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Abstract 10 

Grain storage trials were conducted in two districts of Zimbabwe with contrasting agro-climatic 11 

conditions (mean annual temperature of 18 - 30 °C and 28 – 42 °C; total rainfall of 750-1000 12 

mm per annum and < 450 mm per annum; respectively) to determine the comparative efficacy of 13 

commercially-available grain storage synthetic pesticides under contrasting climatic conditions. 14 

The five grain protectants, namely Shumba super dust® (fenitrothion 1 % + deltamethrin 0.13 15 

%), Actellic gold dust® (pirimiphos-methyl 1.6 % + thiamethoxam 0.36 %), Super guard® 16 

(pirimiphos-methyl 1.6 % + permethrin 0.4 %), Chikwapuro® (pirimiphos-methyl 2.5 % + 17 

deltamethrin 0.1 %) and Ngwena yedura® (pirimiphos-methyl 2.5 % + deltamethrin 0.2 %) were 18 

evaluated at label rates on stored shelled maize. The trials were conducted for a 40 week-long 19 

storage season in 2014/15 and again in 2015/16. Samples were analysed for insect grain damage, 20 

total insects per kilogram, grain weight loss, insect feeding chaff and grain moisture content. 21 

Temperature and relative humidity within stores were recorded using data loggers. The results 22 

highlighted the generally poor efficacy of the synthetic pesticides under both cooler and hotter 23 

climatic test conditions. The pesticides failed to prevent insect grain damage or suppress insect 24 

pest numbers. Only Actellic gold dust®, introduced in the 2015/16 storage season was effective 25 

under both the agro- climatic conditions. The current study suggests that only Actellic gold dust® 26 

can be recommended for smallholder farm grain protection under both cooler and hotter climatic 27 

conditions. The findings confirm the frequent claims of smallholder farmers in east and southern 28 

Africa regarding poor storage pesticide performance, and emphasize the need to develop 29 

alternative effective storage insect pest control options. 30 
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1. INTRODUCTION 36 

The increased production and use of synthetic pesticides worldwide since the 1960s has helped 37 

reduce pest infestations, boost food production and extend food shelf-life (Ortiz-hernández et al., 38 

2013). Most pesticides are targeted at reducing pest species which attack crops during the field 39 

growth stages, thus helping to increase agricultural production. Far fewer pesticides are available 40 

for protecting grain from insect infestation after harvest. Given the climatic projections of global 41 

increases in temperatures, the efficacy of pesticides may be reduced (Arthur et al., 1992; Stathers 42 

et al., 2013), while pest infestation may rise, affecting both the crop production and storage 43 

stages. 44 

In the current study, the efficacy of the five commercially available grain storage pesticides in 45 

Zimbabwe was investigated on stored maize. These grain storage synthetic pesticides are widely 46 

used in Zimbabwe, with at least 75 % of farmers relying on them to protect their stored grain 47 

from insect pests (Mvumi and Stathers, 2003; Nyabako et al., in preparation). Grain protectants 48 

containing a wide variety of active ingredients, including carbamates, pyrethroids, 49 

organophosphates and neonicotinoids have been formulated, and most of them contain more than 50 

ingredient (Arthur, 1996). These binary formulations are employed to improve efficacy and 51 

reduce development of insect tolerance which can occur more easily to products with a single 52 

active ingredient (Daglish and Nayak, 2012; Rumbos et al., 2013). However, little information is 53 

available on the effect of temperature and relative humidity on the efficacy of binary pesticides 54 

in grain storage (Rumbos et al., 2013). Theses is particularly important under farm conditions 55 

where a combination of extreme temperatures and new pests such as the larger grain borer 56 

(LGB), Prostephanus truncatus Horn. (Coleoptera: Bostrichidae) are experienced.  57 

The documented effects of temperature on pesticide activity differ by pesticide class. The 58 

efficacy of organophosphate and neonicotinoid-based insecticides increases with increasing 59 

temperature from 20 to 30 oC (Arthur et al., 2004; Vassilakos and Athanassiou, 2013) while that 60 

of pyrethroid pesticides decrease as temperatures increase (Subramanyam and Cutkomp, 1987; 61 

Arthur, 1999). Some studies suggest that although high temperatures generally decrease the 62 

efficacy of pesticides; organophosphates are more effective at temperatures above 20 oC, than ≤ 63 

20 oC (Arthur et al., 2004). This is understood to be due to increased pest movement, breathing 64 

and uptake rate of the pesticide at higher temperatures (Arthur et al., 2004). Other researchers 65 
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noted that whilst mortality increased at high temperatures in the first few days of pesticide 66 

(organophosphates) application, general efficacy and pesticide persistence decreased over a long 67 

storage period (Hamacher et al., 2002). Similarly, studies by Afridi et al. (2000) concluded that 68 

degradation of organophosphate (chlorpyriphos-methyl and pirimiphos-methyl) and pyrethroid 69 

(permethrin) admixed pesticides is faster at temperatures of 35 oC to 40 oC than at 25 to 30 oC, 70 

and faster still on grain with a higher moisture content.  71 

Furthermore, higher insect mortality was recorded at 75 % r.h. than at 55 % r.h., not as a result of 72 

“insecticide activity per se but due to the increased metabolic stress of the target insect species” 73 

(Vassilakos and Athanassiou, 2013). However, in most studies, temperature is considered more 74 

important than relative humidity in influencing pest activity resulting in increased pesticide 75 

contact or uptake at elevated temperatures (Rumbos et al., 2013). In terms of degradation, the 76 

residues of organophosphate pesticides degrade more rapidly than those of pyrethroids. For 77 

example, organophosphate residues on stored grain were below detection point after 52 weeks of 78 

grain storage, while the pyrethroid permethrin was more stable (Afridi et al., 2000). In terms of 79 

insect survival, Arthur et al. (2004) reported that the rusty red flour beetle, Tribolium castaneum 80 

(Herbst) (Coleoptera; Tenebrionidae), a secondary pest of stored cereals, has a better chance of 81 

survival after pesticide application since it attacks stored maize at a later stage when the pesticide 82 

has likely degraded, compared to primary pests such as the maize weevil, Sitophilus zeamais 83 

Motschulsky (Coleoptera; Curculionidae) which infests grain as it matures and persists 84 

throughout the postharvest stages.  85 

Three classes of insecticides namely; organophosphates, pyrethroids and neonicotinoids; are 86 

commonly used in Zimbabwe and other countries in sub-Saharan Africa in grain protection as 87 

dust formulations. The insecticidal dusts are admixed with dried grain to protect it against 88 

storage insect pest damage. The organophosphates include pirimiphos-methyl and fenitrothion 89 

(Hazard class II). This class of pesticides has a quick knock-down effect and a fast degradation 90 

pathway and hence do not leave long-term residues after application (Tadeo, 2008). The 91 

pyrethroids include deltamethrin and permethrin. They are contact poisons which affect the 92 

nervous system and present low mammalian toxicity risks (Hazard class II); hence they are often 93 

viewed as the safest of all pesticides in terms of use (Kamrin, 2000). The neonicotinoids group of 94 

insecticides include thiamethoxam which interferes with the nicotinic acetylcholine receptors 95 



4 
 

(Arthur et al., 2004), thus affecting the insect nervous system (Maienfisch et al., 2001). This 96 

unique mode of action makes them desirable for controlling insect pests which have developed 97 

some resistance to organophosphate, pyrethroid and carbamate insecticides (Maienfisch et al., 98 

1999). The insecticide thiamethoxam, is widely used for seed treatment of most field crops but 99 

its documented use as a stored grain protectant is very low (Arthur et al., 2004). 100 

 101 

An efficacy and persistence study of five synthetic insecticidal dusts admixed with maize grain 102 

was conducted in two agro-climatic regions of Zimbabwe with contrasting environmental 103 

conditions; one cool and sub-humid and the other hot and dry. The objective of the study was to 104 

determine the comparative efficacy and persistence of the grain protectants in contrasting 105 

climatic conditions, to deepen understanding of how the protectants perform as temperature and 106 

r.h. alter due to changing climatic conditions and provide guidance on validity of current 107 

recommendations. 108 

 109 

2. MATERIALS AND METHODS 110 

2.1. Site description  111 

Field trials were conducted in Hwedza (18o 37′ S; 31o 34′ E) and Mbire (20o 43′ S; 30o 34′ E) 112 

districts in Zimbabwe. Hwedza district, located in agro-ecological region II b receives an annual 113 

rainfall of 750 - 1000 mm and mean annual temperatures of 18 – 30 oC (FAO, 2006). Mbire 114 

district, is located in agro-ecological region V characterised by low rainfall below 450 mm per 115 

annum and extreme temperatures ranging from 28 - 42 oC (FAO, 2006). A rise of about 2.6 oC 116 

and 2 oC in minimum and maximum daily temperatures respectively, has been recorded in the 117 

last 30 years in Zimbabwe (Brown, 2012). This warming has resulted in increasing aridity as 118 

well as marked shifts in the onset of rains, increased proportions of low rainfall years and 119 

increased frequency of mid-season dry spells (Nyabako and Manzungu, 2012; Rurinda et al., 120 

2013). The changes have resulted in a proposed shifting of Zimbabwe’s agro-ecological zoning 121 

(Nyabako and Manzungu, 2012; Brown, 2012; Mugandani et al., 2012). 122 

 123 

2.2. Treatments  124 

Most of the grain protectant pesticides used in Zimbabwe are organophosphate- and pyrethroid-125 

based including Shumba super dust®, Chikwapuro®, Ngwena yedura® and Super guard®; even 126 
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though they differ in terms of their specific active ingredients and respective percentages (Table 127 

1). Only Actellic gold® dust contains a neonicotinoid active ingredient in combination with an 128 

organophosphate. The pesticides were purchased from Farm & City, a registered agro-dealer in 129 

Harare, Zimbabwe. Untreated grain in polypropylene bags was used as a control for the 130 

experiment. 131 

 132 

Insert Table 1 about here 133 

 134 

2.3. Trial setting and management 135 

In Hwedza district, a 1:2 mixture of two hybrid maize varieties; Sirda 113 (Seed Company of 136 

Zimbabwe- Seed-co) and PHB 30G19 (Pioneer Seed Company) were used in the trials during the 137 

2014/15 season whilst in the 2015/16 season a 1:3 mixture of PHG 30G19 and Pioneer 2859 138 

(Pioneer Seed Company) was used. Mixtures were used due to a local shortage of sufficient bulk 139 

grain of a single variety as a result of poor growing seasons. In Mbire district, a single variety of 140 

PHB 30G19 was used in both the grain storage seasons. In both districts, grain was purchased in 141 

the same locality where the trials were conducted. 142 

 143 

The same grain treatment process was used in both districts. The trial grain was thoroughly 144 

mixed at one place. Each treatment was allocated 75 kg of grain and treated with a respective 145 

pesticide. Manufacturer’s recommended application rates were used for all pesticides (Table 1). 146 

After pesticide treatment, the 75 kg lot of each treatment was sub-divided to make three 25 kg 147 

replicates contained in polypropylene bags. 148 

 149 

Brick wall structures with cement floors, ceiling boards and asbestos roofs housed the treatments 150 

in both districts. Data loggers (EL-USB-2, USA) were used to record temperature and rh in the 151 

trial rooms. In the 2014/15 season, the loggers were installed eight weeks after trial setting due to 152 

their late delivery. Polypropylene bags of 50 kg capacity were used to contain the treated grain 153 

and these were placed on a raised platform (about 10 cm above the floor) of mud bricks in a 154 

completely randomised design (CRD). Immediately after trial setting, baseline samples were 155 

collected. Thereafter, sampling was conducted at eight-week intervals over a period of forty 156 

weeks. Sampling was done using 40 cm bag probes (Hodges, 2013) inserted horizontally at 157 
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multiple points across the circumference and different levels of the bag. Grain samples were 158 

analysed to determine grain moisture content, presence of live and dead insects, grain damage, 159 

chaff weight and grain weight loss. The trials relied on natural insect infestation; no insects were 160 

artificially introduced into the treatments.  161 

 162 

2.4. Sample analysis and calculations 163 

For each sample, the weight was recorded before sieving off the insects. Two and five millimetre 164 

aperture standard test sieves were nested to separate the chaff and insects respectively from the 165 

grain. Live and dead insect counts were converted to the number of live or dead insects per 166 

kilogram of sample. The live and dead insects per kilogram were summed up to give total insects 167 

per kilogram of sample weight. Grain moisture content was measured using a pre-calibrated 168 

GrainPro moisture meter (model GMK- 303CF, GrainPro Inc, Philippines). Thereafter, samples 169 

were kept in a freezer at ≤ -18 oC to stop further insect damage whilst grain damage assessment 170 

was underway. For damage assessment, each maize sample was sub-divided into eight sub-171 

samples using a grain sample divider. Three sub-samples, equivalent to three-eighths of the total 172 

sample were analysed for grain damage. Damaged and undamaged grain was separated manually 173 

and each category counted using a seed counter (Numigral seed counter, CHOPIN, Villeneuve 174 

LA Garenne, France). Damage was then converted to percentage as [Nd/ (Nd+ Und)] ×100 % 175 

where Nd represents the number of damaged grains and Und represents the number of 176 

undamaged grains (Boxall, 1986). Grain weight loss was calculated using the count and weigh 177 

assessment method (Equation 1): 178 

 179 

Weight loss % = 
𝑁𝑑𝑊𝑢−𝑊𝑑𝑁𝑢

(𝑁𝑑+𝑁𝑢)×𝑊𝑢
× 100 (Boxall, 1986) Equation 1 180 

where Nd = number of damaged grains in a sample, Nu = number of undamaged grains in a 181 

sample, Wu = weight of undamaged grains in a sample and Wd = weight of damaged grains in a 182 

sample. 183 

 184 

2.5. Data analysis 185 

Square root transformations were done on the data including insect grain damage, weight loss 186 

and insect feeding chaff to stabilise data variance and conform to normality (Kirchner, 2001). 187 

Thereafter, the data were subjected to a two-way analysis of variance in Genstat 14 (VSN 188 
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International, 2011) to test for significant differences between treatments, sites and treatment-site 189 

interactions. In case of significant differences, Fisher’s protected LSD at 5 % probability was 190 

used to separate means. Temperature data, recorded using data loggers for the two sites, were 191 

analysed using a paired sample t-test.  192 

 193 

3. RESULTS  194 

3.1 Grain damage 195 

3.1.1 Season 1 (2014/15)  196 

In Hwedza, grain insect damage increased swiftly in the untreated control from slightly above 197 

10 % at 16 weeks to above 40 % of grains at week 24. However, in the pesticide treatments, 198 

grain damage remained much lower throughout the trial (Fig. 1). It was only after 32 and 40 199 

weeks storage, respectively, that grain damage in two of the pesticide treatments, Ngwena 200 

yedura® and Super guard®, rose above 10 % during the 2014/15 storage season. In Mbire district, 201 

grain damage levels were generally higher in the respective treatments, than those recorded in 202 

Hwedza except for the untreated control where damage levels began to rise at week 16 whereas 203 

in the pesticide treatments, this occurred as from week 32 (Fig. 1). Differences in grain damage 204 

among treatments were significant (F4, 20 = 5.60; P = 0.003) within sites at week 40. However, 205 

there were no significant differences (F1, 20 = 2.35; P = 0.141) for inter-site comparison. 206 

Treatment-site interactions were significant (F4, 20 = 4.62; P = 0.008) showing that treatments 207 

performed differently across the two sites. For combined data across sites, Shumba super dust® 208 

had the least damage followed by Super guard®, Chikwapuro®, Ngwena yedura® and untreated 209 

control. 210 

 211 

Insert Figure 1 about here 212 

 213 

3.1.2 Season 2 (2015/16)  214 

In the 2015/16 storage season in Hwedza, grain damage remained below 10 % in all treatments 215 

only up to week 16. In contrast to the previous season, grain damage remained below 10 % 216 

throughout the 40 weeks of storage only in the Actellic gold dust® treatment. While over 75 % of 217 

grains were damaged in the untreated control, Shumba super dust®, Chikwapuro®, Ngwena 218 

yedura® and Super guard® by week 40 (Fig. 2). It is striking that all the organophosphate- and 219 
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pyrethroid-based pesticide treatments (Shumba super dust®, Ngwena yedura®, Super guard® and 220 

Chikwapuro®) experienced very high grain damage similar to levels found in the untreated 221 

control grain. However, the Actellic gold dust® treatment, which contains a neonicotinoid in 222 

combination with an organophosphate active ingredient was effective throughout the storage 223 

period.  224 

In Mbire district, grain damage levels were much lower than in Hwedza. In the Actellic gold 225 

dust®, Chikwapuro® and Shumba super dust® treatments mean percentage insect damaged grain 226 

remained below 10 % throughout the 40 weeks of storage (Fig. 2). Statistically, treatments were 227 

significantly different (F5, 24 = 33.20; P < 0.001) when data was combined across the sites at 40 228 

weeks. Site comparisons were also significant (F1, 24 = 311.67; P < 0.001); together with 229 

treatment-site interactions (F5, 24 = 16.56; P < 0.001). Actellic gold dust® produced a stand-alone 230 

performance followed by Shumba super dust®, Chikwapuro® and Ngwena yedura® whilst Super 231 

guard® and the untreated control had the highest damage for combined sites data. 232 

 233 

Insert Figure 2 about here 234 

 235 

3.2 Grain weight loss 236 

3.2.1 Season 1 (2014/15) 237 

Weight losses remained below 4 % in all the pesticide treatments in Hwedza during the 2014/15 238 

season. Only 11 % weight loss occurred in the untreated control by 40 weeks storage. In Mbire 239 

district, grain weight losses were generally low, remaining below 8 % throughout the trial, with 240 

the highest figures of 7.8 % and 6.8 % occurring in the Chikwapuro® and Ngwena yedura® 241 

treatments respectively (Fig. 3). Differences in grain weight losses for combined treatments were 242 

significant (F4, 20 = 3.13; P = 0.037) at 40 weeks of storage. The site differences were not 243 

significant but treatment-site interactions had significant differences (F4, 20 = 3.82; P = 0.018). 244 

Across sites, Shumba super dust® had the least weight losses, followed categorically by Super 245 

guard®, Chikwapuro®, Ngwena yedura®, with the untreated grain experiencing the highest weight 246 

losses. 247 

 248 

Insert Figure 3 about here 249 

 250 
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3.2.2 Season 2 (2015/16) 251 

In Hwedza district, weight loss started to increase from week 16 onwards in the untreated 252 

control, Shumba super dust®, Chikwapuro®, Ngwena yedura® and Super guard®, all these 253 

treatments suffered very high weight losses of 20 % and above by 32 and 40 weeks storage. It 254 

was only in the Actellic gold dust® treatment that weight loss remained below 1 % throughout 255 

the 40 weeks of storage (Fig. 4). In Mbire, weight losses were much lower (≤ 10 %) compared to 256 

those in Hwedza. Significant differences at 40 weeks were recorded between treatments (F5, 24 = 257 

10.57; P < 0.001), sites (F1, 24 = 144.56; P < 0.001) and treatment-site interactions (F5, 24 = 9.98; F 258 

< .001). The lowest weight losses were incurred in Actellic gold dust® followed surprisingly by 259 

the untreated control. Shumba super dust®, Chikwapuro® and Ngwena yedura® recorded 260 

similarly high losses and Super guard® had the highest across site weight losses. 261 

 262 

Insert Figure 4 about here 263 

 264 

3.3 Adult insect species diversity 265 

3.3.1 Season 1 (2014/15)  266 

In Hwedza, the maize weevil S. zeamais was the dominant insect species recorded during the 267 

2014/15 storage season. The beetle P. truncatus was recorded at week 32 and 40 in most 268 

treatments. The highest number of insects was recorded in the untreated controls, with over 300 269 

adult insects per kilogram at week 24. The insect population remained below 50 insects per kg in 270 

the Shumba super dust® (in both Mbire and Hwedza) as well as Chikwapuro® and Ngwena 271 

yedura® treatments during the entire 40 weeks of storage, and Super guard® only exceeded 50 272 

insects per kilogram at 32 and 40 weeks (Fig. 5). 273 

 274 

In the same season lower populations of insects were recorded in Mbire than in Hwedza, but the 275 

spectrum of insect species was wider. Prostephanus truncatus was more prevalent in the 276 

pesticide-treated grain especially Chikwapuro®, Ngwena yedura® and Super guard®, whereas 277 

S. zeamais was more pronounced in untreated and Shumba super dust treatments. Tribolium 278 

castaneum, being a secondary pest of maize, was more prevalent towards the end of the storage 279 

season although in the untreated control it was recorded earlier at 16 weeks. The grain moth 280 
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Sitotroga cerealella (Olivier) (Lepidoptera; Gelechiidae) and wasps of the hymenoptera order 281 

were also recorded in most treatments (Fig. 5). 282 

 283 

Treatments had significant differences (F4, 20 = 7.26; P < 0.001) for across site comparisons at 40 284 

weeks. Treatment-site interactions were also significant (F4, 20 = 7.59; P < 0.001). However, site 285 

differences were not significant in influencing insect populations. The insects were highest in 286 

untreated control, followed by Super guard® and Ngwena yedura®, Chikwapuro® and Shumba 287 

super dust® in that order. 288 

 289 

Insert Figure 5 about here 290 

 291 

3.3.2 Season 2 (2015/16)  292 

In Hwedza, P. truncatus was the main insect pest recorded in treated grain whilst high 293 

populations of S. cerealella were also present in the untreated grain. High insect populations 294 

(600 - 800 insects per kg) were recorded in the Ngwena yedura®, untreated control, Shumba 295 

super dust®, Chikwapuro® and Super guard® (Fig. 6). Actellic gold dust® out-performed the 296 

other treatments, with less than 50 adult insects per kg by 40 weeks storage. In contrast to the 297 

2014/15 season, S. zeamais was recorded at very low levels in most treatments except the 298 

untreated control at week 40. In Mbire district, S. cerealella and S. zeamais were dominant from 299 

trial setting in August 2015 to week 24 in most treatments. However, in the untreated control, 300 

T. castaneum also became dominant from week 24 to week 40, whereas in Ngwena yedura® and 301 

Super guard®, P. truncatus became dominant at week 32 and 40. The total insect numbers per 302 

kilogram recorded in Mbire of up to 220 insects per kilogram were much less than those 303 

recorded in Hwedza (above 600 insects per kilogram) for the same treatments (Fig. 6). 304 

 305 

Across sites, both treatments (F5, 24 = 9.20; P < 0.001) and sites (F1, 24 = 177.91; P < 0.001) were 306 

significantly different. Treatment-site interactions were also significant (F5, 24 = 7.01; P < 0.001) 307 

hence performance of treatments across sites differed. Actellic gold dust® had the least number 308 

of total insects followed by the untreated control for pooled data. Chikwapuro®, Shumba super 309 

dust® and Super guard® were in the same range and Ngwena yedura® had the highest number of 310 

total insects. 311 
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Insert Figure 6 about here 312 

 313 

3.4 Insect feeding dust 314 

3.4.1 Season 1 (2014/15) 315 

Very little insect feeding dust or chaff (< 2 % by weight) was generated in any of the pesticide 316 

treatments in Hwedza during the 2014/15 storage season, and it only reached 4 % in the 317 

untreated control by week 40. In Mbire, Shumba super dust® and the untreated control recorded 318 

below 1 % chaff dust, whilst Super guard®, Chikwapuro® and Ngwena yedura® recorded 319 

between 2 and 4 % chaff. Only treatment-site interactions were significant (F4, 20 = 3.53; P = 320 

0.025) at 40 weeks of storage.  321 

 322 

3.4.2 Season 2 (2015/16)  323 

In contrast to the 2014/15 storage season, during the 2015/16 season, large quantities of 324 

feeding/boring dust were generated in Hwedza from week 24 onwards, rising to between 10 and 325 

25 % by week 40. Only Actellic gold dust® remained with little chaff. Greater quantities of chaff 326 

were generated in the pesticide treatments Chikwapuro®, Super guard®, Ngwena yedura® and 327 

Shumba super dust® than the untreated control at week 40. Again, almost no dust/chaff was 328 

recorded in the Actellic gold dust®. In the Mbire district, all treatments recorded very low chaff 329 

content below 5 % (Fig. 7). Treatments were significantly different (F5, 24 = 11.13; P < 0.001) 330 

across sites. The two sites also had significant differences (F1, 24 = 151.03; P < 0.001) and 331 

treatment-site interactions were also significant (F5, 24 = 9.23; P < 0.001). 332 

 333 

Insert Figure 7 about here 334 

 335 

3.5 Grain moisture content, store temperature and relative humidity 336 

 337 

3.5.1 Season 1 (2014/15) 338 

In Hwedza district, moisture content of the trial grain ranged from 9 to 12 % during the 40 week 339 

trial. Moisture content increased from trial setting in November 2014 to February 2015 before 340 

stabilizing at around 11 % from March to June (Fig. 8). Temperatures for Hwedza were 341 
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consistently below 25 oC except in January and March 2015. On the other hand, r.h. ranged 342 

between 50 and 70 % for most of the season and only dropped below 50 % in June. In Mbire 343 

grain moisture content dropped from 10 % to about 9 %, between November 2014 and January 344 

2015 before rising to a peak of 11 % in March 2015 (Fig. 8). During this period temperatures 345 

were beyond 30 oC for most of the time except in January 2015 when heavy rains and flooding 346 

occurred in Mbire (13 weeks into the trial). Relative humidity was highly variable in Mbire, 347 

rising from as low as 30 % during the hot dry summer in November to above 70 % in the hot wet 348 

summer in January 2015. Between February and June of 2015, r.h. decreased gently from about 349 

65 % to 40 %. There were no significant differences in grain moisture content between 350 

treatments for across site comparisons. However, the sites were significantly different (F1, 20 = 351 

83.66; P < 0.001). Treatment-site interactions were also insignificant, statistically. There were 352 

significant differences in mean temperatures for Hwedza and Mbire districts (Paired sample t-353 

test: T = -5.88; N = 8, P < 0.001). 354 

 355 

Insert Figure 8 about here 356 

 357 

Insert Figure 9 about here 358 

 359 

3.5.2 Season 2 (2015/16) 360 

In the 2015/16 season, grain moisture content in Hwedza district decreased from 12 % in 361 

September 2015 to about 9.6 % in December before rising gently and remaining at around 11 % 362 

until the end of the season. During the season steady temperatures of 25 to 27 oC were recorded, 363 

and only dropping below 25 oC in April and May 2016 (Fig. 9). Relative humidity decreased 364 

from 40 to 35 % between September and October 2015 before rising steadily to above 50 % from 365 

January 2016 onwards. In Mbire district, grain moisture content decreased steeply from 12 % to 366 

about 7 % between September and December 2015 (Fig. 8) in response to high temperatures 367 

(Fig. 9) which were consistently high above 30 oC during that period. Grain moisture content 368 

then increased between December 2015 and January 2016, then remained constant at just below 369 

10 % until the season’s end in May 2016. The hot dry spells of Mbire resulted in r.h. falling 370 

below 30 % in September and October 2015 before a rapid rise to slightly above 50 % between 371 

November and December. Beginning 2016, r.h. remained steady above 50 % until April, when it 372 
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dropped to about 42 % in May. No significant differences in grain moisture content between 373 

treatments were recorded for across site comparisons. Treatment-site interactions were also not 374 

significant. However, sites were significantly different (F1, 24 = 71.96; P < 0.001) at 40 weeks. 375 

Significant differences were also confirmed for the mean temperatures (Paired sample t-test: T = 376 

-5.22; N = 9; P < 0.001) of the two sites.  377 

 378 

 379 

4. DISCUSSION 380 

The study found that the performance of grain storage pesticides differed across the sites and was 381 

influenced by the contrasting environmental conditions. This resulted in significant treatment-382 

site interactions. Grain damage and weight losses in the pesticide treated maize grain were higher 383 

in Mbire than Hwedza district in the 2014/15 season, although this was not the case for the 384 

untreated control. However, in the 2015/16 season, damage and weight losses in all treatments 385 

were higher in Hwedza than Mbire district. In the 2014/15 season, Shumba super dust® 386 

effectively suppressed damage in treated grain in both districts, and Chikwapuro® was equally as 387 

effective but only in Hwedza district. In the 2015/16 storage season, in Hwedza district, grain 388 

damage levels were very high in all treatments except Actellic gold dust® after 40 weeks storage. 389 

In contrast, in the hotter more arid Mbire district, insect grain damage was suppressed in all 390 

pesticide treatments for 32 weeks storage after which high damage levels were recorded in Super 391 

guard® and Ngwena yedura® in 2015/16. 392 

Several other recent storage studies from African countries (Mutambuki and Ngatia, 2012, Abass 393 

et al., 2014; Midega et al., 2016), also reported grain damage levels as high as those experienced 394 

in Hwedza in 2015/16, where over 70 % grain was damaged and 40 % weight losses recorded. In 395 

many African countries, P. truncatus and S. zeamais are ranked as the most destructive stored 396 

maize insect pests (Midega et al., 2016), and the former is estimated to cause double the losses 397 

caused by S. zeamais (Hodges, 2002). Some farmers perceive P. truncatus to account for about 398 

56 % and S. zeamais up to 36 % of the maize losses (Abass et al., 2014). In the current trial, 399 

P. truncatus and S. zeamais were the main cause of high grain damage and weight losses.  400 

The damage levels and pest populations varied widely between the two seasons in Mbire district, 401 

which may be linked to climatic aspects. As in the 2014/15 storage season, flooding occurred in 402 
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Mbire between January and February 2015 during which time temperatures dropped to below 403 

30 oC and grain moisture content simultaneously rose to a high of 11 %. In relation to grain 404 

damage and pest infestations, there were no sudden fluctuations in response to flooding or 405 

environmental conditions as the effects took longer to manifest. Higher damage levels and insect 406 

populations did not manifest immediately in response to the flooding and changed environmental 407 

conditions, but occurred later on from April to June 2015 (after 32 and 40 weeks storage). 408 

Generally, the higher the grain moisture content, the more susceptible the grain is to insects 409 

(Rashid et al., 2013). 410 

Another factor which may have caused wide variability in grain damage and pest populations 411 

between seasons in the Mbire trials may be the excessively high temperatures experienced during 412 

the El-Niño heat wave (WFP, 2016) which affected the 2015/16 season. During this season there 413 

was a very slow build-up of insect populations in Mbire trials enabling all the pesticide 414 

treatments to perform fairly well for 32 weeks of grain storage. However, a sudden dramatic 415 

increase in damage occurred by 40 weeks storage in the untreated control, Super guard® and 416 

Ngwena yedura® treatments after temperatures dropped below 30 oC. It is possible that pest 417 

build-up was suppressed in the earlier weeks due to the excessively high temperatures 418 

experienced during the heat wave. As optimum conditions for life cycle development of most 419 

storage insect pests fall in the ranges of 27 – 32 oC at 72 % r.h., excessive temperatures above 420 

35 oC may slow establishment (Mason and McDonough, 2011). It is likely that the heatwave 421 

caused pesticide breakdown, leaving insect populations to increase with little restriction when 422 

temperatures dropped to optimal levels. 423 

Additionally the different grain moisture content levels experienced in the two districts (9 – 12 % 424 

mc in Hwedza, and as low as 8.5 % in Mbire district), which were linked to the high 425 

temperatures, may also have influenced insect pest development. When temperatures are high 426 

and grain moisture content is so low, it becomes difficult for insects to perforate grain (Rashid et 427 

al., 2013) or to breed (Beckett et al., 2007), and hence grain damage is typically lower. There 428 

were significant differences between sites for the across site comparisons of grain moisture 429 

content confirming that site conditions influenced treatment grain moisture content. Furthermore, 430 

the generally higher r.h. (> 50 %)  of Hwedza was more favourable for insect pest development 431 

compared to the drier conditions (< 30 % r.h.) of Mbire district. Typically, optimum conditions 432 
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for S. zeamais development are 25 oC at 70 % r.h., 35 oC at 75 % r.h. for T. castaneum and 32 oC 433 

at 80 % r.h. for P. truncatus (Haines, 1991; Fields, 1992). Prostephanus truncatus has, however, 434 

higher tolerance to drier conditions (Haines, 1991). 435 

Overall, no general pattern across the two districts for the two storage seasons in terms of 436 

pesticide efficacy as measured by grain damage, weight loss, pest prevalence and abundance was 437 

found. As noted earlier, in the 2014/15 season, damage, weight loss and P. truncatus prevalence 438 

were higher in Mbire than Hwedza district. However, in the 2015/16 season, the reverse occurred 439 

with higher grain damage, weight loss and P. truncatus populations recorded in Hwedza than in 440 

Mbire district. Similarly, the pesticides were fairly effective in Hwedza in 2014/15, but less so in 441 

Mbire. However, the 2015/16 season’s trial found all the pesticides except Actellic gold dust® 442 

perfomed poorly. The variabilities in terms of damage, weight levels and P. truncatus prevalence 443 

across the two seasons may be attributed to the characteristically sporadic occurrence of 444 

P. truncatus (Boxall, 2003; Hodges et al., 2003; Muantinte et al., 2014). According to Krall 445 

(1984), damage and losses caused by P. truncatus are difficult to measure due to their often 446 

isolated and unpredictable occurrence. The pest’s presence is known to be sporadic between 447 

treatments, farm stores and storage seasons (Boxall, 2003; Hodges et al., 2003). This was the 448 

case across treatments, sites and seasons in both Hwedza and Mbire districts during these trials. 449 

Therefore, any pesticide used needs to be able to perform whether P. truncatus is present or not 450 

that year, because the risk of food shortages is so high if the pest does attack. 451 

In terms of general pesticide efficacy, the grain damage and total insect numbers graphs clearly 452 

demonstrate the failure of most of the pesticides in suppressing insect pest development in both 453 

study districts. With the exception of Actellic gold dust® which performed very well in both 454 

districts, and Shumba super dust® in the 2014/15 season, all the other pesticides succumbed to 455 

insect pressure. These studies found that the organophosphate and pyrethroid pesticide 456 

combinations failed to control insect pests and only Actellic gold dust® which is composed of an 457 

organophosphate (pirimiphos-methyl 1.6 %) and a neonicotinoid (thiamethoxam 0.36 %) 458 

performed well across the two contrasting environmental conditions. In this case, the 459 

neonicotinoid (thiamethoxam 0.36 %) active ingredient appears to be the differential active 460 

ingredient between the poor and high efficacy pesticides. Failure of organophosphate and 461 
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pyrethroid pesticides can be attributed to either poor pesticide persistence or pesticide tolerance 462 

and/ resistance, among other factors. 463 

Earlier laboratory studies of pirimiphos-methyl (organophosphate) in stored-maize under hot-464 

humid conditions (30 oC, > 50 % relative humidity) showed that it was effective for a short 465 

duration of four months after which efficacy was greatly reduced (Richter et al., 1997). 466 

Pirimiphos-methyl and fenitrothion (organophosphates) have also been categorised as less 467 

persistent pesticides at 30 oC temperatures, whilst deltamethrin and permethrin (pyrethroids) 468 

showed higher persistence over a nine months storage period (Morton et al., 2001). Therefore 469 

considering the 40 weeks storage duration (≈ 10 months) of this current trial and the high 470 

temperatures experienced in both districts, it might have been too long a period for effective 471 

storage, especially considering the pesticides’ low persistence. Although deltamethrin and 472 

permethrin have in previous studies shown higher persistence (Morton et al., 2001), in the 473 

current study the effectiveness of products in which they were included barely lasted 24 weeks. 474 

Besides the poor persistence, poor efficacy of synthetic pesticides may also be a result of 475 

pesticide dilution by high chaff dust. The dust generated due to extensive tunneling by 476 

P. truncatus has the potential to dilute the pesticidal dust, making it ineffective (Mlambo et al., 477 

2017). This is also one of the reasons why delayed pesticide application results in pesticide 478 

failure (Mutambuki and Ngatia, 2012). At the same time, it was also noted in some cases that 479 

untreated grain suffered less damage and weight loss than pesticide- treated grain which can be 480 

due to the high sensitivity of natural enemies to synthetic pesticides (Stathers et al., 2008). 481 

Studies done by Stathers et al., (2008) indicate that natural enemies (parasitic wasps) numbers 482 

were higher in untreated grain compared to pesticide treatments, showing how natural enemies 483 

can be killed in treated grain but survive in untreated grain and help to regulate insect 484 

populations and hence lower damage. 485 

Pesticide resistance world-wide is being fueled by the over-reliance on synthetic pesticides, 486 

mainly organophosphates and pyrethroids for grain storage (Pereira et al., 2009). “Low levels of 487 

resistance” in the case of S. zeamais have been reported in South America (Pereira et al., 2009). 488 

Strains of R. dominica with “normal” and “intermediate” tolerance as well as high resistance 489 

factors have also been screened (Lorini and Galley, 1999; Chen and Chen, 2013). Resistance of 490 

S. zeamais and T. castaneum to pirimiphos-methyl and fenitrothion has also been reported 491 
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(Lorini and Galley, 1999). It is concerning that even laboratory cultures of the S. zeamais and 492 

T. castaneum species showed resistance to these pesticides without any obvious selection 493 

pressure (Lorini and Galley, 1999). Furthermore, Collins (1998) postulated that elimination of 494 

weaker insects due to rapid field selection will make it even more difficult to control insect pests. 495 

The dominant insect species in this trial P. truncatus and S. zeamais, may therefore have 496 

developed some form of resistance to some of these pesticides and this calls for further studies to 497 

investigate pest resistance to organophosphate and pyrethroid pesticides in Zimbabwe and the 498 

SSA subcontinent as a whole. 499 

Due to the novelty of the neonicotinoid, thiamethoxam as a grain protectant (Khan et al., 2016), 500 

development of resistance may be minimal compared to the more commonly applied 501 

organophosphates and pyrethroids. To manage the development of pesticide resistance, the 502 

poorly performing pesticides should be withdrawn from the market to avoid continuous selection 503 

for resistant insect species.  504 

5. CONCLUSION  505 

Our study demonstrates the generally poor efficacy of the organophosphate and pyrethroid grain 506 

protectant combinations currently commercially available in Zimbabwe, under both cooler and 507 

hotter climatic conditions. This study confirms frequent reports by farmers that the synthetic 508 

insecticidal dusts on the market are not effective. Only Actellic gold dust®, which contains a 509 

neonicotinoid (thiamethoxam 0.36 %) active ingredient suppressed insect pest build-up, 510 

minimising insect grain damage and grain weight losses in both districts. These findings 511 

highlight the need for further research to investigate why the efficacy of these organophosphate 512 

and pyrethroid grain protectants is poor. The very high temperatures and minimal grain moisture 513 

conditions experienced in Mbire district during the 2015/16 season appear to have suppressed 514 

insect development in the stored grain compared to the more favourable insect-developmental 515 

temperature ranges of Hwedza district. The study showed that the general efficacy of synthetic 516 

pesticide on stored maize grain varies across different climatic conditions and only Actellic gold 517 

dust® was efficacious under both the hotter and cooler climatic areas, suggesting it can be widely 518 

recommended. Nevertheless, as documented by Blacquière et al. (2012), the neonicotinoid 519 

components of the pesticide also negatively affect pollinator bees so the search for effective and 520 

safer (to both humans and the environment) alternatives to synthetic pesticides needs to continue. 521 
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The simultaneous effects of multiple insect stressors such as pesticides, and extreme 522 

temperatures, especially high temperature, and low relative humidity (hence low grain moisture 523 

content) on both pests and natural enemies needs further investigation. 524 
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Highlights 538 

 High grain damage and weight loss occurred in stored maize treated with most 539 
organophosphate-pyrethroid combinations 540 

 The organophosphate-neonicotinoid-based pesticide restricted  grain damage and losses 541 
below 5 % for 40-weeks storage 542 

 Poor pesticide efficacy occurred in both cool and hot climatic locations 543 

 Prostephanus truncatus prevalence increased the magnitude of weight losses recorded 544 

 Extremely high ambient temperatures suppress insect pest development and grain damage 545 
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Shumba 

super dust 

Fenitrothion 1% + 

deltamethrin 0.13%  
12.5 ● ● 

 
   

Actellic gold 

dust 

Pirimiphos-methyl 1.6% 

+ thiamethoxam 0.36%  
12.5 ●   ● x  x  

Chikwapuro 
Pirimiphos-methyl 2.5%  

+ deltamethrin 0.1%  
10 ● ● 

 
   

Ngwena 

yedura 

Pirimiphos-methyl 2.5% 

+ deltamethrin 0.2%  
10 ● ●      

Super guard 
Pirimiphos-methyl 1.6% 

+ permethrin 0.4%  
13.9 ● ● 

 
   

Untreated 

control 
N/A  N/A          

* For pesticides, manufacturer’s label application rates were used. The symbols () and (x) 719 
show which treatments were included or not included, respectively 720 
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 732 

Figure 1: Mean insect grain damage (% ± SEM) recorded in maize stored under different 733 
treatments in Hwedza and Mbire districts during the 2014/15 storage seasons (n = 3). The legend 0, 734 
8, 16 etc. represent the sampling period in weeks 735 
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 741 

Figure 2: Mean maize insect grain damage (% ± SEM) recorded under different treatments in 742 
Hwedza and Mbire districts during the 2015/16 storage seasons (n = 3). The legend 0, 8, 16 etc. 743 
represent the sampling period in weeks 744 
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 752 

Figure 3: Mean maize grain weight loss (% ± SEM) recorded under different treatments in 753 

Hwedza and Mbire districts during the 2014/15 storage seasons (n = 3). The legend 0, 8, 16 754 
etc. represent the sampling period in weeks 755 
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 764 

Figure 4: Mean maize grain weight loss (% ± SEM) recorded under different treatments in 765 

Hwedza and Mbire districts during the 2015/16 storage season (n = 3). The legend 0, 8, 16 etc. 766 
represent the sampling period in weeks 767 
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 774 

 775 

Figure 5: Mean total insects recorded in maize grain stored under different treatments in Hwedza and Mbire districts during 776 

the 2014/15 storage season (n = 3). The legend shows insect species recorded 777 
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 784 

 785 

 786 

Figure 6: Mean total insects recorded in maize grain stored under different treatments in Hwedza and Mbire districts during 787 

the 2015/16 storage season (n = 3). The legend shows insect species recorded 788 
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 792 

 793 

Figure 7: Mean chaff (% ± SEM) recorded in maize grain stored under different 794 

treatments in Hwedza and Mbire during the 2015/16 season (n = 3). The legend 0, 8, 16 etc. 795 

represent the sampling period in weeks 796 
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 803 

Figure 8: Mean moisture content recorded on maize grain samples in Hwedza and Mbire 804 

districts during the 2014/15 and 2015/16 season 805 
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 807 

Figure 9: Mean monthly store temperatures recorded in Hwedza and Mbire districts 808 

during the 2014/15 and 2015/16 seasons 809 
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