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ABSTRACT 

This paper revisits and compares estimations of the effective period of bilinear 

systems as they result from various published equivalent linearization methods and 

signal processing techniques ranging from wavelet analysis to time domain 

identification. This work has been mainly motivated from modal identification studies 

which attempt to extract vibration periods and damping coefficients of structures that 

may undergo inelastic deformations. Accordingly, this study concentrates on the 

response of bilinear systems that exhibit low to moderate ductility values (bilinear 

isolation systems are excluded) and concludes that depending on the estimation 

method used, the values of the “effective period” are widely scattered and they lie 

anywhere between the period-values that correspond to the first and the second slope 

of the bilinear system. More specifically, the paper shows that the “effective period” 

estimated from the need to match the spectral displacement of the equivalent linear 

system with the peak deformation of the nonlinear system may depart appreciably 

from the time needed for the nonlinear system to complete one cycle of vibration. 

Given this wide scattering the paper shows that for this low to moderate ductility 

values (say 10 ) the concept of the “effective period” has limited technical value 

and shall be used with caution and only within the limitations of the specific 

application.   

Keywords: Modal Period, Equivalent Linear Analysis, System Identification, Time-

Frequency Analysis, Yielding Structures, Statistical Linearization. 

 

1. INTRODUCTION 

The development of an equivalent linear system that approximates the maximum 

displacement of a bilinear hysteretic system when subjected to dynamic loading goes 

back to the seminal work of Caughey [1],[2]. By that time the elastic response 

spectrum was well developed and understood, and had become a central concept in 

earthquake engineering (Chopra [3] and references reported therein). Once available, 

the main attraction of the elastic response spectrum is that it offers the most 

significant features of the structural response without requiring knowledge of the time 

history of the excitation; while, its limitation is that it is defined only in relationship to 

elastic structures. Starting in the late 1950s researchers began recognizing the 

importance of studying the response of structures deforming into their inelastic range 

and this led to the development of the inelastic response spectrum (Veletsos and 

Newmark [4], Veletsos et al. [5], Veletsos and Vann [6]).  

In parallel with the development of inelastic response spectra in earthquake 

engineering, there has been significant effort in developing equivalent linearization 

techniques (Caughey [1],[2], Rosenblueth and Herrera [7], Roberts and Spanos [8], 

Crandall [9], among others) in order to define equivalent linear parameters (natural 

periods and damping ratios) of equivalent linear systems that exhibit comparable 
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response values to those of the nonlinear systems. While the initial efforts in 

developing equivalent linearization techniques originated in the fields of random 

vibration and structural mechanics, these techniques found gradually major 

applications in earthquake engineering. 

One of the major challenges in earthquake engineering is the estimation of the peak 

inelastic deformation of yielding structures. Traditionally, seismic design has not been 

carried out with nonlinear time-history analysis; instead, seismic deformation 

demands are established with the maximum response of “equivalent” linear single-

degree-of-freedom (SDOF) systems via the use of linear elastic response spectra. 

Thus, through the years various displacement base methods (Miranda and Ruiz-

Garcia [10] and references reported therein) have been proposed to estimate the 

maximum inelastic displacements from the maximum displacement of equivalent 

linear elastic SDOF systems. Accordingly, in earthquake engineering the main goal 

when developing an equivalent linear system is that the peak elastic deformation, is 

comparable to the peak deformation of the inelastic system. Nevertheless, this 

exercise does not assure that these two “equivalent” systems will also have 

comparable vibration characteristics –that they will need the same time to complete a 

one vibration cycle.  

Early studies on estimating the effective period of bilinear systems by comparing peak 

spectral values when subjected to earthquake loading were published by Iwan and 

Gates [11] and Iwan [12] after minimizing the root mean square (RMS) of the 

difference between the spectral displacements of a bilinear system and a family of 

potentially equivalent linear systems. Some 35 years later, Guyader and Iwan [13] 

revisited this problem and offered refined expressions for a conservative estimation of 

the effective period and damping of a class of yielding systems. Recently Giaralis and 

Spanos [14] returned to the framework of stochastic equivalent linearization technique 

and presented a methodology to derive a power spectrum which, while represents a 

Gaussian stationary process it is compatible in a stochastic sense with a given design 

spectrum. This power spectrum is then treated as the excitation spectrum to determine 

the effective period and damping coefficient of the corresponding equivalent linear 

system.  

In the abovementioned “spectral” studies, the effective period of the equivalent linear 

system is determined by minimizing the difference (error) of either the response 

spectra (Iwan and Gates [11], Iwan [12], Guyader and Iwan [13]), or the response 

histories of the nonlinear and the equivalent linear systems (Giaralis and Spanos [14]).  

While the estimation of inelastic deformations has a central role in the performance of 

earthquake resistant structures, the identification of vibration characteristics of 

yielding structure is also receiving increasing attention mainly due to the growing 

need for monitoring the structural health of civil infrastructure. Accordingly,  within 

the context of system identification, the effective period of a yielding system may be 

understood as the prevailing vibration period (time needed to complete one vibration 

cycle) of the response history and can be extracted with signal processing methods 

which examine the response signal alone. The performance of these methods is also 

assessed in this study in an effort to conclude whether the “effective” period that is 

estimated in order to estimate inelastic displacement is a representative vibration 

period of the inelastic system.  

By the mid 1980s wavelet transform analysis had emerged as a unique new time-

frequency decomposition tool for signal processing and data analysis (Grosman and 

Morlet [15]). At present, there is a wide literature available regarding its mathematical 

formulation and its applications (Mallat [16], Addison [17], Newland [18] and 
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references reported therein). Given that wavelets are simple wavelike functions 

localized in time they emerge as a most useful tool for extracting the dominant period 

of the response of bilinear systems.  

In parallel with the wavelet transform analysis, various powerful time-domain 

methods have been developed and applied successfully to extract the dominant period 

of signals. One of the most well known and powerful methods for linear systems in 

the system identification community is the Prediction Error Method (PEM). It initially 

emerged from the maximum likelihood framework of Aström and Bohlin [19] and 

subsequently was widely accepted via the corresponding MATLAB [20] 

identification toolbox developed following the theory advanced by Ljung [21], [22], 

[23].  

In this work the prediction error method is also employed to extract the dominant 

effective period of the response of bilinear hysteretic systems and the results obtained 

from this time domain method are compared with the results obtained with the above-

mentioned time-frequency analysis (wavelet transform) and the equivalent 

linearization methods also introduced in this section. 

 

2. SIMPLE GEOMETRIC RELATIONS 

The most elementary concept of an effective period of a system with bilinear behavior 

is the period associated with effK , that is the slope of the line that connects that axis 

origin with the point on the backbone curve where we anticipate the maximum 

displacement, maxu , to occur. This concept of a secant stiffness was apparently first 

proposed by Rosenblueth and Herrera [7] and then received wide acceptance for the 

estimation of maximum inelastic displacement of yielding structures [Miranda and 

Ruiz Garcia [10] and references reported therein). 

With reference to Figure 1 one can derive via the use of similar triangles a relation 

between the effective stiffness, effK  and the first slope of the bilinear model, 1K . 

According to Figure 1, 

 
Figure 1. The hysteretic loop of the bilinear model. 
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with 2/x Q K . Substitution of the expression of maxF given by equation (1) to the 

definition of max max/effK F u gives  
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in which the relation 1y yF K u  has been used. Introducing the definition of the 

traditional displacement ductility max / yu u   and the second-to-the-first stiffness 

ratio 2 1/K K  , the expression given by (2) simplifies to  
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and in terms of periods equation (3) gives 
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Equations (3) and (4) are well known in the literature (Hwang and Sheng [24], [25], 

Chopra and Goel [26], Miranda and Ruiz Garcia [10] and references reported therein). 

They are popular geometric relations which are valid for any value of the parameters 

1K ,  and  . Nevertheless, while the expression given by equation (4) is 

geometrically correct, its physical value remains feeble since there is no physical 

argument that associates the results of equation (4) with the vibration period of mass 

supported on a bilinear hysteretic system.  

Figure 2 plots with a heavy solid line the values of the period shift, 1/TTeff , as given 

by equation (4) as a function of the displacement ductility   for the widely used 

value of 05.0 (Iwan and Gates [11]). The period shift, 1/TTeff , eventually tends 

asymptotically to the value /1/ 12 TT  as the value of the ductility   increases. 

Nevertheless, with equation (4) this asymptotic value is approximated for values of 

ductility 40μ   (Makris and Kampas [27]).  

With reference to the various methods assessed in this study it is worth noting that 

any proposed expression of the effective period, effT  , which results from a physically 

sound procedure shall satisfy the constraint that the proposed period effT  shall always 

be larger than the first period 1T  and less than or equal to the second period 2T  which 

corresponds to the second slope of the system. Accordingly,  
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Figure 2. Values of the effective period, effT , as a function of the displacement 

ductility, yuu /max , as they result (a) from similar triangles, (b) equivalent  

linearization methods that minimize response differences and (c) signal processing 

methods that examine the response signal alone. 
 

 

3. STOCHASTIC EQUIVALENT LINEARIZATION 

Within the context of statistical linearization where a nonlinear system with a narrow-

band response is subjected to a broadband excitation, we consider a one-degree-of-

freedom system with bilinear behavior subjected to a stationary, zero-mean 

acceleration process )(tg , which does not necessarily have a white spectrum, 

expressed in the frequency domain by its power spectrum )(G . The equation of 

motion of the bilinear system with mass m reads  

),(
),(

)(2)(
1

tg
m

uuF
tutu 


   with 0)0(),0( uu   (6) 

where  ),( uuF  is the nonlinear restoring force,
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in which 1K  is the first slope of the bilinear loop, yu is the yield displacement shown 

in Figure 1, 12 / KK  is the ratio of the postyield stiffness 2K  to the initial elastic 

stiffness 1K , and )(tz  is the internal dimensionless parameter with 1)( tz  that is 

governed by  

0)()()()()()()(
1




tutztutztztutzu
nn

y
  .         (8) 

The model given by equations (7) to (8) is the Bouc-Wen model (Wen [28], [29]) in 

which  , and n are dimensionless quantities that control the shape of the hysteretic 

loop. Defining mK /1

2

1   equation (6) reduces to 
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The quantity )()1()(),( tzutuuu y  appearing in equation (9) is a nonlinear 

function that governs the restoring force-deformation law. 

The nonlinear response )(tu  appearing in equation (9) is approximated with the 

response )(ty  of an equivalent linear system with natural frequency eq and viscous 

damping ratio eq given by the equation  
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According to the original and most widely used form of statistical linearization 

(Caughey [2], Roberts and Spanos [8], Giaralis and Spanos [14]) the parameters of the 

linear system given by equation (9) are defined by minimizing the expected value of 

the difference (error) between equations (9) and (10) in a least square sense with 

respect to the quantities eff and eff . This criterion yields the following expressions 

for the effective (equivalent) linear parameters  
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where  {.}E  denotes the expectation operator. In most cases (Caughey [2], Roberts 

and Spanos [8]) the unknown distribution of the response )(tu  of the nonlinear 

oscillator (bilinear system) is approximated for the purpose of evaluating the expected 

values by a zero-mean Gaussian process. Furthermore, it is also assumed that the 

variances of the process )(tu  and )(ty  are equal (Roberts and Spanos [8], Crandall 

[9]). This leads to  
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where )(G  is the power spectrum of the stationary, zero-mean acceleration process 

)(tg . Substitution of equations (13) and (14) into the equations (11) an (12) gives the 
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effective parameters of the equivalent linear system (Caughey [1], Roberts and 

Spanos [8], Giaralis and Spanos [14]). 
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In equation (15) the parameter 12 / KKa  , is introduced with equation (7). Figure 3 

shows the graph of the integral  
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appearing in equation (15) is a function of the variable 
22 /})({2 yutuE . At this 

point it is worth investigating the limiting values of )(I as   tends either to zero or 

infinity.  

When 0 , the exponential term of the integrand suppresses any polynomial 

growth; and 0)( I . Accordingly from equation (15),  
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showing that when   is small; the effective frequency eff  is essentially 

1 ( 1TTeff  ). On the other hand,  
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Substitution of the result from equation (19) into equation (14) gives  
2
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showing that for large values of   , the effective frequency is 2  

( aTTTeff /12  ).The limiting values offered by equations (19) and (21) show that 

the statistical linearization method of bilinear systems as initially developed by 

Caughey [1] satisfies the physical inequalities given by (5). With the two limiting 

values of equation (15) established, our analysis proceeds by computing the effective 

period, effT , as offered by equation (15) by subjecting the seven (7) bilinear systems 

listed in Table 1 to three white noise excitations generated by MATLAB [20]. The 

white spectrum used for the realizations in this study is an unnecessary strong 

requirement on the excitation )(tg which merely needs to be a stationary, zero mean 

signal. An in depth study on the “admissible” power spectra that represent a Gaussian 

stationary process, )(tg , which at the same time are compatible in a stochastic sense 

with given design spectra has been presented recently by Giaralis and Spanos [14]. An 

alternative approach to identify the equivalent linear system of a bilinear hysteretic  
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Figure 3. Graph of the integral )(I appearing in equation (15). 

 

system has been presented by Politopoulos and Feau [30] and references reported 

therein.  

Herein, we merely use white spectra in an effort to uncover the challenges associated 

with the exercise to compute/identify the “effective period” of a bilinear system. Each 

of the three MATLAB realizations was used to excite all 7 bilinear systems listed in 

Table 1 and the levels of ductilities achieved were recorded. Subsequently, each 

excitation was gradually amplified so that each bilinear system achieved various 

levels of ductilitites up to the value of 12 . The bilinear systems listed in Table 1 

have, 05.0a , and were selected so that their parameters ( yuT ,1 and Q ) correspond 

to typical values of reinforced concrete and steel structures (see Table 1).  

The response of the bilinear system is computed by solving equation (9) together with 

equation (8). From the nonlinear response analysis the peak deformation maxu ,was 

retained to compute the ductility demand of the response yuu /max . 

The values of effT of all seven bilinear systems listed in Table 1 as they result from 

statistical linearization via equation (15) are shown in Figure 2 with heavy dark dots 

for various values of ductility levels. The majority of these dots lie well above the  

 

Table I. Parameters of bilinear systems examined in this study with 05.0a   

Model )(1 sT  )(2 sT  )(mu y  )(/ gmQ  

1 0.3 1.34 0.0050 0.212 
2 0.4 1.79 0.0100 0.239 
3 0.45 2.00 0.0026 0.05 
4 0.5 2.24 0.0100 0.153 
5 0.6 2.68 0.0200 0.212 
6 0.67 3.00 0.0059 0.05 
7 0.89 4.00 0.0104 0.05 
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heavy dark line –that is the geometric relation given by equation (4) and they tend to 

accumulate close to the upper bound value aTT /12  . The differences between the 

predictions of the effective period, effT , between equations (4) and (15) is anywhere 

between 50% and 100%. 

 

4. THE WORK OF IWAN AND GATES [11], IWAN [12] AND GUYADER 

AND IWAN [13] 

Early theoretical work of the effective period and damping of stiffness-degrading 

structures was presented by Iwan and Gates [11]. The hysteretic model examined by 

Iwan and Gates [11] is a collection of linear elastic and Coulomb slip elements which 

can approximate the phenomenon of cracking, yielding and crushing. A special case 

of their hysteretic model is the bilinear model that is of interest in this study. Their 

study was motivated by the yielding response of traditional concrete and steel 

structures where the initial elastic stiffness, 1K , is a dominant parameter of the model; 

while, the displacement ductility assumes single digit values (say 8  ). Iwan and 

Gates [11] observed that the average inelastic response spectra resemble the linear 

response spectra except for a translation along an axis of constant spectral 

displacement. The above observation was a major contribution at that time for it 

indicates that the effective period of each corresponding linear system would be of 

some constant multiple of the first period of the hysteretic system.   

1effT CT                                                      (22) 

Equation (22) is similar to equation (4); however, in the work of Iwan and Gates [11] 

the constant, C , appearing in equation (22) is not an outcome from similar triangles 

(which result by assuming that effK is the slope of the line that connects the axis origin 

with the point on the backbone curve where we anticipate the maximum displacement 

to occur), but is the outcome from minimizing the root mean square (RMS) of the 

error between the average earthquake spectral displacements of a bilinear system and 

a family of potentially equivalent linear systems. Table 2 compares the values of 

C appearing in equation (22) for the bilinear system with 2 1/ 0.05K K    as 

computed by Iwan and Gates [11] together with the corresponding values of the term 

))1(1/(   appearing in equation (4). 

Table II indicates that for moderate values of ductility, the period shift ( 1/effT T ) as 

predicted by equation (4) is appreciably longer (i.e. 42% longer for 4.0  ) than the  

Table II. Comparison of the Geometric Relation between effT and 1T and the Results 

presented by Iwan and Gates [11] and Iwan [12]. 

max

y

u

u
  )1(1/(    

0.05   

1/effC T T  

Iwan and 

Gates [11] 

Eq.(17) 

Iwan  

[12] 

0.6 - 1.000 - 

1.0 1.000 1.000 1.000 

1.5 1.210 1.000 1.063 

2.0 1.380 1.130 1.121 

4.0 1.865 1.317 1.339 

8.0 2.434 1.573 1.752 
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period shift computed by Iwan and Gates [11] after minimizing the RMS of the 

difference between the equivalent elastic and inelastic average earthquake spectra. 

Consequently, for moderate values of ductility ( 2.0 8.0  ) the findings of Iwan 

and Gates [11] depart appreciably to the lower side from the results of the geometric 

relation given by equation (4).  

In a subsequent publication (Iwan [12]), the period shift,  1/effT T , presented in Table 

II was graphed as a function of the ductility, max / yμ u u . The least square log-log fit 

of these data resulted for a bilinear system with, 2 1/ 0.05K K   , the following 

expression 

8,])1(121.01[
1

939.0   TT
eff

                       (23) 

Figure 2 plots with a thin solid line the values of the period shift, 
1

/TT
eff

, as offered 

by equation (23) for 0.05  and up to values of ductility, 12 . These values are 

compared with the results from the geometric relation given by equation (4) and the 

results from the statistical linearization formulation (dark dots) as they offered by 

equation (15). What is striking about this comparison is that the differences between 

equation (23) presented by Iwan [12] and equation (15) presented by Caughey [1] are 

anywhere between 100% and 150%. Given that both methodologies are sound and 

that their mathematical foundations are correct, the comparison of the values for the 

effective period of bilinear systems offered in Figure 2 indicates that effT  is a quantity 

that has an elusive physical meaning, it depends strongly on the methodology adopted 

to calculate it and shall be used with caution and only within the limitations of the 

specific application.  

At this point it is worth reiterating that the statistical linearization method as 

formulated by Caughey [1] and documented by Roberts and Spanos [8]: (a) uses as 

ground excitation a stationary, zero-mean acceleration process; and (b) the value of 

effT  result after minimizing the expected value of the difference (error) between the 

displacement response time histories of the linear and nonlinear systems. On the other 

hand, the method presented by Iwan and Gates [11] which leads to equation (23) 

(Iwan [12]): (a) uses as ground excitation historic earthquake records; and (b) the 

values of effT  result after minimizing the overall RMS error between the average 

spectral displacements of a bilinear system and a family of potentially equivalent 

linear systems.  

In view of these striking differences between the values of the estimated effT  our 

study proceeds with the estimation of the effective period, effT  , by trying to identify a 

dominant vibration period in the response of the bilinear system by using 

mathematical formal and objective techniques.  

Some 35 years later Guyader and Iwan [13] revisited the problem of estimating 

equivalent linear parameters of nonlinear systems after introducing a measure on 

“engineering acceptability” –that is conservative displacement predictions are more 

acceptable than unconservative predictions. Building on the earlier work of Iwan and 

Gates [11] and Iwan [12], Guyader and Iwan [13] presented the following set of 

expressions for the period shift in a bilinear system  

1

32 ])1(0178.0)1(1145.01[ TTeff   , for 0.4    (24a) 

1)]1(1240.01777.01[ TTeff   , for 5.60.4      (24b) 
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1)]1
)2(05.01

1
(768.01[ TTeff 









, for 5.6    (24c) 

Figure 2 plots with a dashed line the values of the period shift 1/TTeff  offered by 

equations (24 a,b,c) for 05.0a up to values of ductility 12 . These values are 

above the initial values proposed by Iwan and Gates [11], Iwan [12] given by 

equations (23); yet, they remain below the over conservative values offered by the 

geometric relation given by equation (4). 

 

5. THE WORK OF GIARALIS AND SPANOS [14] 

An effort to bridge the gap between the power spectrum appearing in stochastic 

equivalent linearization (see equations (15) to (17)) and a design (earthquake) 

acceleration spectrum, ),( effaS , was recently presented by Giaralis and Spanos 

[14]. In their study, the core equation for relating aS to a one-sided power spectrum, 

)(G  representing a Gaussian stationary process )(tg assumes the expression  







0
222

2

,

22

,
)2()(

)(
[})({),( 




 d

G
tuES

effeff

effGeffeffGeffeffa
(25) 

in which the correction factor Geff , (coined as the “peak” factor in the original paper, 

Giaralis and Spanos [14]) establishes the equivalence, with probability of exceedence 

p , between the earthquake acceleration spectrum, aS and )(G (Vannmarcke [25]). 

The exact determination of Geff , is associated with the first passage problem for 

which a closed from solution is not available. In order to address this challenge, 

Giaralis and Spanos [14] adopted a semi-empirical formula known to be reasonably 

reliable for earthquake engineering applications (Vanmarcke [31], Der Kiureghian 

[32]); while assuming that the aforementioned probability of exceedence is 5.0p . 

The elaborated methodology presented by Giaralis and Spanos [14] eventually 

involves a recursive procedure to evaluate )(G and its implementation is beyond the 

scope of this study. 
 

6. WAVELET ANALYSIS 

In the above-reviewed equivalent linearization techniques (Caughey [1], Iwan and 

Gates [11], Guyader and Iwan [13] and Giaralis and Spanos [14]) the effective period 

of the bilinear system is estimated by engaging a linear system. The wavelet analysis, 

presented in this section, examines the response signal alone without minimizing any 

difference with the response of an equivalent linear oscillator. 

Over the last two decades, wavelet transform analysis has emerged as a unique new 

time-frequency decomposition tool for signal processing and data analysis. There is a 

wide literature available regarding its mathematical foundation and its applications 

(Mallat [16], Addison [17], Newland [18] and references reported therein). Wavelets 

are simple wavelike functions localized on the time axis. For instance, the second 

derivative of the Gaussian distribution, 
2 / 2te

, known in seismology literature as the 

symmetric Ricker wavelet (Ricker [33], [34] and widely referred as the “Mexican 

Hat” wavelet, Addison [17]),  
22 / 2( ) (1 ) tt t e                                               (26) 

is a widely used wavelet. Similarly the time derivative of equation (25) or a one cycle 

cosine function are also wavelets. A comparison on the performance of various 
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symmetric and antisymmetric wavelet to fit acceleration records is offered in 

Vassiliou and Makris [35]. In order for a wavelike function to be classified as a 

wavelet, the wavelike function must have: (a) finite energy, 

2
( )E t dt





                                           (27) 

and (b) a zero mean. In this work we are merely interested to achieve a local matching 

of the response history of a bilinear system with a wavelet that will offer the best 

estimates of period, IT . Accordingly, we perform a series of inner products 

(convolutions) of the acceleration response history of the bilinear system, ( )u t  with 

the wavelet  ( )t by manipulating the wavelet through a process of translation (i.e. 

movement along the time axis) and a process of dilation-contraction (i.e. spreading 

out or squeezing of the wavelet)  

( , ) ( ) ( ) ( )
t

C s w s u t dt
s


 






                                  (28) 

The values of s S  and    , for which the coefficient,    , ,C s C S    becomes 

maximum offer the scale and location of the wavelet  
t

w s
s




 
 
 

 that locally best 

matches the acceleration record,  tu . Equation (28) is the definition of the wavelet 

transform. The quantity ( )sw  outside the integral in equation (28) is a weighting 

function. Typically ( )sw  is set equal to s1/  in order to ensure that all wavelets 

   ,s

t
t w s

s



 

 
  

 
 at every scale s  have the same energy, and according to 

equation (27) 

    
2

2

, , 2

1
,s s

t
t dt dt t constant s

ss
 


  

 

 

 
    

 
   (29) 

The same energy requirement among all the daughter wavelets  ,s t is the default 

setting in the MATLAB wavelet toolbox and has been used by Baker [36]; however, 

the same energy requirement is, by all means, not a restriction. Clearly there are 

applications where it is more appropriate that all daughter wavelets  ,s t at every 

scale s  to enclose the same area ( ( ) 1/w s s ) or have the same maximum value 

( ( ) 1w s  ). However, in this paper there is no particular need for not using the default 

same energy requirement for the daughter wavelets.  

The multiplication factor  

 
 

 2

,
,

C S
S

w s S E



 

 
    (30) 

where E  is the energy of the mother wavelet, is needed in order for the best matching 

wavelet,    ,S

t
t w s

S
 

 
  

 
, to assume locally the amplitude of the 

acceleration record.  
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One of the challenges with any given wavelet is that upon is selected as the 

interrogating signal there is a commitment on the phase and the number of cycles of 

the mother wavelet. This challenge has been recently addressed by Vassiliou and 

Makris [35] who proposed the extended wavelet transform where in addition to a time 

translation and a dilation-contraction, the proposed transform allows for a phase 

modulation and the addition of half cycles.    

In the classical wavelet transform defined with equation (28) the mother wavelet is 

only subjected to a translation together with a dilation-contraction, 
t

s




 
 
 

. The 

dilation contraction is controlled with the scale parameter s ; while, the movement of 

the wavelet along the time axis is controlled with the translation time,  . For instance, 

any daughter wavelet of the symmetric Ricker mother wavelet given by equation (26) 

assumes the form 

 

2
12

21

t

st t
e

s s


 



 
  

 
     

     
     

   (31) 

In equation (31) the relation between the scale of the wavelet s and the period of the 

pulse, pp fT /1  is 2/2pTs  (Addison [17]). The need to include four 

parameters in a mathematical expression of a simple wavelike function has been 

presented and addressed by Mavroeidis and Papageorgiou [37]. They identified as the 

most appropriate analytical expression the Gabor [38] “elementary signal” which they 

slightly modified to facilitate derivations of closed-form expressions of the spectral 

characteristics of the signal and response spectra. The Gabor [38] “elementary signal” 

is defined as  

  

2

22

cos 2

pf
t

pg t e f t




 

 
 
         (32) 

which is merely the product of a harmonic oscillation with a Gaussian envelop. In 

equation (32), pf   is the frequency of the harmonic oscillation,   is the phase angle 

and 
 

is a parameter that controls the oscillations characters of the signal. The Gabor 

wavelike signal given by equation (32) does not have a zero mean; therefore, it cannot 

be a wavelet within the context of the wavelet transformation.  

Nevertheless, the elementary signal proposed by Mavroeidis and Papageorgiou [37] to 

approximate velocity pulses is a slight modification of the Gabor signal given by 

equation (32) where the Gaussian envelope has been replaced by an elevated cosine 

function. 

    
21

1 cos cos 2
2

p

p

f
v t t f t


 



  
    

  
  (33) 

Clearly the wavelike signal given by equation (33) does not always have a zero mean; 

therefore it cannot be a wavelet within the context of wavelet transform. Nevertheless, 

the time derivative of the elementary velocity signal given by equation (33) 

 
   

2 2
sin cos 2 sin 2 1 cos

p p p

p p

f f fdv t
t f t f t t

dt

  
    

  

     
          

     

 (34) 
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is by construction a zero-mean signal and is defined in this paper as the Mavroeidis 

and Papageorgiou (M&P) wavelet. After replacing the oscillatory frequency, 
pf , with 

the inverse of the scale parameter the M&P wavelet is defined as  

 

       
2 2 2 2

, , sin cos sin 1 cos
t

t t t t
s s s s s

    
         

 

          
                  

          

  (35) 

The novel attraction in the M&P wavelet given by equation (35) is that in addition to 

the dilation-contraction and translation 
t

s

 
 
 

, the wavelet can be further 

manipulated by modulating the phase,  , and the parameter  , which controls the 

oscillatory character (number of half cycles). We can now define the four parameter 

wavelet transform as  

( , , , ) ( , , ) ( ) ( , , )
t

C s w s u t dt
s


       






                     (36) 

The inner product given by equation (36) is performed repeatedly by scanning not 

only all times,  , and scales, s , but also by scanning various phases, 

{0, / 4, / 2,3 / 4}    , and various values of oscillatory character of the signal 

{1.0,1.5,2.0,2.5,3.0}  . When needed more values of  and  may be scanned. The 

quantity ( , , )w s    outside the integral is a weighting function which is adjusted 

according to the application. For instance, when all daughter wavelets have the same 

area the wavelet transform emphasizes on the shorter period pulses; whereas when all 

daughter wavelets have the same amplitude the wavelet transform emphasizes on the 

longer period pulses (Vassiliou and Makris [35]).  

Figure 4 (top-left) plots with a heavy dark line the best matching Mavroeidis and 

Papageorgiou (M&P) wavelet (Vassiliou and Makris [35]) on the acceleration 

response history of a bilinear system with strength / 0.153Q m g , first period 

1 0.5T s and 0.01 1yu m cm  when subjected to the OTE ground motion recorded 

during the 1995 Aigion earthquake. The displacement ductility reached is 

max / 6.76yu u   and the period of the best matching wavelet –that is the dominant 

vibration period is 1.20effT s . Figure 5 (left) plots the 5% elastic displacement 

response spectrum of the OTE ground motion -1995 Aigion earthquake and for the 

period 1.20effT s as extracted with the wavelet analysis, the elastic spectral 

displacement is 0.06DS m . Note that the dominant pulse extracted with wavelet 

analysis depends on the weighting function, ( , , )w s   appearing in front of the 

integral given by equation (36) (Vassiliou and Makris [35]). In this analysis 

( , , )w s   is selected in such a way so that all daughter wavelets in the analysis have 

the same energy. Next to this spectral value that corresponds to a displacement 

ductility of the inelastic system , 6.76  , the period values (and the corresponding 

spectral displacement) offered by equations (23) ( & 0.81I GT s ) and (24) 

( sT IG 94.0&  ) and the geometric relation given by equation (4) ( 1.15STT s ) are 

shown. Note that in this example the vibration period extracted with the wavelet 

analysis is longer than the period predicted with the minimization proposed by Iwan 
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and Gates [11] which is always shorter than the period which one computes with 

similar triangles (equation (4)). The spectral displacement that correspond to the 

vibration period extracted with the wavelet analysis ( 1.20WAT s ) is 0.06SD m ;  

  

  

 
 

Figure 4. Matching the acceleration response histories of bilinear systems with 

wavelet analysis (top) and the Prediction Error Method (center) when they are 

subjected to records from the 1995 Aigion, Greece and the 1979 Coyote Lake 

earthquakes.  
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Figure 5.Elastic displacement response spectra of the two earthquake records shown 

in Figure 4(bottom) together with the effective period values of two bilinear systems 

as they result from the methods assessed in this study.  

 

while 0.08SD m and more than 0.10m  when equations (18) and (4) are used 

respectively. 

Figure 4 (top-right) plots with a heavy dark line the best matching M&P wavelet 

(Vassiliou and Makris [35]) on the acceleration response history of a bilinear system 

with strength / 0.239Q m  , first period 1 0.4T s and 0.01yu m when subjected to 

Gilroy Array #6 ground motion recorded during the 1979 Coyote Lake earthquake. 

The displacement ductility reached is max / 7.25yu u    and the period of the best 

matching wavelet –that is the dominant vibration period is 2.75effT s .  

Figure 5 (right) plots the 5% elastic displacement response spectrum of the Gilroy 

Array #6 ground motion -1995 Coyote Lake earthquake. For the period 2.75effT s as 

extracted with the wavelet analysis the spectral displacement is 0.014SD m . Next to  

this spectral value that corresponds to a displacement ductility of the inelastic system, 

7.25  , the period values offered by equations (23) ( & 0.67I GT s ) and (24) 

( sT IG 94.0&  ) and the geometric relation given by equation (4) ( 0.94STT s ) are 

shown.  

Table III. Earthquake records selected as input motions in this study. 

Earthquake Record Station Magnitude, 
w

M  PGA(g) 

1966 Parkfield CO2 (St. 065) 6.0     0.48 

1979 Coyote Lake, CA Gilroy Array #6 230 5.7 0.43 

1983 Coalinga Oil City 270 5.8 0.87 

1983 Coalinga Transmitter Hill 360 5.8 1.08 

1983 Coalinga Transmitter Hill 270 5.8 0.84 

1986 North Palm Springs North Palm Springs 6.1     0.69 

1995 Aigion OTE Building 6.2 0.54 

 

The vibration periods extracted with wavelet analysis from the response of all bilinear 

systems listed in Table II when subjected to the historic records listed in Table III are 

also shown in Figure 2 with empty circles. These values are scattered, nevertheless, 
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most of them lie above the line defined by equation (18) (Iwan and Gates [11], Iwan 

[12]).  

 

7. TIME DOMAIN ANALYSIS 

Over the years, various powerful time domain methods have been developed and 

applied successfully. Perhaps, the most well known and powerful method in the 

system identification community is the Prediction Error Method (PEM). 

It initially emerged from the maximum likelihood framework of Aström and Bohlin 

[19] and subsequently was widely accepted via the corresponding MATLAB [20] 

identification toolbox developed following the theory advanced by Ljung [21], [22], 

[23]. 

Figure 4(center-left) plots with a heavy dark line the signal generated with the 

prediction error method (PEM) that best identifies the acceleration response history of 

bilinear system with strength / 0.155Q m g , first period 1 0.5T s and 

0.01 1yu m cm  when subjected to the OTE ground motion recorded during the 1995 

Aigion earthquake. The period if the best matching signal offered by PEM is 

1.02effT s . While the wavelet analysis (see Figure 4 top-left) concentrates on 

matching locally the most energetic pulse of the response history the prediction error 

method attempts to match to the extent possible a maximum segment of the response 

history. Consequently, the effective vibration period extracted with PEM will be in 

principle shorter than the periods extracted with wavelet analysis. Figure 4 (center-

right) plots with a heavy dark line the signal generated with PEM that best identifies 

the acceleration response history of a bilinear system with strength / 0.239Q m g , 

first period, 1 0.4T s and 0.01yu m when subjected to the Gilroy Array #6 ground 

motion recorded during the 1979 Coyote Lake earthquake. In this case the period of 

the best matching identification signal offered by PEM is 1.01effT s ; whereas the 

period of the best matching wavelet (see Figure 4 center left) is 2.75effT s . The 

shape of the Gilroy Array #6 spectrum shown in Figure 5(right) is such that these two 

period values which are 2.75 1.01 1.74s  apart correspond to comparable spectral 

displacements.  

The vibration periods extracted with the prediction error method from the response of 

all bilinear systems listed in Table II are also shown in Figure 2 with crosses. These 

values are systematically close to the value of the first period, 1T , of the bilinear 

system, indicating that the PEM tends to extract essentially the elastic period that 

manifest itself during the small-amplitude vibrations. The poor performance of the 

PEM in identifying the equivalent linear modal properties of 2-DOF systems with 

bilinear isolators has also been reported by Kampas and Makris [33].  

 

8. CONCLUSIONS 

This paper revisits and compares estimations of the effective period of bilinear 

systems exhibiting low to moderate ductility values as they result from: (a) Simple 

geometric relations associated with the bilinear loop, (b) stochastic equivalent 

linearization where the excitation process has a white spectrum, (c) the equivalent 

linearization method which minimize the difference between earthquake spectra 

presented by Iwan and Gates [11] and Guyader and Iwan [13], (d) best matching the 

most energetic pulse of the nonlinear response history with a four-parameter wavelet 

and (e) a time-domain method known as the Prediction Error Method (PEM).  
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The general conclusion is that the resulting values of the “effective period” (vibration 

period of the equivalent linear system) are widely scattered and they lie anywhere 

between the period values that correspond the first and the second slope of the bilinear 

system.  

At any given ductility value, max / yu u , the simple geometric relation, 

1 / [1 ( 1)]effT T a    appears to give the average value of effT among the scattered 

values offered by the aforementioned methods as summarized in Figure 2.  

The stochastic equivalent linearization method in which the excitation process has a 

white spectrum yields effective period values which are systematically larger than the 

period values offered by the simple geometric relation, 1 / [1 ( 1)]effT T a    ; 

while, the equivalent linearization method which minimizes the difference between 

the earthquake spectra (Iwan and Gates [11]) yields effective period values which are 

appreciable shorter. The revised expressions of Guyader and Iwan [13] which 

accounted for a conservative estimation of the effective period yield effective period 

values longer than the initial estimates of Iwan and Gates [12]; yet, shorter than the 

simple geometric relation. 

In addition to methods (b) and (c), the study examined the performance of two signal 

processing methods that process the response history alone without minimizing any 

difference with the response of a potentially equivalent linear oscillator.  

The best matching of the most energetic pulse of the nonlinear response history with a 

four-parameter wavelet transform yields vibration (“effective”)  period values which 

are widely scattered confirming the main finding of this study that the concept of the 

“effective period” of a bilinear system has limited technical value and the results 

depend strongly on the methodology used.  

Finally, the study show that the prediction error method attempts to match to the 

extent possible, a maximum segment of the nonlinear response history; therefore, 

concentrating on the small amplitude part of the nonlinear response; while, missing 

the local longer-period pulses which develop when the bilinear system experiences its 

larger ductility values.   
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