowest cost at the final step of the search space. Due to

the rolling horizon concept that calls for repeated calculation of the optimal
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Figure 4.5: Calculation of cost for the initial step in the search space
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Structure Item Type

Cost

Cost Float

Fuel Float

Time Float

Table 4.5: Cost variable with data types.

control policy as the vehicle traverses the road, the vehicle state at the end

of one horizon is the starting condition for the next horizon, as discussed

in section 3.4. To balance the cost of the current horizon with the deferred

cost applied to future horizons the terminal cost is calculated at each node

of the final step.

4.4.7 Optimal Path Search

With the terminal costs allotted to each final node in the search space the

minimum cost can be found by searching each final node on a per gear

basis between the upper and lower velocity limits of the gear. The optimal

velocity and gear profile can then traced back from this node through the

search space. As each node contains an index of the velocity and gear from

which the current node was reached this enables the optimal profile to be

reconstructed.

4.5 Data Acquisition

To deploy the algorithm in a vehicle to provide real time guidance the system

relies on a number of data sources that need to be considered for both

datalogging and updating the vehicle and road models to reflect the current

situation.

4.5.1 Controller Area Network

To ensure the DP algorithm provides useable and relevant results it is vital

that the current status of the vehicle is known at the algorithm start. The

current velocity and gear selection are necessary for the algorithm. This
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data is being transmitted on the internal communication network of the

vehicle, the Controller Area Network (CAN) bus. In order to communicate

on this network a hardware interface is required between the Raspberry Pi

and the vehicle On Board Diagnostics (OBD) port which has a connection

to the CAN bus. Such an interface board is commercially available as the

SK Pang PiCAN2 CAN Bus Interface Board [148], as seen in the right of

Figure 4.6 and an existing Python library [137] can be utilised to access

the data on the network. The CAN Bus consists of two signal wires, CAN

HIGH and CAN LOW which are found on pin 6 and pin 14 respectively on

the test vehicle OBD port and pin 3 and pin 5, respectively, on the PiCAN2

board. A custom interface cable was fabricated for this project to account

for this.

Once the Raspberry Pi has been configured to communicate with the

PiCAN board using the General Purpose IO connector (GPIO) and the

device is set up as a network interface the Python Library is able to access the

CAN bus. All control modules in the vehicle, of which there are commonly

more than 100 [149], communicate on the CAN bus resulting in a large

amount of data passing through the bus network. The CAN specification

[150] details a standard format for messages that includes an 11-bit identifier

to allow filtering so that only the messages required by the optimisation

system are read from the CAN bus. Using manufacturer specific message

identifiers the required data can be extracted in this way.

Once retrieved the required messages have to be converted so the rele-

vant data is in a readable format in the Python script and is subsequently

logged as well as used to update the current vehicle status. Often several

pieces of related information are encoded in one CAN message to minimise

traffic and the relevant information is to be decoded. Each message is con-

verted to binary from hexadecimal and the location of the relevant data

is provided as the starting bit position and the number of bits that make

up the relevant data. This location data along with the message IDs are

confidential manufacturer information.

The process of extracting the relevant data was developed using a Mi-

crosoft Windows based CAN bus logging and replaying software package,

BUSMASTER [151] which as shown in Figure 4.7 is able to replay previ-
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Figure 4.6: GPS and CAN interface board

Figure 4.7: CAN Bus network simulation
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Item Units

Vehicle Speed (km h−1)

Engine Speed (RPM)

Engine Torque (N m)

Fuel Consumption (ml)

Gear Status (-)

Engine Coolant Temperature (◦C)

Table 4.6: Vehicle data from received from CAN bus.

ously recorded CAN bus messages to simulate the network traffic of the

particular vehicle from which CAN bus data has been recorded. Using a

USB to CAN converter from IXXAT [152], the Windows PC running BUS-

MASTER was configured to supply CAN data to the Raspberry Pi exactly

as if it was connected to the real vehicle, which proved invaluable for testing

the system without requiring constant access to a vehicle. The data required

by the feedback system are listed in Table 4.6 and they are logged for later

analysis while being used by the system to update the algorithm and GUI.

4.5.2 Vehicle Position

In order to locate the vehicle within the road section database a GPS re-

ceiver is used to measure the vehicle’s longitude and latitude as described

in section 4.3. With the vehicle coordinates known the road data is interro-

gated to identify the road section coordinates closest to the current vehicle

position using a brute-force search approach.

4.5.3 Real Time Traffic Data

As the traffic conditions play an important role in the ability to follow an

optimal velocity profile, a method for receiving real time traffic data in the

vehicle is required. A ZTE MF823 4G USB Modem is used to establish a mo-

bile internet connection which allows access to various internet services that

provide traffic data. With the internet connection established, traffic data

is acquired from the Here routing service [146] as described in section 4.3.3.
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Along with the legal speed limit, traffic speed data, is provided where avail-

able and this is extracted from the TrafficSpeed data which contains a speed

in m s−1.

4.6 Algorithm Implementation

When all the current data required by the DP algorithm has been made

available in the Python script it is passed as a number of arguments to

DP C program for execution. The current vehicle speed, gear and engine

torque are provided along with the weighting factors used in Equation 3.14.

The current position in the road data is also provided along with a road

identifier to allow retrieval of the relevant road section from a database of

road data. This database is developed to replicate the data fields from the

advanced driver assistance interface standard (ADASIS) that are relevant for

the DP algorithm and would be provided by a commercial eHorizon system

but without the cost of such a system. Using a combination of GPS data

recorded from previously driven routes with speed limit data from the Here

routing service mentioned above, the road database is constructed. Using

the current vehicle longitude and latitude coordinate pair the distance to

each data point of the road can be calculated using the haversine formula

[143] used in navigation. The nearest point of road data to the current

position is used as the starting point of horizon data.

With the horizon data and current vehicle status provided to the DP

algorithm, the optimisation can begin. A forward DP algorithm is imple-

mented that calculates the transition cost for each step in the horizon from

the current position to the end of the horizon. In order to reduce the compu-

tational load, an assessment is made at each step of the physically realisable

states possible in the next step and only feasible transition costs are calcu-

lated. The physically realisable states are assessed based on the maximum

traction force available at the wheels that can be generated at the current

engine speed and the maximum braking torque each of which are used in

Equation 3.21 to find a maximum and minimum velocity, respectively. As

the algorithm is to be used repeatedly with a receding horizon, the cost

function includes a terminal cost to penalise velocity trajectories that bene-
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fit the current horizon at the cost of future horizons, for instance by reducing

the velocity drastically at the end of the horizon and thus requiring a high

acceleration at the beginning of the following horizon.

4.7 User Interface

To test the algorithm in a vehicle it was required to provide an interface that

would present information to both test personnel and the test driver. The

operating status of the system components was required to be presented for

the test personnel without interfering with the driver feedback system. Driv-

ing feedback had to be presented to the driver in the most straightforward

way to ensure the feedback could be followed without providing too much

distraction. A combination of audible and visual feedback was implemented

allowing driver preference to enable either or both of the elements. Audi-

ble feedback was deemed to be less distracting to the driver compared with

the visual feedback however the frequency of audible commands provides a

problem to balance regular feedback with negatively impacting the driving

experience, with constant computer generated voice commands. The visual

feedback system was designed as part of this project, such that the relevant

driver information is easily and quickly recognised without distracting the

attention of the driver. The design of the visual feedback is for testing pur-

poses only and due safety requirements would need to be considered in a

production system.

On completion of the DP algorithm the initial portion of optimal ve-

locity profile is compared to the current velocity and the driver feedback

is developed from this to advise either maintaining, increasing or decreas-

ing speed to follow the optimal profile. The driver feedback is provided by

means of a graphical user interface (GUI) developed as part of this work

using the Python library Kivy [153] and deployed on a 7 inch touchscreen

display [154]. An icon representing each piece of advice is displayed on the

GUI, as shown on the right of Figure 4.8, along with a voice command gen-

erated from a text to speech library [155] repeating this advice. Also shown

on the GUI are the current speed and gear as well the advised speed for the

upcoming step. The icons representing the advice based on current speed
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are shown at the bottom of Figure 4.8, with advice to increase speed (left),

maintain speed (middle) and reduce speed (right). Buttons are provided to

select the road data used for testing and exit the GUI.

The design of GUIs is increasingly an area of detailed research under

the umbrella term user experience and therefore to limit the scope of this

project it does not include developing a GUI beyond a sufficient proof of

concept as shown here.

4.8 Algorithm and Model Configuration

A number of parameters are required to be set in the DP algorithm and ve-

hicle model prior their implementation in either offline simulation or testing

and in order to identify the correct values for such parameters an investiga-

tion is necessary into the influence of each of them.

4.8.1 Model Configuration

Vehicle Mass

As shown in Equation 3.21 the mass is an integral component in the calcu-

lation of the force required to maintain or change vehicle velocity. While the

publicised kerb weight of the vehicle is used in the vehicle model by default

it is likely that the mass of the vehicle will change depending on the amount

of luggage and/or passengers. In order to assess the impact of such changes

a simulation was undertaken of the vehicle combined resistive forces on a

flat road while maintaining speeds from 10 m s−1 to 30 m s−1. The results

are shown in the first plot of Figure 4.9 with vehicle mass increasing from

0% to +20% of the manufacturer specified mass noted in appendix A. The

maximum of this range equates to approximately 3 adult passengers (aver-

age 75 kg) and luggage in addition to the driver and corresponds to a 6.6%

and 15.8% increase in resistive force at 10 m s−1 and 30 m s−1, respectively.

This rises to 14% and 19%, respectively when the road gradient is +5%, the

increase at 10 m s−1 being more pronounced due the proportion of the resis-

tive force due to the mass is greater at low speeds, as the other components

of the resistive force are functions of vehicle speed.
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(a) Driver feedback GUI

(b) Feedback icons

Figure 4.8: (a) Driver feedback GUI with guidance to increase speed based

on current speed, in mph (38) and aim speed, in mph (43) with current

gear (5) and guidance gear (8). Status of GPS, datalogger (Log) and vehicle

data connection (OBD) shown for testing purposes. Optimal Velocity profile

shown on plot with speed limit for current road selection and position. (b)

Icons representing driver advice for increase speed (left), maintain speed

(middle) and decrease speed (right).
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Figure 4.9: Vehicle model resistive force sensitivity to change in mass (left),

gradient (middle) and wind speed (right). The difference in total force

resulting from a change from default to maximum and minimum of each

variable is plotted for vehicle speeds from 10 m s−1 to 30 m s−1 in steps of

5 m s−1. The range of values are 0 to 20% for mass, +5% to -5% for gradient

and maximum headwind to maximum tailwind of 30 m s−1.
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Figure 4.10: Inertial equivalent mass for each gear as a percentage increase

on the static vehicle mass

As the mass used in Equation 3.21 includes the inertial effect of the

engine, transmission and wheels and the inertia of the transmission varies

depending on the gear selection, the impact of this change on the vehicle

model is required to be investigated. The inertial equivalent mass is calcu-

lated as

meq = mv +
4Iw
r2

+
ItcItrR

2
dr

r2
+
Ie(RdrRtr)

2

r2
(4.1)

where Iw, Itc, Itr, Ie are the inertias of each wheel, torque converter, trans-

mission and engine, respectively. The impact of this inertial equivalent mass

is investigated in Figure 4.10 with the additional effective mass due to the

inertia of each gear ratio compared to the static mass of the vehicle. At

higher gears where the gear ratio is lower the equivalent mass due to inertia

is reduced due to the transmission ratio in the numerator of Equation 4.1

and this is apparent in Figure 4.10. As it is not efficient to drive in lower

gears other than when accelerating from stationary and for all gears above

three, the changes in equivalent mass are within 0.5% of each other the

impact of changes in inertia due to gear are not considered further in the

model, with the additional calculation load outweighing the vehicle model

accuracy improvements.
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Environmental Variables

As discussed in chapter 3 the environment local to the vehicle can influ-

ence the accuracy of the vehicle model. Primarily the aerodynamics are

influenced by air density as well as wind speed and direction. In order to

quantify the influence of these elements a number of simulations were under-

taken. Using the standard vehicle model applied to a flat road scenario with

a fixed speed the forces to be overcome in order to maintain this constant

speed can be calculated as per Equation 3.21. The aerodynamic component

of the force calculation can be varied to model various air density scenarios

and the effect on the overall fuel consumption can be found. Air density

was found by using the ideal gas law

ρ =
p

RspecT
(4.2)

where p is the absolute pressure of the air (Pa), Rspec is the specific gas

constant (J kg−1 K−1) and T is the absolute temperature (K). A range of

air density conditions were considered to cover the extreme conditions that

could be present for a vehicle sold globally. Air temperatures from −20 ◦C

to 60 ◦C and standard air pressure at elevations from 0 m to 2000 m above

sea level were selected to cover the range of possible conditions. The effect

on fuel consumption of changes in air density are shown in Figure 4.11 for

increasing vehicle speeds from 10 m s−1 to 30 m s−1 where the road section

is flat.

Vehicle Model Sensitivity

To compare the influence of the vehicle model parameters of mass, wind

speed and gradient a sensitivity analysis is presented in Figure 4.9. It is

seen that the resistive force of the vehicle model is most sensitive to changes

in road gradient and this effect increases with vehicle speed. The influence

of the wind speed is shown as the variation from 0 m s−1 to a maximum

headwind and tailwind speed of 20 m s−1 (45 mph) which is considered to

be a gale, at the upper range of that likely to occur under normal condi-

tions. In the United Kingdom the average wind speed in 2015 was 9.4 knots

(4.8 m s−1) [156]. At 20 m s−1 headwind, the force required to maintain a
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Figure 4.11: The effect on fuel consumption (FC) of aerodynamic variation

due to air temperature (top) and air pressure and altitude (bottom), at

varying vehicle speeds.
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10 m s−1 vehicle speed is 145% higher than at zero headwind. To maintain

a 30 m s−1 vehicle speed requires 115% more force than at zero headwind.

In the second plot of Figure 4.9 the impact of gradient changes are illus-

trated. At 10 m s−1 the force required to maintain velocity at +5% gradient

is 123% that of the force required at 0% gradient. When the velocity being

maintained is 30 m s−1 the difference is 309%. In the first plot of Figure 4.9

the vehicle mass is considered between 0% and +20% of the manufacturer

specified mass noted in appendix A, but this has the least influence of the

three parameters and is unlikely to change during the course of an individual

journey.

This study identifies that the two most important factors in the vehicle

model Equation 3.21 are the road gradient and wind speed. While map

providers are increasingly aware of the necessity for improved road gradient

data [119], the influence of wind speed is not so well investigated, despite

its impact.

4.8.2 Algorithm Sensitivity Analysis

To test the robustness of the DP algorithm to changes in the algorithm pa-

rameters as well as external variables, a number of sensitivity analysis tests

were undertaken. This approach involves running the algorithm multiple

times with identical conditions except for one parameter or variable to see

the effect that this alone has on the algorithm output. The three dimen-

sions of the search space each have a range and a discretisation interval

which can be adjusted depending on the performance requirements of the

optimisation. The parameters of horizon length and discretisation interval

impact the computation time and the optimisation results linearly as noted

in subsection 3.4.1 and these parameters will be analysed first. A consider-

ation that is integral to the horizon length is the frequency with which the

algorithm is repeated, previously not considered in literature.

The range and discretisation of the velocity dimension is noted as expo-

nentially related to algorithm complexity in subsection 3.4.1 and so requires

careful consideration to balance optimality of results and computation time.

The gear dimension is not considered to be a parameter as the range and
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Figure 4.12: Calculation time as a function of horizon length with 1 m s−1

velocity discretisation interval

discretisation interval is fixed by the vehicle model. The sensitivity of the

algorithm to the vehicle model parameters such as weight and BSFC map

is then investigated.

Horizon Length

The horizon is the distance into the road ahead over which the optimisation

is to operate. As noted in subsection 2.3.1 knowledge of the road ahead is an

important factor in economical driving and with access to a database of an

entire road network it is possible to be informed of the road data for an entire

journey in advance, no matter the length. However, there are limitations

on what is practical and with respect to computational load, extending a

horizon will eventually lead to diminishing returns. The computational load

of the algorithm increases as a function of search space size and as the

horizon length is a fundamental dimension of the search space an increase in

horizon length will lead to a greater computational load as shown in (3.37).

This effect is shown in Figure 4.12 as the linear relationship between horizon

length and average algorithm calculation time, as performed on an Intel i7-

2600 CPU. There are two additional parameters that must be considered

when selecting a horizon length, the frequency with which the algorithm is

repeated and the formation of a terminal cost.
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Frequency of Calculation

Due to the speed of calculation and the length of the horizon it is entirely

feasible that the optimisation can be repeated several times over the course

of one horizon and the results could be used to update the vehicle control.

It is important that the calculation is completed in a reasonable time to

account for changes in route or other changes to the horizon, however un-

der normal operation it may be detrimental to update the control inputs

too frequently. To test this hypothesis, multiple scenarios were simulated

with varying frequencies of control strategy updating. The frequency of

calculation is a function of distance intervals, for example the calculation

could repeat every ten distance intervals. To compare the effect of varying

the calculation frequency the total cost function Equation 3.14 is calculated

for a number of calculation frequency intervals. In 4.13 four artificial road

gradients with distance intervals of 50 m are considered with calculation fre-

quency increasing from two to thirty in steps of two. The calculated cost is

steady or decreasing in most cases as the recalculation interval is increased

until intervals of between 20 and 24 steps after which the calculated cost

increases. This trend is consistent across the four road gradients. The cost

increases at higher recalculation frequencies are attributed to the optimisa-

tion only considering one horizon and not beyond. It may be optimal in one

isolated horizon to conclude at a low vehicle velocity however this is detri-

mental to any horizons to be considered after, as in this case of two horizons

of thirty steps. This highlights the need for a terminal cost as included in

Equation 3.7.

When considered with a terminal cost the increase in cost at longer

recalculation intervals is less pronounced as shown in 4.14 where a terminal

cost calculated over 0.5 km is included in addition to a thirty step horizon.

What is clear from these results is that at shorter recalculation intervals the

cost is no better and in some cases worse than a slightly longer recalculation

interval. This contrasts with the desire to produce an algorithm that can

generate results as fast as possible, which is still necessary if an unexpected

route change occurs and the optimal trajectory needs to be recalculated

quickly. Outside of this exceptional situation the recalculation interval need
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Figure 4.13: Total cost variation due to calculation frequency (left) for road

profiles (right). A thirty step horizon is considered with no residual cost.

not be so short.

Velocity Quantisation

The size of quantisation interval with regard to the velocity variable has an

exponential relationship with complexity as shown in (3.37) and illustrated

in Figure 4.15.

In order to investigate the impact of increased algorithm complexity on

the quality of results, a number of repetitions of the algorithm are under-

taken with increasing velocity quantisation intervals and the computation

time and overall cost function results are compared. A smaller quantisation

interval allows a velocity profile to be generated that is closer to the absolute

optimal profile, as shown with a reduction in the overall cost function as the

interval reduces in Figure 4.16. One important consideration for the velocity

quantisation is the application of the optimisation algorithm, for instance if

the optimal profile is to be presented to a driver as real-time eco-guidance

then the precision with which a driver could follow the optimal profile is

limited by a number of factors including human physiology and the human
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profiles (right). A thirty step horizon is considered with an additional ten
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machine interface. A fine velocity quantisation that is inevitably compu-

tationally expensive would be unnecessary as the driver could not exploit

the higher resolution optimal profile because of the reasons mentioned. If

however the optimal profile was to be used as a target velocity for an in-

telligent cruise control system which was capable of controlling at a much

higher precision than the previous human driver example then the benefits

of a fine velocity quantisation could be realised.

4.9 Algorithm Performance

The DP algorithm is capable of producing, for a given horizon length of

road, a velocity and gear selection profile that is fuel and time optimal as

per the cost function described in chapter 3. To verify that the algorithm has

been faithfully implemented in the software code and the profile is optimal,

the DP algorithm results are compared to those of an alternative off-line

optimisation method which is described in the following section.

In order to assess the performance of the DP algorithm, a compari-

son between unaided real world driving and the DP algorithm results is not

sufficient as many policies may lead to fuel consumption improvements com-

pared to unaided driving despite being suboptimal. The improvement due

to implementing the DP algorithm is to be assessed against an alternative

optimisation method with a comparable implementation structure. While

DP is a proven optimisation approach and individual profile costs can be

calculated manually the scale of the search space means that the program

developed to implement the DP algorithm is not easily tested step by step.

Handling a large number of memory locations with repeated storage and

retrieval operations ensures debugging of the software is an intensive pro-

cess. Results from an alternative approach to the same problem will give

some context to the DP results and highlight if the algorithm is not per-

forming adequately. For comparing velocity and gear profile, fuel and time,

a Genetic Algorithm was used as the alternative optimisation method.

To ensure a fair comparison the same cost function as in (3.1) is used for

this alternative optimisation method. The velocity and distance discretisa-

tion intervals are fixed for both algorithm implementations.
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4.9.1 Genetic Algorithm

To include gear selection as an optimisation variable an approach is required

that can handle the integer nature of the gear choice. A Genetic Algorithm

(GA) can be used for this application, due to it’s flexibility with regard to the

structure of problems it can be used to solve. As noted in subsection 2.4.5

a GA requires a genetic representation of the system to be optimised and a

fitness function to assess each genetic representation. The genetic represen-

tation allows potential solutions to be presented to the GA for processing

and in this case contains both the velocity and gear selection choices at each

step of the considered horizon. These genetic representations are known as

individuals in the GA. An initial population is created with a set number of

individuals whose representations are randomly allocated. Each individual

is then assessed using a fitness function and can be ranked amongst the other

individuals in the population prior to creation of the next generation. The

fitness function calculates the cost for each transition in an individual profile

using the same method as the DP algorithm. The sum of these costs repre-

sents the fitness. The makeup of an individual for the optimisation problem

explored here is shown in Figure 4.17 with a sequence of velocity and gear

pairings that relate to a specific distance in the optimisation horizon.
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The process by which subsequent generations are produced is the core

of the GA and there are a number of possible operations and parameters to

control the process.

4.9.2 Genetic Algorithm Parameters

The methods used to generate a further generation of a population are based

on evolutionary concepts and are chosen for use depending on the desired

behaviour of the algorithm. A crossover operation takes two parent individ-

uals and produces a child individual based on a combination of the parent

genes. There are a number of ways in which this combination can be gener-

ated. A single point crossover function takes a section of one parent up to

a certain point and a section of another parent from the same point to the

end. This process is illustrated in Figure 4.18 with the single point placed

after the second element. Following the crossover operation a mutation can

be applied to the child individuals to replicate the gene mutations that occur

in evolution. With a given probability a child individual will be selected for

mutation and each element of the individual can be subject to mutation.

The probability of a particular element of the individual being mutate is

fixed by a GA parameter. If selected for mutation the element is replaced

by a random value in a fixed range of either velocity values or gear options

depending on the element. A mutation is illustrated in Figure 4.18, with

the third gear element mutating in child (d). Due to the random nature of

mutation it is possible that the individuals produced by this process violate

conditions of the system and so a feasibility test is required to ensure that the

modified individuals conform to the system restrictions such as frequency of

gear shifting.

The population size has a direct effect on the calculation time for each

generation and so should be considered as a compromise between calculation

time per generation and the total number of generations to achieve suitable

results. A vital consideration then is what constitutes a suitable result

and hence when to stop the process. A fixed number of generations or a

simple time limit can be chosen as the stopping criteria, however due to

the random nature of mutations and variable initial conditions there is no
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Figure 4.18: Genetic algorithm using single point crossover of parent (a)

and parent (b) to produce child (c) and subsequently applying a mutation

to the gear at the third step to produce child (d). Velocity shown as top

row, gear selection as bottom row.

guarantee that a suitable result will be achieved for all problems in a fixed

number of generations. A threshold for the fitness function can be employed

so only when a result achieves the threshold does the algorithm terminate,

however, this requires some prior knowledge of suitable solutions and will

also limit the results to only achieve the threshold and no better. A stall test

can be employed that looks at the change in fitness of the best individual

in a generation and for how many generations the current best fit has been

present.

Implementation

The GA is implemented using a Python script that utilises the Distributed

Evolutionary Algorithms in Python (DEAP) package [157] with numerous

modifications to suit the problem of this project. This open source frame-

work provides functions to produce individuals and populations in a variety

of formats that maintain compatibility with a suite of tools that implement

operations such as a single point crossover. The fitness function is devel-
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oped specifically for this project utilising a two dimensional array to store

the genetic representation of the control policy and implementing the cost

function calculation as in the DP algorithm. Similarly the mutation and

feasibility functions are created specifically for this project. The feasibility

function implements the constraints described by Equation 3.12 and Equa-

tion 3.13. The mutation function takes an individual and a probability of

any single gene mutating and iterates through each gene in the given indi-

vidual deciding if a mutation is to take place. This decision is based on the

probability provided and a random number generator which on returning a

decimal number in the range 0-1 that is less than the probability provided

indicates that a mutation should take place. In this case a pair of random

numbers in the feasible range for both velocity and gear are generated and

replace the relevant genes in the individual.

Comparison

As described previously, the use of an alternative optimisation algorithm to

compare with results of the DP algorithm is for verification purposes rather

than as a viable alternative for real-time implementation. This is primar-

ily due to the computation time of the GA algorithm, which due to the

number of possible states under consideration will be much longer than DP.

While the two algorithms both require the repeated calculation of fuel and

time for given transitions, the DP only needs to calculate a specific tran-

sition once, whereas with each generation the GA could produce velocity

and gear profiles that have been assessed previously as well as profiles that

are physically impossible to achieve and are thus discarded. Other major

disadvantages of GA over DP are due to the random nature of each gener-

ations creation which leads to unpredictable computation time required to

reach a result that is comparable to DP, whereas a worst case computation

time can be calculated for the DP algorithm and a result will always be

produced within or below this time. Despite these disadvantages, purely for

the purposes of verification of the DP algorithm results, a comparison of the

results produced by the two algorithms are presented in section 5.5.

98



4.10 Summary

The development and implementation of the DP algorithm in both the sim-

ulation environment and hardware deployment have been detailed in this

chapter. The individual software modules that make up the complete in-

vehicle eco-guidance system are presented along with the interfaces between

the modules. The challenges of implementing the DP algorithm are de-

scribed along with the considerations of the algorithm parameters and how

they influence the resulting optimal velocity and gear profile.
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Chapter 5

Results

The algorithm being implemented in both a simulation environment and on

in-vehicle hardware allows two types of investigation to take place. In the

simulation environment the parameters of the algorithm and its sensitivity

to varying conditions can be investigated in detail. The findings from these

investigations can be applied to the in-vehicle implementation of the algo-

rithm. The first section of this chapter details the validation of the vehicle

model which is a necessary step prior to considering the algorithm results in

any detail. The satisfactory implementation of the vehicle model is followed

by the testing of the DP algorithm on artificial road profiles in order to verify

that the algorithm is performing adequately under conditions with limited

variation. Following this, testing of the algorithm with real road data is

then presented along with a comparison to real driving data to identify the

potential savings if the algorithm was deployed in place of or to assist a

range of drivers. Consideration of the driving experience is then explored to

see the effect this has on the impact of the algorithm.

5.1 Vehicle Model Validation

The success of the optimisation algorithm is reliant on the accuracy of the

vehicle model it utilises. In order to assess the model accuracy, data from

a real vehicle was used to compare to a number of parts of the vehicle

model. The data used was recorded from a fleet of test vehicles fitted with
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Figure 5.1: Engine speed (middle) and torque (bottom) behaviour during

gearshift events (top)

commercial datalogging devices to record all the data that is transmitted on

the CAN bus. The vehicle fleet data was provided by the project sponsor,

Jaguar Land Rover. The first comparison was the engine speed to verify that

the transmission model produced the correct engine speed when provided

with the vehicle speed and gear selection from a real vehicle. Using the

recorded gear selection, the gear ratio is known and can be used with the final

drive ratio and wheel radius to calculate the engine speed from the vehicle

speed as in (3.27). Due to the design of automatic transmissions (which the

vehicle model was equipped with), the engine speed is decoupled from the

transmission during a gear shift and as such the engine speed can no longer

be estimated from the vehicle speed. This is illustrated in Figure 5.2 where

the difference in calculated engine speed and recorded engine speed reaches

an absolute error of 20% during two gear shift events. In order to resolve this

problem while maintaining the accuracy of the model, a decoupled engine

model is implemented during a gear shift that attempts to replicate this

engine behaviour. It is observed that the engine speed increases during a

downshift and decreases for an upshift, as shown in Figure 5.1.

101



400 405 410 415 420

E
n
gi

n
e

rp
m

er
ro

r
(%

)

-20

0

20

Time (s)
400 405 410 415 420

G
ea

r

6.5

7

7.5

8

8.5

Figure 5.2: Engine RPM calculation error during gearshift from 7 to 8 and 8

to 7. Discontinuous sections are shown to indicate uncoupled status during

a gearshift.

In order to control the engine speed in either decoupled scenario it is

required that fuel is injected and this amount will vary based on the re-

quired post shift speed, the control of which is by the undisclosed algorithm

deployed by the engine and transmission control unit (TCU). However in

order to model this short time period for which the engine is decoupled an

average fuel consumption is used.

Building on this calculated engine speed and using the recorded engine

torque the fuel consumed is calculated using the BSFC map data as de-

scribed in subsection 3.3.4 and compared to that recorded across a number

of journeys. Due to the variations in engine efficiency that occur at differ-

ent cylinder temperatures the BSFC data is measured under three sets of

coolant temperature conditions, 30 ◦C, 60 ◦C and 90 ◦C. The engine coolant

temperature is logged and after an initial warm-up period the coolant tem-

perature is seen to settle around 90 ◦C under normal operating conditions

as shown in Figure 5.3 and so only the 90 ◦C BSFC data is considered by

default in the model. In order to model the engine fuel use accurately there
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Figure 5.3: Engine coolant temperature over time (top) with three different

velocity profiles (bottom)

are two situations that must be considered in addition to normal operation,

the first is the idle situation when the engine is to continue rotating without

any torque being required at the driveshaft and the second is the fuel cutoff

situation where engine braking is desirable and so the resistive forces of the

engine are used with no fuel being provided to the engine. Both of these

situations require handling outside of the standard BSFC lookup operation.

The final step is to validate the vehicle model fuel consumption from only

the vehicle speed and gear selection across a range of situations. Four test

journeys are selected to compare the recorded vehicle data with the model

fuel consumption produced when the recorded velocity and gear profile are

followed on the same road section. The four journeys selected are detailed in

section 5.3. As the fuel use is related to the torque required for propulsion,

the resistive forces as noted in Equation 3.21 are required to be accurately

modelled. The wind speed is shown in Figure 4.9 to be an important factor
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R1 - M6 South from Wigan R2 - M6 North from Cannock

Figure 5.4: Real road routes 1 and 2 as recorded in fleet vehicles.

in the total resistive force seen by the vehicle and so wind data was required

to be included in the vehicle despite not being recorded during the test

journeys. Historical wind speed and direction data is available from the

Met Office, an executive agency of the UK government, [158] for a number

of observation points distributed across the country. Using an average of the

observation data local to the current route, the wind speed influence on the

vehicle fuel consumption can be estimated. For the roads R1-R4 headwind

speeds of 1 m s−1, −2 m s−1, −5 m s−1 and −5 m s−1 were used, respectively,

based on the component of the wind parallel to the average direction of

travel for the route. As noted previously the average wind speed for the

UK is 4.8 m s−1 [156]. The fuel use for sections of each road are shown in

Figure 5.6 and the results listed in Table 5.1.

5.2 Artificial Road Profiles

To ensure that the algorithm is robust when applied to the variety of road

scenarios that could be encountered in real driving, a range of road sections

are used for testing. Initially artificial road profiles are created for this

purpose before real road profiles are reconstructed from GPS data of real

journeys.
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R3 - A4177 Warwick to Solihull R4 - A5 Lichfield to Leicester

Figure 5.5: Real road routes 3 and 4 as recorded in fleet vehicles.
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Figure 5.6: Fuel consumption for four road tests, R1 (top left), R2 (top

right), R3 (bottom left) and R4 (bottom right)
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Road Simulated FC Recorded FC Difference

(l/100km) (l/100km) (%)

R1 7.47 7.90 -5

R2 5.58 5.26 6

R3 5.61 5.90 -5

R4 5.291 5.12 3

Table 5.1: Vehicle model average fuel consumption (FC) validation for roads

R1-R4 with simulated and recorded fuel consumption and the percentage

difference.

The elevation of the set of artificial road profiles are shown in Figure 5.7.

It is necessary to quantify road gradient variation so that a sufficient range

of roads can be tested. To visualise the range of road gradients a normalised

probability density function is shown in Figure 5.7 for the artificial roads.

By applying the vehicle model at a fixed velocity and gear to the road

profiles in Figure 5.7 the fuel consumption and section time can be calcu-

lated. This fixed velocity strategy provides a baseline fuel consumption that

is uninfluenced by driver variety and will be used to compare to the optimi-

sation results. Each artificial road profile in Figure 5.7 is considered at fixed

velocities between 20 and 30 m s−1 in steps of 2 m s−1 and the fuel consump-

tions and times are shown in Figure 5.8. The DP algorithm is applied to the

same set of artificial road profiles with λ values between 0.2 and 0.8 to see

the effect of biasing the cost function to fuel (0.2) and time (0.8). The results

are also shown in Figure 5.9 and the relationship between λ value, fuel and

time are highlighted by the Pareto curves formed between discrete λ values,

shown in grey. The trends of the fixed velocity results are similar across the

artificial roads with an almost linear relationship between fuel and time as

any exploitation of the road topography for fuel saving is nullified by the

fixed velocity requirement. At higher λ values which are heavily time biased

the fuel consumption for the DP algorithm and high fixed velocity converge

as the DP algorithm is so restricted by the time bias that few opportunities

for fuel saving can be taken at the expense of time.
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Figure 5.8: Artificial road elevations (bottom) with journey time (top) and

fuel consumption (middle) as a function of vehicle velocity. The velocity

is fixed for the duration of each road section along with the gear selection,

which in this case is 7.
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Figure 5.9: Algorithm and fixed velocity results for artificial road profiles

with line type corresponding to roads A1-A5 as previously. Algorithm results

for seven fuel/time weightings from λ = 0.2 to λ = 0.8 (grey markers) and

fixed velocity results from 20 m s−1 to 30 m s−1 (black markers according to

road)
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5.3 Real Driving Data

To assess the impact of the optimisation algorithm in practice it is compared

to actual driving data from recorded journeys. To achieve this a fleet vehicle

database is used that contains data logged from journeys taken by a number

of production vehicles of identical specification on long term testing. Using

the GPS data recorded in the vehicle the route can be identified and the

road reconstructed using longitude, latitude and elevation to give position

and distance covered and legal speed limit data at defined intervals along

the route. The GPS data includes an elevation measurement, however the

accuracy of this is inconsistent and so has to be compared to an alternative

source of elevation data to identify anomalies. Such elevation data can

be acquired at specific locations using Google Maps Elevation API [159].

Following the processing of elevation data the gradient can be computed as

per section 4.3. The routes of the journeys selected from the database are

shown in Figure 5.4 and Figure 5.5 and represent a combination of motorway

and A-road sections.

The variation in legal speed limit on these routes is shown in Figure 5.11

along with the variation in recorded driver speed for those specific journeys.

It can be seen that road R2 which is almost entirely motorway is narrowly

distributed around the speed limit for this type of road, 70 mph (112 km h−1)

whereas the other roads are more varied.

5.4 Algorithm Performance

In order to test hypothesis (a) detailed in section 1.1 which states

(a) Fuel savings can be made by utilising optimal control methods to con-

trol vehicle speed and gear selection in real-time, based on instanta-

neous vehicle and road data,

it is necessary to compare the fuel consumption and time generated by fol-

lowing optimal profiles as produced by the DP algorithm to the equivalent

generated by the current standard velocity control system found in vehicles,

a fixed velocity cruise control system. Hypothesis (a) also requires that any
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111



fuel savings can be made using a real time system and as such the compu-

tation time of the DP algorithm must be reported on hardware that can be

deployed in a test vehicle.

5.4.1 Fixed Velocity

The basic implementation of a cruise control system involved a feedback loop

to maintain a fixed velocity regardless of gradient and road conditions [160].

This policy was implemented with a range of target velocities on the roads

contained in the database to identify the performance of such a policy. The

fuel consumption and time results are shown in Figure 5.12 at fixed velocities

ranging from 20 m s−1 to 30 m s−1 on three of the artificial road profiles

detailed in section 5.2. The DP algorithm is configured with a horizon of

1.5 km divided into thirty steps, a velocity interval of 1 m s−1 and the full

range of the 9 speed transmission available where feasible. The cost function

weightings are λ = 0.5 with normalisation factors µt = 1 and µf = 4.

The DP algorithm is implemented without constraints and with an initial

velocity equal to each of the fixed velocities tested to examine the difference

in results between the two control policies. As seen in Figure 5.12 the overall

cost of the DP results is always lower than the equivalent fixed velocity

policy, however there are certain situations where either the time or fuel is

higher for the DP results. For instance on road A5, which is flat, maintaining

a fixed 30 m s−1 leads to a lower time than the DP algorithm, however the

fuel consumption in this case is halved resulting in a lower overall cost.

Conversely on road A4 the fuel consumption is higher for the DP algorithm

starting at 20 m s−1 however the time is 30% less than the fixed velocity.

The cost reduction in each scenario is shown in Table 5.2 with an average

cost of the fixed velocity profile 11.6% higher than that of the DP algorithm.

Real Road Profiles

The results of the fixed velocity policy and DP algorithm when applied to

the four real road routes shown in Figure 5.4 and Figure 5.5 are listed in

Table 5.3. The average cost reduction by the unconstrained DP algorithm
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A1 A2

Velocity Fixed DP % Fixed DP %

20 47.9 39.3 17.9 40.0 33.2 17.0

22 45.5 38.5 15.5 37.3 32.5 12.9

24 43.7 37.7 13.8 35.4 31.7 10.4

26 42.1 36.9 12.4 33.9 30.9 8.8

28 40.8 36.0 11.8 32.7 30.0 8.1

30 39.7 35.0 11.8 31.7 29.1 8.1

A3 A4 A5

Velocity Fixed DP % Fixed DP % Fixed DP %

20 44.7 36.7 17.9 44.0 36.1 17.9 43.7 36.2 17.1

22 42.0 35.9 14.5 41.1 35.4 13.9 41.4 35.4 14.4

24 39.7 35.1 11.4 38.5 34.6 10.2 39.4 34.7 12.0

26 37.9 34.3 9.6 36.7 33.8 8.1 37.5 33.9 9.6

28 36.8 33.4 9.2 35.8 32.9 8.0 36.5 33.0 9.6

30 35.9 32.4 9.6 34.9 32.0 8.2 35.7 32.0 10.3

Table 5.2: Total cost results from fixed velocity and unconstrained DP poli-

cies on artificial road profiles A1 to A5 with initial velocities from 20 m s−1

to 30 m s−1. Total cost for horizon given for fixed velocity and DP and the

percentage difference are shown for each velocity and road tested.
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R1 R2

Velocity Fixed DP % Fixed DP %

20 44.1 36.2 17.9 43.4 35.9 17.3

22 41.7 35.4 15.0 41.0 35.1 14.6

24 39.7 34.6 12.7 39.2 34.3 12.5

26 38.2 33.8 11.5 37.3 33.5 10.2

28 37.2 32.9 11.6 36.0 32.6 9.3

30 36.3 32.0 12.0 35.2 31.7 10.0

R3 R4

Velocity Fixed DP % Fixed DP %

20 43.4 34.8 19.7 42.7 34.9 18.3

22 40.7 34.1 16.2 40.2 34.2 15.0

24 38.6 33.2 13.9 38.3 33.4 12.9

26 36.8 32.4 12.0 36.5 32.6 10.7

28 35.3 31.5 10.6 35.1 31.7 9.6

30 34.2 30.6 10.6 34.1 30.8 9.7

Table 5.3: Total cost results from fixed velocity and unconstrained DP poli-

cies on real road profiles R1 to R4 with initial velocities from 20 m s−1 to

30 m s−1. The cost difference between the two policies in percent is shown

in bold.

across the four real road profiles is 13.1%.

5.4.2 Speed Limit Following

An intelligent cruise control system that could be implemented to minimise

journey time uses speed limit data to produce a velocity profile that follows

as close as possible the legal speed limit. Due to the instantaneous transition

from one speed limit to another which would be impossible for a vehicle to

follow precisely, the transition between speed limits is accomplished with a

gradient according to the limits of the vehicle performance. When the speed

limit velocity profile is compared to the DP algorithm results as shown in

Table 5.4 the difference in cost is much lower than in the fixed velocity
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Cost

Road Speed Limit DP

R1 35.7 33.9 5%

R2 36.5 36.1 1%

R3 43.1 43.6 -1%

R4 41.2 40.1 3%

Table 5.4: Total cost results from speed limit following and DP policies on

real road profiles R1 to R4. The cost difference between the two policies, in

percent, is shown in bold.

scenarios shown previously, in fact, for road section R3 the cost for the

DP algorithm is actually higher then the speed limit following. As shown

in Figure 5.11 the road sections vary in speed limits with road having the

lowest average speed limit. For the section of R3 under examination here,

the speed limit varies from 50 mph to 40 mph, while for the other road

sections it is either 70 mph or 50 mph, so by following this lower speed

limit the engine is being operated in an efficient speed range, thus limiting

the potential fuel savings the DP algorithm could make in comparison. In

addition to this the DP algorithm is prohibited from exceeding the speed

limit and therefore cannot achieve any time savings compared to the speed

limit following profile, in fact due to the conversion from mph to m s−1

producing a non integer value the speed limit following will always be capable

of producing a better time. If the DP algorithm is unrestricted by the speed

limit, the optimal velocity profile it provides is in fact much higher than the

speed limit while simultaneously producing a lower overall cost, this can be

attributed to the cost function heavily favouring a time reduction compared

to an equivalent fuel reduction. This relationship between time and fuel

is specified by a combination of the cost function weighting factor, λ and

the normalisation factors µt and µf , which as noted in subsection 5.4.1 were

λ = 0.5, µt = 1 and µf = 4. While the relationship produces suitable results

at the higher speed road scenarios this example has highlighted its flaws at

lower speeds.
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Cost

Road µf Speed Limit DP

R1 2.1 46.9 41.4 12%

R2 1.9 49.4 42.8 13%

R3 0.7 70.0 66.3 5%

R4 1.0 65.8 61.0 7%

Table 5.5: Total cost results from speed limit following and normalised DP

policies on real road profiles R1 to R4. The cost difference between the two

policies, in percent, is shown in bold.

5.4.3 Normalisation

The ability to vary the optimisation cost function to favour fuel or time

using just one weighting factor, λ to suit a particular driver’s requirements

helps to ensure adoption of the eco guidance, however as highlighted above,

depending on the speed limit of the road, the impact of the weighting fac-

tor varies. To ensure consistency across a range of road scenarios the cost

function is required to be normalised based on the speed limit of the road.

When the cost function is normalised for a specific road section prior to

optimisation the results when compared to the speed limit following policy

are much improved as seen in Table 5.5.

5.4.4 Computation Performance

While testing the optimisation algorithm it is necessary to consider its com-

putation time, in order that it is suitable for deploying in a real-time appli-

cation, as hypothesised in chapter 1. Due to the portability of the C code

used to program the DP algorithm it can be run on a variety of platforms,

with simulation work undertaken on a Windows based PC, however this is

impractical for installation in a production vehicle and so the Raspberry Pi

Miniature computer, as described previously, was used to test the algorithm

prior to its installation in the test vehicle. Although the processing power

of the Raspberry Pi is impressive for its size, it does not compare with an

entry level PC and so the computation time of the algorithm will be much
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lower than in the previous simulations.

The real road profiles described in section 5.3 are used to test the compu-

tation time of the DP algorithm on the Raspberry Pi with a horizon length

of 30 steps, a velocity interval of 1 m s−1 and a starting velocity of 20 m s−1

to remain within the speed limits for all four real road profiles. The results

are shown in Table 5.6 with the longest and shortest computation times of

2.13 s and 0.86 s for roads R1 and R3, respectively. This variation in compu-

tation time can be attributed to the higher speed limits in road R1 leading

to an larger feasible search space requiring a greater number of calculations

than the smaller search space of road R3 that is restricted by the upper limit

on speed which is lower than in R1, as seen in Figure 5.11. Increasing the

starting velocity to closer to the speed limit reduces the computation time

marginally as there are fewer higher speeds initially available in the search

space, however overall the effect is limited as the subsequent search space

remains the same. The ultimate lower limits of the search space are dictated

by the lowest speed in each gear that still results in a feasible engine speed,

which is is unaffected by the road conditions, therefore the key factor in

search space size and thus computation time is the upper limit of velocity

for the given road section.

As the DP algorithm complies with the legal speed limit, which in the

UK is a maximum of 70 mph (31.3 m s−1) the worst case computation time

would occur for a road of maximum speed limit. The real-time requirements

of the DP algorithm implementation are classed as firm real-time [161],

as the consequence of not providing guidance in a suitable time are not

catastrophic but limit the usefulness of the results. With a discrete distance

interval of 50 m and a maximum speed of 31.3 m s−1, for the result when

calculated at the beginning of a distance interval to still be relevant when

required at the start of the next interval it would need to be calculated in

1.6 s. This demand would only apply on initial calculation of a given horizon

where no prior calculation had occurred, for instance during an unexpected

re-routing. While it can be seen in Table 5.6 that the algorithm exceeds

this threshold for two of the road sections, the relevance of the results would

not be lost entirely during such an unexpected event as the result would be

available within the next discretisation interval.
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Road Calculations Time (s)

R1 350544 2.13

R2 308340 1.88

R3 127890 0.86

R4 140617 0.93

Table 5.6: Computation time of DP algorithm applied to real road profiles

on Raspberry Pi 2 with total number of cost calculations and time taken,

in seconds.

5.4.5 Driveability Consideration

As shown in subsection 5.4.1 potential fuel and time savings can be made on

artificial road profiles with an average cost reduction of 11.6% and real road

profiles of 13.1% however no consideration is made for the driving experience

of following the calculated optimal velocity and gear profile produced by DP.

Hypothesis (c) states

(c) Fuel savings can be made as above, without compromising the driving

experience and this can be verified across a range of real driving data.

In order to test this, it is necessary to compare these results to that of a

modified algorithm that considers the driving experience. To ensure that

any potential fuel and/or time savings can be realised by following the op-

timal profile, the driving experience must be acceptable to the driver and

so constraints are applied to the DP algorithm to achieve this. Firstly the

frequency of gear shift operations is restricted to occur less frequently than

once every two distance intervals to minimise gear shift hunting behaviour

that is detrimental to the driving experience. The other aspect of driving

experience that provides a constraint on the algorithm is the rapid changing

of torque supplied by the engine which leads to changes in acceleration that

impact driver comfort. The cost function incorporates the component Jc to

account for this as shown in Equation 3.14 and Equation 3.17. The cost

reduction in the fixed velocity artificial road scenarios is shown in Table 5.7

with an average cost reduction of 9.3% compared to 11.6% when no con-

sideration is given to driveability. This change of only 2.3% highlights that

119



A1 A2

Velocity Fixed DP % Fixed DP %

20 47.9 40.8 14.8 40.0 34.5 13.9

22 45.5 40.0 12.2 37.3 33.4 10.5

24 43.7 39.1 10.7 35.4 32.4 8.4

26 42.1 38.0 9.7 33.9 31.5 7.1

28 40.8 37.1 9.0 32.7 30.4 7.0

30 39.7 35.5 10.6 31.7 29.3 7.6

A3 A4 A5

Velocity Fixed DP % Fixed DP % Fixed DP %

20 44.7 38.2 14.5 44.0 37.5 14.6 43.7 37.5 14.3

22 42.0 37.3 11.1 41.1 36.5 11.1 41.4 36.6 11.6

24 39.7 36.4 8.1 38.5 35.6 7.7 39.4 35.6 9.7

26 37.9 35.4 6.7 36.7 34.6 5.9 37.5 34.7 7.5

28 36.8 34.2 7.0 35.8 33.6 6.1 36.5 33.7 7.8

30 35.9 33.1 7.7 34.9 32.6 6.4 35.7 32.4 9.4

Table 5.7: Results from fixed velocity and constrained DP policies on arti-

ficial road profiles A1 to A5 with initial velocities from 20 m s−1 to 30 m s−1

driveability constraints do not have a large effect on the velocity and gear

selection profiles, this can be attributed to the fact that the goals of effi-

cient driving and driveability overlap in that both aim for smooth changes

in speed.

Real Road Profiles

The cost reduction in the four real road scenarios is shown in Table 5.8 with

an average cost reduction of 10.4% compared to that of the unconstrained

DP algorithm of 13.1% as noted in section 5.4.1. These results are com-

parable to those produced on the artificial roads with a difference between

unconstrained and constrained DP of 2.7%.
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R1 R2

Velocity Fixed DP % Fixed DP %

20 44.1 37.8 14.3 43.4 37.2 14.2

22 41.7 36.9 11.5 41.0 36.1 12.0

24 39.7 36.0 9.2 39.2 35.0 10.7

26 38.2 34.8 8.8 37.3 34.1 8.6

28 37.2 33.6 9.8 36.0 33.4 7.2

30 36.3 32.5 10.4 35.2 32.1 8.9

R3 R4

Velocity Fixed DP % Fixed DP %

20 43.4 36.6 15.6 42.7 36.2 15.2

22 40.7 35.7 12.2 40.2 35.3 12.1

24 38.6 34.7 10.1 38.3 34.4 10.4

26 36.8 33.6 8.8 36.5 33.4 8.6

28 35.3 32.7 7.1 35.1 32.4 7.6

30 34.2 31.7 7.3 34.1 31.2 8.4

Table 5.8: Results from fixed velocity and constrained DP policies on real

road profiles R1 to R4 with initial velocities from 20 m s−1 to 30 m s−1
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Fuel (l/100km) Time (s)

Road Driver DP % Driver DP %

R1 7.79 6.87 11.8 40.05 46.79 -16.8

R2 4.19 6.85 -63.6 68.70 53.61 22.0

R3 5.05 4.11 18.6 84.70 74.09 12.5

R4 4.16 3.98 4.5 69.15 65.91 4.7

Table 5.9: Real driver compared to DP results for roads R1-R4 with λ = 0.5,

µt = 1 and µf = 4 and a residual cost considered for 1 km.

5.4.6 Real Driver Comparison

The fixed velocity strategy used previously allows the comparison of the

DP algorithm to consistent reference values produced by an idealised cruise

control system however this comparison does not consider the majority of

driving undertaken without cruise control. To assess the performance of the

DP algorithm under normal driving circumstances, real driving data was

used as a comparison. For the four journeys described in Figure 5.4 and

Figure 5.5, the DP algorithm is applied to a single horizon length.

The difference in fuel consumption and time between the recorded driver

behaviour and the DP algorithm shows a wide range of results as seen in

Table 5.9. A fuel/time weighting of λ = 0.5 was used for the algorithm to

balance fuel and time equally in the cost function. For road R1 the section

time is 16.8% higher for the DP algorithm than the driver however the ve-

locity profile of the DP algorithm is restricted by the legal speed limit for

the section of road, which in this instance was not always adhered to by

the driver. Conversely in road R2 the section time is 22% longer while fuel

consumption is 63.6% lower which indicates that the driver, while driving

very efficiently in relation to fuel, this came at a great cost to the journey

time. It is noted that driving considerably lower than the legal speed limit,

such as highlighted in R2, may be due to traffic or road conditions rather

than driver preference and where available information about such condi-

tions should be used in the DP algorithm to ensure an unbiased comparison.

The section of road considered from R2 is motorway approaching a junction

122



Figure 5.13: Road R3 speed limit reduction and upcoming curve responsible

for speed reduction.

with no topographical features to explain a speed reduction. The impact of

traffic information is investigated further in section 5.6 where the system is

deployed in a real vehicle.

Roads R3 and R4 both produce fuel and time savings for the DP algo-

rithm, however based solely on the legal speed limit there is no justification

for the longer journey time of the driver. Further investigation of the sec-

tions of road in question identifies that in road R3 the speed limit reduces

from 50 mph to 40 mph as the single lane road enters a rural village, however

prior to this the upcoming curvature of the road may lead to a reduction in

the speed of other vehicles propagating back to the vehicle being recorded.

This road section is shown in Figure 5.13 as extracted from the Google

streetview database [162] to highlight the features mentioned.

A reduction in the speed of the driver on the section of road R4 studied

cannot be attributed to the road geometry so it is concluded that it is due

to either traffic build up or suboptimal operation by the driver.

5.5 Genetic Algorithm Comparison

In the previous sections the DP algorithm has been shown to improve fuel

consumption by producing an optimal velocity and gear profile, however
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λ 0.5

µt 1.0

µf 4.0

Horizon interval (m) 50

Horizon steps 30

Velocity interval (m s−1) 1.0

Table 5.10: Optimisation algorithm settings

as noted in chapter 2, DP is not the only optimisation method that can

be applied to this problem. To put the DP results in context with other

optimisation methods identical scenarios are considered with both DP and

Genetic Algorithm (GA) methods applied. For the four real road profiles

presented in Figure 5.4 and Figure 5.5, the DP algorithm was applied with

the settings detailed in Table 5.10. The GA was identically configured to

ensure a fair comparison and the minimum costs produced by the GA for

each road profile are shown in Figure 5.14 along with the DP results. The

GA was run for 50,000 generations with results recorded every 100 genera-

tions resulting in an inverse relationship between the time taken to compute

the given number of generations and the overall cost of the optimal profile

produced. When deployed on an Intel i5-4200 CPU the GA computation

times for 100 generations is 4 s and to take Road R3 as an example the cost

after 50,000 generations is less than 2% lower than at 100 generations despite

requiring more than 32 min to calculate. In comparison to the DP algorithm

the result is more than 13% higher. It is therefore considered that although

the GA method is theoretically capable of producing profiles of an equal cost

to DP, the computation time of such a method rules it wholly unsuitable

for real time in-vehicle optimisation due to the complexity of the problem.

This work highlights the benefits of DP over GA in terms of performance as

well as repeatability.

124



Computation Time (min)
0 20 40

T
ot

al
C
os

t

35

36

37

38

39
Road R1

Computation Time (min)
0 20 40

T
ot

al
C
os

t

35

36

37

38

39
Road R2

Computation Time (min)
0 20 40

T
ot

al
C
os

t

34

36

38

40

42
Road R3

GA

DP

Computation Time (min)
0 20 40

T
ot

al
C
os

t

35

36

37

38

39
Road R4

Figure 5.14: Genetic algorithm and DP results, with increasing numbers

of GA generations producing lower cost profiles at the expense of longer

computation times. DP results profile cost and time are shown for reference.

5.6 In-vehicle implementation

To test the practical aspects of calculating an optimal velocity and gear

profile based on current vehicle state in real time in-situ in a vehicle, the

optimisation system as described in chapter 4 was deployed in a midsize

SUV. The GUI was presented on the 7” screen as described in chapter 4

and mounted centrally on the dashboard of the test vehicle as shown in

Figure 5.15.

A real journey was to be undertaken on extra urban roads, the route

of which is shown in Figure 5.16. Data was recorded from the vehicle dur-
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Figure 5.15: Driver feedback system mounted on test vehicle dashboard with

recommended speed and gear along with feedback icon to maintain speed.

ing the journey on extra urban roads with driver feedback provided with a

weighting of λ = 0.5. The DP algorithm was continually updating however

the implementation of the optimal velocity and gear profile relied on the

driver being able to identify and apply the guidance provided given the traf-

fic and road conditions. The test vehicle was equipped with an automatic

transmission that allowed driver control of shifting within the limits of the

baseline transmission control policy.

The data recorded during the test drive was retrospectively compared

to simulated data generated by the vehicle model following the DP profile

precisely, as seen in Figure 5.17. The fuel consumption and road section time

for both the test drive and the DP simulations are shown in Table 5.11. The

DP algorithm results were simulated with fuel and time weighting of λ = 0.3,

0.5 and 0.7.

The velocity profile produced by the driver is shown in Figure 5.17 along

with the legal speed limit and real time traffic information while the three

DP velocity profiles are also shown. The fuel consumption at λ = 0.3 is 6%

lower than the test drive while also achieving a 13% reduction in journey

time due to the higher average speed of the DP algorithm results. However

the DP results for λ = 0.5 and λ = 0.7 show higher fuel consumption

than the test drive while further reducing the journey time. The test drive

velocity profile is always below the legal speed limit and includes a sharp

reduction in speed prior to 19 km which does not correspond with the speed

limit data, but follows more closely the traffic velocity profile. In the first
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Figure 5.16: Test route on extra urban roads including multi lane freeway

and single lane country roads.

set of results the DP algorithm only considers the legal speed limit and not

the traffic speed, leading to profiles that may not be achievable in the given

traffic conditions, hence the deviation in results.

Using the real-time traffic information recorded during the journey the

effect of traffic on the DP algorithm can be investigated retrospectively.

As seen in Figure 5.18 the driver velocity follows the traffic velocity rather

than the speed limit however there is still deviation from the real-time traffic

information around 16 km and 17.5 km. As such the DP algorithm is unfairly

disadvantaged by the implementation of the traffic speed as an upper limit,

for this reason a +10% upper bound is allowed above the traffic speed. The

results are shown in lower section of Table 5.11 with improvements in fuel

consumption for λ = 0.3 and λ = 0.5 coupled with smaller deteriorations

in journey time. For all λ values the results are worse for time, which can

be attributed to the upper speed limitation restricting the DP algorithm

to lower speeds than the test drive velocity profile. The faster and more

efficient policy is to exceed the traffic speed limit by more than the allocated

10%. Increasing the reliability and timeliness of the traffic information would
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Figure 5.17: Velocity profiles from driver data (solid black) and DP optimal

velocity (solid grey λ = 0.3, dashed grey, λ = 0.5 and dotted grey, λ = 0.7).

Legal speed limit and real time traffic shown as dashed black line, upper

and lower, respectively.
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Fuel Use Difference Time Difference

(l/100km) (%) (min) (%)

Test Drive (Recorded) 4.8 3.9

Test Drive (Sim) 4.9 0 3.9 0

Without

Traffic

DP, λ = 0.3 4.6 -6 3.4 -13

DP, λ = 0.5 5.5 12 3.0 -22

DP, λ = 0.7 5.9 20 3.0 -24

With

Traffic

DP, λ = 0.3 4.4 -10 4.2 7

DP, λ = 0.5 4.5 -8 4.1 6

DP, λ = 0.7 4.9 0 4.1 5

Driver

Window

DP, λ = 0.3 4.5 -8 3.9 0

DP, λ = 0.5 5.0 2 3.7 -4

DP, λ = 0.7 5.3 8 3.7 -4

Table 5.11: Fuel consumption and time from a 5 km section of the test drive.

Test drive velocity and gear profile used to simulate fuel consumption and

compared to results from DP algorithm without traffic information.

minimise this issue. The incorporation of vehicle sensors and/or vehicle

to vehicle (V2V) communication would also improve the quality of traffic

information. The gear selection of the optimization algorithm and the driver

are shown in Figure 5.19 highlighting the foresight of the algorithm, as the

traffic speed reduces at 18.5 km the algorithm initiates coasting in neutral

gear. It is also observed prior to 17 km that the driver uses gear 8 while the

algorithm remains in gear 9, this behaviour was observed occasionally during

the test run due to the automatic transmission overriding the driver selection

of gear 9. This can be explained by the restrictions of the TCU in the vehicle

preventing selection of gear 9 below certain engine and vehicle speeds in

order to maintain available power and prevent frequent hunting behaviour.

The maintaining of available power is normally required to ensure that any

upcoming power demand can be met, however with the DP horizon ensuring

that the future power demand required to follow the optimal velocity profile

is known, the decision to utilise gear 9 is justified.

By implementing a DP algorithm in a test vehicle to provide real time
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Figure 5.19: Gear profiles of optimization algorithm and driver selection

where zero corresponds to neutral and the discontinuity in the driver gear

selection is due to gearshift operations where no gear is selected.
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guidance for velocity and gear selection it has been shown that such a system

can be used to reduce fuel consumption. The development of the system as

an eco-driving guidance tool or as an eco-cruise control system is made

possible with this proof of concept.

5.7 Summary

To test the optimisation algorithm firstly the vehicle model was validated

to ensure that any simulated results can be reasonably compared to real

journey data. A range of both artificial and real road profiles were then

presented for the algorithm to be tested with as well as real driving data

from recorded journeys. To compare the DP algorithm results with real

driving data depends on the behaviour of the driver during the period of

data logging, as any efficiency improvements depend on how efficient the

driving was initially. To overcome this inconsistency a baseline fuel and

time are calculated for a policy of maintaining a fixed velocity and initially

this is compared to the DP algorithm results. A speed limit following policy

is then used as a minimum journey time comparison with the DP algorithm

results. The driver’s acceptance of the DP algorithm optimal velocity and

gear profile depends on the driveability resulting from following the profile

and so results were presented for which the DP algorithm was restricted in

terms of torque produced and frequency of gearshifting in order to maintain

driveability.
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Chapter 6

Conclusion

A review of the hypotheses proposed in chapter 1 of this work is provided

here with a summary of the findings in relation to each hypothesis.

(a) Fuel savings can be made by utilising optimal control methods to con-

trol vehicle speed and gear selection in real-time, based on instanta-

neous vehicle and road data.

(b) Driving experience, in relation to a vehicle’s longitudinal performance,

can be quantified and applied to an optimisation algorithm.

(c) Fuel savings can be made as above, without compromising the driving

experience and this can be verified across a range of real driving data.

6.1 Hypothesis (a)

The first part of hypothesis (a) that fuel savings can be made is investigated

in simulation in both the literature reviewed in section 2.4 as well as in the

results presented in chapter 5. A Dynamic Programming (DP) algorithm

was developed and tested in simulation firstly against a fixed velocity policy

replicating a standard cruise control system on both artificial and real road

profiles with an average reduction in cost function of 15% for the DP results.

The DP algorithm was then compared with a speed limit following policy

on real road profiles with an average cost function reduction of 9%. In order
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to verify that this method could be applied in real-time a computationally

efficient DP algorithm was developed that was able to produce an optimal

velocity and gear selection profile in a sufficiently short time to be utilised

in a real-time in-vehicle deployment. The parameters of the DP algorithm,

primarily the horizon length and velocity discretisation interval were inves-

tigated to identify the optimal balance of computation time with quality of

results. To ensure that the algorithm was calculated based on current data,

a road database was developed utilising a GPS module to provide road data

specific to the current position. Similarly current vehicle data was incor-

porated with a bespoke Python CAN bus extraction module. A Raspberry

Pi was chosen as the target hardware for deployment due to its flexibility

and as it represents a reasonable approximation of the computational power

available in a production vehicle control unit that could ultimately run such

a eco-guidance system. While it is shown that there are situations where

the algorithm will violate the firm real-time constraints applied, the results

even in those exceptional circumstances will still be of relevance. It is consid-

ered that the ever increasing computational power available in a production

vehicle will render this issue null and void.

6.2 Hypothesis (b)

Driveability is found in literature reviewed in section 2.6 to be a complex

issue that involves numerous distinct elements that influence the driving

experience. Despite this it has been shown that only a subset of these

elements are directly linked to longitudinal performance and influenced by

the control of vehicle velocity and gear selection and so only these were

considered for further investigation in this project.

In a vehicle with automatic transmission, the performance of the gear

shifting is frequently highlighted as a major contributing factor to the as-

sessment of vehicle driveability [110,111,113]. The frequency of gear shifting

is one aspect of this performance and can easily be recorded using data from

the vehicle communication network. The response time of the gear selec-

tion control to changes in power demand is also a driveability issue which

although harder to quantify should benefit from the use of a road data hori-
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zon allowing future road conditions to be factored in to the gear selection

to pre-empt power demand.

With regard to the vehicle velocity selection, longitudinal acceleration

and deceleration play a crucial role in the driveability and so limits were set

to ensure that any proposed velocity profile does not compromise driveabil-

ity. These two main driveability constraints were implemented in the DP

algorithm by penalising abrupt torque changes with a variable in the cost

function and a hard limit on the frequency of gear shifting by storing the

gear selection in each step of the gear profiles being compared. It was noted

that the DP algorithm complied with these constraints to produce veloc-

ity and gear profiles that objectively would satisfy longitudinal driveability

conditions.

6.3 Hypothesis (c)

By combining the work produced in testing the first two hypotheses it was

possible to test hypothesis (c). The DP algorithm developed in this work

was modified to incorporate constraints on the gear selection policy, velocity

profile and its derivative to ensure driveability in the context of longitudi-

nal control was maintained. By simulating the algorithm on firstly artificial

road profiles and then real road profiles recorded from typical journeys it was

shown that fuel savings could be made with varying levels of impact on the

journey time according to the algorithm parameters. The fuel savings were

achieved on a variety of road types with speed limits from the maximum of

70 mph down to 30 mph. It was shown that the introduction of driveabil-

ity constraints, while having an impact on the optimal profiles produced,

do not alter drastically the velocity and gear selection profiles generated

as achieving fuel efficiency and driveability are often complementary goals.

This result gives confidence that eco cruise control systems would be well

received by drivers with driveability maintained.

Following the simulation work the algorithm was deployed in a test ve-

hicle using Raspberry Pi hardware to test the real time performance of the

vehicle in a production vehicle. The optimisation algorithm performed con-

sistently in the vehicle however the limitations of the driver following the
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guidance via visual and audible feedback as well as the influence of traffic

conditions resulted in less than optimal performance. The limitations of

the guidance system would be removed if an adaptive cruise control system

was tasked with implementing the optimal velocity profile as opposed to

the driver. Improved traffic information would also enable such a system to

achieve its potential.

In the course of this work it was necessary to test the DP algorithm on

a number of roads varying both in topography and artificial properties such

as legal speed limit. A methodology is described in chapter 4 for processing

data recorded in a vehicle using either Raspberry Pi hardware or commercial

datalogging equipment to reconstruct road profiles driven in real journeys

and by utilising online map data providers these can be supplemented with

road data such as legal speed limit. By using such real road profiles and

vehicle data recorded during the same journey the scenario can be replicated

in simulation and used for assessing the realistic impact of the DP algorithm

prior to testing in a real vehicle.

In summary, the fuel consumption of current and future vehicles can be

improved by applying eco-driving techniques and the additional mental load

of correctly implementing such techniques can be minimised by the use of

a real-time in-vehicle optimisation algorithm. A system is presented in this

work that incorporates such an algorithm and provides guidance with a view

to ultimately integrate with an adaptive cruise control system to ensure that

the optimal velocity and gear selection profile are followed.
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Chapter 7

Further Work

The results of the work presented here provide a number of opportunities

for further research that build on the projects contributions. A Dynamic

Programming algorithm was developed to optimise velocity and gear selec-

tion to minimise fuel consumption and journey time using upcoming road

data and a vehicle model that balanced computational load and accuracy.

Within this framework it was possible to minimise the computational load

of the algorithm so as to allow real-time in-vehicle deployment as well as test

scenarios in simulation programs developed as part of the project. Identified

during the course of the literature review and the algorithm development

and testing are a number of areas of further work:

• Integration with commercial eHorizon systems based on the Advanced

Driver Assistance System Interface Specification (ADASIS).

• Improvement of traffic and road environment data by incorporating

vehicle sensors and vehicle communication systems.

• Investigation of environmental, economic and customer experience im-

pact of eco-guidance assisted and eco-cruise systems compared to un-

aided driving.

• Development of hybrid and fully electric vehicle models in place of

conventional vehicle model.

• Emissions such as NOx included in cost function along with fuel con-
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sumption by incorporating a control oriented model of emissions gen-

eration .

7.1 Commercial eHorizon System Integration

The work presented utilised a minimal set of Electronic Horizon data based

on that which would be available from a Horizon Reconstructor using ADA-

SIS. This approach was taken due to the cost and additional complexity

involved in integrating a commercial system which would reduce the time

available for the core activities of the project. Developing the existing system

in conjunction with a commercial ADASIS eHorizon provider would open up

a complete network of real road scenarios for testing and improving versions

of the DP algorithm. The potential for testing would only be limited by the

size of the map database available. Additionally, successfully combining the

DP algorithm with a supplier’s standard eHorizon system would increase

the deployment opportunities for the DP algorithm in test vehicles, as the

ADASIS standard provides the framework for such interoperability.

7.2 Vehicle Communication Systems Integration

The work presented here resulted in a system that guides vehicle velocity

and gear selection based on road information such as legal speed limit and

road gradient [57, 74]. In testing however, the ability to follow this optimal

velocity profile is often compromised by dynamic factors such as congestion

[72], traffic light timings [163] and variable speed limits which cannot be

contained in a static database of road information. Increasingly connected

vehicles are beginning to exploit the possibility to communicate a wide range

of data both to and from vehicles primarily for safety and entertainment

purposes [164]. In order to best utilise such communication channels for

energy use optimization it is necessary to understand which data has the

most impact on energy use.

As seen in section 5.6 there is a disturbance in the vehicle velocity due

to traffic that is insufficiently reported through the traffic information ser-

vice used. The cause of this disturbance is congested traffic conditions and
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highlights the need for additional road information to be available to veloc-

ity optimization systems, information that can be provided by a network of

connected vehicles. Publications investigating this issue have appeared in

recent years [165]. Vehicle Ad-hoc Networks (VANETs) provide the facil-

ity that allows both vehicle to vehicle (V2V) and vehicle to infrastructure

(V2I) communication [166]. While the mechanisms by which messages can

be exchanged are being investigated extensively, an investigation of what

messages would be of most benefit to vehicle energy optimisation could be

simulated as an extension of the work presented here.

7.3 Eco-guidance and eco-cruise control impact

While the simulation work presented in this project utilised real driving data

and a test drive with the eco-guidance system was undertaken, due to the

limited availability of test vehicles, there is scope for further investigations

into the impact of both eco-guidance and with the suitable risk assessment

and safety systems in place, eco-cruise control. A range of drivers approx-

imating the variation in driving styles in the general population would be

necessary to test the impact of the eco-driving systems developed in this

project. A benchmark could be produced for a set of journeys that are

driven by a selection of drivers first without any guidance on eco-driving ei-

ther in vehicle or otherwise, then each test repeated with eco-guidance and

finally with eco-cruise. Assuming the variation of the test scenarios suitably

approximates the driving of the general population a reasonable estimate

of the impact of such eco-driving systems could be found. There is much

scope for improving the user interface that provides the eco-guidance, for

instance haptic feedback can be investigated to guide use of the accelerator

pedal [167] as well as improvements to the audio and visual eco-guidance

systems.

7.4 Alternative Powertrain Vehicles

As the project was focussed solely on a vehicle powered by a 4-cylinder

diesel engine, one of the possible areas of further work is the development of
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Hybrid Electric Vehicle (HEV) and fully electric vehicle models that can be

integrated into the Dynamic Programming framework. These models can

build on existing literature and the sensitivity analyses approaches detailed

in this work to identify the most influential elements of such vehicle models.

This will allow the development of a model that provides sufficient accu-

racy while minimising computation time for incorporation in the real time

dynamic programming framework. Fully electric, plug-in and conventional

HEVs can be investigated, with different aims depending on whether the

destination is known to the system and if charging is available at the des-

tination. In addition to modelling the energy demands for propulsion the

vehicle models could also be extended to include auxiliary loads such as air

conditioning to improve the quality of of results in real world driving.

7.5 Emissions Model inclusion in Vehicle Control

Optimisation

Minimising fuel consumption has been the main focus of research in hybrid

vehicle optimization in the last decade, however with the increase in diesel

hybrid electric vehicles and recent studies that have highlighted the impor-

tance of reducing NOx emissions, [168] the requirements of vehicle design

are more complex. Regulations on NOx emissions are in place [169] and set

to be enforced in real driving situations in addition to in laboratory tests. In

order to minimise NOx emissions using an optimization algorithm, a control

oriented model representing NOx production is required. The production

of NOx is a complex process that depends on temperature, fuel mixing and

pressure [2]. Historically, modelling this process has involved crank angle

based models which generate a high computational load such that they can-

not be applied in real-time in a vehicle. The use of neural networks to model

NOx emissions [170] improve on this but still present implementation chal-

lenges for production vehicles. In a similar manner to that of eco-driving

guidance where the complex systems involved in fuel consumption are sim-

plified into straightforward driving instructions, if the use of NOx models can

identify operating behaviour that reduces such emissions and this can be in-
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corporated in the optimisation process the benefits, particularly in polluted

urban areas are clear.

The further work described in this chapter builds on the foundation

of work produced in this project and extends its impact into alternative

powertrain vehicles and emissions reduction as well as guiding the utilisation

and development of new technologies such as ADAS and V2V.
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Appendix A

Vehicle Data

The parameters used in the vehicle model are listed in Table A.1 and the

engine model is based on the performance data shown in Figure A.1 and

Figure A.2.

Item Value Units

Vehicle Mass 1929 kg

Tyre Radius 0.369 m

Gear Ratios

1st 4.713

2nd 2.842

3rd 1.909

4th 1.382

5th 1.000

6th 0.808

7th 0.699

8th 0.580

9th 0.480

-

Final Drive Ratio 3.944 -

Aerodynamic Coefficient 0.354 -

Frontal Area 2.63 m2

Engine displacement 1991 cm3

Table A.1: Vehicle Model Data
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Figure A.1: Brake Specific Fuel Consumption with engine coolant 90 ◦C

Figure A.2: Engine Maximum Torque Curve
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