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Abstract 

In this paper the basic frequency response and time response functions of the three-

parameter Poynting-Thomson solid and Jeffreys fluid are revisited. The two 

rheological models find application in several areas of rheology, structural mechanics 

and geophysics. The relation between the analyticity of a frequency response function 

and the causality of the corresponding time-response function is established by 

identifying all singularities at ω=0 after applying a partial fraction expansion to the 

frequency response functions. The strong singularity at ω=0 in the imaginary part of a 

frequency response function in association with the causality requirement, imposes 

the addition of a Dirac delta function in the real part in order to make the frequency 

response function well defined in the complex plane. This external intervention, 

which was first discovered by P.A.M. Dirac, has not received the attention it deserves 

in the literature of viscoelasticity and rheology. The addition of the Dirac delta 

function makes possible the application of time domain techniques that do not suffer 

from violating the premise of causality.  

Introduction 

Traditionally, the linear theory of viscoelasticity has evolved in an inductive manner 

starting from the “elastic spring” (Hookean Solid) and the “viscous dashpot” 

(Newtonian fluid) and proceeding to more comprehensive phenomenological models 

by linear combinations of the two aforementioned basic elements. The behavior of 

several isotropic materials when stressed at small deformations gradients can be 

satisfactorily described with combinations of  “elastic springs” and “viscous 

dashpots” and it can be described by linear differential equations with constant 

coefficients of the form, 
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where 



 (t)  and 



(t)  are the time histories of the stress and the small-gradient strain; 




m

 and 



b
m

 are restricted to real numbers and are the parameters of the constitutive 

model, while the order of differential m and n is restricted to integers. In this paper we 

are concerned with the integral representation of equation (1). Linear-viscoelastic 

materials obey the so-called Boltzmann superposition principle- that the output 

history can be obtained as the convolution of the input history after being convolved 

with the corresponding basic time-response function. The basic time-response 

functions can be obtained either by imposing an impulse or a unit-step excitation in 

the constitutive model or by inverting in the time domain the corresponding frequency 

response functions of the constitutive models. Such techniques are well known in the 

disciplines of rheology (Ferry 1980; Bird et al 1987; Tschoegl 1989), structural 

mechanics (Harris 1988) and automatic control (Bode 1959), among others.  

The causal character of frequency response functions enforces relations between their 

real and imaginary parts (or their log-amplitude and phase). These relations are 

known as the Kramers-Kronig relations or merely the Hilbert transform (Booij and 

Thoone 1982; Fannin et al. 1993; Pritz 2003; Parot and Duparray 2007 and references 

reported therein). 

Despite the significant progress in understanding the microscopic topology of 

polymeric liquids (Everaers et al. 2004), the Hilbert transform (Kramers-Kronig 

relations) has always been a unique tool to validate experimental results that establish 

the real or imaginary parts of viscoelastic response functions (Tschoegl 1989; 

Caracciolo et al. 2001; Parot and Duperray 2007, among others). It should be noted 

however that there are some materials such as entangled polymer systems, wherethe 

mechanical straining leads to a considerable enhancement of their microstructure and 

in this case the Kramers-Kronig relations might be violated. When however 

microstructural distortion is dominant over microstructural enhancement the Kramers-

Kronig relations are found to apply (Dhont and Wagner 2001). Furthermore, 

experimental imperfections including plate and edge conditions and loss of material 

from the test-fixture may distort experimental data which appear to be inconsistent 
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with the satisfaction of the Kramers-Kronig relations. Such issues require further 

elaboration (Vlassopoulos 2006).  

More than a decade ago, Makris (1997) noticed that frequency response functions that 

have a singularity at ω=0 in their imaginary part (this happens to all practical models 

including the Hookean spring, the Newtonian dashpot, the Kelvin-Voigt and Maxwell 

models) should be corrected by adding a Dirac delta function in their real part. This 

operation ensures that the resulting time-response function is causal; and within the 

context of generalized functions (Lighthill 1989) extends the fundamental relation 

between analyticity of a frequency response function and the causality of the 

corresponding time-response function. The presence of this extra Dirac delta function 

in the frequency response functions, which does not appear in standard vibration 

handbooks (Harris 1988) or in the literature of rheology, appears indirectly in the 

time-response functions of simple viscoelastic models that have been postulated by 

Giesekus (1995). The remarkable intuitive results of Giesekus in the time domain are 

in direct agreement with the fundamental properties of analytic functions in the 

frequency domain. First, in this paper it is shown the agreement between the basic 

time-response function presented by Giesekus (1995) and those obtained by Makris 

(1997) who required that the real and imaginary parts of their frequency response 

function should be Hilbert pairs. 

Subsequently, the three-parameter Poynting-Thomson solid and the three-parameter 

Jeffreys fluid are examined and it is shown that they posses strictly proper frequency 

response functions which however have a singularity at zero. Despite that their 

frequency response functions have more poles than zeros, the fact that they have a 

pole at ω=0 in their imaginary part requires the addition of an external Dirac delta 

function in their real part so that their corresponding time-response functions are 

causal. The paper concludes with a table which summarizes the basic frequency 

response and time response functions of the three-parameter solid and fluid models. 

The correct expressions for the complex viscosity of the Poynting-Thomson solid and 

the complex compliance of the Jeffreys fluid together with the correct expressions of 

the corresponding relaxation modulus and retardation fluidity are new, original results 

in the literature.  
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Basic Frequency and Time Response Functions 

The linearity of equation (1) permits its transformation in the frequency domain by 

using the Fourier transform 

)()]()([)( 21  iGG  .                                   (2) 

where )}({)()( tdtet ti  






  F  and )}({)( t F  are the 

Fourier transforms of the stress and strain histories, respectively, while 

)()( 21  iGG   is the complex dynamic modulus of the model (Ferry 1980; Bird 

et al 1987; Gisekus1995) 
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)(G  is a basic frequency response function that relates a stress output to strain 

input. The numerator of the right-hand of (3) is a polynomial of degree n and the 

denominator of degree m; therefore,   )(G  has n zeros and m poles. A frequency 

response function that has more poles than zeros (m>n) is called strictly proper and 

results in a strictly causal time-response function which means that it is zero at 

negative times and finite at the time origin.  

The stress )(t  in (1) can be computed in the time domain with the convolution 

integral  






t

dtqt  )()()( ,                             (4) 

where )(tq memory function of the model (Bird et al 1987), defined as the 

resulting stress at time t due to an impulsive strain input at time ξ ( t ) and is the 

inverse Fourier transform of the complex dynamic modulus 
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The inverse Fourier transform given by (5) converges only when 






 d)(G ; therefore )(tq  exists in the classical sense only when )(G  

is a strictly proper function (m>n). However, there are case where strictly proper 

frequency response functions have a pole at zero ω=0, and in this case a special 

treatment is required in their real part in which an addition of an external Dirac delta 

function is needed. When the number of poles is equal to the number zeros (m=n), the 

frequency response function of the model is simply proper and results to a time-

response function that has a singularity at the time origin because of the finite limiting 

value of the dynamic stiffness at high frequencies. This means that in addition to the 

hereditary effects, the model responds instantaneously to a given input. When the 

number of poles is less than the number of zeros (m<n), the frequency response 

function of the model is improper (Rohrs et al 1993). 

The inverse of the complex dynamic modulus is the complex dynamic compliance 

(Pipkin 1986) 

)()(

1
)()()(

21

21



iGG

iJJ


J ,             (6) 

which is a frequency response function that relates a strain output to a stress input. 

From (3) and (6) it is clear that when a phenomenological model has a strictly proper 

complex modulus it has an improper complex compliance and vise versa. 

Accordingly, when the causality of a proposed model is a concern it is important to 

specify what is the input and what is the output. 

When the dynamic compliance )(J  is a proper frequency response function the 

strain history )(t in (1) can be computed in the time domain via convolution 

integral  
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




t

dtt  )()()( ,                                  (7) 

where )(t retardation fluidity (Giesekus 1995), defined as the resulting strain 

history at time t due to an impulsive stress input at time ξ ( t ) and it is the inverse 

Fourier transform of the dynamic compliance.  






 


  det ti)(
2

1
)( J .                                (8) 

In structural mechanics the equivalent of the retardation fluidity is known as the 

impulse response function, )(th  (Veletsos and Verbic 1974; Makris 1997). 

Expressions of the retardation fluidity of the Hookean solid, the Newtonian fluid, the 

Kelvin-Voigt solid and Maxwell fluid have been presented by Giesekus (1995); 

however, the expression of retardation fluidity of the three-parameter Jeffreys’ fluid 

has not been available in the literature. The lack of this expression was part of the 

motivation of this paper. Another useful frequency response function of a 

phenomenological model is the complex viscosity )()()( 21  i , 

which relates a stress output to a strain-rate input  

)()]()([)( 21  i  ,                         (9) 

where )()(  i = Fourier transform of the strain-rate time history. In 

structural mechanics the equivalent of the complex viscosity at the force-velocity 

level is known as the impedance function )()()( 21  iZZ Z . For the 

linear viscoelastic model given by (1) the complex viscosity of the model is  
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The stress )(t  in (1) can be computed in the time domain with an alternative 

convolution integral  






t

d
d

d
tGt 




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)(
)()( ,                              (11) 

where )(tG  is the relaxation modulus of the model defines as the resulting stress at 

the present time, t, for a unit-step displacement at time ξ ( t ) and is the inverse 

Fourier transform of the complex viscosity  





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

 detG ti)(η
2

1
)( ,                                (12) 

Expressions for the relaxation modulus )(tG , of various simple viscoelastic models 

are well known in the literature (Bird et al. 1987; Giesekus 1995); however the 

expression of the relaxation modulus of the three-parameter Poynting-Thomson solid 

has not been available. This issue is addressed in this paper.  

Equation (10) indicates that if the complex dynamic modulus of a model, )(G , is a 

simple proper function, then the complex viscosity of the model )(η  , is a strictly 

proper function; therefore, the relaxation modulus of the model )(tG  is finite; 

whereas, the memory function )(tq  has a singularity at the time origin. The inverse 

of the complex dynamic viscosity is the complex dynamic fluidity (Giesekus 1995) 
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i


  ,               (13) 

which is a frequency response function that relates a strain-rate output to a stress 

input. When the dynamic fluidity is a proper frequency response function the rate-of-

strain history  )(t  can be computed in the time domain via the convolution integral  
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




t

dtt  )()()(                                   (14) 

where )(t  is the impulse strain-rate response function  defined as the resulting 

strain-rate output at time t for an impulsive stress input at time ξ ( t ) and is the 

inverse Fourier transform of the dynamic fluidity  






 


  det ti)(
2

1
)( .                           (15) 

The Hidden Dirac delta Function 

The need for the addition of a Dirac delta function in the real part of frequency 

response functions, that their imaginary part has a singularity at 00 i  was 

discovered by Makris (1997) and is illustrated in this section by examining the 

simplest phenomenological model- the linear elastic spring. For a Hookean solid 

equation (1) reduces to  

)()( tGt   ,                                                 (16) 

and from equation (3) the complex dynamic modulus is merely  

0)( iG G ,                                      (17) 

while equation (5) yields that the memory function, 

)0()(  tGtq  .                                   (18) 

Now, equation (9) suggests that the dynamic viscosity of the Hookean solid (strain-

rate frequency response function)  






i
i

)(
)()()( 21

G
 ,                           (19) 

and according to equation (19) the dynamic viscosity (impedance) of the Hookean 

solid is  
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


G
i 0)(η .                                           (20) 

The inverse Fourier transform, )sgn(
2

1

2

1
tde

i ti 





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
, is well known in 

the literature (Morse and Feshbach 1953) and according to equation (12), given the 

expression offered by (20), the relaxation function of the Hookean solid assumes the 

expression  






 )sgn(
2

1

2

1
)( tGde

G
itG ti 
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
.                   (21) 

The reader recognizes that although the complex dynamic viscosity of the Hookean 

spring, given by (20), is a strictly proper function, the resulting relaxation function is 

the erroneous non-causal signum function which maintains a finite value along the 

entire negative time axis. In fact, equation (21) erroneously suggests that the elastic 

spring will produce as much response at negative times (prior to the excitation) as the 

response produced following the excitation. The origin of this causality violation is 

that although the expression of the complex viscosity,  )( , given by (20) is a 

strictly proper frequency response function, the real and imaginary parts of )(  

given by (20) are not Hilbert pairs (Tschoegl 1989). The violation of causality shown 

by (21) can be cured by requiring the real and imaginary parts (20) to be Hilbert pairs, 

or in other words to satisfy Kramers-Kronig relations 


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
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 dx
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
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)(1
)( 1

2 .              (22) 

The imaginary part, 


G
 , of )( given by (20), has as Hilbert transform the 

function, )0( G - a function that is everywhere zero; yet singular at the static 

limit. This can be shown immediately from the second relation of (22) after making 

the change of variables   x  , dxd  . 
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Accordingly, the real part of the complex viscosity of the Hookean spring is  

)0()(1   G (not zero) and the correct value of the complex viscosity of 

the Hookean spring is not equation (20) but the equation below: 

]
1

)0([)(η


 iG  .                             (24) 

By inverting back in the time domain equation (24), the correct expression for the 

relaxation modulus of the Hookean spring is recovered 






 )()]sgn(1[
2

1
]

1
)0([

2

1
)( tGHtGdeiGtG ti 







 (25) 

where )(tH is the Heaviside step function and the correct causal result is recovered 

(see Table 1, Giesekus 1995). The above calculation shows that the requirement that 

the real and imaginary part of the complex dynamic viscosity to be Hilbert pairs 

imposes the presence of a Dirac delta function in its real part which when transformed 

in the time domain offers the so much needed unity which lifts the signum function by 

the necessary amount to convert it to the causal Heaviside function. The presence of a 

Dirac delta function as the real part of the complex viscosity extends the concept of 

analyticity to generalized functions and essentially makes the reciprocal function  


1
 

well defined in the neighborhood ω=0. The intimate relation between the reciprocal 

function and the delta function appearing in the right hand side of (24) was first 

noticed by Dirac (1958).  

The final result of equation (25), )()( tGHtG  , has been presented in the paper 

by Giesekus (1995) who followed faithfully the definition of the relaxation modulus 

and imposed in the constitutive equation of the Hookean solid,  )()( tGt    a 

step strain excitation )()( tHt   . In this paper the same result is recovered with 
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a rigorous mathematical formulation which emerges from the fundamental relation 

between the causality of the time response function and the analyticity of the 

corresponding frequency response functions which herein is extended in the case of 

generalized functions. This mathematical formulation is further applied in this paper 

in an effort to compute the basic frequency response functions of the three-parameter 

solid and fluid models.    

Complex Modulus, Compliance, Viscosity and Fluidity of Simple Rheological 

Models 

Backgroung 

All simple linear rheological models such as the Hookean solid, the Newtonian fluid, 

the Kelvin-Voigt solid, the Maxwell fluid, together with the three-parameter 

Poynting-Thomson solid and Jeffreys fluid have either a complex compliance or 

complex viscosity function with an imaginary term that has a singularity at ω=0. By 

using the properties of the Hilbert transform and the associated Kramers-Kronig 

relation, Makris (1997) corrected the frequency response functions of the first four 

models by adding a delta function in their real part. Table 1 presents the corrected 

basic frequency response functions and the corresponding time-response functions of 

the first four elementary rheological models at the stress-strain level. This table was 

first published by Makris (1997) within the context of structural mechanics at the 

force-displacement level. The appended Dirac delta functions appearing in the 

complex viscosity (impedance) of the Hookean and Kelvin-Voigt solids and in the 

complex compliance (flexibility) of the Newtonian and Maxwell fluids are marked in 

bold face. Similarly in bold face are marked in the corresponding time response 

functions the 1/2 values resulting from the Fourier transform of the appended Dirac 

delta functions, which convert the non-causal signum functions, )sgn(
2
1 t , into the 

causal Heaviside functions = )()sgn(
2
1

2
1 tHt  . It is remarkable that all causal 

Heaviside functions, )sgn(
2
1

2
1 t , appearing in Table 1 of this paper, appear also in 

the paper by Giesekus (1995); which however, does not addresses their implication to 

the corresponding frequency response functions.  
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TABLE 1. Basic Frequency response Functions and Time-Response Functions of Elementary Rheological Models. 

 Hookean solid Newtonian fluid Kelvin-Voigt solid Maxwell fluid 

Constitutive equation )()( tGt    

dt

td
t
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
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dt
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dt
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In this paper the same methodology is applied to the three parameter Poynting-

Thomson solid and Jeffrey fluid. Figure 1 shows schematics of the two models of 

interest as alternative combinations of springs and dashpots.  

The Poynting-Thomson Solid 

With reference to Figure 1 (left) the constitutive equation of the three parameter 

Poynting-Thomson solid is 

]
)(

)([
)(

)( 21
dt

td
tG

dt

td
t





                                    (28) 

For the top configuration of Figure 1  

21

1
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


 =relaxation time, 
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2

2
G


 the retardation time  ( 12   )and 

21

21

GG

GG
G


 ; while for the 

bottom configuration of Figure 1, 

2

1
G


  , 

21

21
2

GG

GG 
  and  1GG  .  

The complex modulus of the Poynting-Thomson solid is 

 )
1

(
1

1
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1

12
2
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2











i

G

i

i
G









G                     (29) 

which is a simple proper transfer function since the number of poles equals the 

numbers of zeros. In the right hand side of equation (29) we have separated the 

finite limiting value of the complex dynamic modulus at the high frequency limit 

which when transferred in the time domain it yields a singularity at the time 

origin of the memory function 

)]()1()0([)(
2

1
)( 1

1

2
2
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G

detq

t

ti 















  G    (30) 

Similarly, the complex dynamic compliance of the Poynting-Thomson model is a 

simple proper transfer function 
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and the retardation fluidity also exhibits a feeble singularity at the time origin. 
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The complex viscosity of the Poynting-Thomson solid is 
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G
 ,                             (33) 

which is a strictly proper function since the number of poles is larger than the number 

of zeros. At the same time, the complex viscosity given by (33) has a singularity at 

ω=0 and a special treatment is required. Partial fraction expansion of the polynomial 

ratio of equation (33) yields 








1
]

11

1
)[()(

2

1
2
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1
212 iGiG 





  .       (34) 

The quantity within the brackets of equation (34) is merely the complex dynamic 

viscosity of the Maxwell element (see Table 1) and when transformed in the time 

domain it yields a causal response , )1/exp( t , since the real and imaginary parts in 

the brackets of (34) are Hilbert pairs (Makris 1997). What remains in the frequency 

response function of (34) is the last term, 


1
iG , which is merely the uncorrected 

complex viscosity of the Hookean solid (see equation 20). Its Hilbert transform is 

offered by equation (24) and the correct expression for the complex viscosity of the 

Poynting-Thomson’s model is  

]
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 .(35) 
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With the addition of the Dirac delta function, )0( G , in (34) the real and 

imaginary parts within brackets of equation (35) are now Hilbert pairs and the inverse 

Fourier transform of (35) yields a relaxation modulus that is causal 

1)1()]sgn(
2

1

2

1
[)(

1

2 




t

eGtGtG


 .            (36) 

The complex dynamic fluidity of the Poynting-Thomson solid is an improper 

frequency response function  

2
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1
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1
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

i

ii

G 


                           (37) 

and its impulse strain-rate response function is computed with equation (15). The 

inverse Fourier transform of (37) yields the impulse strain-rate response function that 

is singular at the time origin. 
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
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t

et
dt
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G
t


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  (38) 

Table 2 summarizes the basic frequency response and time-response functions of the 

two models of interest in this paper.  

 

The Jeffreys Model 

With reference to Figure 1 (right) the constitutive equation of the three-parameter 

Jeffreys fluid is  

]
)()(

[
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21
dt

td

dt

td

dt

td
t





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
                           (39) 
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For the top configuration of Figure 1, 



G

21
1


 relaxation time, 


G

2
2


 retardation time ( 21   ) and 1  ; while, for the bottom 

configuration of Figure 1, 
G

2
1


  , 

21

211

2







G

 and 21   . 

The Jeffreys fluid has been a popular visoelastic model which has been initially 

proposed by Jeffreys (1929) to model the viscoelastic behavior of earth strata and 

subsequently enjoyed wide acceptance by rhelogists in studies ranging from the onset 

of convection in viscoelastic fluids (Lebon et al. 1994) to the understanding of 

viscoelastic flow in curved ducts (Manos et al. 2006) and peristaltic transport 

(Kothandapani and Srinivan 2008). 

 

 The complex modulus of the Jeffreys fluid is 

1

2

1
)(






i

i




G                                         (40) 

which is an improper frequency response function since the number of poles is less 

than the numbers of zeros and its memory function is computed as 

])1(
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
t
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dt
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

 (41) 

The complex dynamic compliance of the Jeffreys’ model is  

2

1111

)(

1
)(













i

i

G
J                             (42) 

which is a strictly proper function; nevertheless, it has a singularity at ω=0 and a 

special treatment is required. Partial fraction expansion of the polynomial ratio of 

equation (42) yields 
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


J             (43) 

The quantity within the brackets of equation (43) is again the complex dynamic 

viscosity of the Maxwell element (see Table 1) and when transformed in the time 

domain it yields a causal response, )1/exp( t , since the real and imaginary parts in 

the brackets of (43) are Hilbert pairs (Makris 1997). The remaining part in equation 

(43) is the imaginary quantity, 


1i
 .  Its Hilbert transform is )0( 




; and 

therefore, the correct expression for the complex compliance of the Jeffreys model is 
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 iJ   (44) 

With the addition of the Dirac delta function, )0(  , in (43) the real and 

imaginary part within both parenthesis of equation (44) are Hilbert pairs and the 

inverse Fourier transform of (44) yields a retardation fluidity  function that is causal  
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The complex viscosity of the Jeffreys’ fluid is  

]
)(

[
)(

)(
11

21

1

2

1

2






























i
i

i

i

i

G
,            (46) 

which is a simple proper frequency response function given that the number of poles 

equals the number of zeros. In the right-hand side of equation (46) we have separated 

the finite limiting value of the complex viscosity at the high frequency limit which 

when transformed in time domain it yields a singularity at the tie origin of the 

relaxation stiffness 

 ])1()0([)( 1
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2
2
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
t

eGttG
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Equation (47) is well known to the literature (Bird et al 1987 among others). Similar 

to the complex viscosity, the complex fluidity of the Jeffreys fluid is a simple proper 

frequency response function and its corresponding impulse strain-rate response 

function yields a singularity of the time origin. Table 2 summarizes all the basic 

frequency response and time response functions of the Poynting-Thomson solid and 

Jeffreys fluid examined in this paper. The original contribution of this paper is the 

addition of the Dirac delta functions marked with bold face in the complex viscosity 

of the Poynting-Thomson solid and the complex compliance of the Jeffreys fluid. 

Similarly, in bold face are marked in the corresponding time response functions the 

1/2 values resulting from the Fourier transform of the appended Dirac delta functions, 

which convert the non-causal signum functions )sgn(
2

1
t  to the causal Heaviside 

 function = )()sgn(
2

1

2

1
tHt  . 

 

Conclusions 

In this paper the basic frequency response functions of the three-parameter Poynting-

Thomson solid and the three-parameter Jeffreys fluid are revisited. Each of these 

rheological models has either a dynamic complex viscosity or a dynamic complex 

compliance with an imaginary term that has a singularity at ω=0. Using the properties 

of the Hilbert transform and the associated Kramers-Kronig relations it is showed that 

such frequency response functions should be corrected by adding a delta function in 

the real part. The presence of a Dirac delta function in the real part extends the 

concept of analyticity to generalized functions and essentially makes the 

corresponding frequency response functions well defined in the neighborhood ω=0. 

This operation ensures causality of the corresponding time response functions which 

provide directly the stress or the strain histories via convolution integrals. 
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TABLE 2. Basic Frequency response and Time-Response Functions of the Three-Parameter Models. 

 Three Parameter Poynting-Thomson  Solid  Three Parameter Jeffreys fluid 
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Three-Parameter Poynting-Thomson  Solid 
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Three-Parameter Jeffreys fluid 
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Figure 1. Alternative configuration of the three-parameter Poynting-Thomson solid (left) and the three-

parameter Jeffreys fluid (right). 

 

 

 


