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ABSTRACT 7 

In this paper we investigate the alternative strategy of suppressing ground-induced vibrations with supplemental 8 

rotational inertia. The proposed concept employs a rack-pinion-flywheel system that its resisting force is proportional to 9 

the relative acceleration between the vibrating mass and the support of the flywheels. This arrangement, known in the 10 

mechanical networks literature as the “inerter”, complements the traditional supplemental damping and stiffness 11 

strategies used for the seismic protection of structures. The paper shows that the seismic protection of structures with 12 

supplemental rotational inertia has some unique advantages; in particular in suppressing the spectral displacements of 13 

long period structures –a function that is not efficiently achieved with large values of supplemental damping. The paper 14 

shows that this happens at the expense of transferring appreciable forces at the support of the flywheels and proceeds by 15 

examining to what extent the finite stiffness and damping of the support of the flywheels affects the dynamics of the 16 

system. The proposed concept may be attractive for the seismic protection of bridges given that the rack-pinion-17 

flywheel system strategy can accommodate large displacements. 18 

 19 

INTRODUCTION 20 

Most common civil engineering structures are framing systems or shear-beam type structures which when subjected to 21 

lateral inertial loading the dominant motion of their masses (floors in buildings or bridge decks) is a linear translation. 22 

In such structural systems the seismic induced displacements are primarily controlled with elasticity, damping and 23 
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strength (Clough and Penzien 1975; Kelly 1997; Constantinou et al. 1998; Naeim and Kelly  1999; Chopra 2000; 24 

Makris and Chang 2000a, 2000b; Black et al. 2004; Symans et al. 2008). A notable exception to this kind of response is 25 

the seismic response of the free-standing slender column, which upon uplifting it enters rocking motion (Kirkpatrick 26 

1927; Housner 1963). It is because of this rotational motion that most of the seismic resistance of the free-standing 27 

rocking column originates from the difficulty to mobilize its rotational inertia (Makris 2014a, 2014b, Makris and 28 

Kampas 2016 and references reported therein) –a quantity that is proportional to the square of the column size.   29 

The main motivation of this paper is to examine whether the unique advantages for seismic protection that result from 30 

the mobilization of rotational inertia can be implemented in traditional framing systems where the dominant motion of 31 

their masses is translation (no rotations). The paper proposes the use of supplemental flywheels which are engaged in 32 

motion through a rack-and-pinion system (Patton 1980; PTDA 2014; among others). The proposed concepts may also 33 

apply to the seismic protection of bridges given the more-than-a-century-long experience of power transmission 34 

technology in movable bridges (Engineering News 1913; Hahin 1998; Movable Bridge Engineering 2014; among 35 

others). The advantage of a set of flywheels which are engaged in motion through a rack-and-pinion system is that the 36 

supplemental inertia is proportional only to the relative acceleration between the structure and the support of the 37 

flywheels. This mechanical arrangement that is coined “the inerter” has been proposed in the context of synthesis of 38 

mechanical networks in an effort to achieve a completely analogous correspondence between mechanical and electrical 39 

circuits (Smith 2002; Papageorgiou and Smith 2005). More recently the concept of a two-terminal device, that its output 40 

force is proportional to the relative acceleration has been proposed to enhance the performance of tuned mass dampers 41 

(Marian and Giaralis 2013, 2014; Giaralis and Taflanidis 2015). Furthermore, the proposed rack-pinion-flywheel can 42 

accommodate large, translational displacements which may challenge the implementation of other seismic protection 43 

devices such as fluid or metallic dampers. 44 

REDUCTION OF VIBRATIONS WITH SUPPLEMENTAL ROTATIONAL INERTIA  45 

Figure 1(left) depicts a single-degree-of-freedom structure with stiffness k  and mass, m . A stiff shevron frame 46 

supports a flywheel with radius, 1R and mass 1Wm which can rotate about an axis O. First we consider the case of a 47 

very stiff chevron frame that its deformation is negligible to the translational displacement, )(tu , of the SDOF 48 

structure. Concentric to the flywheel there is an attached pinion with radius, 1 , engaged to a linear rack connected to  49 
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Fig. 1. Left: A single-degree-of-freedom structure with mass, m , and stiffness, k , with supplemental rotational inertia 50 

from a flywheel with radius, R , supported on a chevron frame with stiffness, 
fk , that is much larger than k ; Right: 51 

Free-body diagram of the vibrating mass, m , when engaged to the pinion of the flywheel shown below. 52 

the bottom of the vibrating mass, m , of the SDOF. With this arrangement when the mass m undergoes a positive 53 

displacement, )(tu , the flywheel is subjected to a clockwise rotation, )(1 t . Given that there is no slipping between 54 

the rack and the pinion,  55 
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Figure 1(right) shows the free-body diagrams of the vibrating mass, m , and the rotating pinion-flywheel system. For a 57 

positive displacement, )(tu , to the right, the internal force, 1F , at the rack-pinion interface opposes the motion (to the 58 

left). Accordingly, dynamic equilibrium of the vibrating mass when subjected to a ground acceleration, )(tu g
 , gives 59 

)()()]()([ 1 tFtkututum g       (2) 60 

where the internal force )(1 tF  needs to satisfy the moment equilibrium of the flywheel about point O 61 

1111 )()(  tFtIW       (3) 62 

In equation (3), 
2

111 )2/1( RmI WW  , is the moment of inertia of the flywheel about point O. Substitution of equation 63 

(3) into (2) in association with equation (1) gives  64 
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where, mk /0  , is the natural frequency of the structure when the pinion-flywheel is disengaged. Upon dividing 66 

with the acceleration coefficient, equation (4) gives, 67 
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 69 

Equation (5) indicates that the engagement of the flywheel in a rotational motion lengthens the vibration period of the 70 

structure and most importantly it suppresses the level of  ground shaking given that the denominator in the right hand 71 

side is always larger than unity. 72 

AMPLIFICATION OF THE ROTATIONAL INERTIA EFFECT  73 

Equation (5) dictates that when the SDOF with stiffness, k , and mass, m , is equipped with a single flywheel with 74 

radius, 1R , and mass, 1Wm , together with a pinion with radius, 1 , the input ground acceleration is divided by the 75 

term 76 
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While the denominator  1  is always larger than unity and the radius of the flywheel, 1R , may be as large as ten 78 

(10) times the radius of the pinion, 1 , (or even larger, 100
2

1

2

1 
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R
), the suppression coefficient 
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mW  may 79 

remain small given that the mass of the flywheel, 1Wm , is appreciably smaller than the mass of the structure, m . 80 

Nevertheless, the effect of supplementing framing structures with rotational inertial may be amplified by installing two 81 

(or more) flywheels in series where the first flywheel is a gear-wheel as shown in Figure 2.  82 

Lengthening of the period 
Suppression of the input 

ground motion 
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 83 

Fig. 2. More than one flywheels in series that amplify the effect of supplemental rotational inertia. 84 

For the dynamic analysis of a system shown in Fig. 2 one can certainly proceed with a direct formulation as was done in 85 

the previous section for a single flywheel. Nevertheless, given that this proposed concept may involve several flywheels 86 

we proceed with a variational formulation where there is no need to calculate the internal forces, 
1jF , between the 87 

flywheel j and the pinion of the flywheel, 1j . Application of Lagrange’s equation to the system shown in Fig. 4 88 

gives 89 
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    (7) 90 

where, T-VL , is the Langrangian function (difference between the kinetic energy, T , and the potential energy, V91 

, of the system) and W is the work done by the external field forces. During an admissible translation u , the variation 92 

of the work, utumW g  )(  and given that u
du

dW
W   , one obtains  93 

)(tum
du

dW
g
       (8) 94 

For the two-wheel SDOF system shown in Figure 2, the kinetic energy is 95 
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where )(1 t is given by equation (1) and )(2 t  satisfies compatibility of the displacements between the gearwheel and 97 

the pinion of the second flywheel.  98 
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Substitution of equations (1) and (10) into equation (9), together with that 
2

111
2

1
RmI WW  and 

2

222
2

1
RmI WW  , 100 

gives the expression of the kinetic energy only in terms of the velocity of the SDOF.  101 
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The potential energy of the SDOF is merely, 103 
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2
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and the Lagrangian function of the SDOF shown in Figure 2 assumes the expression: 105 
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Substitution of equations (13) and (8) into Lagrange equation (7) gives the equation of motion of the SDOF structure 107 

with a two flywheel rotational inertia system as shown in Figure 2. 108 
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where, mk /0  , is again the natural frequency of the SDOF structure when is disengaged from the flywheel 110 

system. Accordingly, the equation of motion of the SDOF structure assumes the form 111 
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where for the case of a two-flywheel rotational inertia system, the suppression coefficient,  , is  113 
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For a ratio 10/ 22 R , the second term in equation (16) is two orders of magnitude larger than the first term. When 115 

n  flywheels are installed in series, the rotation of the nth flywheel is 116 
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By virtue of equation (17), the kinetic energy of the nth flywheel is 118 
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and upon replacing, )(1 t with 1/)( tu , equation (18) gives  120 
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Consequently, the equation of motion of the SDOF structure equipped with a n-flywheel rotational inertia system is 122 

given again by equation (15); where now the suppression coefficient,   , is given by  123 
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For a ratio 10/ jjR  , each term in equation (20) is two order of magnitude larger than the previous term, therefore 125 

for any number, n , of flywheels selected, the suppression coefficient is merely governed by the last term of equation 126 

(20).  127 
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Accordingly, regardless how small is the ratio mmWn / , the suppression coefficient  can assume any desired value 129 

with the sufficient size and number of flywheels. Figure 3 (left) shows a schematic of the mass-spring-inerter system 130 

described by equation (15). It is a linear system that does not dissipate any energy–the vibration suppression happens by 131 

transferring kinetic energy from the vibrating mass to the rotating flywheel.  132 

FORCE TRANSFERRED TO THE CHEVRON FRAME  133 

The force transferred to the chevron frame, 1F , is an internal force, which can be recovered from the final form of the 134 

equation of motion given by (15) in association with the original dynamic equilibrium equation (2) of the vibrating 135 

mass that is expressed as 136 

)()()()( 1 tumtkutFtum g
      (22) 137 

Equation (15) is expressed as  138 

)()()()( tumtkutumtum g
      (23) 139 

Upon subtracting equation (23) from (22) one obtains the internal force transferred to a stiff chevron frame   140 

)()()(1 tuMtumtF R
       (24) 141 

where   is the suppression coefficient given by equation (20) or (21). The quantity mM R  is an additional 142 

apparent mass in the system (namely the rotational mass RM ) which is due to the rotational inertia of the flywheels, 143 

Equation (24) offers the force transferred to a stiff chevron frame that its deformation is negligible compared to the  144 
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Fig. 3. Left: Schematic of a mass-spring-inerter single-degree-of-freedom system: the inerto-elastic oscillator; Right: 

The inerto-visco-elastic oscillator. 

displacement of the structure, )(tu , and it indicates that in this case, )(1 tF , is proportional to the relative acceleration 145 

of the SDOF- system. The case of a “flexible” chevron frame is treated in a following section. 146 

THE NEED FOR TWO PARALLEL INERTIA SYSTEMS AND THE OPPORTUNITY FOR ENERGY 147 

HARVESTING  148 

In the previous sections we introduced the concept of supplemental rotational inertia for the seismic protection of 149 

traditional framing systems and it was shown that the proposed concept is physically realizable with the arrangement of 150 

more than one flywheel in series so that the amplification coefficient given by equation (20) becomes sufficiently large.  151 

In the ideal case where energy is not dissipated through friction or other energy dissipation mechanism, equation (15) 152 

describes an undamped system (see Figure 3-left) in which part of the ground induced energy is transferred in to the 153 

flywheels. Figure 4 (left) plots the relative displacement, velocity, force transferred to the chevron frame and absolute 154 

acceleration of the inerto-elastic oscillator show in Figure 3 (left) with sT 0.10   when subjected to a one-sine 155 

acceleration with acceleration amplitude ga p 5.0 and pulse duration sTp 5.0 . The shaded stripes in Figure 4 156 

correspond to the segments where the magnitude of the relative velocity of the oscillator described by equation (15) 157 

reduces on its way to reach a peak displacement. During this interval, the flywheels have built angular momentum and 158 

now as the translating mass tends to move slower the flywheels may drive the mass; therefore, inducing deformations –159 

a situation that is not desirable. 160 
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Fig. 4. Response of an inerto-elastic oscillator with an infinite stiff chevron frame. Left: Single inerter which may induce deformations; Right: Pair of inerters that 161 
can resist only the motion as described by equations (27) and (28). The force from the inerter only opposes the motion.162 
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One challenge with the proposed concept is that the rotating flywheels should only resist the motion of the structure 163 

without inducing any deformations. This is feasible if the pinion of the first gearwheel that is engaged to the rack is 164 

unable to drive the rack and only the motion of the translating rack can drive the pinion-gearwheel. This is similar to the 165 

motion of a bicycle where the cyclist can drive the wheel through the pedals; yet, when the bicycle is rolling the pedals 166 

may remain idle. Without loss of generality, let assume that upon initiation of motion the structure moves to the left, 167 

therefore the front gearwheel rotates counterclockwise and the force on the mass from the gearwheel is to the right 168 

(positive). As the mass keeps moving to the left it will slow down and at the instant where the gearwheel will tend to 169 

drive he mass due to its angular momentum the force transmission need to become idle. With the proposed 170 

arrangement, upon the structure has reached its first maximum displacement and the motion reverses to the right (171 

0)( tu ); the front gearwheel keeps rotating freely counterclockwise without inducing any force to the structure. 172 

When the structure starts moving to the right ( 0)( tu ) a second, parallel rotational inertia system (the back 173 

flywheels) is needed to oppose the motion, and during the course of this motion the first gearwheel of the back system 174 

that is engaged to the rack rotates clockwise. The sequential engagement of the two parallel rotational inertial systems 175 

that can only resist the motion is expressed mathematically: 176 
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Accordingly, for the two parallel rotational inertia systems that only resist the motion of the structure, the equation of 179 

motion (15) is modified to  180 

)()()()1(
2

0 tututu g
      (26)  181 

in which     

0
)(

)(
sgn,0

0
)(

)(
sgn,1





















tu

tu
when

tu

tu
when









               (27)  182 



12 
 

Clearly, with the two parallel front and back rotational inertia systems the flywheels only resist the motion of the 183 

structure and do not induce any energy. Nevertheless, during the time-period where one of the flywheel systems is 184 

rotating idle its rotation needs to decelerate appreciably so that when it is again engaged into motion, to be capable to 185 

resist the motion through its rotational inertia. One possibility for decelerating the flywheels when rotating idle is to 186 

append to their axis an induction generator. With this arrangement, part of the earthquake induced energy will be 187 

converted into electricity that may be very much needed at that time.   188 

Figure 4 (right) plots the same response quantities as these presented on Figure 4(left); however now, the rotating 189 

flywheels only resist the motion of the structure (when the flywheels rotate idle the transmitting force is zero and in this 190 

way throughout the response history the force from the flywheels and the velocity have always opposite signs). In this 191 

case the response of the SDOF system described with equations (26) and (27) is decaying with time since part of the 192 

seismic induced energy has been harvested through the rotation of the flywheels. 193 

RESPONSE SPECTRA OF A MASS WITH A SPRING AND INERTER IN PARALLEL (“INDEFINITELY” 194 

STIFF CHEVRON FRAME)  195 

The seismic response of the undamped SDOF structure with supplemental rotational inertia as described by equations 196 

(15) or (26) and (27) is compared with the seismic response of the linear damped oscillator (Clough and Penzien 1975; 197 

Chopra 2000; Symans et al. 2008)  198 

)()()(2)(
2

00 tutututu gd
       (28) 199 

The values of the suppression coefficient,  , appearing in equation (15) and the values of the damping ratio, d , 200 

appearing in equation (28) control the reduction of the response of the two systems; yet, they are also responsible for 201 

the force that is transferred to the chevron frame. Accordingly, together with the response spectra associated with the 202 

two oscillators described by equation (15) or (27) and (28) we present the peak value of the force transferred to the 203 

chevron frame, )(1 tF , from equations (24) or (25) and )(2)( 0 tumtF dd
 , in equation (28). 204 

In an effort to illustrate some of the advantages and challenges when suppressing vibrations with supplemental 205 

rotational inertia we first present response spectra to pulse excitations (Veletsos et al. 1965; Bertero et al. 1978; Hall et 206 

al. 1965; Alavi and Krawinkler 2001; Mavroeidis and Papageorgiou 2003; Vassiliou and Makris 2011; among others).  207 
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Fig. 5. Top: Nort-South component of the acceleration time history recorded during the 1992 Erzincan, Turkey 208 
earthquake together with a symmetric Ricker wavelet. Bottom: fault-normal component of the acceleration time-209 

history recorded during the 1971 San Fernando earthquake, together with an antisymmetric Ricker wavelet. 210 

As an example, the heavy dark line in Figure 5(top) that approximates the long-period acceleration pulse of the NS 211 

component of the 1992 Erzincan, Turkey, record is a scaled expression of the second derivative of the Gaussian 212 

distribution, 
2/2te

 , known in the seismological literature as the symmetric Ricker wavelet (Ricker 1943; Ricker 213 

1944; see also Makris and Vassiliou 2013; Garini et al. 2014)  214 
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The value of the 

p

pT


2
  is the period that maximizes the Fourier spectrum of the symmetric Ricker wavelet; 216 

therefore, sTp 2 , where s  is the time from the peak pulse acceleration to the first zero crossing that follows, 217 

pa is the acceleration amplitude of the pulse. Similarly, the heavy dark line in Figure 5(bottom), which 218 
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approximates the long-period acceleration pulse of the Pacoima Dam motion recorded during the 1971 San 219 

Fernando, California, earthquake is a scaled expression of the third derivative of the Gaussian distribution , 
2/2te

,  220 
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Figure 6 plots total acceleration, relative to the ground displacement and transferred force spectra (with a sufficiently 222 

stiff chevron frame) of the SDOF system described with equations (15) or (26) and (27). For the frame with 223 

supplemental rotational inertia described by equation (15) or (26) (solid lines) values of 5.0  and 0.1  224 

have been used; whereas, for the linearly damped oscillator described with equation (28) (dashed lines) values of 225 

2.0,1.0d  and 3.0  have been used.  226 

The first observation is that supplemental rotational inertia is effective in suppressing appreciably the peak 227 

displacement response for moderately long to long -period structures (say 5.1/0 pTT ). Spectral accelerations are 228 

suppressed within the range of moderately long periods (say sTTs p 0.3/5.1 0  ). For instance, for 229 

2/0 pTT  and 1  both spectral accelerations and spectral displacement are appreciably lower than the 230 

corresponding spectra of a heavily damped, linear oscillator with %30 . However, the corresponding forces 231 

transferred to the chevron frame are appreciably higher and in practical applications the chevron frame may 232 

experience some non-negligible deformations. 233 

When comparing the left plots in Figure 6 which are for the single inerter described with equation (15) (that may 234 

induce displacements into the structure) with the right plots in Figure 6 which are for a pair of inerters described 235 

with equations (26) and (27) (that can only resist the motion of the structure) we make the following observation. 236 

For the case where a very stiff chevron frame is used; when a pair of inerters is employed, spectral displacement are 237 

lower for most of the spectrum; while, the forces transferred to the chevron frame are smaller only up to values of 238 

2/0 pTT . In this frequency range the spectral acceleration from the single inerter system are slightly lower.  239 

 240 
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Fig. 6. Total acceleration, relative to the ground displacement and transferred force spectra of a mass-spring-inerter 

oscillator (solid lines: 1,5.0 ) and a linearly damped oscillator (dashed lines: 2.0,1.0d  and 3.0 ) when 

subjected to a symmetric Ricker pulse. Left: Single inerter which may drive occasionally the structure; Right: Pair of 

inerters which can only resist the motion of the structure. 

Stiff structures or  

long period pulses 

Flexible structures or  

short period pulses 
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RESPONSE SPECTRA WITH A CHEVRON FRAME WITH FINITE STIFFNESS AND DAMPING  241 

We consider now the case where the support of the rotational inertia system (chevron frame) as shown in Figures 1 242 

and 2 has a finite stiffness, fk . In the case of bridges this support may be the stiff end abutments of the bridge, as 243 

shown in Figure 7, which when pushed against the backfill soil may mobilize appreciable damping, fc . The 244 

proposed seismic protection strategy with supplemental rotational inertia with a rack-pinion-flywheel system at each 245 

end-abutment may be attractive for bridges which are flexible in the longitudinal direction; yet, the motion of the 246 

deck is restrained along the transverse direction at the end abutments (Makris et al. 2010). This restriction is nearly 247 

imperative in railway bridges in order to avoid misalignment of the rails at the deck-abutment joints during 248 

transverse shaking; while, it is also common in highway bridges (Kampas and Makris 2012). 249 

Due to its finite stiffness as the rack engages with the pinion, the support of the rotational inertia systems (chevron 250 

frame) deforms by the displacement, )(tu f ; therefore, the displacement of the mass of the SDOF structure is  251 

)()()( 11 ttutu f       (31) 252 

and upon differentiating two times equation (31) gives 253 

 254 

)()()( 11 ttutu f         (32) 255 

The lateral displacement of the chevron frame, )(tu f
 , is related to the internal force, )(1 tF , via the constitutive 256 

law: 257 

)()()(1 tuctuktF ffff
     (33) 258 

which upon differentiating once gives: 259 

)()(
1

)( 1 tu
c

k
tF

c
tu f

f

f

f

f
      (34) 260 

At the same time, the internal force, )(1 tF , that acts on the pinion of the gearwheel is given by  261 
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 262 

Fig. 7. Seismic protection of a bridge along the longitudinal direction with a rack-pinion-flywheel system that exerts 263 
only passive thrust on each end-abutment. 264 

)()()( 1111 tMtmtF R       (35) 265 

where RMm   is the “rotational mass” of the inerter. By equating the right hand sides of the compatibility 266 

equation (32) and the constitutive equation (34) together with the help of (35) one obtains 267 

)()()(
1)(1

1
1 tutu

c

k
tF

cm

tF
f

f

f

f

 


   (36) 268 

In order to eliminate the internal variable, )(tu f
 ,  in the left-hand-side of equation (36) we differentiate once more 269 

and replace the term )(tu f
 with equation (32), 270 

)()(
)(1

)(
1)(1 1

1
1 tutu

c

k

m

tF

c

k
tF

cm

tF

f

f

f

f

f



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

  (37) 271 

By introducing the relaxation time of the chevron frame, 
f

f

f

f

f T
k

c




  , where 

f

f
k

m
T 2 , is the period 272 

of the system when “locked” to the chevron frame; equation (37) becomes  273 

)()(
)()()(1 1211 tutu

m

tF

m

tF

m

tF
ff

















   (38) 274 

in which the parameter  275 
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f

R

f k

M

k

m



       (39) 276 

is defined as the reatardation time of the system. 277 

Equation (38) indicates that in the case where a SDOF structure is protected with a supplemental rotational inertia 278 

system that is supported on a chevron frame with finite stiffness, 
fk , and damping, 279 

)/(2 mkmc fffff   , the internal force, )(1 tF , satisfies the differential equation (38) rather than the 280 

algebraic equation (24) that is for an infinite stiff frame. In the special case where the damping of the chevron frame 281 

is neglected, 0fc ; therefore, 0f , equation (38) reduces to 282 

)(
)()( 121 tu

m

tF

m

tF



      (40) 283 

In this special case, there is no need to involve the third derivative of the ground displacement in the time-domain 284 

analysis. In order to obtain practical values of the retardation time,  , let assume that the chevron frame is N times 285 

stiffer than the SDOF structure; that is, 
2

0NmNkk f  . Accordingly, the normalized retardation time to the 286 

undamped natural frequency of the structure 00 /2 T  is given by 287 

 
NT







2

1

0

       (41) 288 

For a chevron frame that is 20 to 100 times stiffer than the SDOF structure and for values of the suppression 289 

coefficient 5.0  and 1 , the range of practical values for 0/T  is 04.0/01.0 0  T .  290 

When Nkk f  , the “locked” period of the system 0

1
2 T

NNk

m
T f   . Accordingly, the normalized 291 

relaxation time of the system to the undamped natural frequency of the structure, 00 /2 T  is given by 292 
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NT

ff 1

0 


       (42) 293 

Equation (42) indicates that the range of practical values for 
0/Tf  is 001.0/01.0 0  Tf . 294 

 In this analysis we are also adding a small amount of viscous damping in the SDOF structure (say %2 ). 295 

Accordingly, the equation of motion of the damped SDOF structure with supplemental rotational inertia shown in 296 

Figure 3 (right) is 297 

)(
)(

)()(2)( 12

00 tu
m

tF
tututu g

      (43) 298 

in which the internal force mtF /)(1  is given by equation (38).  299 

The response of the system with supplemental rotational inertia shown in Figure 3(right) is compared with the 300 

response of a heavily damped SDOF structure where the seismic protection is achieved with supplemental viscous 301 

damping with damping constant, 02  mC dd  . In this case, the chevron frame also deforms and it can be shown 302 

by following a similar analysis (Constantinou et al. 1998) that the damping force, dF , that develops in the 303 

supplemental damper satisfies a Maxwell equation 304 

)(2
)()(

0 tu
m

tF

m

tF
d

dd 


      (44) 305 

where 
fd kC / , is known as the relaxation time of the system. For a chevron frame that is N times stiffer than 306 

the SDOF structure, Nkk f  , the normalized relaxation time to the undamped natural frequency of the structure, 307 

00 /2 T , is given by  308 

NT

d



 1

0

        (45) 309 
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For a chevron frame that is 20 to 100 times stiffer than the SDOF structure and for values of 3.01.0  d the 310 

range of practical values of 0/T  is 005.0/0005.0 0  T . 311 

When the chevron frame that supports the supplemental damper with damping constant, 02  mC dd   is as 312 

strong as the chevron frame that supports the supplemental inerter with inertial mass, mM R  , the relaxation 313 

time,  , appearing in equation (45) is related to the retardation time,  , appearing in equation (41) via the equation 314 

202





 d       (46) 315 

The solution of the system of differential equations given by (43) and (38) is computed numerically via a state-space 316 

formulation. The state vector of the system is  317 
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    (47) 318 

and the time-derivative of the state vector, )}({ ty , is expressed in terms of the state variables as  319 
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The numerical integration of equations (48) is performed with standard ODE solvers available in MATLAB (2002).  321 

Alternatively, given that equations (38) and (43) are linear differential equations, the response history of the SDOF-322 

system can be computed with the Fourier transform,  323 
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where 325 
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When a single rotational inertia system is used, the frequency domain solution offered by equations (49) and (50) is 327 

attractive since it does not involve the differentiation of the ground acceleration. The agreement of the time-domain 328 

solution expressed with equations (38) and (43) and the frequency domain solution given by equations (49) and (50) 329 

has been confirmed during the course of this study.  330 

The response of the SDOF structure with supplemental damping with constant 02  mC dd   is also computed 331 

with equation (49); where now 332 
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When the two parallel rotational inertia system are employed which can only resist the motion of the structure 334 

without inducing any deformations (the pinion of the gearwheel that is engaged to the rack is unable to drive the 335 

rack and only the motion of the translating rack can drive the pinion), the term mtF /)(1  appearing in equation (43) 336 

is given by equation (38) when 0
)(
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sgn 









tu

tu




 and by 337 

     0
)(1 

m

tF
  when 0

)(

)(
sgn 









tu

tu




     (52) 338 

In this case the equation of motion of our SDOF structure becomes piece-wise linear and only a time-domain 339 

solution is feasible. The state vector of the system is given by equation (47) when   0)](/)(sgn[ tutu   and by 340 
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Figure 8 plots total acceleration, relative to the ground displacement and transferred force spectra of the SDOF 342 

system described with equations (48) or with equations (48) and (53) for 5.0 and 0.1 , 01.0/ 0 Tf343 

and three different values of the dimensionless retardation time 02.0,01.0/ 0 T  and 04.0  when the SDOF 344 

system is excited by a symmetric Ricker wavelet described with equation (29). The time derivative of the ground 345 

acceleration appearing in the fourth component of the time-derivative of the state vector given by equation (48) is 346 

offered by equation (30) –that is the antisymmetric Ricker pulse. For the linearly damped oscillator where the 347 

damping force from the supplemental dampers that resist on the chevron frame is given by equation (44), values of 348 

1.0d and 3.0 have been used.  349 

The first observation (as in the case of the infinite stiff chevron frame) is that the supplemental rotational inertia is 350 

effective in suppressing appreciably the peak displacement response for moderately long to long-period structures 351 

(say 5.1/0 pTT ). Spectral accelerations are suppressed within the range of moderately long periods (say 352 

0.3/5.1 0  pTT ); nevertheless, this is true only for small values of the retardation time ( 02.0/ 0 T –stiff 353 

chevron frames). When the chevron frame is less stiff spectral accelerations increase appreciably for longer-period 354 

structures. When comparing the left plots in Figure 8 which are for a single rotational inertia system described 355 

continuously with equation (47) or with equations (49) and (50) (that may induce displacements into the structure) 356 

with the right plots in Figure 8 which are for a pair (front and back) of rotational inertia systems described by 357 

equations (48) and (53) (that can only resist the motion of the structure) we make the following observation. The 358 

pair of rotational inertia systems control the spectral accelerations and forces transferred for large values of     359 

pTT /0 ; however, the response is sensitive to the retardation time,  (finite stiffness of the system). It is concluded 360 

that the strategy of suppressing vibrations with supplemental rotational inertia is attractive when the support of the 361 

rotational inertia system is stiff ( 02.0/ 0 T ). 362 
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Fig. 8. Total acceleration, relative to the ground displacement and transferred force spectra of a mass-spring-inerter 363 

oscillator (solid lines: 1,5.0  and three values of retardation times: 02.0,01.0/ 0 T  and 04.0 ) and a linearly 364 

damped oscillator (dashed lines: 1.0d and 3.0 ) when subjected to a symmetric Ricker pulse. Left: Single inerter 365 

which may drive occasionally the structure; Right: Pair of inerters which can only resist the motion of the structure. 366 
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CONCLUSIONS 367 

In this paper we investigated the potential advantages of the alternative strategy of suppressing ground-induced 368 

vibrations with supplemental rotational inertia. The proposed concept employs a rack-pinion-flywheel system that 369 

its resisting force is proportional to the relative acceleration between the vibrating mass and the support of the 370 

flywheels. The paper shows that the seismic protection of structures with supplemental rotational inertia has the 371 

unique advantage of suppressing the spectral displacements of long period structures –a function that is not 372 

efficiently achieved even with large values of supplemental damping. Furthermore, the proposed strategy can 373 

accommodate large relative displacements without suffering from the issues of viscous heating and potential leaking 374 

that challenge the implementation of fluid dampers. At the same time, the paper shows that the forces transferred to 375 

the support of the rotational inertia system are appreciable and that the use of stiff supports is recommended (376 

02.0/ 0 T ). 377 

This paper examines the dynamic response of a SDOF structure when two parallel rotational inertia systems are 378 

installed so that they can only resist the motion of the structure without inducing any deformation. This can be 379 

achieved if the pinion of each of the gearwheels of the two parallel rotational inertia systems that is engaged to the 380 

rack is unable to drive the rack and only the motion of the translating rack can drive the pinion-gearwheel. This 381 

arrangement reduces further the spectral displacements; whereas, the results for the forces transferred to the support 382 

of the gearwheels are mixed.  383 

Finally, the proposed concept where reduction of vibrations is achieved with supplemental rotational inertia so that 384 

the resisting force is proportional to the relative acceleration introduces the subject of inerto-visco-elasticity.  385 
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 459 

FIGURE CAPTIONS 460 

Fig. 1. Left: A single-degree-of-freedom structure with mass, m , and stiffness, k , with supplemental rotational 

inertia from a flywheel with radius, R , supported on a chevron frame with stiffness, 
fk , that is much larger than 

k ; Right: Free-body diagram of the vibrating mass, m , when engaged to the pinion of the flywheel shown below. 

 
Fig. 2. More than one flywheels in series that amplify the effect of supplemental rotational inertia. 

Fig. 3. Left: Schematic of a mass-spring-inerter single-degree-of-freedom system: the inerto-elastic oscillator; Right: 

The inerto-visco-elastic oscillator.  

Fig. 4. Response of an inerto-elastic oscillator with an infinite stiff chevron frame. Left: Single inerter which may 

induce deformations; Right: Pair of inerters that can resist only the motion as described by equations (27) and (28). 

The force from the inerter only opposes the motion. 

Fig. 5. Top: Nort-South component of the acceleration time history recorded during the 1992 Erzincan, Turkey 

earthquake together with a symmetric Ricker wavelet. Bottom: fault-normal component of the acceleration time-

history recorded during the 1971 San Fernando earthquake, together with an antisymmetric Ricker wavelet.  

 
Fig. 6. Total acceleration, relative to the ground displacement and transferred force spectra of a mass-spring-inerter 

oscillator (solid lines: 1,5.0 ) and a linearly damped oscillator (dashed lines: 2.0,1.0d  and 3.0 ) when 

subjected to a symmetric Ricker pulse. Left: Single inerter which may drive occasionally the structure; Right: Pair of 

inerters which can only resist the motion of the structure. 
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Fig. 7. Seismic protection of a bridge along the longitudinal direction with a rack-pinion-flywheel system that exerts 

only passive thrust on each end-abutment. 

Fig. 8. Total acceleration, relative to the ground displacement and transferred force spectra of a mass-spring-inerter 

oscillator (solid lines: 1,5.0  and three values of retardation times: 02.0,01.0/ 0 T  and 04.0 ) and a 

linearly damped oscillator (dashed lines: 1.0d and 3.0 ) when subjected to a symmetric Ricker pulse. Left: 

Single inerter which may drive occasionally the structure; Right: Pair of inerters which can only resist the motion of 

the structure. 
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