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Abstract 

This paper investigates the modal identification of seismically isolated bridges when 

the localized nonlinear behavior from the isolation bearing initiates at different times 

due to the uneven height of the bridge piers. More specifically, a three-span bridge 

supported on spherical sliding bearings is examined. Three different states of the same 

system with different natural periods emerge during an excitation; the linear system 

(LS), the partially isolated system (PIS) and the fully isolated system (FIS). Firstly, the 

paper identifies the time intervals that each state performs by using acceleration data. 

Subsequently, modal identification techniques such as the Prediction Error Method and 

a time-frequency wavelet analysis are applied on each interval. The LS’ results are 

dependable compared to the PIS which is a mildly nonlinear system. The results 

corresponding to the FIS suggest that it is preferable to apply the modal identification 

techniques on each interval independently, rather than on the entire response signal.  

Keywords: Seismic Isolation; Modal Identification; Dynamic Response; Bilinear 

Behavior; Time-Frequency Analysis; Bridge; Earthquake Engineering; Prediction 

Error Method; Structural Health Monitoring  

1. Introduction 

Seismic isolation is a widely accepted technology for protecting structures from strong 

earthquake shaking (Skinner et al., 1993; FHWA, 1995). Initially, bearings were used 

in bridges between the deck, the piers and the abutments for accommodating the 

thermal movements, while the experience gained through the years lead to its 

implementation as a most promising earthquake protection strategy (Kelly, 1997). The 

most commonly used isolation bearings are the lead rubber elastomeric and the 

spherical sliding bearings. 

Fig. 1 shows the elevation of a recently constructed bridge in central Greece (Makris et 

al. 2010). The bridge is isolated with a pair of spherical sliding bearings (SSB) with 

radius of curvature, mR 2.2 , on each abutment and pier. The isolation period of the 

devices that corresponds to the aforementioned curvature in any horizontal direction is

sgRT 2.2/2   . The SSBs have an initial deformation, 

mmmu y 25.000025.0  , as a function of the thickness of the material of the interface 

before the sliding initiates. The mean value of the friction coefficient of the isolation 

system is %5.4045.0  . The relation between the force, )(tF , and the 

displacement, )(tu , of a SSB with radius R  is described from  
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where N is the vertical force applied on the bearing and   the mean friction coefficient 

of the interface respectively. The force-displacement hysteretic loop is presented in Fig. 

2.  

Furthermore, the bridge of Fig.1 is a continuous, three-span, reinforced concrete, box 

girder bridge with 126m long deck. The heights of the supporting piers 1M  and 2M  are 

respectively m97.25  and m38.10 , following the morphology of the terrain. Fig. 2 (left) 

also displays the transverse restrains at the end abutment of the railway bridge for 

avoiding the misalignment of the rails at the deck-abutment joint during earthquake 

shaking. The bridge of Fig. 1 is fully isolated in the longitudinal direction, while it is 

restrained at the end-abutments in the transverse direction.  

Railway bridges are important lifeline systems part of major transportation systems 

vital for the economy and society. In this paper we investigate and address some of the 

challenges that emerge from the interpretation of recorded acceleration data given that 

the sliding of the bearings of the bridge initiates at different times because of the uneven 

heights of the piers.  

Modal identification is a subcategory of SHM and has been associated mostly with 

frequency domain methods. However, over the years, various powerful time domain 

methods have been developed and applied successfully. One of these methods that can 

be applied for the identification of modal periods is the Prediction Error Method (PEM). 

It initially emerged from the maximum likelihood framework of Aström and Bohlin 

(1965) and was advanced and became popular to system identification engineers as a 

MATLAB (2002) identification toolbox, which was developed following the theory by 

Ljung (1987; 1994; 2002). In addition to PEM, another powerful tool that involves 

engineer’s judgment is time-frequency analysis and more specifically, the extended 

wavelet transform (EWT) introduced by Vassiliou and Makris (2011) as an extension 

of the classical wavelet transform (Mallat 1999, Addison 2002 and references reported 

therein) for interrogating signals. 

This paper builds upon the work of Kampas and Makris (2012); the natural period of a 

seismically isolated deck is better expressed with the second slope of the hysteretic 

loop, 2T , than with the geometric concept of the “effective period” which has no 

physical meaning (Kampas and Makris, 2012; Makris and Kampas, 2012; Kampas and 

Makris 2014). Analytical studies of the modal analysis of seismically isolated bridges 

when the deck is laterally restrained at the end abutments have been presented recently 

by Makris et al. (2010) and when the deck is laterally free at the end abutments by 

Kampas and Makris (2012).  

2. Statement of the problem 

Fig. 3 shows the mechanical idealization of the isolated bridge of Fig.1 along the 

longitudinal and transverse directions. In the longitudinal direction, the deck is assumed 

rigid thus the bridge can be considered as a single degree of freedom system (SDOF). 
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On the contrary, along the transverse direction the bridge is treated as a simply 

supported at the end abutments flexural beam on discrete stiffness elements (bearings).  

Fig. 4 (left) shows the cross section of piers 1M  and 2M  and Fig. 4 (right) the moment-

curvature diagram by implementing Mander model (Mander et al. 1988). Fig. 5 presents 

the pushover curves of the piers in both the longitudinal and transverse directions 

respectively. Fig. 5 (right) highlights the lateral force needed to initiate sliding in the 

SSB at each pier is MNFL 9.0 . For pier 1M , the LF value corresponds to mm6.0  

displacement and for 2M  to mm5.5  in the longitudinal direction. Consequently, when 

the deck experiences displacements in the range of mm)6.00.0[  the SSBs are not 

sliding, thus the bridge performs linearly in the longitudinal direction (linear system). 

In the range of mm)5.56.0[  the SSBs at pier 2M become engaged contrarily to the 

SSBs at 1M . In this case, the bridge changes its dynamic characteristics and becomes 

merely isolated (partially isolated system). In the range of mmmax]5.5[  both SSBs 

become engaged thus the bridge becomes fully isolated in the longitudinal direction. It 

is evident that the bridge of Fig.1 may respond dynamically during a single event by 

exhibiting three distinct periods depending on the amplitude of the response. The 

abovementioned problem can be further visualized in Fig. 6 where the deck imposes a 

common displacement to all piers and the tall piers deform accordingly in comparison 

to the shorter piers that need the additional deformation of the bearings to accommodate 

the deck’s displacement. The manifestation of the different periods according to the 

level of shaking is a challenge to the modal identification of bridges having piers with 

uneven heights.   

This challenge further increases when one considers the situation with a bridge having 

n  piers and n  bearings but with k engaged bearings ( nk  ), under the assumption that 

the pier stiffnesses, 
pier

ik , are inversely proportional to their numbering on the figure, 

i , as 
i

k
pier

i

1
 . Additionally, the SSB’s natural period is considered to be the period 

associated with the second slope of the bilinear system, s
k

m
T

SSB
0.32

2

2    (Kampas 

and Makris 2012; Makris and Kampas 2012). Fig. 7 presents the modal periods of the 

distinct states emerging from the k engaged bearings at n  piers. When nk  , the modal 

period of the total SDOF system becomes sTT
SSB

0.32  .  

It is evident from Fig. 7 that the differences between each state’s modal period is not 

negligible, thus it is important to be able to identify the different time intervals in which 

each state of the system is responding during an event.  

In the case of the bridge of Fig.1, 2n  so there could be three potential, emerging 

states; the linear system (LS) with 0k , the partially isolated system (PIS) with 1k

(the SSB of M2) and the fully isolated system (FIS) with 2k , respectively.  
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Tables 1 and 2 present the modal periods of the abovementioned systems in the 

longitudinal and transverse direction, respectively.  

3. Proposed Methodology for Modal Identification  

As mentioned in the previous section, during a dynamic event, the deck’s total response 

signal might be misleading for back-figuring the dynamic characteristics of the bridge, 

since it is composed from the sequential responses of the emerging states of the system. 

Thus, it is essential to develop methods to identify the distinct time intervals that 

correspond to each state on the deck output record.  

It is assumed that the bridge has either linear variable differential transducers (LVDTs) 

or accelerometers above and below the isolation bearings at each pier.  

A first way to identify the engagement interval of each SSB is to extract the information 

from its relative displacement signal deduced from the LVDTs’ records (e.g. criterion:

mutu y 00025.0)(  ).   

However, the most usual device for structural health monitoring projects is the 

accelerometer. Another way to identify the different intervals is to extract the relative 

acceleration signal from the accelerometers above and below the isolators at each pier 

and use it to construct the equivalent internal variable of the Bouc Wen model (Wen 

1975;1976), )(tz , as shown in eq. (2),  
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(2) 

where Y  is the state vector, )(tu , )(tu  and )(tu are the displacement, the velocity 

and the acceleration of the SSB respectively, )(tz  is a variable that takes values from 

]11[ , yu  is the initial deformation m00025.0  and  , are internal parameters 

of the Bouc-Wen model that control the shape of the hysteretic loop. More 

specifically, if the SSB is sliding the 11)( ortz  , else  )11()( tz . 

Accordingly, the engagement interval of each SSB is defined from the first value of 

-1 or 1 to the last value-1 or 1  in the )(tz signal as shown in Fig. 8.  

If 
1

1

M
t and 

1

2

M
t  is the time of the initiation and the ending of the sliding of the SSB 

at pier 1M  and 
2

1

M
t  and 

2

2

M
t  at pier 2M  respectively, by assuming that 

1

1

2

1

MM
tt 

, the distinct time intervals will form as: 

 ]0[
2

1

M
tt is when the LS is performing, as there is no sliding occurance. 

 ][
1

1

2

1

MM
ttt is when the PIS is performing, since only the SSB at pier 2M  

is engaged. 

 
2

2

1

2

1

2

1

1 ],[
MMMM

ttttt  is when the FIS is performing.  

 ][
2

2

1

2

MM
ttt is when PIS is performing, since the SSB at pier 1M  is 

“locked”. 
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 )[
2

2 endtt
M

 is when the LS is performing, as the SSB at pier 2M  is 

“locked” also. 

The PIS and the FIS are mildly nonlinear systems, thus trying to identify a modal period 

from their corresponding time interval would be a challenge. Kampas and Makris 

(2012) proposed the index in eq. (3) for deciding whether the results are dependable or 

not.  

10,
2

1 22,
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where 



i

plateaui

N

N ,
 is the ratio of the points on the plateaus in the engagement interval 

of )(tz divided by the total number of points in the engagement interval (defined as 

engagement index), wavr  is the matching index that possess the value 1 if the best 

matching wavelet (output of the wavelet method) is perfectly correlated with the 

acceleration record and the value 0 if there is no correlation between them, and PEMr is 

the matching index that correlates the output signal of prediction error method (PEM) 

with the actual acceleration record as shown in eq.(4).  
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More details about the application of the PEM and the wavelet analysis as modal 

identification methods can be found in Kampas and Makris (2011; 2012).  The 

estimation of the index r (which becomes nrrrr ,...,,, 321 for n  piers), would suggest 

whether the modal periods identified are reliable ( 5.0)min(  irr ) or not                   (

5.0)min(  irr ).  

The methods implemented in this study to identify the modal characteristics range from 

time domain methods such as the Prediction Error Method (PEM) to time-frequency 

analysis and wavelets.  

  

The Prediction Error Method (PEM) 

The prediction error methods belong to a broad family of parameter estimation methods 

that can be applied to arbitrary model parameterizations (Ljung 2002). Given an output

( )y t  due to an input ( )u t  at time t , the target is to identify the parameters of the selected 

model. The recordings are discrete in time and let 

{ (1), (1), (2), (2),... ( ), ( )}NZ u y u y u N y N  be all the past data recorded up to time 

t N . The basic idea that lies behind these methods is that the model can be described 

as a predictor of the next output point as a function of the past history, 
1ˆ ( 1) ( )t

my t t f Z       (5) 
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where ˆ ( 1)my t t   accounts for the predictor, and 
1( )tf Z 

 for the chosen, arbitrary 

function of past data. The next conceptual step is to parameterize the predictor using a 

parameter vector, ,  
1ˆ( ) ( , )ty t f Z        (6) 

The method’s final outcome is an estimate of the parameter vector , N , according to 

the minimization of an appropriate norm which represents the distance, ( )NV  , between 

the predicted { (1 ), ... , ( )}y y N  and the recorded output { (1), ... , ( )}y y N : 

1

1 1

ˆ( ) ( ( ) ( )) ( ( ) ( , ))
N N

t

N

t t

V l y t y t l y t f Z 

 

      
 

 (7) 

where 
2

ˆ( ) ( )l y t y t    is a suitable distance measure. The parameter vector ˆ
N is 

calculated by minimizing the above norm,  

ˆ arg min ( )N NV


        (8) 

 

Time-Frequency Wavelet Analysis 

Over the last two decades, wavelet transform analysis has emerged as a unique new 

time-frequency decomposition tool for signal processing and data analysis. There is a 

wide literature available regarding its mathematical foundation and its applications 

(Mallat 1999, Addison 2002 and references reported therein). Wavelets are simple 

wavelike functions localized on the time axis. For instance, the second derivative of the 

Gaussian distribution, 
2 / 2te

, known in the seismology literature as the symmetric 

Ricker Wavelet (Ricker 1943, 1944; and widely referred as the “Mexican Hat” wavelet, 

Addison 2002), 

   
22 /21 tt t e       (9) 

is widely used in wavelet analysis. In order for a wavelike function to be classified as a 

wavelet, the wavelike function must have (Addison 2002) : (a) finite energy 

 
2

E t dt



       (10) 

and (b) a zero mean. In this proposal we are merely interested to achieve the best local 

matching of any given acceleration record with a wavelet that will offer the best 

estimates of the period ( pT  time scale) and amplitude ( pa , since 
2

p pa T  length scale) 

of the prevailing energetic pulse. Accordingly, we perform a series of inner products 

(convolutions) of the response acceleration signal,  u t , with the wavelet ( )tψ  by 

manipulating the wavelet through a process of translation (i.e. movement along the time 

axis) and a process of dilation-contraction (i.e. spreading out or squeezing of the 

wavelet) 







 dt

s

t
tuswsC )()()(),(


      (11) 

The values of s S and    , for which the coefficient,    , ,C s C S    becomes 

maximum offer the scale and location of the wavelet  
t

w s
s




 
 
 

 that locally 

matches best the acceleration record,  tu . Equation (11) is the definition of the wavelet 

transform. The quantity ( )sw  outside the integral in equation (11) is a weighting 
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function. Typically ( )sw  is set equal to s1/  in order to ensure that all wavelets 
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t
t w s
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 at every scale s  have the same energy, and according to 

equation (10) 

   
2

2
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   (12) 

The same energy requirement among all the daughter wavelets  ,s t is the default 

setting in the MATLAB wavelet toolbox and what has been used by Baker (2007); 

however, the same energy requirement is, by all means, not a restriction. Clearly there 

are applications where it is more appropriate that all daughter wavelets  ,s t at every 

scale s  enclose the same area( ( ) 1/w s s ) or have the same maximum value ( ( ) 1w s 

).  

For illustration purposes, Fig. 9 presents the acceleration response of a 2dof oscillator 

when subjected to the 95 Erzincan record. The heavy dashed line presents the wavelet 
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 in which   and S  are the values of   and s  that give the 

maximum coefficient ( , )C S   from equation (11) in which   1/w s s . The 

multiplication quantity  
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where E  is the energy of the mother wavelet, is needed in order for the best matching 

wavelet,    ,S

t
t w s

S
 

 
  

 
, to assume locally the amplitude of the acceleration 

record. In the classical wavelet transform described above only dilation-contraction 

along with translation of the wavelet are allowed. There are signals though, that need 

even more mathematical flexibility from the wavelet used for obtaining more reliable 

results. Vassiliou and Makris (2011) developed a wavelet based on Gabor (1946)  

and Mavroeidis and Papageorgiou (2003) that except translation, , and dilation-

contraction, s , allows also a modulation at the phase,  , and the number of half-cycles, 

  as shown in equations (14) and (15),  
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where, ),,,( sC  is the wavelet transform coefficients, ),,( sw  is a weighting 

function, )(tu is the recorded acceleration, ),,( 



s

t 
is the wavelet of equation 

(14).   

 

A proposed methodology for modal identification of isolated bridges from acceleration 

records is,  



8 
 

 Estimate the number of the potential, emerging states of the bridge, 
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11 , which becomes 1n for practical reasons, 

where n  is the number of piers with uneven height.  

 Identify the different time intervals on the output signal, based on the 

engagement intervals of each SSB, and correlate them with the 

corresponding states. Consider ]...[ 21

in

n

ininin

j tttt   and 

]...[ 21

end

n

endendend

j tttt  the times of the initiation and the ending of the 

sliding of the SSBs at the jth pier. Then, sort the values with ascending order, 

jmttt
end

j

in

jm 2,...,1)],max()...[min(  . The pairs of the successive 

elements of the vector mt form the different, successive time intervals.  

 Apply the modal identification techniques on the individual time intervals. 

 Estimate the indices nrrrr ,...,,, 321 for each time interval to determine whether 

the results are dependable ( 5.0)min(  irr for individual interval). 

 

4. Case Study 

The bridge of Fig. 1 has been subjected to the six strong ground motions presented in 

Table 3. The bridge during the extreme loading performs according the mechanical 

idealization of Fig. 3. The analysis has been conducted with the commercially available 

software MATLAB (2002) and SAP (Computers and Structures 2006). The SSBs have 

been modeled according to the Bouc Wen model (Wen 1975; 1976). The results 

concerning the transverse direction confirm the results corresponding to the 

longitudinal direction and due to space limitation are not presented in this paper.  

Furthermore, in the longitudinal direction the bridge behaves like a SDOF system. Fig. 

10 presents the response of the bridge during the El Centro Array #5 record.  

Initially, the PEM and the wavelet method were applied on the total acceleration 

response of the deck. The results are shown in Fig. 11.  

In this case, the number of piers is 2n , thus the number of emerging states of the 

system is three; the linear system (LS), the partially isolated system (PIS) and the fully 

isolated system (FIS). The next step is the identification of the different time intervals 

of the emerging states by using the internal variables )(1 tzB  and )(2 tzB that correspond 

to the SSBs at the piers 1M and 2M  respectively, as presented in Fig. 12.  

From Fig. 12 it is evident that interval 1 corresponds to the PIS since the SSB at 2M  is 

sliding while the SSB at M1 is still “locked”. Interval 2 corresponds to FIS since the 

SSBs at both piers are engaged, interval 3 to PIS and interval 4 to LS since there is no 

sliding occurrence.  

Fig. 13 presents the response of the emerging states at the different time intervals in the 

case of the El Centro Array #5 record. Fig. 14-17 present the modal periods identified 

at each individual interval respectively. Information about the LS can be deduced from 
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interval 4 since no SSB is sliding. Interval 1 and 3 provide information about the PIS, 

as only the SSB at 2M is engaged, and interval 2 provides information about the FIS.  

Table 4 shows, that 5.0r  in most cases, thus the results are not dependable. However, 

it is promising that the modal periods presented in Fig. 15 are closer to actual values 

than the periods presented in Fig.11. Fig.18, 19 highlight this finding, as they compare 

the error of the identified modal periods from the total response signal of the deck to 

the error of the identified modal periods from time interval 2. Moreover, there are not 

big differences observed in the error of the wavelet method’s results (Fig. 19) mostly 

because the method is acting “locally” in time thus is not affected from the presence of 

the rest of the record.   

Interval 1 results exhibit 5.0r  since in most cases the quantity of data was not 

sufficient to deduce a dependable estimate of the modal period of PIS. Interval 3 results 

exhibit also 5.0r , although there was the appropriate quantity of data, as the 

engagement index’s values were low (



i

plateaui

N

N ,
). That is, the 2Bz of the SSB at pier 

2M  is unlikely to display a lot of points on the plateaus ( plateauiN , ) and at the same 

time the SSB at pier 1M to remain “locked”.  

The results from interval 4 (LS) are dependable.  

5. Conclusions 

This paper investigates the modal identification of seismically isolated bridges 

supported on piers with different heights. The uneven heights of the piers is responsible 

that in several occasions only a fraction of the isolation bearings engage in sliding 

motion (those atop the short, stiffer piers), given that the taller piers deflect more than 

the shorter piers. This situation results in the emerging of  ephemeral states of the 

system with different modal periods that respond sequentially during the excitation. 

One of the challenges that this paper addresses is the identification of the time intervals 

when each of the corresponding states of the system performs by constructing and using 

an internal Bouc-Wen variable, )(tz , from the accelerometers’ data.  

The paper investigates a 3-span bridge supported on spherical sliding bearings (SSB). 

When subjected to six historic, strong ground motions. In the longitudinal direction the 

bridge behaves like a SDOF system assuming that the deck remains rigid. In the 

transverse direction the deck’s rigidity dominates the behavior, thus the bridge behaves 

like flexural beam on discrete stiffness elements.  

The modal identification methods used in this paper are (a) the prediction error method 

(PEM) –that is a time domain method, and (b) a time-frequency analysis method that 

uses wavelet analysis.  
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Three emerging states of the bridge are identified in the response in both horizontal 

directions; the linear system (LS) when no sliding of the SSBs occurs, the partially 

isolated system (PIS) when only the SSB at the short pier 2M  is engaged, and the fully 

isolated system (FIS) when the SSBs at both piers are engaged. The best matching index 

r , proposed by Kampas and Makris (2012), was used to validate the dependability of 

the results after the application of the modal identification techniques.  

The results concerning the LS are dependable. On the contrary, the identified modal 

periods corresponding to the PIS were not reliably identified since there was neither the 

proper quantity (more than one cycle of vibration) nor the quality (low engagement 

index of each SSB) of the data in the respective time intervals.  

Finally, the paper concludes that the error between the identified and the actual modal 

period is smaller if the period is identified from time interval 2 than from the total 

response signal of the bridge. 
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TABLES 

Table 1. The modal periods of the different states of the bridge of Fig.1 in the longitudinal 

direction. 

System in longitudinal direction )(sTL  

Linear System (LS) 0.36 

Partially Isolated System (PIS) 0.95 

Fully Isolated System (FIS) 3.00 
Table 2. The modal periods of the different states of the bridge of Fig.1 in the transverse 

direction. 

System in transverse direction )(sTT  

Linear System (LS) 0.67 

Partially Isolated System (PIS) 1.05 

Fully Isolated System (FIS) 1.09 

 

Table 3. Six historic, strong ground motions used as excitations in the nonlinear time history 

analyses of the bridge of Fig.1. 

Earthquake Ground Motion Magnitude, 
w

M  PGA(g) 

1979 Coyote Lake, CA Gilroy Array #6 230 5.7 0.43 

1979 Imperial Valley, CA El Centro Array #5 140 6.5 0.52 

1986 El Salvador  Geot. Inv. Center 180 5.5 0.48 

1992 Erzincan, Turkey 95 Erzincan 6.9 0.52 

1992 Cape Mendocino, CA Cape Mendocino/000 7.2     1.49 

1995 Aigion, Greece OTE Building 6.2     0.54 

 

 

 

 

 

 

Table 4. The matching indices  PEMr  and wavr , the engagement indices for 1Bz  and 2Bz  and 

the index r for each time interval for all excitations. 

Interval 1 
PEMr  wavr  eng. index 1Bz  eng. index 2Bz  r  

El Centro Array #5 0.62 0.35 - 0.21 0.11 
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95 Erzincan 0.70 0.54 - 0.38 0.24 

OTE Building -0.13 0.34 - 0.44 0.11 

Gilroy Array #6 0.07 0.26 - 0.204 0.04 

Cape Mendocino/000 -0.57 0.02 - 0.61 0.25 

Geot. Inv. Center 180 -0.12 0.16 - 0.59 0.08 

Interval 2  

El Centro Array #5 0.34 0.49 0.45 0.58 0.19 

95 Erzincan -0.10 0.86 0.84 0.90 0.52 

OTE Building 0.04 0.39 0.38 0.72 0.11 

Gilroy Array #6 0.16 0.45 0.51 0.79 0.17 

Cape Mendocino/000 0.01 0.68 0.65 0.86 0.31 

Geot. Inv. Center 180 0.08 0.64 0.34 0.55 0.16 

        Interval 3 
El Centro Array #5 0.64 0.10 - 0.05 0.02 

95 Erzincan 0.02 0.21 - 0.38 0.06 

OTE Building 0.00 0.09 - 0.12 0.01 

Gilroy Array #6 0.08 0.11 - 0.20 0.02 

Cape Mendocino/000 0.21 0.46 - 0.55 0.20 

Geot. Inv. Center 180 0.03 0.13 - 0.11 0.01 

 

 

 

 

FIGURES 

 

 

Figure  1. Elevation of a recently constructed seismically isolated bridge in central Greece. 

 

 

 

 

 

Α0 
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Figure  2. Force-displacement hysteretic loop of the spherical sliding bearing (SSB). 

  

Figure  3. The mechanical idealization of the isolated bridge of Fig.1 in the longitudinal (left) 

and transverse direction (right). 
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Figure  4. The cross section of the pier 1M  and 2M  (left); Moment-curvature of the piers 

1M  and 2M  (right).  

  
Figure  5. Pushover curves of the piers 1M  and 2M  (left); focus on the pushover curves 

(right).  

 

Figure  6. Qualitative visualization of the scheme where the deck imposes a common 

displacement at all piers and the shorter piers need the additional deformation of the bearings 

to accommodate the deck’s displacement in comparison with the taller ones. 
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Figure  7. Modal periods of the states that emerge from the SDOF model of Fig.7 as a 

function of the engagement bearings, k , for 2n (top left); 4n (top right); 6n (bottom 

left); 10n (bottom right) under the assumption that the pier stiffness’s are inversely 

proportional to their numbering according to Fig.7.  

(a) (b) 

(c) (d) 
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Figure 8. Definition of the engagement interval in the )(tz  signal from the first value of -1 or 

1 to the last value of -1 or 1.  

  
Figure 9. Best fitted wavelets on the acceleration histories when a 2DOF system is 

subjected to the 1992 Erzincan earthquake together with the associated scalograms. 
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1979 Imperial Valley, El Centro Array#5 

  

  

  

Figure  7. Deck acceleration (top-left); ground motion (top-right); displacement of the SSB at 

1M  (middle-left); displacement of the SSB at 2M  (middle-right); )(1 tzB of the SSB at 1M  

(bottom-left); )(2 tzB of the SSB at 2M  (bottom-right). 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure  8. Modal periods identified from the application of PEM and Wavelet method on the 

total signal of the response acceleration of the deck. 
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Figure  9. Separation of the time intervals on the total deck acceleration (bottom) by using the 

engagement intervals of the SSBs at 1M  (top) and 2M  (middle) when the bridge is subjected 

to El Centro Array #5 record.  

Engagement interval of the SSB at 1M  

Engagement interval of the SSB at 2M  

1 2 3 4 
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1979 Imperial Valley, El Centro Array#5 

  

  

  

  

Figure  10. Responses of the emerging states (LS, PIS, FIS) as part of the total acceleration 

response of the deck. Left: the internal variables )(1 tzB  and )(2 tzB  of the SSBs at pier 1M  

and 2M ; Right: corresponding acceleration responses in the case of El Centro Array #5 

record. 
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Figure  11. Modal periods identified with PEM and Wavelet method on interval 1 

(PIS) of the response acceleration of the deck. 

 

Figure  12. Modal periods identified with PEM and Wavelet method on interval 2 (FIS) of the 

response acceleration of the deck. 
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Figure  13. Modal periods identified with PEM and Wavelet method on interval 3 

(PIS) of the response acceleration of the deck. 

 

Figure  14. Modal periods identified with PEM and Wavelet method on interval 4 (LS) of the 

response acceleration of the deck. 
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Figure  15. The error between the identified and the actual modal period of the bridge either 

by applying the PEM on the total response signal of the deck (green) or on time interval 2 

(yellow).  

 

Figure  16.  The error between the identified and the actual modal period of the bridge either 

by applying the Wavelet method on the total response signal of the deck (green) or on time 

interval 2 (yellow). 

 

 


