
Durham E-Theses

Communication Patterns for Randomized Algorithms

WASTELL, CHRISTOPHER,MICHAEL

How to cite:

WASTELL, CHRISTOPHER,MICHAEL (2018) Communication Patterns for Randomized Algorithms,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/12525/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Durham e-Theses

https://core.ac.uk/display/153530632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.dur.ac.uk
http://etheses.dur.ac.uk/12525/
 http://etheses.dur.ac.uk/12525/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Communication Patterns for

Randomized Algorithms

Christopher M. Wastell

A thesis presented for the degree of

Doctor of Philosophy

Engineering and Computing Sciences

Durham University

UK

August 2017

Abstract

Examples of large scale networks include the Internet, peer-to-peer networks, parallel

computing systems, cloud computing systems, sensor networks, and social networks.

Efficient dissemination of information in large networks such as these is a funda-

mental problem. In many scenarios the gathering of information by a centralised

controller can be impractical. When designing and analysing distributed algorithms

we must consider the limitations imposed by the heterogeneity of devices in the

networks. Devices may have limited computational ability or space. This makes

randomised algorithms attractive solutions. Randomised algorithms can often be

simpler and easier to implement than their deterministic counterparts. This thesis

analyses the effect of communication patterns on the performance of distributed

randomised algorithms. We study randomized algorithms with application to three

different areas.

Firstly, we study a generalization of the balls-into-bins game. Balls into bins

games have been used to analyse randomised load balancing. Under the Greedy[d]

allocation scheme each ball queries the load of d random bins and is then allocated to

the least loaded of them. We consider an infinite, parallel setting where expectedly

λn balls are allocated in parallel according to the Greedy[d] allocation scheme in

to n bins and subsequently each non-empty bin removes a ball. Our results show

that for d = 1, 2, the Greedy[d] allocation scheme is self-stabilizing and that in

any round the maximum system load for high arrival rates is exponentially smaller

for d = 2 compared to d = 1 (w.h.p).

Secondly, we introduce protocols that solve the plurality consensus problem on

arbitrary graphs for arbitrarily small bias. Typically, protocols depend heavily on

the employed communication mechanism. Our protocols are based on an interest-

ing relationship between plurality consensus and distributed load balancing. This

relationship allows us to design protocols that are both time and space efficient and

generalize the state of the art for a large range of problem parameters.

Finally, we investigate the effect of restricting the communication of the classical

PULL algorithm for randomised rumour spreading. Rumour spreading (broadcast)

is a fundamental task in distributed computing. Under the classical PULL algo-

rithm, a node with the rumour that receives multiple requests is able to respond

to all of them in a given round. Our model restricts nodes such that they can re-

spond to at most one request per round. Our results show that the restricted PULL

algorithm is optimal for several graph classes such as complete graphs, expanders,

random graphs and several Cayley graphs.

2

Contents

1 Introduction 10

1.1 Notation and Terminology . 14

1.1.1 Basic Definitions . 14

1.1.2 Deviation Bounds . 16

1.1.3 Graphs . 17

1.1.4 Markov Chains . 17

1.1.5 Random Walks . 19

1.2 Aims and Outline . 19

2 Infinite, Parallel Balls-into-Bins 23

2.1 Introduction . 23

2.1.1 Related Work . 25

2.1.2 Model & Preliminaries . 28

2.2 1-Choice Process . 30

2.2.1 Maximum Load . 31

2.2.2 Stability . 35

2.2.3 Lower Bound on Maximum Load 38

2.3 The 2-Choice Process . 41

2.3.1 Smoothness . 42

2.3.2 Maximum Load . 60

2.3.3 Stability . 66

2.4 Conclusion . 69

3

CONTENTS

3 Plurality Consensus 70

3.1 Introduction . 70

3.1.1 Related Work . 73

3.1.2 Our Contribution . 78

3.2 Model & General Definitions . 80

3.3 Protocol BALANCE . 83

3.4 Protocol SHUFFLE . 86

3.4.1 Protocol Description . 87

3.4.2 Analysis of Shuffle . 90

3.5 Conclusion . 102

4 Restricted PULL 104

4.1 Introduction . 104

4.1.1 Related Work . 106

4.1.2 Our Contribution . 110

4.1.3 Definitions and Model . 111

4.2 Analysis . 113

4.2.1 Regular Graphs . 114

4.2.2 Non-regular graphs . 126

4.3 Conclusion . 130

5 Conclusions and Outlook 132

Bibliography 136

4

List of Figures

3.1 Plurality Consensus: Example of the Shuffle protocol for G = K4,

γ = 6, and k = 3 using Diffusion . 89

3.2 Plurality Consensus: Coupling for SHUFFLE protocol 93

4.1 Restricted PULL: Initial State . 117

4.2 Restricted PULL: Dependency between shared neighbours 120

5

List of Tables

1.1 Examples of Hitting and Mixing Times based on Graph Family . . . 20

3.1 Summary of plurality consensus results. 74

6

Declaration

Parts of the work presented in this thesis have been published in preliminary form

[24, 25] in collaboration with my colleagues.

7

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged.

8

Acknowledgements

First and foremost I must thank my supervisor Dr. Tom Friedetzky for his guidance

and support throughout my studies. Moreover, I am indebted to him for my coffee

appreciation (addiction) without which this work would certainly not have been

possible.

Special thanks go to my co-authors and colleagues Prof. Dr. Petra Berenbrink,

Dr. Peter Kling, Frederik Mallmann-Trenn, and Dr. Lars Nagel for their invaluable

and enjoyable collaborations during time spent in both Durham and Vancouver.

I would also like to thank my examiners, Dr. Russell Martin and Dr. Ioannis

Ivrissimtzis.

My thanks go to EPSRC, Durham University, and Simon Fraser University for

the financial support that has allowed me to produce this thesis.

During my time in Durham I have been fortunate to meet many great people.

Without them I am sure that my experiences in Durham would not have been

anywhere near as enjoyable. Although it is not possible to name them all I must

thank Dr. David Roberts, Dr. Chris Watson, Dr. Robert Powell, and (future Doctor)

Lewis McArd for their time, guidance, and life advice.

Finally, thank you to my friends and family for their support during my time in

Durham. They have all been endlessly patient and understanding during my studies.

I am sure there were many points where you thought I was crazy for undertaking

such studies and you may yet be right!

9

Chapter 1

Introduction

There are numerous examples of large scale networks. Many of these are prevalent

in well known applications. The Internet, peer-to-peer (P2P) networks, parallel

computing systems, Cloud computing systems, sensor networks, and social networks

are all well known examples of large scale networks to name but a few. Given

the wide spread application of these networks, the study and design of efficient

algorithms for related problems is highly relevant. This has lead to the development

of numerous models that aid the development and understanding of algorithms for

problems related to such networks.

Each of the previous examples of networks has their own requirements that must

be accounted for when designing suitable models and algorithms. The challenges

that any algorithm must cope with may include but are not limited to dynamic

changes in the network, heterogeneous devices, communicational limitations, and

failure of both nodes and communication channels. Whilst present in the previ-

ous examples, these challenges are highlighted by emerging paradigms such as the

Internet of Things (IoT) [10]. The Internet of Things considers the connection of

everyday objects through embedded computing devices. In this paradigm, a sin-

gle network can consist of many different types of devices e.g. computers, mobile

phones, sensors, and fridges. The computational ability of these devices can vary

greatly. For example, whilst desktop/laptop computers have widely adopted multi-

core processors (with mobiles phones following this pattern) other devices such as

10

CHAPTER 1. INTRODUCTION

sensors and other embedded devices operate with limited computational and com-

munication resources [27]. The ability of an algorithm to cope with the challenges

outlined above ultimately determines the suitability of the algorithm.

The first (and most immediate) aspect of these networks that any potential

algorithm must cope with is the size of the network. The size of a network is

typically characterised by the number of nodes that constitute the network. In order

to be applicable to networks such as the previous examples, models and algorithms

must assume that the number of nodes in the network is large. For example, the

number of devices connected to the Internet is estimated to be in the billions and

this number continues to grow. In 2013, Cisco predicted that the number of devices

connected to the Internet will hit 50 billion by 2020. 1 Other sources suggested this

figure may even be an underestimate. By 2016, this prediction had been revised

down however the number of devices connected to the internet is of the order of

109 and continues to grow. 2 The size of the network presents a major hurdle

for certain approaches that might be considered when designing our algorithms.

For example, the adoption of centralised approaches may not be suitable when

considering problems on large networks. Where a centralised controller is required

to solve a problem that requires knowledge of the network as a whole this will

typically entail the gathering of information from the nodes of the network. This

information could represent the current state of the nodes in the network e.g. for

load balancing problems this might represent the nodes current load. The gathering

of this information by a centralised controller can be impractical since it may be

costly and time consuming. In many scenarios that consider large scale networks it

is therefore assumed that there is no central controller present.

In the absence of a centralised controller it is necessary to develop decentralised

algorithms for our problems. That is we are interested in designing algorithms that

are executed locally on the nodes of the network. In particularly, these algorithms

1https://blogs.cisco.com/news/cisco-connections-counter
2http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-

50-billion-devices-by-2020-is-outdated

11

should use only local knowledge when making decisions. This is to avoid incurring

the previously discussed costs associated with gathering the information centrally.

Adopting a decentralised approach has the additional benefit that unlike the cen-

tralised approach that can have a single point of failure, decentralised approaches

allow a system to be more resilient to changes in the network. This is an attractive

feature when considering networks that are subject to change such as nodes leaving

or joining the network.

In order to take advantage of the benefits of a decentralised approach there are

additional challenges and considerations that arise due to the local execution of the

algorithm that we must be mindful of. Firstly, we require that each node uses only

local knowledge. In other words, each node must execute the algorithm based on

only partial knowledge of the whole problem. Therefore, in many cases nodes must

communicate in order to solve the problem. For this reason special attention must

be given to the communication required by our algorithms. As stated previously,

attempting to communicate with all nodes in the network is often infeasible due to

the costs and memory overheads. For this reason, communication is often assumed

to be restricted to adjacent nodes in the network.

Secondly, special attention must be given to the capabilities of the nodes. When a

network consists of heterogeneous devices, the nodes in the network may vary greatly

in their computational abilities. It is therefore necessary to design algorithms that

incur low computational overheads. In doing so we ensure that our algorithm is

suitable to be run on all nodes in the network. Additionally, in networks where

the nodes are limited in their capabilities this may introduce further restrictions

on the communication that is possible between nodes. For example, depending on

the capability of the node it may be able to communicate with many neighbouring

nodes concurrently or may be restricted to communicating with only with a single

node.

Given the locality considerations, special attention must be paid to the commu-

nication between nodes in the network. In particular the efficient dissemination of

12

CHAPTER 1. INTRODUCTION

information in large scale networks is a fundamental problem [64]. Tasks such as

broadcasting, gossiping, sorting, routing, leader election, load balancing, etc. can be

regarded as special cases of information dissemination [88]. In subsequent chapters

we study models and algorithms for three of these problems: namely load balancing,

plurality consensus, and rumour spreading. Due to their importance these problems

have been widely studied under different models and assumptions. Further discus-

sion of previous studies can be found in the subsequent chapters.

When designing algorithms for problems related to the efficient dissemination of

information it must be done so with the previously mentioned considerations and

constraints in mind. That is, we require our algorithms to be capable of solving

their respective problems through local decision making whilst incurring low com-

putational overheads. In many cases randomised algorithms have often been seen

as attractive solutions. This is in part due to the robustness of randomised algo-

rithms. Whilst it may be possible to formulate a special input where a deterministic

algorithm performs poorly, it can be more difficult to do the same for a randomised

algorithm. Randomised algorithms not only serve a purpose where the deterministic

counterpart is inappropriate, there are applications such as Monte Carlo simulations

and primality testing where randomised algorithms are significantly more efficient

than deterministic solutions [77]. Moreover, randomised algorithms can be easier

to implement than their deterministic counter parts. As ever there is a price to be

paid for these advantageous properties. When adopting a randomised algorithm we

have to be aware that it is possible that the solution may be of poor quality or even

incorrect. It is therefore important that proposed algorithms are shown to have a

small probability of failure for the improvement in speed or memory requirements

to be worthwhile.

In this thesis we consider the effect of communication patterns on the perfor-

mance of randomised algorithms for problems relating to the efficient dissemination

of information in large networks. As previously stated, communication between the

nodes in large networks may be restricted. This may be due to, for example, the

13

1.1. NOTATION AND TERMINOLOGY

application considered, the network topology, or device limitations. Subsequently in

these cases the communication patterns may be determined by the limitations of the

devices themselves e.g. devices in sensor networks. On the other hand, it may also

be the case that communication between nodes is restricted in order to minimise

overheads. For example, when considering the problem of load balancing it is de-

sirable to reduce the communication overheads that are incurred by the centralised

algorithm to avoid costly information gathering. In this case it is advantageous to

design algorithms that restrict communication.

1.1 Notation and Terminology

In this section we introduce some basic notation and terminology. In subsequent

sections further specialised notation will be introduced where necessary. We assume

the reader is familiar with concepts in basic combinatorics and probability theory

that are used in the analysis of randomized algorithms. For good introductions see

[62, 77, 81, 87]. Throughout this thesis we will use asymptotic notation. For an

overview we refer the reader to Graham et al. [62, Chapter 9].

In general, bold font indicates vectors and matrices, and x(i) refers to the i-th

component of x. For i ∈ N, we define [i] := { 1, 2, . . . , i } as the set of the first i

integers.

1.1.1 Basic Definitions

Definition 1.1.1 (Binomial Distribution; See [81]). Let X1, X2, . . . Xn be indepen-

dent 0/1 random variables such that Pr (Xi = 1) = p and X =
∑nXi. The random

variable X has the binomial distribution with parameter n and p.

Pr (X = k) =

(
n

k

)
pk(1− p)n−k

14

CHAPTER 1. INTRODUCTION

Definition 1.1.2 (Binomial Theorem).

(x+ y)n =
n∑
i=0

(
n

i

)
xn−iyi =

n∑
i=0

(
n

i

)
xiyn−i (1.1)

By substituting y = 1 we obtain the following special case

(1 + x)n =
n∑
i=0

(
n

i

)
xi (1.2)

Since the binomial distribution is used regularly throughout this thesis we give the

following useful bounds for the binomial coefficient.

Proposition 1.1.3 (See Motwani and Raghavan [81]). For n ≥ k > 0,

(
n

k

)
≤ nk

k!
(1.3)

(
n

k

)
≥
(n
k

)k
(1.4)

(
n

k

)
≤
(e · n

k

)k
(1.5)

The following identities are useful for obtaining bounds.

Definition 1.1.4 (Geometric Series). If x ∈ R and |x| < 1 then,

∞∑
xk =

1

1− x

Lemma 1.1.5 (Property of Exponential Function). For all x ∈ R and n > 0,

(
1 +

x

n

)n
≤ ex

Key quantities related to the performance of randomised algorithms are described by

15

1.1. NOTATION AND TERMINOLOGY

random variables. To compare algorithms we will compare these random variables.

The following definitions will be useful when comparing two random variables.

Definition 1.1.6 (Stochastic Dominance). Let X and Y be random variables on a

sample space Ω. If

Pr (X ≥ c) ≥ Pr (Y ≥ c)

for all c then X stochastically dominates Y , denoted by (Y ≺ X).

1.1.2 Deviation Bounds

Since it is possible for a randomised algorithm to perform “badly” it is often desirable

to show that the values of the random variable associated with key quantities asso-

ciated with the algorithm are within a certain range with high probability (w.h.p.).

The definition is based on a parameter n, that is related to the problem size.

Definition 1.1.7. An event E holds with high probability (w.h.p) if

Pr (E) ≥ 1− 1

nc

for a constant c > 0.

The following tools have been developed to show tail bounds for random variables.

Combined with our other techniques, these tools allow us to show desirable proper-

ties of our randomized algorithms.

Lemma 1.1.8 (Markov’s; See [81] pg.46). Let X be a random variable assuming

only non negative values. Then for all a > 0

Pr (X ≥ a) ≤ E [X]

a

16

CHAPTER 1. INTRODUCTION

Lemma 1.1.9 (Chernoff Bound; See Dubhashi and Panconesi [45] pg.6). Let X =∑
i∈[n] Xi where Xi are independent 0/1 random variables. Then,

For 0 < ε ≤ 1

Pr (X > (1 + ε) · E [X]) ≤
(

eε

(1 + ε)(1+ε)

)E[X]

≤ exp

(
−ε

2

3
· E [X]

)
(1.6)

and for 0 < ε < 1

Pr (X < (1− ε) · E [X]) ≤
(

e−ε

(1− ε)(1−ε)

)E[X]

≤ exp

(
−ε

2

2
· E [X]

)
(1.7)

1.1.3 Graphs

When discussing distributed systems on networks we model the network as a graph.

A (simple) undirected graph G = (V,E) is defined as a pair of sets V and E. V

denotes the vertex set. E ⊆ V × V denotes the edge set. If the tuple (u, v) ∈ E

for u, v ∈ V then we say that vertices u and v are adjacent. Let N(u) denote the

neighbourhood of a vertex u. The neighbourhood of a vertex is defined to be the set

of vertices adjacent to u. The degree of a vertex u is defined to be the number of

adjacent edges i.e, |N(u)|.

Alternatively, it is also possible to consider the matrix representation of a graph.

For an undirected graph G = (V,E), let A be the adjacency matrix. A is defined

as follows,

Ai,j =

1 if i, j ∈ E

0 otherwise

1.1.4 Markov Chains

A Markov Chain is a discrete time, stochastic process M = (S,P) where S denotes

the set of states and P the transition matrix. For a Markov Chain in state i ∈ S,

17

1.1. NOTATION AND TERMINOLOGY

the entry Pi,j defines the probability that the next state will be j ∈ S. Note that

Markov Chains are Memoryless. That is that the next state only depends on the

current state. This is also referred to as the Markov Property. More formally, for a

Markov Chain M , let Xt denote the state of M at time t. The following equation

describes the memoryless property.

Pr (Xt+1 = j | X0 = i0, X1 = i1, . . . , Xt = it) = Pr (Xt+1 = j | Xt = it)

= Pi,j

Let qt = (qt1, q
t
2, . . . q

t
n) be a n-dimensional probability vector. qti denotes the i-th

entry in qt and describes the probability that a Markov chain is in state i at time t.

A Markov chain is irreducible if for any two states x, y there exists an integer t

such that Pr (qtx | X0 = y) > 0. In other words, it is possible to get from one state

to any other state. A Markov chain is aperiodic if the greatest common divisor for

the return time is 1.

gcd{n > 0 : Pr (Xn = i | X0 = i) > 0} = 1

for all states i. Otherwise it is periodic. A state is ergodic if it is aperiodic and

positive recurrent. In this case, positive recurrent refers to the expected return time

being finite. A Markov chain is ergodic if all states are ergodic. In particular, this

implies the existence of a unique stationary distribution.

Definition 1.1.10 (Stationary Distribution). Let P be the transition matrix of an

ergodic Markov Chain M . Let π be a probability distribution such that,

π = πP

then π denotes the stationary distribution.

See Levin and Perres [72] for an excellent introduction into Markov chains and the

involved terminology.

18

CHAPTER 1. INTRODUCTION

1.1.5 Random Walks

Let G = (V,E) be a connected, undirected graph. A random walk is a Markov

Chain MG such that the states of MG are the vertices of G. The transition matrix

P of MG is defined as follows.

Pi,j =

1

deg(u)
if i, j ∈ E

0 otherwise

When discussing random walks, the following quantities will be of particular interest

Definition 1.1.11 (Hitting Time). The hitting time of a random walk H(u, v) is

the expected number of steps for the random walk starting at u to reach v for the

first time

Definition 1.1.12 (Variation Distance). For two probability vectors µ and ν let

‖µ− ν‖ =
1

2

n∑
i=1

|µi − νi|

be the variation distance.

Definition 1.1.13 (Mixing Time). Let xt denote the probability vector of a random

walk after t time steps and let π denote the stationary distribution. The mixing time

tmix is defined as follows:

tmix(ε) := min{t : ‖π − xt‖ ≤ ε}

for 0 ≤ ε < 1.

Table 1.1 gives examples of these properties for several known graph classes.

1.2 Aims and Outline

In this thesis we consider the effect of different communication patterns on the

performance of randomised algorithms for problems relating to the efficient dissem-

19

1.2. AIMS AND OUTLINE

Graph Family Hitting Time Mixing Time

Cycle n2/2 Θ (n2)
2 dimensional grid Θ (n logn) Θ (n)
d-dimensional grid, d>2 Θ (n) Θ

(
n2/d

)
Hypercube Θ (n) O (log n log log n)
Complete Graph Θ (n) 1
ER Random Graphs Θ (n) O (log n)

Table 1.1: Examples of Hitting and Mixing Times based on Graph Family (for any
constant ε > 0) [6]

ination of information in large networks.

In Chapter 2 we study a infinite balls into bins allocation process. A fundamental

problem in distributed computing is the distribution of requests to a set of uniform

servers without a centralized controller. Classically, such problems are modelled as

static balls into bins processes, where m balls (tasks) are to be distributed among

n bins (servers) where the value of m is fixed. Balls are allocated sequentially. i.e.,

one after the other. In a seminal work, Azar et al. [12] proposed the Greedy[d]

strategy for n = m. Each ball queries the load of d random bins and is allocated

to the least loaded of them. Azar et al. showed that d = 2 yields an exponential

improvement compared to d = 1. Berenbrink et al. [21] extended this to m � n,

showing that for d = 2 the maximal load difference is independent of m (in contrast

to the d = 1 case). We propose a new variant of an infinite balls-into-bins process.

Unlike previous work that assumes that a total system load of n balls at all times,

in each round an expected number of λn new balls arrive and are distributed (in

parallel) to the bins, and subsequently each non-empty bin deletes one of its balls.

This setting models a set of servers processing incoming requests, where clients can

query a server’s current load but receive no information about parallel requests.

We study the Greedy[d] distribution scheme in this setting and show a strong

self-stabilizing property: for any arrival rate λ = λ(n) < 1, the system load is

time-invariant. Moreover, for any (even super-exponential) round t, the maximum

system load is (w.h.p.) O
(

1
1−λ log n

1−λ

)
for d = 1 and O

(
log n

1−λ

)
for d = 2. Our

results show that the so called “power of two choices” carries over to our new infinite

20

CHAPTER 1. INTRODUCTION

setting. In particular, Greedy[2] has an exponentially smaller system load for high

arrival rates. For example for an arrival rate of λ = 1 − 1/n the maximum load

under Greedy[1] is O (n log n) (w.h.p) where as under Greedy[2] the maximum

load is O (log n) (w.h.p).

Chapter 3 analyses the runtime and space requirements of protocols solving the

plurality consensus problem on arbitrary graphs and large range of communication

patterns. The plurality consensus problem is defined as follows. Initially, each node

has one of k opinions. The nodes execute a (randomized) distributed protocol to

agree on the plurality opinion (the opinion initially supported by the most nodes).

In certain types of networks the nodes can be quite cheap and simple, and hence one

seeks protocols that are not only time efficient but also simple and space efficient.

Typically, protocols depend heavily on the employed communication mechanism,

which ranges from sequential (only one pair of nodes communicates at any time)

to fully parallel (all nodes communicate with all their neighbours at once) and

everything in-between. We propose a framework to design protocols for a multitude

of communication patterns. Moreover, we introduce two protocols (BALANCE

and SHUFFLE) that solve the plurality consensus problem and are both time

and space efficient. Our protocols are based on an interesting relationship between

plurality consensus and distributed load balancing. This relationship allows us to

design protocols that generalize the state of the art for a large range of problem

parameters. In particular our protocols are able to solve the plurality consensus

problem even when the bias between opinions is arbitrarily small.

Chapter 4 considers the performance of the classical PULL algorithm with a re-

stricted communication pattern for the rumour spreading problem. Rumour spread-

ing (broadcast) is a fundamental task in distributed computing. Randomised rumour

spreading algorithms disseminate a piece of information (or rumour) from a single

source node to all nodes in a graph. Typically two symmetrically defined algorithms

are studied. Namely the PUSH and PULL algorithms. The algorithms proceed in

synchronous rounds. Under the PUSH algorithm, each node that has the message

21

1.2. AIMS AND OUTLINE

chooses a neighbour uniformly at random to send the message to. The PULL algo-

rithm is defined symmetrically. Each node without the message sends a request to a

neighbour chosen uniformly at random. Finally the PUSH-PULL algorithm is the

combination of both these algorithms. These algorithms have been studied under a

range of different assumptions such as different network topologies, graph expansion

properties, dynamic graphs, asynchronous execution, and robustness against node

failure and noise (See Section 4.1.1). Recent results [39, 55, 69] investigate the dis-

crepancy between PUSH and PULL. The PULL algorithm assumes that a single

node is able to inform all nodes it receives requests from in a given round. This

might be unrealistic since it immediately implies certain capabilities of the nodes.

We study the PULL algorithm with the restriction that just as in the PUSH algo-

rithm, each node can inform at most one new node per round. Our results bound

the broadcast time of this algorithm in terms of a certain random walk through its

relationship to the PUSH algorithm. In particular, we show that for certain graph

classes this restricted algorithm is optimal.

22

Chapter 2

Infinite, Parallel Balls-into-Bins

In this chapter we study an infinite, parallel balls into bins allocation process. In

each round, λn balls (in expectation) are allocated according to the Greedy[d]

distribution scheme in parallel. Subsequently, a ball is removed from each non-

empty bin. For d = 1, 2 we show that the Greedy[d] allocation scheme is self

stabilising. More we show that the so called “power of two choices” carries over

to this new setting. In particular we show that the maximum load (with high

probability) under Greedy[2] is exponentially smaller than under Greedy[1].

2.1 Introduction

One of the fundamental problems in distributed computing is the distribution of

requests, tasks, or data items to a set of uniform servers. In order to simplify this

process and to avoid a single point of failure, it is often advisable to use a simple, ran-

domized strategy instead of a complex, centralized controller to allocate the requests

to the servers. In the most näıve strategy (1-choice), each client sends its request to

a server chosen uniformly at random. A more elaborate scheme (2-choice) chooses

two servers, queries their current loads, and sends the request to a least loaded of

them. Both approaches are typically modelled as balls-into-bins processes [2, 12, 13,

21, 61, 86, 94], where requests are represented as balls and servers as bins. While

the 2-choice approach leads to considerably better load distributions [12, 21], it loses

23

2.1. INTRODUCTION

some of its power in parallel settings, where requests arrive in parallel and cannot

take each other into account [2, 94].

We propose and study a novel infinite batch-based balls-into-bins process to

model the client-server scenario. In a round, each server (bin) consumes one of

its current tasks (balls). Afterward, expectedly λn tasks arrive and are allocated

using a given distribution scheme. The arrival rate λ is allowed to be a function

of n (e.g., λ = 1 − 1/ poly(n)). Standard balls-into-bins results imply that, for

high arrival rates, with high probability (w.h.p.) in each round there is a bin that

receives Θ (log n/ log log n) balls. Most other infinite balls-into-bins-type processes

limit the total number of concurrent balls in the system by n [12, 13] and show

a fast recovery. Since we do not limit the number of balls, our process can, in

principle, result in an arbitrary high system load. In particular, if starting in a high-

load situation (e.g., exponentially many balls), we cannot recover in a polynomial

number of steps. Instead, we regard the system load as a Markov chain and adapt

the following notion of self-stabilization: The system is positive recurrent (expected

return time to a typical low-load situation is finite), and taking a snapshot of the

load situation at an arbitrary (even super-exponential large) time step yields (w.h.p.)

a time-independent maximum load. Positive recurrence is a standard notion for

stability and basically states that the system load is time-invariant. Recall that for

irreducible, aperiodic Markov chains it implies the existence of a unique stationary

distribution (cf. Section 1.1.4). While this alone does not guarantee a good load

in the stationary distribution, together with the snapshot property we can look at

an arbitrary time window of polynomial size (even if it is exponentially far away

from the start) and give strong load guarantees. In particular, we give the following

bounds on the load in addition to showing positive recurrence:

1-choice Process: The maximum load at an arbitrary time is (w.h.p.) bounded

by O
(

1
1−λ · log n

1−λ

)
. We also provide a lower bound which is asymptotically tight

for λ ≤ 1− 1/ poly(n). While this implies that already the simple 1-choice process

is self-stabilizing, the load properties in a “typical” state are poor: even an arrival

24

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

rate of only λ = 1− 1/n yields a superlinear maximum load.

2-choice Process: The maximum load at an arbitrary time is (w.h.p.) bounded

by O
(
log n

1−λ

)
. This allows to maintain an exponentially better system load com-

pared to the 1-choice process; for any λ ≤ 1−1/ poly(n) the maximum load remains

logarithmic. Note that the resulting processes can be seen as queuing processes.

2.1.1 Related Work

We will continue with an overview of related work. We start with classical results for

sequential and finite balls-into-bins processes, go over to parallel settings, and give

an overview of infinite and batch-based processes similar to ours. We also briefly

mention some results from queuing theory (which is related but studies slightly

different quality of service measures and system models).

Sequential Setting There are many strong, well-known results for the classical,

sequential balls-into-bins process. In the sequential setting, m balls are thrown one

after another and allocated to n bins. For m = n, the maximum load of any bin is

known to be (w.h.p.) (1 +O (1)) · ln(n)/ ln lnn for the 1-choice process [61, 86] and

ln ln(n)/ ln d + Θ (1) for the d-choice process with d ≥ 2 [12]. If m ≥ n · lnn, the

maximum load increases to m/n+Θ
(√

m · ln(n)/n
)

[86] and m/n+ln ln(n)/ ln d+

Θ (1) [21], respectively. In particular, note that the number of balls above the

average grows with m for d = 1 but is independent of m for d ≥ 2. This fundamental

difference is known as the power of two choices. A similar (if slightly weaker) result

was shown by Talwar and Wieder [96] using a quite elegant proof technique (which

we also employ and generalize for our analysis in Section 2.3). Czumaj and Stemann

[37] study adaptive allocation processes where the number of a ball’s choices depends

on the load of queried bins. The authors subsequently analyze a scenario that allows

reallocations.

Berenbrink et al. [26] adapt the threshold protocol from Adler et al. [2] (see

below) to a sequential setting and m ≥ n bins. Here, ball i randomly chooses bins

25

2.1. INTRODUCTION

until it sees a load smaller than 1+ i/n. While this is a relatively strong assumption

on the balls, this protocol needs only O (m) choices in total (allocation time) and

achieves an almost optimal maximum load of dm/ne+ 1.

Parallel Setting Several papers (e.g., [2, 94]) investigated parallel settings of

multiple-choice games for the case m = n. Here, all m balls have to be allocated

in parallel, but balls and bins might employ some (limited) communication. Adler

et al. [2] consider a trade-off between the maximum load and the number of commu-

nication rounds r the balls need to decide for a target bin. Basically, bounds that

are close to the classical (sequential) processes can only be achieved if r is close to

the maximum load [2]. The authors also give a lower bound on the maximum load if

r communication rounds are allowed, and Stemann [94] provides a matching upper

bound via a collision-based protocol.

Infinite Processes For infinite processes, the number of balls to be thrown is not

fixed. Instead, in each of infinitely many rounds, balls are thrown or reallocated

and bins (possibly) delete old balls. Azar et al. [12] consider an infinite, sequential

process starting with n balls arbitrarily assigned to n bins. In each round one

random ball is reallocated using the d-choice process. For any t > cn2 log log n, the

maximum load at time t is (w.h.p.) ln ln(n)/ ln d+O (1).

Adler et al. [1] consider a system where in each roundm ≤ n/9 balls are allocated.

Each bin has a FIFO queue, and each arriving ball is stored in the queue of two

randomly chosen bins. After each round, every non-empty bin deletes its frontmost

ball (which automatically removes its copy from the second random bin). It is

shown that the expected waiting time is constant and the maximum waiting time

is (w.h.p.) ln ln(n)/ ln d + O (1). The restriction m ≤ n/9 is the major drawback

of this process. A further study of this process, based on differential methods and

experiments, was conducted by Berenbrink et al. [20]. The balls’ arrival times are

binomially distributed with parameters n and λ = m/n. Their results indicate a

stable behaviour for λ ≤ 0.86. A similar model was considered by Mitzenmacher

26

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

[76], who considers ball arrivals as a Poisson stream of rate λn for λ < 1. It is shown

that the 2-choice process reduces the waiting time exponentially compared to the

1-choice process.

Czumaj [38] presents a framework to study the recovery time of discrete-time

dynamic allocation processes. In each round one of n balls is reallocated using the d-

choice process. Two models are considered: in the first, the ball to be reallocated is

chosen by taking a ball from a random bin. In the second, the ball to be reallocated is

chosen by selecting a random ball. From an arbitrary initial assignment, the system

is shown to recover to the maximum load from Azar et al. [12] within O (n2 lnn)

rounds in the former and O (n lnn) rounds in the latter case. Becchetti et al. [13]

consider a similar (but parallel) process. In each round one ball is chosen from every

non-empty bin and reallocated to a randomly chosen bin (one choice per ball). The

authors show that (w.h.p.) starting from an arbitrary configuration, it takes O (n)

rounds to reach a configuration with maximum load O (log n). Moreover, if the

process starts in a configuration with maximum load O (log n), then the maximum

load stays in O (log n) for poly(n) rounds. An interesting connection to our work is

that the analysis of [13] is based on an auxiliary Tetris-process. This process can

be seen a special version of our 1-choice process and is defined as follows: starting

from a state with at least n/4 empty bins, in each round every non-empty bin deletes

one ball. Subsequently, exactly (3/4)n new balls are allocated to the bins (one choice

per ball).

Batch-Processes Batch-based processes allocate m balls to n bins in batches of

(usually) n balls each, where each batch is allocated in parallel. They lie between

(pure) parallel and sequential processes. For m = τ · n, Stemann [94] investigates

a scenario with n players each having m/n balls. To allocate a ball, every player

independently chooses two bins and allocates copies of the ball to both of them.

Every bin has two queues (one for first copies, one for second copies) and processes

one ball from each queue per round. When a ball is processed, its copy is removed

from the system and the player is allowed to initiate the allocation of the next ball.

27

2.1. INTRODUCTION

If τ = lnn, all balls are processed in O (lnn) rounds and the waiting time is (w.h.p.)

O (ln lnn). Berenbrink et al. [19] study the d-choice process in a scenario where m

balls are allocated to n bins in batches of size n each. The authors show that the

load of every bin is (w.h.p.) m/n±O (log n). As noted in Lemma 2.3.2, our analysis

can be used to derive the same result by easier means.

Queuing Processes Batch arrival processes have also been considered in the

context of queuing systems. A key motivation for such models stems from the

asynchronous transfer mode (ATM) in telecommunication systems. Tasks arrive in

batches, are stored in a FIFO queue and served by a fixed number of servers which

remove the tasks from the queue and process them. Several papers [3, 65, 68, 93]

consider scenarios where the number of arriving tasks is determined by a finite state

Markov chain. Results study steady state properties of the system to determine

properties of interest (e.g., waiting times or queue lengths). Sohraby and Zhang [93]

use spectral techniques to study a multi-server scenario with an infinite queue. Alfa

[3] considers a discrete-time process for n identical servers and tasks with constant

service time s ≥ 1. To ensure a stable system, the arrival rate λ is assumed to

be at most n/s and tasks are assigned cyclically, allowing the authors to study an

arbitrary server (instead of the complete system). Kamal [65] and Kim et al. [68]

study a system with a finite capacity. The tasks which arrive when the buffer is full

are lost. The authors study the steady state probability and give empirical results

to show the decay of waiting times as n increases.

2.1.2 Model & Preliminaries

We model our load balancing problem as an infinite, parallel balls-into-bins process.

Time is divided into discrete, synchronous rounds. There are n bins and n genera-

tors, and the initial system is assumed to be empty. At the start of each round, every

non-empty bin deletes one ball. Afterward, every generator generates a ball with a

probability of λ = λ(n) ∈ [0, 1] (the arrival rate). This generation scheme allows us

28

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

to consider arrival rates that are arbitrarily close to one (such as 1 − 1/ poly(n)).

Generated balls are distributed in the system using a distribution process. In this

chapter we analyze two specific distribution processes:

• The 1-choice process (Greedy[1]) assigns every ball to a random bin.

• The 2-choice process (Greedy[2]) assigns every ball to a least loaded among

two randomly chosen bins.

Notation The random variable Xi(t) denotes the load (number of balls) of the

i-th fullest bin at the end of round t. Thus, the load situation (configuration) after

round t can be described by the load vector X(t) = (Xi(t))i∈[n] ∈ Nn. We define

∅(t) := 1
n

∑n
i=1Xi(t) as the average load at the end of round t.

Markov Chain Preliminaries Before proceeding with our analysis we first make

explicit the Markov chain that we study. For supplementary definitions see Sec-

tion 1.1.4. We consider the Markov chain on the load vectors. This Markov chain

has the Markov property since X(t) depends only on X(t − 1) and the random

choices during round t. We refer to this Markov chain as X. This Markov chains

state space includes all vectors with non-increasing entries over Nn. Note that X is

time-homogeneous (transition probabilities are time-independent), irreducible (ev-

ery state is reachable from every other state, and aperiodic (path lengths have no

period; in fact, our chain is lazy). Recall that such a Markov chain is positive recur-

rent (or ergodic) if the probability to return to the start state is 1 and the expected

return time is finite. In particular, this implies the existence of a unique station-

ary distribution. See [72] for an excellent introduction into Markov chains and the

involved terminology.

Positive recurrence is a standard formalization of the intuitive concept of stabil-

ity. A state of a Markov chain is positive recurrent if the expected return time the

state is finite. Moreover, if all states in an irreducible Markov chain are positive

recurrent then the Markov chain is said to be positive recurrent. In order to show

29

2.2. 1-CHOICE PROCESS

that the infinite processes studied in the chapter are positive recurrent we will use

the following results. The first result is due Fayolle et al. [49] and states two con-

ditions that must hold for a Markov Chain to be positive recurrent. The theorem

considers a suitably chosen potential function that is defined over the states of the

Markov chain. Informally Condition (a) of the theorem state that in most cases the

potential function is decreasing linearly over a given number of steps (β(x)). For

a finite set of states C we do not require that the potential function is decreasing

during β(x) steps but instead that it remains finite.

Theorem 2.1.1 (Fayolle et al. [49, Theorem 2.2.4]). A time-homogeneous irreducible

aperiodic Markov chain ζ with a countable state space Ω is positive recurrent if and

only if there exists a positive function φ(x), x ∈ Ω, a number η > 0, a positive

integer-valued function β(x), x ∈ Ω, and a finite set C ⊆ Ω such that the following

inequalities hold:

(a) E [φ(ζ(t+ β(x)))− φ(x) | ζ(t) = x] ≤ −ηβ(x), x 6∈ C

(b) E [φ(ζ(t+ β(x))) | ζ(t) = x] <∞, x ∈ C

2.2 1-Choice Process

In this section we present two main results for the 1-choice process. Theorem 2.2.4

states the stability of the system under the 1-choice process for an arbitrary λ, using

the standard notion of positive recurrence (cf. Section 2.1). In particular, this implies

the existence of a stationary distribution for the 1-choice process. Theorem 2.2.2

strengthens this by giving a high probability bound on the maximum load for an

arbitrary round t ∈ N. Together, both results imply that the 1-choice process is self-

stabilizing, i.e., the system is positive recurrent, and taking a snapshot of the load

situation at an arbitrary time step yields (w.h.p.) a time-independent maximum

load.

30

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Theorem 2.2.2 (Maximum Load). Let λ = λ(n) < 1. Fix an arbitrary round

t of the 1-choice process. The maximum load of any bin is (w.h.p.) bounded by

O
(

1
1−λ · log n

1−λ

)
.

Theorem 2.2.4 (Stability). Let λ = λ(n) < 1. The Markov chain X of the 1-choice

process is positive recurrent.

Theorem 2.2.2 implies that for high arrival rates such as λ(n) = 1−1/n the max-

imal load is O (n log n). Theorem 2.2.6 shows that this dependence is unavoidable

i.e., the bound given in Theorem 2.2.2 is tight for large values of λ.

Theorem 2.2.6 (Lower Bound). Let λ = λ(n) ≥ 0.75 and consider step t :=

λ log (n) /(8(1 − λ)2). With probability 1 − o (1) there is a bin i in step t with load

Ω
(

1
1−λ · log n

)
.

We first prove a bound on the maximum load (Theorem 2.2.2), afterward we

prove stability of the system (Theorem 2.2.4), and finally we prove the lower bound

(Theorem 2.2.6).

2.2.1 Maximum Load

In this section we prove Theorem 2.2.2 that bounds the maximum load w.h.p. To

show this result we first bound the load of a fixed bin i at time t using Theo-

rem 2.2.1 (Hajek) and, subsequently, use this result along with a union bound to

bound the maximum load over all bins.

Theorem 2.2.1 (Simplified version of Hajek [63, Theorem 2.3]). Let (Y (t))t≥0 be

a sequence of random variables on a probability space (Ω,F , P) with respect to the

filtration (F(t))t≥0. Assume the following two conditions hold:

(i) (Majorization) There exists a random variable Z and a constant λ′ > 0, such

that E[eλ
′Z] ≤ D for some finite D, and (|Y (t+ 1) − Y (t)|

∣∣F(t)) ≺ Z for all

t ≥ 0; and

31

2.2. 1-CHOICE PROCESS

(ii) (Negative Bias) There exist a, ε0 > 0, such for all t we have

E[Y (t+ 1)− Y (t) | F(t), Y (t) > a] ≤ −ε0.

Let η = min {λ′, ε0 · λ′2/(2D), 1/(2ε0) }. Then, for all b and t we have

Pr (Y (t) ≥ b | F(0)) ≤ eη(Y (0)−b) +
2D

ε0 · η
· eη(a−b).

Proof. The statement of the theorem provided in [63] requires besides (i) and (ii)

to choose constants η, and ρ such that 0 < ρ ≤ λ′, η < ε0/c and ρ = 1− ε0 · η + cη2

where c =
E
[
eλ
′Z

]
−(1+λ′E[Z])

λ′2
=
∑∞

k=2
λ′k−2

k!
E
[
Zk
]
. With these requirements it then

holds that for all b and t

Pr (Y (t) ≥ b | F(0)) ≤ ρteη(Y (0)−b) +
1− ρt

1− ρ
·D · eη(a−b). (2.1)

In the following we bound (2.1) by setting η = min {λ′, ε0 · λ′2/(2D), 1/(2ε0) }.

The following upper and lower bound on ρ follow.

• ρ = 1−ε0 ·η+cη2 ≤ 1−ε0 ·η+ε0 ·η ·c·λ′2/(2D) ≤ 1−ε0 ·η+ε0 ·η/2 = 1−ε0 ·η/2,

where we used c ≤ D/λ′2.

• ρ = 1− ε0 · η + cη2 ≥ 1− ε0/(2ε0) ≥ 0.

We derive, from (2.1) using that for any t ≥ 0 we have 0 ≤ ρt ≤ 1

Pr (Y (t) ≥ b | F(0)) ≤ ρteη(Y (0)−b) +
1− ρt

1− ρ
·D · eη(a−b)

≤ eη(Y (0)−b) +
1

1− ρ
·D · eη(a−b)

≤ eη(Y (0)−b) +
2D

ε0 · η
· eη(a−b),

(2.2)

since 1
(1−ρ)

≤ 2
ε0·η . This yields the claim.

32

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

In order to apply Theorem 2.2.1 (Hajek), we have to prove that the maximum

load difference of bin i between two rounds is exponentially bounded (Condition

(i) Majorization) and that, given a load high enough, the total system decreases in

expectation (Condition (ii): Negative Bias).

Theorem 2.2.2 (Maximum Load). Let λ = λ(n) < 1. Fix an arbitrary round

t of the 1-choice process. The maximum load of any bin is (w.h.p.) bounded by

O
(

1
1−λ · log n

1−λ

)
.

Proof. In the following, we prove Theorem 2.2.2 using a (slightly simplified) drift the-

orem (Theorem 2.2.1 cf Hajek [63]). Remember that, as mentioned in Section 2.1.2,

our process is a Markov chain. As such we only need to condition only on the

previous state (instead of the full filtration from Theorem 2.2.1 (Hajek)).

We start with the Condition (i) (Majorization).

Condition (i) (Majorization):

The load difference for a bin i between round t and round t+1 is defined as |Xi(t+1)−

Xi(t)|. In a given round the load difference is bounded by max(1, Bi(t)) ≤ 1+Bi(t),

where Bi(t) is the number of tokens resource i receives during round t + 1. The

statement holds since in a round any bin either deletes a ball without receiving

additional balls, receives additional balls with (or without) deleting a ball, or remains

empty. In each of these cases the change in the load of bin i is 1,Bi(t), and 0

respectively. This follows from the definition of our process.

From this observation we obtain the following stochastic domination

(|Xi(t+ 1)−Xi(t)| |X(t)) ≺ 1 +Bi(t).

Note that Bi(t) is binomially distributed random variable with parameters n and

λ/n. This follows from the definition of our model. Each generator creates a ball

with probability λ and is allocated to a given bin with probability 1/n. It follows

that each ball is allocated to bin i with probability λ · 1/n.

33

2.2. 1-CHOICE PROCESS

Using standard inequalities we bound

Pr (Bi(t) = k) =

(
n

k

)(
λ

n

)k (
1− λ
n

)n−k

Since 1−λ
n
< 1

≤
(
n

k

)
·
(
λ

n

)k eq. 1.5

≤
(e · n

k

)k
·
(

1

n

)k
=
ek

kk

Where the second inequality follows from Equation 1.5 and λ < 1.

Let Z := Bi(t) + 1, we now calculate E
[
eλ
′Z
]
.

E
[
eBi(t)+1

]
= e ·

n∑
k=0

ek · e
k

kk
≤ e ·

de3−1e∑
k=0

e2k

kk
+ e ·

∞∑
k=e3

e2k

kk

≤ Θ (1) +
∞∑
k=1

e−k = Θ (1) .

(2.3)

This shows that the Majorization condition from Theorem 2.2.1 holds (with λ′ = 1

and D = Θ (1)).

Condition (ii) (Negative Bias)

To see that the Negative Bias condition is given, note that if bin i has non-zero load,

it is guaranteed to delete one ball and receives in expectation n · λ/n = λ balls. We

get

E [Xi(t+ 1)−Xi(t) | Xi(t) > 0] ≤ λ− 1 < 0

establishing the Negative Bias condition (with ε0 = 1− λ).

We finally can apply Theorem 2.2.1 with

η := min {1, (1− λ)/(2D), 1/(2− 2λ)} = (1− λ)/(2D)

34

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

and for b ≥ 1 obtain the following

Pr (Xi(t) ≥ b) ≤ e−b·η +
2D

η · (1− λ)
· eη·(1−b) ≤ 2 · (2D)2

(1− λ)2
· e

(1−λ)·(1−b)
2D

≤ 2 · (2D)2

(1− λ)2
· e

(1−λ)·(1−b)
(4D)2 ≤ (4D)2

(1− λ)2
· e
−b·(1−λ)
(4D)2

≤ c

(1− λ)2
· e−

b·(1−λ)
c

(2.4)

where c ≥ (4D)2 denotes a constant.

Applying a union bound to all n bins and choosing b := c
1−λ · ln

(
c·nh+1

(1−λ)2

)
, where

h > 0 is a constant, yields that Pr
(
maxi∈[n] Xi(t) ≥ b

)
≤ n−h.

The theorem’s statement now follows from

b =
c

1− λ
· ln
(
c · nh+1

(1− λ)2

)
≤ c · (h+ 1) + 1

1− λ
· ln
(

n

1− λ

)
= O

(
1

1− λ
· ln
(

n

1− λ

)) (2.5)

2.2.2 Stability

In this section we show the stability of the 1-choice process. To do this show that

the Markov chain for the 1-choice process is positive recurrent (cf. Section 2.1).

We prove this using Theorem 2.1.1 (cf. Fayolle et al. [49]). Before showing the

requisite conditions to be able to apply Theorem 2.1.1 we show an upper bound on

the expected load of a bin under the 1-choice process.

Lemma 2.2.3. Let λ = λ(n) < 1. Fix an arbitrary round t of the 1-choice process

and a bin i. Let Xi(t) denote the load of bin i in round t. There is a constant c > 0

such that,

E [Xi(t)] ≤
6c

1− λ
· ln
(

n

1− λ

)
35

2.2. 1-CHOICE PROCESS

Proof. Let γ := c
1−λ · ln

(
n

(1−λ)2

)
where c is the constant from the proof of Theo-

rem 2.2.2. Considering time windows of γ rounds each and using Equation (2.4), we

calculate

E [Xi(t)] =
∞∑
b=1

b · Pr (Xi(t) = b) =
∞∑
k=1

(k+1)γ∑
b=k·γ

b · Pr (Xi(t) = b)

≤
γ∑
b=1

b · Pr (Xi(t) = b) +
∞∑
k=1

(k+1)γ∑
b=k·γ

b · Pr (Xi(t) = b)

≤ γ +
∞∑
k=1

(k + 1) · γ · Pr (Xi(t) ≥ k · γ)

≤ γ +
∞∑
k=1

(k + 1) · γ · e−k

≤ 3γ ≤ 6c

1− λ
· ln
(

n

(1− λ)

)

(2.6)

This finishes the proof.

The following theorem states that the Markov chain for the 1-choice process is

self-stabilizing. i.e., the Markov chain is positive recurrent.

Theorem 2.2.4 (Stability). Let λ = λ(n) < 1. The Markov chain X of the 1-choice

process is positive recurrent.

Proof. We prove Theorem 2.2.4 by applying a result from Fayolle et al. [49] (cf. The-

orem 2.1.1). We define the parameters of Theorem 2.1.1. Note that X is a time-

homogeneous irreducible Markov chain with a countable state space. For a con-

figuration x, we define the potential Ψ(x) :=
∑n

i=1 xi as the total system load of

configuration x.

In the following, let ∆ := 12cn2

(1−λ)3
where c is the constant in Lemma 2.2.3. Define

the (finite) set C := {x | Ψ(x) ≤ ∆ · n } of all configurations where the total system

load is not “too” high. To prove positive recurrence, it remains to show that Condi-

tion (a) (expected potential drop if in a high-load configuration) and Condition (b)

(finite potential) of Theorem 2.1.1 hold.

Let us start with Condition (a).

36

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Condition (a)

Fix a round t. Condition (a) of theorem 2.1.1 considers states not in the set C.

Let X(t) = x 6∈ C. By definition of C, we have Ψ(x) > ∆ · n. It follows using a

pigeonhole argument that there is at least one bin i with load xi ≥ Ψ(x)/n > ∆.

By the definition of our model, bin i deletes exactly one ball during each of the

next ∆ rounds. On the other hand, bin i receives in expectation ∆ · λn · 1
n

= λ∆

balls during the next ∆ rounds. Combining the above observations we obtain the

following,

E [Xi(t+ ∆)− xi |X(t) = x] = λ∆−∆ = −(1− λ) ·∆

For any bin j 6= i, we assume pessimistically that no ball is deleted. Note that

the expected load increase of each of these bins can be majorized by the load increase

in an empty system running for ∆ rounds. Thus, we can use Lemma 2.2.3 to bound

the expected load increase in each of these bins by 6c
1−λ · ln

(
n

1−λ

)
≤ 6·cn

(1−λ)2
= (1−λ)∆

2n
.

We get

E [Ψ(X(t+ ∆)) |X(t) = x] ≤ −(1− λ) ·∆ + (n− 1) · (1− λ)∆

2n

≤ −(1− λ) ·∆ +
(1− λ)∆

2

= −(1− λ)

2
·∆

(2.7)

This proves Condition (a) of Theorem 2.1.1 with β(x) = ∆ and η = (1−λ)
2

and

φ(x) = Ψ(x).

Condition (b)

Assume x = X(t) ∈ C. We bound the system load after ∆ rounds trivially by

E [Ψ(X(t+ ∆)) |X(t) = x] ≤ Ψ(x) + ∆ · n ≤ ∆ · n+ ∆ · n <∞ (2.8)

37

2.2. 1-CHOICE PROCESS

(note that the finiteness in Theorem 2.1.1 is with respect to time, not n). This

finishes the proof.

2.2.3 Lower Bound on Maximum Load

In this section we show a lower bound for the maximum load. This lower bound

shows that we are unable to avoid the dependence on 1
1−λ . This implies that for

high arrival rates e.g., λ = 1− 1
n
, the bound given in in the previous section (Theo-

rem 2.2.2) is tight.

To show a lower bound for the maximum load, we will use the following result

by Raab and Steger [86, Theorem 1] which lower-bounds the maximum number of

balls a bin receives when m balls are allocated into n bins. We first state Raab and

Steger [86, Theorem 1] before presenting our lower bound.

Theorem 2.2.5 (Raab and Steger [86, Theorem 1]). Let M be the random variable

that counts the maximum number of balls in any bin, if we throw m balls indepen-

dently and uniformly at random into n bins. Then Pr (M > kα) = o (1) if α > 1

and Pr (M > kα) = 1− o (1) if 0 < α < 1, where

kα =

logn

log
n logn
m

(
1 + α

log log
n logn
m

log
n logn
m

)
if n

polylog(n)
≤ m� n log n

(dc − 1 + α) log n if m = c · n log n for some constant c

m
n

+ α
√

2m
n

log n if n log n� m ≤ n polylog(n)

m
n

+

√
2m
n

log n
(

1− 1
α

log logn
2 logn

)
if m� n(log n)3,

where dc is largest solution of 1 + x(log c− log x+ 1)− c = 0. We have d1 = e and

d1.00001 = 2.7183.

We will now prove the following theorem that lower bounds the maximum load.

Theorem 2.2.6. Let λ = λ(n) ≥ 3
4

and consider step t := λ log (n) /(8(1 − λ)2).

With probability 1− o (1) there is a bin i in step t with load Ω
(

1
1−λ · log n

)
.

38

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Proof. The idea of the proof is as follows:

Assume that we start at an empty system and apply Theorem 2.2.5 (cf.[86,

Theorem 1]) to m = λtn many balls. The theorem states that one of the bins is

likely to get more than λt many balls, which allows us to show that the load of this

bin is large, even if the bin was able to delete a ball during each of the t observed

time steps.

We begin by bounding the number of balls that is allocated during the first t′

rounds. Let M(t′) be the number of balls allocated during the first t′ rounds. By

the definition of our process it follows that E [M(t′)] = λt′n. By choosing t′ to be an

appropriate number of rounds we are able to apply Chernoff bounds to show that

w.h.p at least (1− ε) · E [M(t′)] balls are generated for small ε.

Set t := λ log (n) /(8(1− λ)2) and ε := (1− λ)/λ.

Using the Chernoff bound in Lemma 1.1.9 we can show that w.h.p. M(t) ≥

(1−ε)E [M(t)] = (1−ε)·t·λn. Note that to apply the Chernoff bound in Lemma 1.1.9

we choose 0 < ε < 1. For our choice of ε this implies that,

1− λ
λ

< 1 =⇒ λ >
1

2

Applying the Chernoff bound we obtain,

Pr (M(t) ≤ (1− ε) · E [M(t)]) ≤ exp

(
−ε

2

2
· E [M(t)]

)
= exp

(
−ε

2

2
· λ log n

8(1− λ)2
· λn

)
= exp

(
− 1

16
· n log n

)
= n−

n
16 ≤ n−2

where the last inequality holds for n ≥ 32.

It follows that M(t) ≥ (1− ε) ·E [M(t)] with high probability for our choice of ε

and n ≥ 32.

Using that M(t) ≥ (1− ε) · E [M(t)], we use Theorem 2.2.5 to lower bound the

maximum load with probability 1 − o (1). Let Ymax(t
′) be the maximum number

39

2.2. 1-CHOICE PROCESS

of balls allocated to a bin during t′ rounds. We now apply Theorem 2.2.5 to lower

bound the maximum number of balls that a bin receives. Since our lower bound on

the number of balls generated depends on our choice of t,λ and ε we apply either

case (3) or (4) of Theorem 2.2.5 to obtain the following lower bound,

Ymax(t) ≥
M(t)

n
+

√
2
M(t)

n
· log(n) ·min

{
α,

√
1− log log n

2α log n

}

=
M(t)

n
+

√
2
M(t)

n
· log(n) · α

≥ (1− ε)λt+
√

2(1− ε)λt · log(n) · α

where the first inequality holds for a suitable choice of α. Using this lower bound

on the maximum number of balls allocated to any bin during the first t rounds, we

now show that even if this bin is able to delete a ball in each of these t rounds then

the maximum load is still lower bounded by Ω
(
λ logn
1−λ

)
.

Let Xmax(t) denote the load of the bin with the maximum load. In the following

let α :=
√

9
16

and λ ≥ 3
4

Xmax(t) ≥ Ymax(t)− t

≥ (1− ε)λt+
√

2(1− ε)λt · log(n) · α− t

= (1− ε)λt+

√
(1− ε)18

16
· λt · log(n)− t

= (1− ε)λt+

√
(1− ε) 9

64
· λ log n

(1− λ)
− t

=

√
(1− ε) 9

64
· λ log n

(1− λ)
− 2(1− λ)t

=

(√(
1− 1− λ

λ

)
9

64
− 1

4

)
· λ log n

(1− λ)

≥

(√
2

3
· 9

64
− 1

4

)
· λ log n

(1− λ)

= Ω

(
λ log n

1− λ

)
40

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

The claim follows since 1 > λ ≥ 3
4

2.3 The 2-Choice Process

We continue with the study of the 2-choice process. Here, new balls are distributed

according to Greedy[2] (cf. description in Section 2.1.2). Our main results are the

following theorems. These theorems are analogous to the corresponding theorems

that were showing in the previous section for the 1-choice process.

Theorem 2.3.18 (Maximum Load). Let λ = λ(n) ∈ [1/4, 1). Fix an arbitrary

round t of the 2-choice process. The maximum load of any bin is (w.h.p.) bounded

by O
(
log n

1−λ

)
.

Theorem 2.3.20 (Stability). Let λ = λ(n) ∈ [1/4, 1). The Markov chain X of the

2-choice process is positive recurrent.

Theorem 2.3.18 implies a much better behaved system than for the 1-choice

process (See Theorem 2.2.2). In particular, it allows for an exponentially higher

arrival rate. For λ(n) = 1 − 1/ poly(n) the 2-choice process maintains a maximal

load of O (log n). In contrast, for the same arrival rate the 1-choice process results

in a system with maximal load Ω (poly(n)).

Results in the sequential setting have been obtain through majorising Greedy[2]

by Greedy[1](e.g.,[12, 21]). However it is not clear that such an argument holds

in our setting. We therefore follow the approach used by Peres et al. [83] and

Talwar and Wieder [96]. To prove these results, we combine three different potential

functions:

For a configuration x with average load ∅ and for a suitable constant α < 1 (to

41

2.3. THE 2-CHOICE PROCESS

be fixed later), we define

Φ(x) :=
∑
i∈[n]

eα·(xi−∅) +
∑
i∈[n]

eα·(∅−xi)

Ψ(x) :=
∑
i∈[n]

xi

Γ(x) := Φ(x) + n
1−λ ·Ψ(x).

(2.9)

Our analysis of the 2-choice process relies to a large part on a good bound on the

smoothness. We define the smoothness of an allocation to be the maximum load

difference between any two bins. The potential Φ measures the smoothness of a

configuration and is used to prove Lemma 2.3.4 (Section 2.3.1). The proof is based

on the observation that whenever the load of a bin is far from the average load then

in expectation the potential function Φ decreases.

The potential Ψ measures the total load of a configuration and is used, in com-

bination with our results on the smoothness, to prove Theorem 2.3.18 (Maximum

Load). For example, if the total load of a configuration is bounded by O (n ln(n)),

it follows that the average load is O (lnn). Using our bound on the smoothness of

a configuration (Lemma 2.3.4) we are able to bound the maximum load.

Finally, the potential Γ entangles the smoothness and total load, allowing us to

prove Theorem 2.3.20 (Stability). The proof is based on the fact that whenever Γ is

large (i.e., the configuration is not smooth or it has a large total load), it decreases

in expectation. This allows us to apply Theorem 2.1.1 to show that the Markov

chain for the 2-choice process is positive recurrent.

2.3.1 Smoothness

In this section we consider the smoothness of the allocation in an arbitrary round

t. The smoothness of an allocation is defined as the maximum difference between

any two bins. Our main result in this section (Lemma 2.3.4) states the smoothness

of a configuration in an arbitrary round is bounded by O (ln(n)) (w.h.p). We begin

by proving this lemma. To do so we will state some of the required results without

42

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

proof. The rest of this section will then be dedicated to proving these results.

Recall that the potential function Φ measures the smoothness of an allocation.

Lemma 2.3.1 bounds the expected change in Φ due to a single round. We state

this result without proof. The proof of the Lemma follows the lines of Peres et al.

[83] and Talwar and Wieder [96], who used the same potential function to analyze

variants of the sequential d-choice process without deletions. While the basic idea

of showing a relative drop when the potential is high combined with a bounded

absolute increase in the general case is the same, our analysis turns out to be much

more involved. In particular, not only do we have to handle deletions and allocating

balls in batches, but the size of each batch is also a random variable.

Lemma 2.3.1. Consider an arbitrary round t + 1 of the 2-choice process and the

constants ε (from Proposition 2.3.10) and α ≤ min(ln(10/9), ε/8). For λ ∈ [1/4, 1]

we have

E [Φ(X(t+ 1)) |X(t)] ≤
(

1− εαλ

4

)
· Φ(X(t)) + ε−8 · O (n) . (2.10)

Using Lemma 2.3.1 we are able to prove an upper bound on the expected value

of Φ in an arbitrary round t. This bound will be used to obtain an upper bound the

value of Φ in an arbitrary round t (w.h.p).

Lemma 2.3.2. Let λ ∈ [1/4, 1]. Fix an arbitrary round t of the 2-choice process.

There is a constant ε > 0 such that

E [Φ(X(t))] ≤ n

ε
(2.11)

Proof. Using Lemma 2.3.1 we obtain that for all rounds t ≥ 0 ,

E [Φ(X(t+ 1)) |X(t)] ≤ γ · Φ(X(t)) + c

where γ < 1 and c > 0 are values given by Lemma 2.3.1.

43

2.3. THE 2-CHOICE PROCESS

Taking the expected value on both sides yields,

E [Φ(X(t+ 1))] ≤ γ · E [Φ(X(t))] + c

E [Φ(X(t))] ≤ c
1−γ solves this recursion.

Using the values from Lemma 2.3.1 for γ and c (substituting ε′ for ε) we get

E [Φ(X(t))] ≤ 4ε′−8

ε′αλ
· O (n)

The lemma’s statement follows for the constant ε = O (ε′−9/(αλ)).

Before proving Lemma 2.3.4 we first make the following observation. Obser-

vation 2.3.3 states that for any configuration x and value b ≥ 0, the inequality

Φ(x) ≤ eα·b implies that maxi|xi − ∅| ≤ b. That is, the load difference of any bin

to the average is at most b and, thus, the load difference between any two bins is at

most 2b.

Observation 2.3.3. Let b ≥ 0 and consider a configuration x with average load ∅.

If Φ(x) ≤ eα·b, then |xi−∅| ≤ b for all i ∈ [n]. In particular, maxi(xi)−mini(xi) ≤

2b.

Proof. The statement can be proved by contraposition. Assume for some bin i,

|xi −∅| > b it follows that there is a term in Φ(x) such that either eα(Xi−∅) > eα·b

or eα(∅−Xi) > eα·b. Since all terms in Φ(x) are greater than zero, it follows that

Φ(x) > eα·b. This shows the contrapositive and the statement follows.

With this observation we now show the main result in this section.

Lemma 2.3.4 (Smoothness). Let λ = λ(n) ∈ [1/4, 1]. Fix an arbitrary round t of

the 2-choice process. The load difference of all bins is (w.h.p.) bounded by O (lnn).

Proof. Using Markov’s inequality and Lemma 2.3.2 we obtain

Pr

(
Φ(X(t)) ≥ n2

ε2

)
≤ 1

n2

44

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

It follows that w.h.p.

Φ(X(t)) ≤ n2

ε2
.

Rewriting we obtain,

eαb =
n2

ε2
=⇒ b =

2

α
ln
(n
ε

)
.

Using this value of b and Observation 2.3.3 it follows that,

max
i

(Xi)−min
i

(Xi) ≤
4

α
ln
(n
ε

)
= O (ln(n)) .

This gives the desired bound on the smoothness.

This proves the main result in this section (Lemma 2.3.4) that bounds the

smoothness of a configuration in an arbitrary round t w.h.p. The proof of the

lemma uses Lemma 2.3.1 that bounds the potential change in a single round. Since

we stated this result without proof it remains to show Lemma 2.3.1.

Bounding the one step potential change

The rest of this section is dedicated to proving Lemma 2.3.1 that bounds the ex-

pected change of Φ due to a single round. The proof of Lemma 2.3.1 is by case

analysis. The case analysis follows the same line of argument used by Peres et al.

[83] and Talwar and Wieder [96]. To show the case analysis, we show lemmas that

bound the change in Φ due to a single round in different situations. e.g., reasonable

balanced load allocations or very unbalanced load allocations.

We begin with some additional notation and auxiliary definitions that will be

used in this section. The value ν(t) denotes the fraction of non-empty bins after

round t and η(t) := 1 − ν(t) the fraction of empty bins after round t. It will be

useful to define Zi(t) := min
(
1, Xi(t)

)
and ηi(t) := Zi(t)− ν(t) (which equals η(t) if

i is a non-empty bin and −ν(t) otherwise).

45

2.3. THE 2-CHOICE PROCESS

The potential function Φ can be rewritten as follows,

Φ(x) := Φ+(x) + Φ−(x)

Where Φ+(x) denotes the upper potential of x and Φ−(x) denotes the lower potential

of x. For a fixed bin i, we use Φi,+(x) := eα·(xi−∅) and Φi,−(x) := eα·(∅−xi) to denote

i’s contribution to the upper and lower potential, respectively. It follows that

Φ+(x) :=
n∑
i=1

Φi,+(x)

Φ−(x) :=
n∑
i=1

Φi,−(x)

(2.12)

We define the potential change due to a fixed bin i during a single round t + 1 for

the upper and lower potential respectively as follows

∆i,+(t+ 1) := Φi,+(X(t+ 1))− Φi,+(X(t))

∆i,−(t+ 1) := Φi,−(X(t+ 1))− Φi,−(X(t))

(2.13)

Similarly let ∆+(t + 1) :=
∑n

i=1 ∆i,+ and ∆−(t + 1) :=
∑n

i=1 ∆i,− denote the

change in the upper and lower potential during round t+ 1.

We define the following variables to ease the presentation of the subsequent

results. Let pi denote the probability that a ball thrown with Greedy[2] falls into

the i-th fullest bin.

pi :=

(
i

n

)2

−
(
i− 1

n

)2

=
2i− 1

n2
(2.14)

We also define

α̂ := eα − 1

α̌ := 1− e−α
(2.15)

where α̂ ∈ (α, α + α2) and α̌ ∈ (α − α2, α) for α ∈ (0, 1.7). This follows from the

Taylor approximation ex ≤ 1 + x+ x2, which holds for any x ∈ (−∞, 1.7].

46

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Finally, let

δ̂i := λn ·
(

1

n
· `⊥(α)− pi ·

α̂

α

)
δ̌i := λn ·

(
1

n
· `>(α)− pi ·

α̌

α

) (2.16)

where `⊥(α) := 1 − α/n < 1 < `>(α) := 1 + α/n. We will omit the parameter α

when it is clear from context. Note that `>(α), `⊥(α), α̂/α, and α̌/α are all close

to 1.

We start with two useful identities regarding the potential change ∆i,+(t+1) (and

∆i,−(t+ 1)) due to a fixed bin i during round t+ 1 that will used in our subsequent

analysis. These identities state the change in the upper and lower potential for a

bin i when both the number of balls allocated to the bin and the total number of

balls allocated in a round are known.

Observation 2.3.5. Fix a bin i, let K denote the number of balls that are placed

during round t + 1 and let k ≤ K be the number of these balls that fall into bin i.

Then

(a) ∆i,+(t+ 1) = Φi,+(X(t)) ·
(
eα·(k−ηi(t)−K/n) − 1

)
and

(b) ∆i,−(t+ 1) = Φi,−(X(t)) ·
(
e−α·(k−ηi(t)−K/n) − 1

)
.

Proof. Recall that Zi(t) := min
(
1, Xi(t)

)
is an indicator value which equals 1 if and

only if the i-th bin is non-empty in configuration X. Bin i deletes exactly Zi balls

and receives exactly k balls, such that Xi(t + 1) − Xi(t) = −Zi + k. Similarly, we

have that the change of the average load is ∅(t+ 1)−∅(t) = −ν +K/n. With the

identity ηi = Zi − ν, this yields

∆i,+(t) = eα·
(
X′i−∅′

)
− eα·

(
Xi−∅

)
= eα·

(
Xi−∅

)
·
(
eα·
(
−Zi+k+ν−K/n

)
− 1

)
= Φi,+ ·

(
eα·(k−ηi−K/n) − 1

)
(2.17)

proving the first statement. The second statement follows similarly.

47

2.3. THE 2-CHOICE PROCESS

With these definitions, we now show Lemma 2.3.6 that bounds the expected

change in the upper and lower potential due to a single round for a single bin i.

Lemma 2.3.6. Consider a bin i after round t and a constant α ≤ 1.

(a) For the expected change of i’s upper potential during round t+ 1 we have

E [∆i,+(t+ 1) |X(t)]

Φi,+(X(t))
≤ −α ·

(
ηi + δ̂i

)
+ α2 ·

(
ηi + δ̂i

)2

. (2.18)

(b) For the expected change of i’s lower potential during round t+ 1 we have

E [∆i,−(t+ 1) |X(t)]

Φi,−(X(t))
≤ α ·

(
ηi + δ̌i

)
+ α2 ·

(
ηi + δ̌i

)2
. (2.19)

Proof. Consider an arbitrary fixed round t. Let AK(t) be the event that K balls

are allocated in round t and Bi(t) be the number of balls are allocated to bin i. We

omit the time parameter since the round t is fixed. Observation 2.3.5 derives an

expression for ∆i,− given that k balls are allocated to bin i. Using this we obtain,

E [∆i,+(t) |X,AK] =
K∑
k=0

Φi,+(X(t)) ·
(
eα·(k−ηi(t)−K/n) − 1

)
· Pr (Bi = k) (2.20)

That is, the expected change of the upper potential given that K balls are allocated

during the round.

We use the law of total expectation to calculate E [∆i,+(t) |X]. Since 0 ≤ K ≤ n,

we can use the events A0,A1, . . . ,An to partition the outcome space. By the law of

total expectation we obtain

E [∆i,+(t) |X] =
n∑

K=0

E [∆i,+(t) |X,AK] · Pr (AK) (2.21)

Combining Equation 2.20 and Equation 2.21 by substituting for E [∆i,+(t) |X,AK]

in Equation 2.21,

48

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

E [∆i,+(t+ 1) |X] =
n∑

K=0

K∑
k=0

Φi,+(X(t)) ·
(
eα·(k−ηi(t)−K/n) − 1

)
· Pr (Bi = k) · Pr (AK)

Dividing both sides by Φi,+,

E [∆i,+(t+ 1) |X] /Φi,+

=
n∑

K=0

K∑
k=0

(
eα·(k−ηi(t)−K/n) − 1

)
· Pr (Bi = k) · Pr (AK)

=
n∑

K=0

K∑
k=0

(
n

K

)(
K

k

)
(piλ)k ·

(
(1− pi)λ

)K−k · (1− λ)n−K ·
(
eα·(k−ηi−K/n) − 1

)
=

n∑
K=0

(
n

K

)
(1− λ)n−KλK

K∑
k=0

(
K

k

)
· pki · (1− pi)K−k ·

(
eα·(k−ηi−K/n) − 1

)

Expanding the final term and since eα·(k−ηi−K/n) = e−α(ηi+K/n) · eα·k, and using∑K
k=0

(
K
k

)
pk(1− p)k = 1,

=
n∑

K=0

(
n

K

)
(1− λ)n−KλK ·

(
e−α(ηi+K/n)

K∑
k=0

(
K

k

)
(eα · pi)k(1− pi)K−k − 1

)

Applying the binomial theorem (Definition 1.1.2) and eα := α̂ + 1

=
n∑

K=0

(
n

K

)
(1− λ)n−KλK ·

(
e−α(ηi+K/n) · (1 + α̂ · pi)K − 1

)
,

Applying the binomial theorem again,

= e−αηi ·
(
1− λ+ λe−α/n · (1 + α̂ · pi)

)n − 1

≤ e−αηi ·
(
1− λ(1− e−α/n) + λ · α̂ · pi

)n − 1

49

2.3. THE 2-CHOICE PROCESS

Using the Taylor approximation, ex ≤ 1 + x+ x2 which holds for any x ∈ (−∞, 1.7]

≤ e−αηi ·
(

1− λ · α
n
· (1− α/n) + λ · α̂ · pi

)n
− 1

= e−αηi ·
(

1− α

n

(
λ(1− α/n)− λ · n · α̂

α
· pi
))n

− 1

Using the definition of δ̂i that `⊥ := 1− α
n
,

= e−αηi ·
(

1− α

n

(
λn

(
1/n · `⊥ −

α̂

α
· pi
)))n

− 1

Using the property of the exponential function (Lemma 1.1.5),

≤ e−αηi ·
(

1− α

n
· δ̂i
)n
− 1

≤ e−α·(ηi+δ̂i) − 1.

Now, the claim follows by another application of the Taylor approximation. The

second statement follows similarly.

Lemma 2.3.6 will be used to derive the bounds on the potential drop in different

situations that will used in the case analysis.

We provide two auxiliary claims (Proposition 2.3.7 and Proposition 2.3.8). These

propositions bound key quantities and will be used when deriving different bounds

on the potential drop.

Proposition 2.3.7. Consider a bin i and the values δ̂i and δ̌i as defined in Equa-

tion 2.16. If α ≤ ln(10/9), then max(|δ̂i|, |δ̌i|) ≤ 5
4
λ.

Proof. Remember that δ̂i := λn · (1/n · `⊥ − pi · α̂/α) and δ̌i := λn · (1/n · `> − pi · α̌/α),

where `⊥ = 1− α/n < 1 < 1 + α/n = `>.

To show the statement of the lemma we prove the following inequalities,

−5

4
n

(a)

≤ δ̌i
(b)

≤ 5

4
n and, − 5

4
n

(c)

≤ δ̂i
(d)

≤ 5

4
n (2.22)

50

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Since pi are non-decreasing we consider the two extremes of i = 1 and i = n and

show that the claim holds for both.

For inequalities (a) and (c) we consider pn ≤ 2
n
. First consider inequality (a):

δ̂i ≥ λn

(
1

n
· `⊥ −

2

n
· (α + 1)

)
≥ λ

(
1− 1

4

)
(2.23)

where the first inequality uses that α̂ ∈ (α, α + α2). For inequality (c),

δ̌i ≥ λn

(
1

n
· `> −

2

n

)
≥ −λ (2.24)

where the first inequality follows using that α̌(α− α2, α).

For inequalities (b) and (d) we consider p1 = 1
n2 . For inequality (b),

δ̂i ≤ λn

(
1

n
· `⊥ −

1

n2

)
≤ λ (2.25)

Finally for inequality (d) we obtain the following using the definitions of `> and

α̌

δ̌i = λn

(
1

n
· `> − pi ·

α̌

α

)
≤ λ

(
1 +

α

n
− 1

nα
(1− e−α)

)
(2.26)

The claim holds where,

1 +
α

n
− 1

nα
(1− e−α) ≤ 5

4
=⇒ α− 1

α
(1− e−α) ≤ 1

4
n

=⇒ α− 1

α
+

1

α
· e−α ≤ 1

4
n

For α ≤ ln(10/9) the LHS can be upper bounded by α and the claim follows.

Proposition 2.3.8. Consider a round t and a constant 1 ≥ α ≥ 0. The following

inequalities hold:

(a)
∑
i∈[n]

αηi(αηi − 1) · Φi,+(X(t)) ≤ α2ην ·min
(
n,Φ+(X(t))

)
.

(b)
∑
i∈[n]

αηi(αηi + 1) · Φi,−(X(t)) ≤ α2ην · Φ−(X(t)).

51

2.3. THE 2-CHOICE PROCESS

Proof. For the first statement, we calculate
∑

i∈[n] αηi(αηi − 1) · Φi,+(X(t))

=
∑
i≤νn

αηi(αηi − 1) · Φi,+(X(t)) +
∑
i>νn

αηi(αηi − 1) · Φi,+(X(t))

= αη(αη − 1) ·
∑
i≤νn

Φi,+(X(t)) + αν(1 + αν) ·
∑
i>νn

Φi,+(X(t))

≤ αη(αη − 1) · ν · Φ+(X(t)) + αν(1 + αν) · η ·min
(
n,Φ+(X(t))

)
≤ α2ην ·min

(
n,Φ+(X(t))

)
,

(2.27)

where the first inequality uses that Φi,+(X(t)) is non-increasing in i and that

Φi,+(X(t)) ≤ 1 for all i > νn. The claim’s second statement follows by a simi-

lar calculation, using that Φi,−(X(t)) is non-decreasing in i (note that we cannot

apply the same trick as above to get min
(
n,Φ−(X(t))

)
instead of Φ−(X(t))).

With these tools we are able to derive bounds on the potential change in different

situations. These bounds are used in the case analysis for Lemma 2.3.1. We start

with a relative bound on the upper and lower potential change.

Lemma 2.3.9. Consider a round t and a constant α ≤ ln(10/9) < 1/8). Let

R ∈ {+,−} and λ ∈ [1/4, 1]. For the expected upper and lower potential drop

during round t+ 1 we have

E [∆R(t+ 1) |X(t)] < 2αλ · ΦR(X(t)). (2.28)

Proof. We prove the statement for R = +. The case R = − follows similarly. Using

Lemma 2.3.6 and summing up over all i ∈ [n] we get

E [∆+(t+ 1) |X] ≤
∑
i∈[n]

(
−α · (ηi + δ̂i) + α2 · (ηi + δ̂i)

2
)
· Φi,+

=
∑
i∈[n]

(
ηiα(ηiα− 1) + α2 · (2ηiδ̂i + δ̂2

i)− α · δ̂i
)
· Φi,+

≤
∑
i∈[n]

(
ηiα(ηiα− 1) + 5α2λ+

5

4
αλ

)
· Φi,+.

(2.29)

Here, the last inequality uses λ ≤ 1 and |δ̂i| ≤ 5
4
λ (Proposition 2.3.7). We now apply

52

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Proposition 2.3.8, νη ≤ 1/4 ≤ λ, and α < 1/8 to get

E [∆+(t) |X] ≤
(
α2λ+ 5α2λ+

5

4
αλ

)
· Φ+ < 2αλ · Φ+. (2.30)

The following proposition is used to derive bounds on the potential change when

the system is in a reasonably balanced configuration.

Proposition 2.3.10. There is a constant ε > 0 such that

∑
i≤ 3

4
n

pi · Φi,+ ≤ (1− 2ε) · Φ+

n
(2.31)

and

∑
i∈[n]

pi · Φi,− ≥ (1 + 2ε) ·
Φ− −

∑
i≤n

4
Φi,−

n
(2.32)

Proof. For Equation (2.31), note that Φi,+ and pi for i = 1, . . . , n are non-increasing

in i and that by definition Φ+ =
∑n

i=1 Φi,+. The LHS of Eq. (2.31) is maximized

where all Φi,+ = 4Φ+

3n
. Using the following observation from Talwar and Wieder [95,

Appendix A] there is a constant ε′ > 0 such that

∑
i≥3n/4

pi ≥
1

4
+ ε′ =⇒

∑
i<3n/4

pi ≤ 1− 1

4
− ε′ = 3

4
− ε′

=⇒
∑
i≤3n/4

pi ≤ 1− 1

4
− ε′ = 3

4
− ε′′

(2.33)

where ε′′ = ε′ − o (1). The result follows by

∑
i≤ 3

4
n

pi · Φi,+ ≤
(

3

4
− ε′′

)
4Φ+

3n
=

(
1− 4ε′′

3n

)
· Φ+ ≤ (1− 2ε) · Φ+

n
(2.34)

where the last inequality holds for a suitable choice of ε > 0.

Equation (2.32) follows similarly using the observation from Talwar and Wieder

[95, Appendix A] that there exists a constant ε′ > 0 such that
∑

i≤n/4 pi ≤
1
4
−ε′.

53

2.3. THE 2-CHOICE PROCESS

The next two lemmas derive bounds that are used to bound the upper/lower

potential change in reasonably balanced configurations.

Lemma 2.3.11. Consider a round t and the constants ε (from Proposition 2.3.10)

and α ≤ min(ln(10/9), ε/8). Let λ ∈ [1/4, 1] and assume X 3
4
n(t) ≤ ∅(t). For the

expected upper potential drop during round t+ 1 we have

E [∆+(t+ 1) |X(t)] ≤ −εαλ · Φ+(X(t)) + 2αλn. (2.35)

Proof. To calculate the expected upper potential change, we use Lemma 2.3.6 and

sum up over all i ∈ [n] (using similar inequalities as in the proof of Lemma 2.3.9

and the definition of δ̂i):

E [∆+(t+ 1) |X] ≤ 6α2λ · Φ+ −
∑
i∈[n]

α · δ̂i · Φi,+

=
(
6α2λ− αλ · `⊥

)
· Φ+ + α̂λn

∑
i∈[n]

pi · Φi,+.

(2.36)

We now use that Φi,+ = eα·(Xi−∅) ≤ 1 for all i > 3
4
n (by our assumption on X 3

4
n).

This yields

E [∆+(t+ 1) |X] ≤
(
6α2λ− αλ · `⊥

)
· Φ+ + α̂λn

∑
i≤ 3

4
n

pi · Φi,+ + 2αλn. (2.37)

Finally, we apply Proposition 2.3.10 and the definition of `⊥ and α̂ to get

E [∆+(t+ 1) |X] ≤
(
6α2λ− αλ · `⊥ + (1− 2ε) · α̂λ

)
· Φ+ + 2αλn

≤
(
8α2λ− 2ε · αλ

)
· Φ+ + 2αλn.

(2.38)

Using α ≤ ε/8 yields the desired result.

54

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Lemma 2.3.12. Consider a round t and the constants ε (from Proposition 2.3.10)

and α ≤ min(ln(10/9), ε/8). Let λ ∈ [1/4, 1] and assume Xn
4
(t) ≥ ∅(t). For the

expected lower potential drop during round t we have

E [∆−(t+ 1) |X(t)] ≤ −εαλ · Φ−(X(t)) +
αλn

2
. (2.39)

Proof. To calculate the expected lower potential change, we use Lemma 2.3.6 and

sum up over all i ∈ [n] (as in the proof of Lemma 2.3.11):

E [∆−(t+ 1) |X] ≤ 6α2λ · Φ− +
∑
i∈[n]

α · δ̌i · Φi,−

=
(
6α2λ+ αλ · `>

)
· Φ− − α̌λn

∑
i∈[n]

pi · Φi,−.

(2.40)

We now use that Φi,− = eα·(∅−Xi) ≤ 1 for all i ≤ n
4

(by our assumption on Xn
4
) and

apply Proposition 2.3.10 to get

E [∆−(t) |X] ≤
(
6α2λ+ αλ · `>

)
· Φ− − (1 + 2ε) · α̌λn ·

Φ− − n
4

n

=
(
6α2λ+ αλ · `> − (1 + 2ε) · α̌λ

)
· Φ− + (1 + 2ε) · α̌λn

4

≤
(
8α2λ− 2ε · αλ

)
· Φ− +

αλn

2
,

(2.41)

where the last inequality used the definitions of `>, α̌, as well as α̌ > α−α2. Using

α ≤ ε/8 yields the desired result.

The following two lemmas bound the potential drop in configurations with many

balls far below the average to the right (Lemma 2.3.13) and with many balls far

above the average to the left (Lemma 2.3.14).

Lemma 2.3.13. Consider a round t and constants α ≤ 1/46(< ln(10/9)) and

ε ≤ 1/3. Let λ ∈ [1/4, 1] and assume X 3
4
n(t) ≥ ∅(t) and E [∆+(t+ 1) |X(t)] ≥

− εαλ
4
· Φ+(X(t)). Then Φ+(X(t)) ≤ ε

4
· Φ−(X(t)) or Φ(X(t)) = ε−8 · O (n).

55

2.3. THE 2-CHOICE PROCESS

Proof. Let

L :=
∑
i∈[n]

max(Xi −∅, 0) =
∑
i∈[n]

max(∅−Xi, 0)

be the “excess load” above and below the average.

We begin with the following observation. Since all terms of Φ− are positive,

it follows that Φ− =
∑n

i=1 Φi,− ≥
∑n

i=3n/4 Φi,−. Using Jensen’s inequality, the

assumption that X 3
4
n ≥ ∅ implies Φ− ≥ n

4
· exp(αL

n/4
).

On the other hand, we can use the assumption E [∆+(t+ 1) |X] ≥ − εαλ
4
·Φ+ to

show an upper bound on Φ+.

To this end, we use Lemma 2.3.6 and sum up over all i ∈ [n] (as in the proof of

Lemma 2.3.11):

E [∆+(t+ 1) |X] ≤ 6α2λ · Φ+ −
∑
i∈[n]

α · δ̂i · Φi,+

= 6α2λ · Φ+ −
∑
i≤n

3

α · δ̂i · Φi,+ −
∑
i>n

3

α · δ̂i · Φi,+.

(2.42)

For i ≤ n/3 we have pi = 2i−1
n2 ≤ 2

3n
and, using the definition of `⊥ and α̂, δ̂i =

λn ·
(

1/n · `⊥− pi · α̂/α
)
≥ (1− 5α)λ/3. Setting Φ≤n/3,+ :=

∑
i≤n/3 Φi,+ and Φ>n/3,+ :=∑

i>n/3 Φi,+, together with Proposition 2.3.7 this yields

E [∆+(t+ 1) |X]

≤ 6α2λ · Φ+ −
α(1− 5α)λ

3
· Φ≤n/3,+ +

5

4
αλ · Φ>n/3,+

=

(
6α2λ− α(1− 5α)λ

3

)
· Φ+ +

(
5

4
αλ+

α(1− 5α)λ

3

)
· Φ>n/3,+

≤ − εαλ

2
· Φ+ + 2αλ · Φ>n/3,+,

(2.43)

where the last inequality uses α ≤ 1/46 ≤ 1
23
− 3

46
ε. With this, the assumption

E [∆+(t+ 1) |X] ≥ − εαλ
4
· Φ+ implies Φ+ ≤ 8

ε
· Φ>n/3,+ ≤ 8

ε
· 2n

3
e
αL
n/3 = 16n

3ε
e

3αL
n (the

last inequality uses that none of the 2n/3 remaining bins can have a load higher than

L/(n/3)). To finish the proof, assume Φ+ > ε
4
· Φ− (otherwise the lemma holds).

Combining this with the upper bound on Φ+ and with the lower bound on Φ−, we

56

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

get

16n

3ε
e

3αL
n ≥ Φ+ >

ε

4
· Φ− ≥

εn

16
· e

4αL
n . (2.44)

Thus, the excess load can be bounded by L < n
α
· ln
(

256
3ε2

)
. Now, the lemma’s

statement follows from Φ = Φ+ + Φ− <
5
ε
· Φ+ ≤ 80n

3ε2
e

3αL
n = ε−8 · O (n).

Lemma 2.3.14. Consider a round t and constants α ≤ 1/32(< ln(10/9)) and

ε ≤ 1. Let λ ∈ [1/4, 1] and assume Xn
4
(t) ≤ ∅(t) and E [∆−(t+ 1) |X(t)] ≥

− εαλ
4
· Φ−(X(t)). Then Φ−(X(t)) ≤ ε

4
· Φ+(X(t)) or Φ(X(t)) = ε−8 · O (n).

Proof. Let L :=
∑

i∈[n] max(Xi−∅, 0) =
∑

i∈[n] max(∅−Xi, 0) be the “excess load”

above and below the average.

Using a similar observation to the one in the proof of the previous lemma, the

assumption Xn
4
≤ ∅ implies Φ+ ≥ n

4
· e

αL
n/4 using Jensen’s inequality.

On the other hand, we can use the assumption E [∆−(t+ 1) |X] ≥ − εαλ
4
· Φ−

to show an upper bound on Φ−. To this end, we use Lemma 2.3.6 and sum up over

all i ∈ [n] (as in the proof of Lemma 2.3.12):

E [∆−(t+ 1) |X] ≤ 6α2λ · Φ− +
∑
i∈[n]

α · δ̌i · Φi,−

= 6α2λ · Φ− +
∑
i≤ 2n

3

α · δ̌i · Φi,− +
∑
i> 2n

3

α · δ̌i · Φi,−.
(2.45)

For i ≥ 2n/3 we have pi = 2i−1
n2 ≥ 4

3n
− 1

n2 . Using this with pi ≤ pn ≤ 2/n and

α̌ ≥ α − α2, we can bound δ̌i = λn ·
(

1/n · `> − pi · α̌/α
)
≤ λ · (−1/3 + 1+α

n
) + 2αλ ≤

−λ/6+2αλ. Setting Φ≤2n/3,− :=
∑

i≤2n/3 Φi,− and Φ>2n/3,− :=
∑

i>2n/3 Φi,−, together

with Proposition 2.3.7 this yields

E [∆−(t+ 1) |X]

≤ 6α2λ · Φ− +
5

4
αλ · Φ≤2n/3,− −

αλ

6
· Φ>2n/3,− + 2α2λ · Φ>2n/3,−

≤
(
8α2λ− αλ/6

)
· Φ− +

(
5

4
αλ+ αλ/6

)
· Φ≤2n/3,−

≤ − εαλ

2
· Φ− + 2αλ · Φ≤2n/3,−,

(2.46)

57

2.3. THE 2-CHOICE PROCESS

where the last inequality uses α ≤ 1/32 ≤ 1
16
− 1

48
ε. With this, the assumption

E [∆−(t+ 1) |X] ≥ − εαλ
4
·Φ− implies that Φ− ≤ 8

ε
·Φ≤2n/3,− ≤ 8

ε
· 2n

3
e
αL
n/3 = 16n

3ε
e

3αL
n

(the last inequality uses that none of the 2n/3 remaining bins can have a load higher

than L/(n/3)). To finish the proof, assume Φ− >
ε
4
·Φ+ (otherwise the lemma holds).

Combining this with the upper bound on Φ− and with the lower bound on Φ+, we

get

16n

3ε
e

3αL
n ≥ Φ− >

ε

4
· Φ+ ≥

εn

16
· e

4αL
n . (2.47)

Thus, the excess load can be bounded by L < n
α
· ln
(

256
3ε2

)
. Now, the lemma’s

statement follows from Φ = Φ+ + Φ− <
5
ε
· Φ− ≤ 80n

3ε2
e

3αL
n = ε−8 · O (n).

This completes the proof of the lemmas used in the proof of Lemma 2.3.1. The

proof of the result above uses Lemma 2.3.1 to bound the expected drop of the

potential function Φ in a single round. The proof of Lemma 2.3.1 is by case analysis.

The case analysis follows the same line of argument used by Peres et al. [83] and

Talwar and Wieder [96].

Lemma 2.3.1. Consider an arbitrary round t + 1 of the 2-choice process and the

constants ε (from Proposition 2.3.10) and α ≤ min(ln(10/9), ε/8). For λ ∈ [1/4, 1]

we have

E [Φ(X(t+ 1)) |X(t)] ≤
(

1− εαλ

4

)
· Φ(X(t)) + ε−8 · O (n) . (2.48)

Proof. The proof is via case analysis.

Case 1: xn
4
≥ ∅ and x 3n

4
≤ ∅:

This case considers reasonably balanced allocations. The desired bound follows from

Lemma 2.3.11 and Lemma 2.3.12.

Case 2: xn
4
≥ x 3n

4
≥ ∅:

58

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Recall that by definition

E [∆(t+ 1) |X(t)] = E [∆+(t+ 1) |X(t)] + E [∆−(t+ 1) |X(t)]

By Lemma 2.3.12 we derive

E [∆(t+ 1) |X(t)] ≤ E [∆+(t+ 1) |X(t)]− εαλ · Φ−(X(t)) +
αλn

2

The desired result holds when,

E [∆+(t+ 1) |X(t)]− εαλ · Φ−(X(t)) +
αλn

2
≤ −εαλ

4
Φ(X(t)) + ε−8 · O (n)

Rearranging we obtain

E [∆+(t+ 1) |X(t)] ≤ −εαλ
4

Φ(X(t)) + ε−8 · O (n) + εαλ · Φ−(X(t))− αλn

2

Since the RHS is lower bounded by −εα
4

Φ+ it follows that the desired bound holds

when E [∆+(t+ 1) |X(t)] ≤ −εα
4

Φ+.

It remains to show that the desired bound holds when E [∆+(t+ 1) |X(t)] ≥
−εα

4
Φ+. Lemma 2.3.13 states that when X 3n

4
≥ ∅ and E [∆+(t+ 1) |X(t)] ≥ −εα

4
Φ+

then either Φ+(X(t)) ≤ ε
4
· Φ−(X(t)) or Φ(X(t)) = ε−8 · O (n). This gives two

subcases that we now consider.

Case 2.1: Φ+(X(t)) ≤ ε
4
· Φ−(X(t)):

Using Lemma 2.3.9 and Lemma 2.3.12 we obtain

E [∆(t+ 1) |X(t)] ≤ 2αλ · Φ+(X(t))− εαλ · Φ−(X(t)) +
αλn

2

≤ 2αλε

4
· Φ−(X(t))− εαλ · Φ−(X(t)) +

αλn

2

= −εαλ
2
· Φ−(X(t)) +

αλn

2

≤ −εαλ
4
· Φ(X(t)) + ε−8 · O (n) .

(2.49)

59

2.3. THE 2-CHOICE PROCESS

where the last inequality follows from the case assumption.

Case 2.2: Φ(X(t)) = ε−8 · O (n):

Using Lemma 2.3.9 we obtain that E [∆(t+ 1) |X(t)] ≤ 2αλε−8 · O (n) It remains

to show that

2αλε−8 · O (n) ≤ −εαλ
4
· Φ(X(t)) + ε−8 · O (n) . (2.50)

Since Φ(X(t)) = ε−8 · O (n),

2αλε−8 · O (n) ≤
(

1− εαλ

4

)
· ε−8 · O (n) . (2.51)

This holds where 2αλ ≤
(
1 − εαλ

4

)
. By definition α ≤ 1/8 and λ < 1. The result

follows.

Case 3: x 3n
4
≤ xn

4
≤ ∅:

This case is similar to case 2. For E [∆−(t+ 1) |X(t)] ≤ −εαn
4

Φ− the results follows

from Lemma 2.3.12. For E [∆−(t+ 1) |X(t)] ≥ −εαn
4

Φ− two sub-cases are given by

Lemma 2.3.14.

Case 3.1: Φ−(X(t)) ≤ ε
4
· Φ+(X(t)):

The result follows from applying Lemma 2.3.14 and Lemma 2.3.9.

Case 3.2: Φ(X(t)) = ε−8 · O (n):

This result follows from Lemma 2.3.9.

2.3.2 Maximum Load

The goal of this section is to prove Theorem 2.3.18 that upper bounds the maximum

load in an arbitrary round w.h.p.

Theorem 2.3.18 (Maximum Load). Let λ = λ(n) ∈ [1/4, 1). Fix an arbitrary

round t of the 2-choice process. The maximum load of any bin is (w.h.p.) bounded

by O
(
log n

1−λ

)
.

60

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

We begin by restating Φ(x) and Ψ(x) from Equation (2.9).

Φ(x) :=
∑
i∈[n]

eα·(xi−∅) +
∑
i∈[n]

eα·(∅−xi)

Ψ(x) :=
∑
i∈[n]

xi

The potential function Ψ(X(t)) describes the total load of the system at time t.

Warm Up

To get an intuition for our analysis, consider the case t = poly(n) and assume

that the number of balls allocated in each round is fixed and exactly λ · n ≤ n.

Lemma 2.3.4 states the load difference between any two bins is upper bounded by

O (lnn) w.h.p. Combining this with a union bound over all t = poly(n) rounds we

obtain that the load difference between any pair of bins and for all t′ < t is bounded

by O (lnn) w.h.p. Using the combinatorial observation that, while the load distance

to the average is bounded by some b ≥ 0, the bound Ψ ≤ 2b · n is invariant under

the 2-choice process (Lemma 2.3.15), it follows that we get for b = O (lnn) that

Ψ(X(t)) ≤ 2b · n = O (n · lnn), as required.

Lemma 2.3.15. For an arbitrary round t, let b ≥ 0 and consider a configuration

x(t) with Ψ(x(t)) ≤ 2b · n and Φ(x(t)) ≤ eα·b. Let x(t+ 1) denote the configuration

after one step of the 2-choice process. Then Ψ(x(t+ 1)) ≤ 2b · n.

Proof. We distinguish two cases: if there is no empty bin, then all n bins delete

one ball. Since the maximum number of new balls is n, the number of balls cannot

increase. That is, we have Ψ(x(t + 1)) ≤ Ψ(x(t)) ≤ 2b · n. Now consider the

case that there is at least one empty bin. Let η ∈ (0, 1] denote the fraction of

empty bins (i.e., there are exactly η · n > 0 empty bins). Since the minimal load

is zero, Observation 2.3.3 implies maxi xi(t) ≤ 2b. Thus, the total number of balls

in configuration x(t) is at most (1 − η)n · 2b. Exactly (1 − η)n balls are deleted

(one from each non-empty bin) and at most n new balls enter the system. We get

Ψ(x(t+ 1)) ≤ (1− η)n · 2b− (1− η)n+ n = (1− η)n · (2b− 1) + n ≤ 2b · n.

61

2.3. THE 2-CHOICE PROCESS

However, the case for t = ω (poly(n)) is considerably more involved. We would

like to be able to use the standard technique of designing a suitable potential function

that drops when it is high. However, the fact that the number of balls in the system

is only guaranteed to decrease when the total load is high and the load distance to

the average is low makes it challenging to design a suitable potential function that

drops fast enough when it is high. For this reason we deviate from this standard

technique and elaborate on the idea of the t = poly(n) case. In the t = poly(n) case

we used lemma 2.3.4 to bound the load difference between any pair of bins w.h.p for

all t′ < t by O (lnn). Since this is not possible for t � poly(n)), we prove (w.h.p.)

an adaptive bound of O (ln(t− t′) · f(λ)) for all t′ < t, where f is a suitable function

(Lemma 2.3.16).

We then consider the last round t′′ < t with an empty bin. Note that since

the total system load only increases when there is an empty bin that t′′ < t is the

last round where the total system load increases. Lemma 2.3.15 yields a bound

of Ψ(X(t′′)) = 2 · O (ln(t− t′′) · f(λ)) · n on the total load at time t′′. Using the

same combinatorial observation as in the t = poly(n) case, we get that (w.h.p.)

Ψ(X(t)) ≤ Ψ(X(t′′)) = 2 · O (ln(t− t′′) · f(λ)) · n.

The final step is to show that the load at time t′′ (which is logarithmic in t− t′′)

decreases linearly in t− t′′, showing that the time interval t− t′′ cannot be too large

(or we would get a negative load at time t).

The following lemma bounds the probability of two events. Statement (a) of the

lemma bounds Φ over an arbitrarily large interval [0, t) using a union bound over all

rounds t′ < t. Since the interval can be arbitrarily large the bound must be adaptive

and allow for larger errors that occur with larger intervals. Statement (b) of the

lemma bounds the number of balls allocated w.h.p.

62

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

Lemma 2.3.16. Let λ ∈ [1/4, 1). Fix a round t. For i ∈ N with t − i · 8 logn
1−λ ≥ 0

define Ii := [t− i · 8 lnn
1−λ , t]. Let Yi be the number of balls which spawn in Ii.

(a) Define the (good) smooth event St :=
⋂
t′<t

(
Φ(X(t′)) ≤ |t − t′|2 · n2

)
. Then

Pr (St) = 1−O (n−1).

(b) Define the (good) bounded balls event Bt :=
⋂
i

(
Yi ≤ 1+λ

2
· |Ii| · n

)
. Then

Pr (Bt) = 1−O (n−1).

Proof. Consider an arbitrary time t′ < t. By Lemma 2.3.2 we have E [Φ(t′)] ≤ n/ε.

Using Markov’s inequality, this implies

Pr(Φ(t′) ≥ |t− t′|2 · n2) ≤ 1/(ε · |t− t′|2 · n).

Using the union bound over all t′ < t we calculate

Pr
(
S̄t
)
≤
∑
t′<t

Pr
(
Φ(t′) ≥ |t− t′|2 · n2

)
≤ 1

εn
·
∑
t′<t

1

|t− t′|2
≤ π2

6ε · n
= O

(
n−1
)
,

(2.52)

where the last inequality uses the solution to the Basel problem. 1 This proves the

first statement.

For the second statement, let Zi := |Ii|·n−Yi be the number of balls that did not

spawn during Ii. Note that Zi is a sum of |Ii|·n independent indicator variables with

E [Zi] = (1 − λ) · |Ii| · n = 8i · lnn. Chernoff yields Pr (Zi ≤ (1− λ) · |Ii| · n/2) ≤

e−8i·lnn/8 = n−i. The desired statement follows from applying the identity Zi =

|Ii| · n− Yi and taking the union bound.

The next lemma assumes that both events St and Bt hold and bounds the total

number of balls in the system. As previously stated, the total number of balls in the

system can only increase when there is an empty bin. Lemma 2.3.17 upper bounds

the potential Ψ.

1The solution to the Basel problem states that
∑∞
k=1

1
k2 = π2

6

63

2.3. THE 2-CHOICE PROCESS

Lemma 2.3.17. Fix a round t and assume that both St and Bt hold. Then,

Ψ(X(t)) ≤ O
(
n · ln

(
n

1− λ

))
.

Proof. Let t′ < t be the last time when there was an empty bin and set ∆ := t− t′.

Note that t′ is well defined, as we have Xi(0) = 0 for all i ∈ [n].

Since St holds, we have Φ(X(t′)) ≤ ∆2 · n2 = exp (ln(∆2 · n2)). By choice of

t′ we have miniXi(t
′) = 0. Together with Observation 2.3.3 we get maxiXi(t

′) ≤

2 ln
(
∆2 ·n2

)
/α. Summing up over all bins (and pulling out the square), this implies

Ψ(X(t′)) ≤ 4n · ln
(
∆ · n

)
/α. Applying Lemma 2.3.15 yields

Ψ(X(t′ + 1)) ≤ 4n · ln
(
∆ · n

)
/α (2.53)

By choice of t′, there is no empty bin in X(t′′) for all t′′ ∈ { t′ + 1, t′ + 2, . . . , t− 1 }.

Thus, during each of these rounds exactly n balls are deleted.

To bound the number of balls generated, let i be maximal with Ii ⊆ [t′, t] (as

defined in Lemma 2.3.16). That is, the largest interval that is a multiple of 8 ln(n)
(1−λ)

rounds. Since Bt holds and using the maximality of i, the number of balls that are

generated during [t′, t] can be bounded as follows.

(1 + λ)|Ii| · n/2 +
8 lnn

1− λ
· n ≤ (1 + λ)∆ · n/2 +

8 lnn

1− λ
· n (2.54)

Since the number of balls generated during the interval Ii is at most the bound

from statement (b) in lemma 2.3.16. Note there are at most 8 lnn
1−λ rounds not in Ii

through the maximality of i. We assume pessimistically that n balls are generated

in each of these rounds. The second inequality follows since |Ii| ≤ ∆ by definition.

64

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

We calculate

Ψ(X(t)) ≤ Ψ(X(t′ + 1))−∆ · n+ Y

≤ 4n

α
ln(∆ · n)− 1− λ

2
∆ · n+

8 lnn

1− λ
· n

=
1− λ

2
· n ·

(
8

α(1− λ)
· ln(∆ · n)−∆ +

16 lnn

(1− λ)2

)
≤ 1− λ

2
·∆ · n ·

(
24

α(1− λ)2
· ln(∆ · n)

∆
− 1

)
(2.55)

First inequality substitutes Equation 2.53 and using the bound in Equation 2.54.

With f = f(λ) := 24/
(
α(1 − λ)2

)
the last factor becomes f · ln(∆ · n)/∆ − 1. It

is negative if and only if ∆ > f · ln(∆ · n). This inequality holds for any ∆ >

−f ·W−1(− 1
f ·n), where W−1 denotes the lower branch of the Lambert W function2.

This implies that ∆ ≤ −f ·W−1(−1/fn), since otherwise we would have Ψ(X(t)) < 0

i.e., negative load, which is clearly a contradiction. Using the Taylor approximation

W−1(x) = ln(−x)− ln
(
ln(−1/x)

)
−O (1) as x→ −0, we get

∆ ≤ −f ·W−1

(
− 1

f · n

)
≤ f · ln(f ·n) + f · ln

(
ln(f ·n)

)
+ f ≤ 2f · ln(f ·n). (2.56)

Finally, we use this bound on ∆ to get

Ψ(X(t)) ≤ Ψ(X(t′ + 1)) ≤ 4n

α
· ln(∆ · n) ≤ 4n

α
· ln
(
2fn · ln(fn)

)
≤ 4n

α
· ln
(

48n

α(1− λ)2
· ln
(

24n

α(1− λ)2

))
≤ O

(
n · ln

(
n

1− λ

))
.

Theorem 2.3.18 (Maximum Load). Let λ = λ(n) ∈ [1/4, 1). Fix an arbitrary

round t of the 2-choice process. The maximum load of all bins is (w.h.p.) bounded

by O
(
log n

1−λ

)
.

Proof. Combining Lemma 2.3.17 with the fact that the events St and Bt hold with

high probability (Lemma 2.3.16), we immediately get that (w.h.p.) Ψ(X(t)) =

O
(
n · ln

(
n

1−λ

))
. As described at the beginning of this section, combining this with

Lemma 2.3.4 proves Theorem 2.3.18.

2Note that − 1
f ·n ≥ −1/e, so that W−1(− 1

f ·n) is well defined.

65

2.3. THE 2-CHOICE PROCESS

2.3.3 Stability

This section proves Theorem 2.3.20 and shows that the 2-choice process is stable.

As with the 1-choice process we show that the Markov chain for the 2-choice process

is positive recurrent. In this section we will consider the potential function Γ. Recall

Γ(x) := Φ(x) + n
1−λ ·Ψ(x)

where,

Φ(x) :=
∑
i∈[n]

eα·(xi−∅) +
∑
i∈[n]

eα·(∅−xi)

Ψ(x) :=
∑
i∈[n]

xi

The first lemma states that for a sufficiently high value of Γ, this potential

function decreases.

Lemma 2.3.19. Let λ ∈ [1/4, 1). If Γ(X(t)) ≥ 2 n4

(1−λ)2λ
, then

E [Γ(X(t+ 1))− Γ(X(t)) |X(t)] ≤ −1.

Proof. Assume X(t) = x is fixed. By definition of Γ, we have Φ(x) ≥ Γ(x)/2 or

Ψ(x) ≥ Γ(x)/2. We now show that the result follows in both cases.

If Φ(x) ≥ Γ(x)/2, then we have, by Lemma 2.3.1, a potential drop of

E [Φ(X(t+ 1))− Φ(x) |X(t) = x] ≤ −(εαλ/4) · Φ(x) + n log n

≤ −(εαλ/8) · Γ(x) + n log n.

Note that, by definition of Ψ, Ψ(X(t + 1)) − Ψ(x) ≤ n. Together with Γ(x) ≥

66

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

8(n logn+n2/(1−λ)+1)
eαλ

,

E [Γ(X(t+ 1))− Γ(x) |X(t) = x] ≤ −εαλ
8

Γ(x) + n log n+ (n/(1− λ)) · n

≤ −1.

Otherwise, i.e., if Φ(x) < Γ(x)/2, we have that

(i) the load difference is, by Observation 2.3.3, bounded by 2 ln(Γ(x)/2)/α, and

(ii) Ψ(x) ≥ Γ(x)/2 must hold. This implies that ∅ ≥ 1
n

(
Γ(x)/2

n
1−λ

)
= (1−λ)·Γ(x)

2n2 .

From (i) and (ii) we have that the minimum load is at least (1−λ)·Γ(x)
2n2 −2 ln(Γ(x)/2)/α.

Since Γ(x) ≥ 2 n4

(1−λ)2λ
,

(1− λ) · Γ(x)

2n2
− 2 ln(Γ(x)/2)

α
≥ n2

(1− λ)2λ
− 2

α
ln

(
n4

(1− λ)2λ

)
≥ 1

(2.57)

where the last inequality follows for large enough n since α is a constant.

Differentiating the left hand side of equation 2.57 with respect to Γ(x) we obtain

1− λ
n2
− 2

αΓ(x)
> 0

Hence the left hand side of Equation 2.57 is increasing in Γ(x).

It follows that for all Γ(x) ≥ 2 n4

(1−λ)2λ
, every bin has load of at least 1. Thus

each bin will delete one ball and the number of balls arriving is λn in expectation.

Hence,

E [Ψ(X(t+ 1))−Ψ(x) |X(t) = x] = − n

1− λ
(1− λ)n

Now,

67

2.3. THE 2-CHOICE PROCESS

E [Γ(X(t+ 1))− Γ(x) |X(t) = x]

= E [Φ(X(t+ 1))− Φ(x) |X(t) = x]− n

1− λ
(1− λ)n

≤ n log n− n

1− λ
(1− λ)n ≤ −1.

(2.58)

Thus, E [Γ(X(t+ 1))− Γ(x) |X(t) = x] ≤ −1, which yields the claim.

This shows that when Γ is sufficiently large then the potential function decreases

in expectation.

We are ready to prove that the Markov chain for the 2-choice process is positive

recurrent (Theorem 2.3.20).

Theorem 2.3.20. Let λ = λ(n) ∈ [1/4, 1). The Markov chain X of the 2-choice

process is positive recurrent.

Proof. The proof proceeds by applying Theorem 2.1.1.

We now define the parameters of Theorem 2.1.1. Let ζ(t) = X(t) and hence

Ω is the state space of X. First we observe that Ω is countable since there are

a constant number of bins (n is consider a constant in this matter) each having

a load which is a natural number. We define φ(X(t)) to be Γ(X(t)). We define

C = {x | Γ(x) ≤ 2 n4

(1−λ)2λ
}. Define β(x) = 1 and η = 1. We now show that the

preconditions (a) and (b) of Theorem 2.1.1 are fulfilled. Let x 6∈ C. By definition

of C and φ(X(t)), and from Lemma 2.3.19 we have

E [φ(X(t+ 1))− φ(x) |X(t) = x] ≤ E [Γ(X(t+ 1))− Γ(x) |X(t) = x] ≤ −1.

(2.59)

Let x ∈ C. Recall that Γ(X(t)) = Φ(X(t)) + n
1−λΨ(X(t)). By Lemma 2.3.14

and the fact that the number of balls arriving in one round is bounded by n, we

68

CHAPTER 2. INFINITE, PARALLEL BALLS-INTO-BINS

derive,

E [φ(X(t+ 1)) |X(t) = x] = E [Φ(X(t+ 1)) |X(t) = x] + E [Ψ(X(t+ 1)) |X(t) = x]

≤
((

1− εαλ

4

)
2 n4

(1−λ)2λ

)
+

n

1− λ
n <∞.

(2.60)

The claim follows by applying Theorem 2.1.1 with Equations (2.59) and (2.60).

2.4 Conclusion

Our results show that the power of two choices carries over to generalized setting with

deletion. Similar to the classic setting without deletions, the maximum load under

Greedy[2] is exponentially smaller than the load under Greedy[1]. Moreover,

Greedy[2] can handle much larger arrival rates w.r.t. the maximum load difference.

One might assume that our (upper) bounds for Greedy[1] carry over to Greedy[2]

(and, in general, to Greedy[d]) via a simple coupling (similar to Azar et al. [12]).

However, we are not aware of such a coupling in the parallel setting. In fact, for

näıve approaches to such a coupling, it is not hard to come up with situations where

Greedy[2] behaves worse than Greedy[1] (in one step). It would be interesting to

find arguments that, for example, for any d ∈ N Greedy[d+ 1] behaves “better”

than Greedy[d].

Another open questions is concerned with arrival rates λ ≥ 1 (this would require

a slight reformulation of our model, which currently assumes the existence of n gen-

erators that generate balls with a probability of λ). As mentioned in Section 2.3.1,

our assumptions on λ for proving bounds on the smoothness (Lemma 2.3.4) are

merely for convenience. The corresponding proofs carry over (with minor modifica-

tions) to any constant λ, no matter whether λ < 1 or λ > 1. Thus, for Greedy[2]

we know that the load difference between any two bins is still logarithmic, even for

arrival rates > 1. Still, the maximum load obviously diverges for λ ≥ 1. It would

be interesting to quantify this divergence in terms of λ.

69

Chapter 3

Plurality Consensus

In this chapter we study the plurality consensus problem. We present two protocols

that solve the plurality consensus problem. Our protocols are inspired by a rela-

tionship between the plurality consensus problem and distributed load balancing.

This connection allows us to design protocols that are able to solve the plurality

consensus problem for a multitude of communication patterns and an arbitrarily

small bias.

3.1 Introduction

The objective in the plurality consensus problem is to find the so-called plurality

opinion (i.e., the opinion that is initially supported by the largest subset of nodes)

in a network G where, initially, each of the n nodes has one of k opinions. Applica-

tions of this problem include distributed computing [42, 82, 84], social networks [34,

79, 80], as well as the modelling of biological interactions [28, 31]. All these areas

typically demand both very simple and space-efficient protocols. However the com-

munication models considered can vary from anything between simple sequential

communication with a single neighbour (often used in biological settings as a simple

variant of asynchronous communication [9]) to fully parallel communication where

all nodes communicate with all their neighbours simultaneously (e.g. broadcasting

models in distributed computing). This diversity turns out to be a major obstacle

70

CHAPTER 3. PLURALITY CONSENSUS

for algorithm design, since protocols (and their analysis) to a large degree depend

upon the employed communication mechanism.

In this chapter we present two simple protocols for the plurality consensus prob-

lem called Shuffle and Balance. Both protocols work in a very general discrete-

time communication model. The communication partners are determined by a (pos-

sibly randomized) sequence (Mt)t≤N of communication matrices, where we assume1

N to be some suitably large polynomial in n. That is, nodes u and v can commu-

nicate in round t if and only if Mt[u, v] = 1. In that case, we call the edge {u, v }

active (see Avin et al. [11] and Sauerwald and Sun [91] for related graph models).

Our results allow for a wide class of communication patterns (which can even vary

over time) as long as the communication matrices have certain “smoothing” proper-

ties (cf. Section 3.2). These smoothing properties are inspired by similar smoothing

properties used by Sauerwald and Sun [91] for load balancing in the dimension

exchange model.

In fact, load balancing is the source of inspiration for our protocols. Initially, each

node creates a suitably chosen number of tokens labelled with its own opinion. Our

Balance protocol then performs discrete load balancing on these tokens, allowing

each node to get an estimate on the total number of tokens for each opinion. The

Shuffle protocol keeps the number of tokens on every node fixed, but shuffles

tokens between communication partners. By keeping track of how many tokens of

their own opinion (label) were exchanged in total, nodes gain an estimate on the

total (global) number of such tokens. Together with a simple broadcast routine, all

nodes can determine the plurality opinion.

The running time of our protocols is the smallest time t where all nodes have

stabilized on the plurality opinion. That is, all nodes have determined the plurality

opinion and will not change. This time depends on the network G, the communi-

cation pattern (Mt)t≤N , and the initial bias towards the plurality opinion (cf. Sec-

tion 3.2). For both protocols we show a strong correlation between their running

1For simplicity and without loss of generality; our protocols run in polynomial time in all
considered models.

71

3.1. INTRODUCTION

time, the mixing time of certain random walks and the (related) smoothing time,

both of which are used in the analysis of recent load balancing results [91].

To give some more concrete examples of our results, let T := O (log n/(1− λ2)),

where 1− λ2 is the spectral gap of G. If the bias is sufficiently high, then both our

protocols Shuffle and Balance determine the plurality opinion in time:

• n · T in the sequential model (only one pair of nodes communicates per time

step);

• d · T in the balancing circuit model (communication partners are chosen ac-

cording to d (deterministic) perfect matchings in a round-robin fashion); and

• T in the diffusion model (all nodes communicate with all their neighbours at

once).

To the best of our knowledge, these match the best known runtime bounds in the

corresponding models. For an arbitrary bias (in particular, arbitrarily small bias),

the protocols differ in their time and space requirements. More details of our results

can be found in Section 3.1.2.

Reading vs. Amplification Protocols. In addition to solving the plurality

consensus problem for a wide range of communication patterns and arbitrarily small

bias, both our Balance and Shuffle protocols allow nodes to estimate the total

number tokens of a given opinion. In fact, with minor adaptations both protocols

allow nodes to estimate the frequency of all opinions.

Using the terminology of Ghaffari and Parter [56], protocols such as ours can be

classified as reading protocols. Ghaffari and Parter [56] roughly divide protocols for

the plurality consensus problem in to two main classes namely, reading and plural-

ity amplification. Reading protocols are a natural approach for solving the plurality

consensus problem. Nodes (collectively or individually) estimate the frequencies of

the opinions and choose the most frequent. On the other hand, plurality amplifica-

tion protocols do not attempt to estimate the initial distribution but instead seek to

72

CHAPTER 3. PLURALITY CONSENSUS

modify the distribution such that the bias towards the plurality opinion increases.

These protocols seek to apply this idea repeatedly until all nodes learn the plurality

opinion.

Ghaffari and Parter [56] suggest that it seems implausible that a reading proto-

col might solve the plurality consensus problem in polylogarithmic time using only

polylogarithmic space. Both our protocols are able to achieve this goal for a range

of parameters. In particular our protocols work for graphs other than the complete

graph. On the other hand, to the best of our knowledge, there is no plurality am-

plification protocol that solves the plurality consensus problem for an arbitrary bias

in polylogarithmic time on arbitrary graphs.

3.1.1 Related Work

There is a diverse body of literature that analyzes consensus problems under various

models and assumptions. Results differ in the considered network topology (e.g.,

arbitrary or complete), the restrictions on model parameters (e.g., the number of

opinions or the initial bias2), the time model (synchronous or asynchronous), or

the required knowledge (e.g., n, maximal degree, or spanning tree). To capture

this diverse spectrum, we classify results into population protocols, sensor networks,

and pull voting. This classification is neither unique nor injective but merely an

attempt to make the overview more accessible and highlights the extensive interest

in consensus problems. A condensed form of this discussion is given in Table 3.1. We

will not discuss work whose focus is too far away from our work, e.g., consensus on

some arbitrary opinion, leader election, robustness concerns, or Byzantine models.

Population Protocols. The first area of work we consider comes from population

protocols. Population protocols model interactions between large populations of very

simple entities (such as molecules). Entities are modelled as finite state machines

with a small state space and communicate asynchronously. In each step, an edge is

2The bias is α := (n1 − n2)/n, n1 and n2 being the support of the most and second most
common opinions.

73

3.1.
IN

T
R

O
D

U
C

T
IO

N

Table 3.1: Summary of plurality consensus results.

Arbitrary
Graph

Number
of Opinions

Required Bias α
O-notation

Time
O-notation

Model
Space

O-notation

Shuffle 3 arbitrary arbitrary
T · tmix

T · log(n)/(1− λ2)
for (d-regular graph)

sync
& async

Thm.3.4.10

Balance 3 arbitrary arbitrary
τ

log(n)/(1− λ2)
for (d-regular graph)

sync
& async

k · log(n)

[70] 3 arbitrary arbitrary D + F2

n2
1
· log(k) broadcast –

[74] 3 2 arbitrary n5 async 1
[44] 3 2 arbitrary log n/δ(G, n1/n) async 1
[36] expander 2 vol(1)− vol(2) ≥ 4λ2

2 · |E| log(n) sync 1

[35]
random
d-reg

2
√

1/d+ d/n log(n) sync 1

[14] 7 ≤ n

√
min

{
k, 3

√
n

log(n)

}
· log(n)

n
min

{
k, 3

√
n

log(n)

}
· log n sync log(k)

[15] 7 O((n
log(n)

)1/3) ε · n2/n md(c) · log(n) sync log(k)

[47] 7 O(nε)
√

log n/n k + log(n) sync log(k)

[23] 7 o(
√
n/ log(n)) �

√
log n/n log(n) · log log(n) sync log(k)

[56] 7
√
n/ log(n)

√
log n/n log(k) · log(n) sync log(k)

[5] 7 2 arbitrary log2(n)
sα

+ log2(n) async s = O(n)
states

[7] 7 2 � log(n)/
√
n log(n) async 1

Shuffle assumes rough bounds on tmix and n. Bounds on α can reduce the space requirements of our protocols. [70] requires a spanning tree and a common set of quasi-random hash
functions. Time in the async model use parallel time. All results, except for [44], hold w.p. 1− o (1). [5] also gives an expected time of o (log(n)/(sα) + log(n) · log(s)).

74

CHAPTER 3. PLURALITY CONSENSUS

chosen uniformly at random and only the two connected nodes communicate. We re-

fer to this communication model as the sequential model. For detailed introductions

to population protocols see Angluin et al. [8] and Aspnes and Ruppert [9].

Angluin et al. [7] propose a 3-state population protocol for majority voting (i.e.,

k = 2) on the clique. If the initial bias α is ω (log n/
√
n), their protocol agrees

(w.h.p.) on the majority opinion in O (n · log n) steps. Mertzios et al. [74] suggest a

4-state protocol for exact majority voting, which always returns the majority opinion

(independent of α) in time O (n6) in arbitrary graphs and in time O (n2 · log(n)/α)

in the clique. This is optimal in that no population protocol for exact majority can

have fewer than four states [74].

Alistarh et al. [5] presents a protocol for k = 2 in the clique that allows for a

speed-memory trade-off. It solves exact majority and has expected parallel running

time3 O
(

logn
s·α + log n · log s

)
and (w.h.p.) O

(
log2 n
s·α + log2 n

)
. Here, s is the number

of states and must be in the range s = O (n) and s = Ω (log n · log log n). Alistarh

et al. [4] explore further the trade off between time and space. The authors show

that any protocol solving the majority problem (k = 2) using O (log log n) states

requires Ω (n/ polylog n) rounds in expectation. Their results show a separation in

time complexity between protocols using O (log log n) and Θ
(
log2 n

)
states.

In contrast to these results, our protocols consider the case of arbitrary number

k ≥ 2 of opinions. Also, with the notable exception of Mertzios et al. [74], the above

results are restricted to the complete graph. These restrictions are not surprising,

given that these protocols operate on a very constrained state space. Our protocols

work on arbitrary, even dynamic graphs. Balance can be seen as a slightly sim-

plified and generalized version of the protocol presented by Alistarh et al. [5], and

Shuffle uses a similar idea for a speed-memory trade-off.

Sensor Networks. Another line of work has its background in sensor networks.

Quantized interval consensus draws its motivation from signal processing. Initially,

3The number of steps divided by n. A typical measure for population protocols, based on the
intuition that each node communicates roughly once in n steps.

75

3.1. INTRODUCTION

nodes measure quantized values (signals) and then communicate through a network

to agree on the quantized values that enclose the average. This can be used to solve

majority consensus (k = 2). The communication model is typically the sequential

model.

Bénézit et al. [16] propose a protocol that is equivalent to the 4-state population

protocol of Mertzios et al. [74] and prove that with probability 1 it converges in

finite time, but without bounds on that convergence time.

A more recent result by Draief and Vojnovic [44] shows that this protocol (and

thus Mertzios et al. [74]) needs O
(

logn
δ(QS ,α)

)
steps in expectation. Here, δ(QS, α)

depends on the bias α and on the spectrum of a set of matrices QS related to

the underlying graph. The authors give concrete bounds for several specific graphs

(e.g., in the complete graph the consensus time is of order4 O (log n/α)). The only

related result for k > 2 we are aware of is Bénézit et al. [17] which again proves only

convergence in finite time.

Another consensus variant is mode computation. For example, Kuhn et al. [70]

consider a graph of diameter D where each node has one or several of k distinct

elements. The authors use a protocol based on a complex hashing scheme to compute

the mode (the most frequent element) w.h.p. in time O (D + F2/n
2
1 · log k). Here,

F2 =
∑

i n
2
i is the second frequency moment and ni the frequency of the i-th most

common element. F2/n
2
1 ∈ [1, k] can be seen as an alternative bias measure. Nodes

communicate via synchronous broadcasts and need a precomputed spanning tree

and hash functions. Kuhn et al. [70] can also be used for aggregate computation

as done by Kempe et al. [67] (where the authors provide an elegant protocol to

compute sums or averages in complete graphs).

Overall,the work of Draief and Vojnovic [44] and Kuhn et al. [70] are the most

closely related to our work since they consider arbitrary graphs. However, our work

considers more general communication models, including dynamic graphs. Similarly

to Draief and Vojnovic [44], our results for k = 2 rely on spectral properties of the

4We state their bound in terms of our α = (n1 − n2)/n; their definition of α differs slightly.

76

CHAPTER 3. PLURALITY CONSENSUS

underlying graph (and are asymptotically the same for their concrete examples).

However, our bounds are related to well-studied load balancing bounds and mixing

times of random walks (which we believe are easier to get a handle on than their

δ(QS, α)).

Gossip Protocols. The third major research line we consider has its roots in

gossiping and rumour spreading. Here, communication is typically restricted to

synchronous pull requests (nodes query other nodes’ opinions and use simple rules

to update their own). We refer the reader to Peleg [82] for a slightly dated but

thorough survey.

Cooper et al. [35] consider a voting process for k = 2 opinions on d-regular

graphs. Nodes pull from two random neighbours and if the queried opinions are the

same then the node adopts the queried opinion. For random d-regular graphs and

α = Ω
(√

1/d+ d/n
)

, all nodes agree (w.h.p.) in O (log n) rounds on the plurality

opinion. For an arbitrary d-regular graph G, they need α = Ω (λ2) (where 1 − λ2

is the spectral gap of G). In the follow up paper Cooper et al. [36] extend these

results to expander graphs. Cooper et al. [36] show that the run time is O (log n)

for a bias of vol(1) − vol(2) ≥ 4λ2
2 · |E|, where vol(1) and vol(2) denote the sum of

degrees over nodes having Opinion 1 and 2, respectively.

Becchetti et al. [14] consider a similar update rule on the clique for k opinions.

Here, each node pulls the opinion of three random neighbours and adopts the major-

ity among those. The protocol requires O (log k) memory bits and is shown (w.h.p.)

to have a tight running time of Θ (k · log n) (given a sufficiently high bias α).

Becchetti et al. [15] build upon the idea of the 3-state population protocol

from Angluin et al. [7] (but in the gossip model) and generalize it to k opinions.

Nodes pull the opinion of a random neighbour in each round. If n1 ≥ (1 + ε) ·n2 for

a constant ε > 0 and if k = O
(
(n/ log n)1/3

)
, they agree (w.h.p.) on the plurality

opinion in time O (md · log n) on the clique and need log k + 1 bits. The monochro-

matic distance md ∈ [1, k] is an alternative bias measure (based on an idea similar

to the frequency moment in Kuhn et al. [70]).

77

3.1. INTRODUCTION

Recent work address an open question left by Becchetti et al. [15]. Becchetti

et al. [15] leave as an open question whether or not there exists a protocol solving

the plurality consensus problem in polylogarithmic time using only polylogarithmic

(local) memory. Berenbrink et al. [23] build upon Angluin et al. [7] and design a

protocol that reaches plurality consensus (w.h.p.) in time O (log n · log log n) and

uses log k + 4 bits. Ghaffari and Parter [56] give an algorithm that solves the the

plurality consensus problem in O (log k · log n) rounds with message and memory

size log k +O (1) bits where the initial bias α = Ω
(√

log n/n
)

.

The running times of gossip protocols are relatively good when compared to

other protocols, like population protocols or those introduced here (cf. Table 3.1).

In particular, these results do typically not show a linear dependency on the bias, as

our Shuffle protocol or Alistarh et al. [5], Draief and Vojnovic [44], and Mertzios

et al. [74] do. This efficiency however comes at the expense of parameter constraints.

In particular, results like Becchetti et al. [15] and Berenbrink et al. [23] do not seem

to easily extend to arbitrary graphs and have inherent constraints on both k and α.

Comparing these results seems to indicate that, at least for arbitrary graphs, there

is a jump in complexity depending on whether or not one allows the protocol to fail

for small absolute bias values.

3.1.2 Our Contribution

We introduce two protocols for plurality consensus, called Shuffle and Balance.

Both solve plurality consensus under a diverse set of (randomized or adversarial)

communication patterns in arbitrary graphs for any positive bias. We continue with

a detailed description of our results.

Shuffle. Our main result is the Shuffle protocol. In the first time step each

node generates γ tokens labelled with its initial opinion. During round t, any pair

of nodes connected by an active edge (as specified by the communication pattern

(Mt)t≤N) exchanges tokens. We show that Shuffle solves plurality consensus and

78

CHAPTER 3. PLURALITY CONSENSUS

allows for a trade-off between running time and memory.

For example, consider communication models where the maximum number of

communication partners for each node is small e.g., the sequential model and bal-

ancing circuits. Let the number of tokens be γ = O (log n/(α2 · T)), where T is a

parameter to control the trade-off between memory and running time. The proto-

col does not need to know the initial bias α. The protocol works for any integral

choice of γ that is suitably large. Our choice of γ fixes the trade-off parameter T .

Moreover, let tmix be such that any time interval [t, t+ tmix] is ε-smoothing (cf. Sec-

tion 3.2). Intuitively, this means that the communication pattern has good load

balancing properties during any time window of length tmix. This coincides with the

worst-case mixing time of a lazy random walk on active edges.

For our choice of γ and the mixing time tmix of the underlying communication

pattern, Shuffle lets all nodes agree on the plurality opinion in O (T · tmix) rounds

(w.h.p.), using

O (γ · log(k) + log(T · tmix) + log(γ · T)) = O
(

log n

α2 · T
· log k + log(T · tmix)

)

memory bits per node.

Our result shows, for example, that under the Shuffle protocol nodes reach

plurality consensus on expanders in the sequential model in O (T · n log n) time steps

and with O
(

logn·log k
T

+ log(Tn)
)

memory bits (assuming a constant initial bias). For

arbitrary graphs, arbitrary bias, and many natural communication patterns (e.g.,

communicating with all neighbours in every round or communicating via random

matchings), the time for plurality consensus is closely related to the spectral gap of

the underlying communication network (cf. Corollary 3.4.1).

While our protocol is relatively simple, the analysis is quite involved. The idea

is to observe that after tmix time steps, each single token is located on any node

with (roughly) the same probability; the difficulty is that token movements are

not independent. The main ingredients for our analysis are Lemmas 3.4.4 and

Lemma 3.4.5, which generalize a result by Sauerwald and Sun [91] (we believe that

79

3.2. MODEL & GENERAL DEFINITIONS

this generalization is interesting in its own right). These lemmas show that the

joint distribution of token locations is negatively correlated, allowing us to derive a

suitable Chernoff bound. Once this is proven, nodes can “count” tokens every tmix

time steps, building up over time an estimate of the total number of tokens labelled

with their own opinion. By broadcasting these estimates, all nodes determine the

plurality opinion.

Balance. The previous protocol, Shuffle, allows for a nice trade-off between

running time and memory. If the number of opinions is relatively small, our much

simpler Balance protocol gives better results.

In Balance, each node u maintains a k-dimensional load vector. Where j

denotes u’s initial opinion, the j-th dimension of this load vector is initialized with

γ ∈ N (a sufficiently large value) and any other dimension is initialized with zero. In

each time step, all nodes perform a simple, discrete load balancing on each dimension

of these load vectors. Our results imply, for example, that plurality consensus on

expanders in the sequential model is achieved in only O (n · log n) time steps with

O (k) memory bits per node (assuming a constant initial bias).

Balance can be thought of as a (slightly simplified) version of Alistarh et al.

[5] or Kempe et al. [67] that generalizes naturally to k ≥ 2 and arbitrary (even

dynamic) graphs. In the setting of Alistarh et al. [5] (but as opposed to Alistarh

et al. [5] for arbitrary k), it achieves plurality consensus with probability 1−O (1)

in parallel time O (log n) and uses O (k · log(1/α)) = O (k · log n) bits per node

(Corollary 3.3.2), an improvement by a log(n) factor.

3.2 Model & General Definitions

We consider an undirected graph G = (V,E) of n ∈ N nodes and let 1− λ2 denote

the eigenvalue (or spectral) gap of G where λ2 is the second largest eigenvalue.

Each node u is assigned an opinion ou ∈ { 1, 2, . . . , k }. For i ∈ { 1, 2, . . . , k }, we use

ni ∈ N to denote the number of nodes which have initially opinion i. Without loss

80

CHAPTER 3. PLURALITY CONSENSUS

of generality (w.l.o.g), we assume n1 > n2 ≥ · · · ≥ nk, such that 1 is the opinion

that is initially supported by the largest subset of nodes. We also say that 1 is the

plurality opinion. The value α := n1−n2

n
∈ [1/n, 1] denotes the initial bias towards

the plurality opinion.

The objective of plurality consensus problem, is to design simple, distributed

protocols that let all nodes agree on the plurality opinion. Time is measured in

discrete rounds, such that the (randomized) running time of our protocols is the

number of rounds it takes until all nodes are aware of the plurality opinion. Further

to the running time we also consider the total number of memory bits per node

that are required by our protocols. All our statements and proofs assume n to be

sufficiently large.

Communication Model. In any given round, two nodes u and v can communi-

cate if and only if the edge between u and v is active. We use Mt to denote the

symmetric communication matrix at time t, whereMt[u, v] = Mt[v, u] = 1 if {u, v }

is active and Mt[u, v] = Mt[v, u] = 0 otherwise. We assume without loss of gen-

erality (w.l.o.g) Mt[u, u] = 1 (allowing nodes to “communicate” with themselves).

Typically, the sequence M = (Mt)t∈N of communication matrices (the communica-

tion pattern) is either randomized or adversarial, and our statements merely require

that M satisfies certain smoothing properties (see below). For the ease of pre-

sentation, we restrict ourselves to polynomial number of time steps and consider

only communication patterns M = (Mt)t≤N where N = N(n) is an arbitrarily

large polynomial. Let us briefly mention some natural and common communication

models covered by such patterns:

• Diffusion Model: In every round t , all edges of the graph are activated.

• Random matching model: In every round t, the active edges are given by a

random matching. We require that random matchings from different rounds

are mutually independent. Note that there are several simple, distributed

protocols to obtain such matchings Boyd et al. [27] and Ghosh and Muthukr-

81

3.2. MODEL & GENERAL DEFINITIONS

ishnan [57]. Results for the random matching model dependent on pmin :=

mint∈N,{u,v }∈E Pr (Mt[u, v] = 1).

• Balancing Circuit Model: There are d perfect matchings M0,M1, . . . ,Md−1

given. They are used in a round-robin fashion, such that for t ≥ d we have

Mt = Mt mod d.

• Sequential Model: In each round t an edge {u, v } ∈ E is activated uniformly

random.

Notation. Before we proceed, we restate the following notation that will be used

in subsequent sections. We use ‖x‖` to denote the `-norm of vector x, where the∞-

norm is the vector’s maximum absolute entry. In general, bold font indicates vectors

and matrices, and x(i) refers to the i-th component of x. The discrepancy of x is

defined as disc(x) := maxi x(i)−mini x(i). For i ∈ N, we define [i] := { 1, 2, . . . , i }

as the set of the first i integers. We use log x to denote the binary logarithm of

x ∈ R>0. We write a | b if a divides b. For any node u ∈ V , we use d(u) to denote

u’s degree in G and dt(u) :=
∑

vMt[u, v] to denote its active degree at time t (i.e.,

its degree when restricted to active edges). Similarly, N(u) and Nt(u) refer to u’s

(active) neighbourhood respectively. Moreover, ∆ := maxt,u dt(u) is the maximum

active degree of any node. Recall, We say an event happens with high probability

(w.h.p.) if its probability is at least 1− 1/nc for c ∈ N (See Definition 1.1.7).

Smoothing Property. The running time of our protocols is closely related to the

running time (“smoothing time”) of diffusion load balancing algorithms, which in

turn is a function of the mixing time of a random walk on G (see also Avin et al.

[11] and Sauerwald and Sun [91]). More exactly, we consider a random walk on G

that is restricted to the active edges in each time step. As indicated in Section 3.1.2,

this random walk should converge towards the uniform distribution over the nodes

of G. This leads to the following definition of the random walk’s transition matrices

82

CHAPTER 3. PLURALITY CONSENSUS

Pt based on the communication matrices Mt:

Pt[u, v] :=

1
2∆

if Mt[u, v] = 1 and u 6= v,

1− dt(u)
2∆

if Mt[u, v] = 1 and u = v,

0 if Mt[u, v] = 0.

(3.1)

Pt is doubly stochastic for all t ∈ N. Moreover, note that the random walk is trivial

in any matching-based model, while we get Pt[u, v] = 1
2d

for every edge {u, v } ∈ E

in the diffusion model on a d-regular graph. We are now ready to define the required

smoothing property.

Definition 3.2.1 (ε-smoothing). Consider a fixed sequence (Mt)t≤N of communi-

cation matrices and a time interval [t1, t2]. We say [t1, t2] is ε-smoothing (under

(Mt)t≤N) if for any non-negative vector x with ‖x‖∞ = 1 it holds that disc(x ·∏t2
t=t1

Pt) ≤ ε. Moreover, we define the mixing time tmix(ε) as the smallest num-

ber of steps such that any time window of length tmix(ε) is ε-smoothing. That is,

tmix(ε) := min { t′ | ∀t ∈ N : [t, t+ t′] is ε-smoothing }.

The mixing time can be seen as the worst-case time required by a random walk

to get “close” to the uniform stationary distribution. If the parameter ε is not

explicitly stated, we consider tmix := tmix(n−5).

3.3 Protocol BALANCE

We begin by analysing our Balance protocol. Our Balance protocol is inspired

by load balancing and can be thought of as a (slightly simplified) version of Alistarh

et al. [5] or Kempe et al. [67] that generalizes naturally to k ≥ 2 and arbitrary (even

dynamic) graphs.

83

3.3. PROTOCOL BALANCE

1 for i ∈ [k]:
2 for {u, v } ∈ E with Mt[u, v] = 1:
3 send b`i,t(u) · Pt[u, v]c tokens from dimension i to v
4 x := `i,t(u)−

∑
v : Mt[u,v]=1b`i,t(u) · Pt[u, v]c {excess tokens}

5 randomly distribute x tokens such that:
6 every v 6= v with Mt[u, v] = 1 receives 1 token w.p. Pt[u, v]
7 (and zero otherwise)
8 pluu := i with `i,t(u) ≥ `j,t(u) ∀1 ≤ i, j ≤ k {plurality guess}

Listing 3.1: Protocol Balance as executed by node u at time t. At time zero, each
node initializes `ou,0(u) := γ and `j,0(u) := 0 for all j 6= ou.

Protocol Description.

The idea of our Balance protocol is quite simple: Every node u stores a k-

dimensional vector `t(u) with k integer entries, one for each opinion. Balance

performs an entry-wise load balancing on `t(u) according to the communication pat-

tern M = (Mt)t≤N and the corresponding transition matrices Pt (cf. Section 3.2).

Once the load is properly balanced, the nodes look at their largest entry and assume

that this is the plurality opinion (stored in the variable pluu).

In order to ensure a low memory footprint, our protocol does not send fractional

loads over active edges. This avoids the overheads that are necessary for nodes to

handle floating point operations. To this end, we use a rounding scheme from Beren-

brink et al. [18] and Sauerwald and Sun [91] to restrict the protocol to integer loads.

The round scheme works as follows: Consider a dimension i ∈ [k] and let `i,t(u) ∈ N

denote the current (integral) load at u in dimension i, then u sends b`i,t(u) ·Pt[u, v]c

tokens to all neighbours v with Mt[u, v] = 1. This results in at most dt(u) remaining

excess tokens (`i,t(u) minus the total number of tokens sent out). These are then

randomly distributed (without replacement), where neighbour v receives a token

with probability Pt[u, v]. In the following we refer to the balancing algorithm using

this rounding scheme as the Vertex-Based Balancer algorithm.

The formal description of protocol Balance is given in Listing 3.1.

84

CHAPTER 3. PLURALITY CONSENSUS

Analysis of Balance.

Consider initial load vectors `0 with ‖`0‖∞ ≤ n5. Let τ := τ(g,M) be the first time

step when Vertex-Based Balancer under the (fixed) communication pattern

M = (Mt)t≤N is able to balance any such vector `0 up to a g-discrepancy. More

formally,

τ := τ(g,M) := min
t
{disc(`t) ≤ g}

With this, we show:

Theorem 3.3.1. Let α = n1−n2

n
∈ [1/n, 1] denote the initial bias. Consider a fixed

communication pattern M = (Mt)t≤N and an integer γ ∈ [3 · g
α
, n5]. Protocol

Balance ensures that all nodes know the plurality opinion after τ(g,M) rounds

and requires k · log(γ) memory bits per node.

Proof. By our definition, γ ≥ 3 g
α

= 3g · n
n1−n2

and for i ∈ [k] let ¯̀
i := ni · γ/n.

¯̀
i denotes the average number of tokens for opinion i. The definition of τ(g,M)

implies `1,τ (u) ≥ ¯̀
1 − g and `i,τ (u) ≤ ¯̀

i + g for all nodes u and i ≥ 2.

Consequently, we get

`1,t(u)− `i,t(u) ≥ ¯̀
1 − ¯̀

i − 2g = 3g · n1 − ni
n1 − n2

− 2g > 0. (3.2)

Thus, every node u has the correct plurality guess at time τ .

The memory usage of Balance depends on the number of opinions (k) and on

the number of tokens generated on every node (γ). The algorithm is very efficient

for small values of k but it becomes rather impractical if k is large. Note that if one

chooses γ sufficiently large, it is easy to adjust the algorithm such that every node

knows the frequency of all opinions in the network. The next corollary gives a few

concrete examples for common communication patterns on general graphs.

Corollary 3.3.2. Let G be an arbitrary d-regular graph. Balance ensures that all

nodes agree on the plurality opinion with probability 1− e−(log(n))c for some constant

c

85

3.4. PROTOCOL SHUFFLE

(a) using O (k · log n) bits of memory in time O
(

logn
1−λ2

)
in the diffusion model,

(b) using O (k · log n) bits of memory in time O
(

1
d·pmin

· logn
1−λ2

)
in the random

matching model,

(c) using O (k · log(α−1)) bits of memory in time O
(
d · logn

1−λ2

)
in the balancing

circuit model, and

(d) using O (k · log(α−1)) bits of memory in time O
(
n · logn

1−λ2

)
in the sequential

model.

Proof. Part (a) follows directly from [92, Theorem 6.6] and Part (c) follows di-

rectly from [92, Theorem 1.1]. To show Part (b) and (d) we choose τ such that

M1,M2, . . . ,Mτ enable Vertex-Based Balancer to balance any vector `0 (with

initial discrepancy of at most n5) up to a g-discrepancy. The bound on τ then follows

from [92, Theorem 1.1].

3.4 Protocol SHUFFLE

Given that the memory requirements of the Balance protocol become impractical

for a large number of opinions we now present a different protocol that we will refer

to as Shuffle. Our main result is the following theorem, stating the correctness

as well as the time and space-efficiency of Shuffle. In particular, our result shows

that our Shuffle protocol allows for a trade off between time and space. The

protocol is described in Section 3.4.1, followed by its analysis in Section 3.4.2.

Theorem 3.4.10. Let α = n1−n2

n
∈ [1/n, 1] denote the initial bias. Consider a

fixed communication pattern (Mt)t≤N and an arbitrary parameter T ∈ N. Protocol

Shuffle ensures that all nodes know the plurality opinion after O (T · tmix) rounds

(w.h.p.) and requires O (γ · log(k) + log(T · tmix) + log(γ · T)) memory bits per node

for γ ≥ c·logn
α2T

+ 2c′∆ ≥ 2∆.

The parameter T in the statement serves as a lever to trade running time for

memory. Since the number of tokens γ depends on the maximum number of commu-

86

CHAPTER 3. PLURALITY CONSENSUS

nication partners ∆, for communication patterns where ∆ is “large” e.g., diffusion,

there can be a negative impact on the space requirements for our Shuffle proto-

col. This additional requirement is due to the number of tokens on each node being

invariant. In these cases, our Balance protocol might be more appropriate.

Since tmix depends on the graph and communication pattern, Theorem 3.4.10

might look a bit unwieldy. The following corollary gives a few concrete examples for

common communication patterns on general graphs.

Corollary 3.4.1. Let G be an arbitrary d-regular graph. Shuffle ensures that all

nodes agree on the plurality opinion (w.h.p.) using

O
(

log(n)

α2T
· log(k) + log(T · tmix) + log

(
T · log(n)

α2T

))

bits of memory in time

• O
(

T
d·pmin

· log(n)
1−λ2

)
in the random matching model,

• O
(
T · d · log(n)

1−λ2

)
in the balancing circuit model, and

• O
(
T · n · log(n)

1−λ2

)
in the sequential model.

3.4.1 Protocol Description

We continue to explain the Shuffle protocol given in Listing 3.2.

Our protocol consists of three parts that are executed in each time step: the

shuffle part, the broadcast part, and the update part.

Every node u is initialized with γ ∈ N tokens labelled with u’s opinion ou. Our

protocol sends γ
2∆

tokens chosen uniformly at random (without replacement) over

each edge {u, v } ∈ E where Mt[u, v] = 1 and ∆ := maxt,u dt(u) is the maximum

active degree of any node. Here, γ ≥ 2∆ is a parameter depending on T and α

to be fixed during the analysis 5 such that 2∆ divides γ. Shuffle maintains the

invariant that, at any time, all nodes have exactly γ tokens. It is this invariance that

5 Shuffle does not need to know α, it works for any choice of γ; such a choice merely fixes
the trade-off parameter T .

87

3.4. PROTOCOL SHUFFLE

1 for {u, v } ∈ E with Mt[u, v] = 1: {shuffle}
2 send γ

2∆ tokens chosen u.a.r. (without replacement) to v
3
4 for {u, v } ∈ E with Mt[u, v] = 1: {broadcast}
5 send (domu, eu)
6 receive (domv, ev)
7
8 v := w with ew ≥ ew′ ∀w,w′ ∈ Nt(u) ∪ {u }
9 (domu, eu) := (domv, ev)

10
11 if t ≡ 0 (mod tmix): {update}
12 increase cu by the number of tokens labelled ou held by u
13 pluu := domu {plurality guess: last broadcast’s dom. op.}
14 (domu, eu) := (ou, cu) {reset broadcast}

Listing 3.2: Protocol Shuffle as executed by node u at time t. At time zero, each
node u creates γ tokens labelled ou and sets cu := 0 and (domu, eu) := (ou, cu).

introduces the dependence on the communication pattern. More specifically on the

maximum number of communication partners ∆. For static graphs, the maximum

number of communication partners ∆ is the maximal degree which can be easily

computed in a distributed way, see for example Boyd et al. [27].

In addition to storing the tokens, each node maintains a set of auxiliary variables.

The variable cu is increased during the update part of the protocol and counts tokens

labelled ou. The variable pair (domu, eu) is a temporary guess of the plurality opinion

and its frequency. During the broadcast part of the protocol, nodes broadcast these

pairs, replacing their own pair whenever they observe a pair with higher frequency.

Finally, the variable pluu represents the opinion currently believed to be the plurality

opinion. The shuffle and broadcast parts of the protocol are executed in each time

step, while the update part is executed only every tmix time steps

Waiting tmix time steps for each update gives the broadcast enough time to

inform all nodes and ensures that the tokens of each opinion are well distributed.

In order for [t, t′] to be 1/n5-smoothing, the random walk starting at u at time t is

with probability at least 1/n − 1/n5 on node v and, thus, there exists a path from

u to v (with respect to the communication matrices). If there is such a path for

every node v, the counter of u was also propagated to that v and we have τ ≤ tmix.

Consequently, at time t′ all nodes have the correct majority opinion. The latter

88

CHAPTER 3. PLURALITY CONSENSUS

implies that, if we consider a node u with opinion ou = i at time T · tmix, the value

cu is a good estimate of T · γni/n (which is maximized for the plurality opinion).

When we reset the broadcast (Line 14), the subsequent tmix broadcast steps ensure

that all nodes get to know the pair (ou, cu) for which cu is maximal. Thus, if we can

ensure that cu is a good enough approximation of T · γni/n, all nodes get to know

the plurality.

t = 0 t = 1 t = tmix

Figure 3.1: Plurality Consensus: Example of the Shuffle protocol for G = K4,
γ = 6, and k = 3 using Diffusion

In order to emphasise the intuition behind our Shuffle protocol we consider

the following example for n = 4. Assume that the underlying network is a complete

graph and that nodes communicate with all neighbours in a given round i.e., Diffu-

sion. Figure 3.1 shows possible configurations after t = 1 and t = tmix time steps.

At t = 0, all nodes generate γ = 2∆ = 6 tokens labelled their initial opinion (red,

blue, or yellow). In each subsequent round t > 0, each node sends γ
2∆

= 1 tokens

chosen u.a.r to each of its neighbours. Note the number of tokens on each node is

invariant.

Since the communication pattern satisfies the smoothing property, after t = tmix

time steps the configuration resembles the uniform stationary distribution. However,

we must be aware of the discrepancy that occurs due to the integrality of tokens.

After tmix time steps, each node u updates its counter (cu) for the number of

tokens that it has seen of its original opinion (ou) by the number of tokens currently

on the node labelled with that opinion. The counter cu is then broadcast in subse-

quent steps so that all nodes are informed of the maximum counter amongst all of

the nodes. By only updating after tmix time steps, this value is an estimate of γni/n

where ni is the number of nodes that initially held opinion i.

89

3.4. PROTOCOL SHUFFLE

3.4.2 Analysis of Shuffle

Fix a communication pattern (Mt)t≤N and an arbitrary parameter T ∈ N. Remem-

ber that tmix := tmix(n−5) denotes the smallest number such that any time window

of length tmix is n−5-smoothing under (Mt)t≤N . The number of tokens γ stored on

each node will be set during the analysis.

The analysis of Shuffle is largely based on Lemma 3.4.9, which states that,

after O (T · tmix) time steps, the counter values cu can be used to reliably separate

the plurality opinion from any other opinion. The main technical difficulty is the

dependency between the tokens’ movements, rendering standard Chernoff bounds

inapplicable. Instead, we show that certain random variables satisfy the negative

regression condition (Lemma 3.4.4), which allows us to majorize the token distri-

bution by a random walk (Lemma 3.4.5) and to derive the Chernoff type bound

(Lemma 3.4.8). This Chernoff type bound can be used to show that all counter

values are concentrated which is the main pillar of the proof of our main result

(Theorem 3.4.10).

Majorizing Shuffle by Random Walks

While our Shuffle protocol assumes that 2∆ divides γ, here we assume the slightly

weaker requirement that Pt[u, v] · γ ∈ N for any u, v ∈ V and t ∈ N. Let us first

introduce some notation for the shuffle part of our protocol at time t. To ease the

discussion, we consider u as a neighbour of itself and speak of dt(u) + 1 neighbours.

For i ∈ [dt(u) + 1], let Nt(u, i) ∈ V denote the i-th neighbour of u (in an arbitrary

order). Fix a node u and let u’s tokens be numbered from 1 to γ. Our assumption

on γ allows us to partition the tokens into dt(u)+1 disjoint subsets (slots) Si ⊆ [γ] of

size Pt[u, v]·γ each, where v = Nt(u, i). Let πt,u : [γ]→ [γ] be a random permutation.

Token j with πt,u(j) ∈ Si is sent to u’s i-th neighbour. To ease notation, we drop

the time index t and write πu instead of πt,u (and, similarly for d(u) and N(u, i)).

A configuration c describes the location of all γn tokens at a given point in

time. For a token j ∈ [γn] we use uj ∈ V to denote its location in configuration

90

CHAPTER 3. PLURALITY CONSENSUS

c (which will always be clear from the context). For each such token j we define

a random variable Xj ∈ [d(uj) + 1] with Xj = i if and only if πuj(j) ∈ Si. In

other words, Xj indicates to which of uj’s neighbours token j is sent. Our key

technical lemma (Lemma 3.4.4) establishes the negative regression condition for

these (Xj)j∈[γn] variables. Negative regression is defined as follows:

Definition 3.4.2 (Neg. Regression Dubhashi and Ranjan [46, Def. 21]). A vec-

tor (X1, X2, . . . , Xn) of random variables is said -to satisfy the negative regression

condition if

E [f(Xl, l ∈ L) | Xr = xr, r ∈ R]

is non-increasing in each xr for any disjoint L ,R ⊆ [n] and for any non-decreasing

function f .

The following lemma states a useful property for random variables that satisfy

the negative regression condition (Definition 3.4.2).

Lemma 3.4.3 (Dubhashi and Ranjan [46, Lemma 26]). Let (X1, X2, . . . , Xn) satisfy

the negative regression condition and consider an arbitrary index set I ⊆ [n] as well

as any family of non-decreasing functions fi (i ∈ { I }). Then, we have

E

[∏
i∈I

fi(Xi)

]
≤
∏
i∈I

E [fi(Xi)] (3.3)

We now show that the random variables (Xj)j∈[γn] that denote the movement of

the tokens in a single round satisfy the negative regression condition.

Lemma 3.4.4 (NRC). Fix a configuration c and consider the random variables

(Xj)j∈[γn]. Then (Xj)j∈[γn] satisfies the negative regression condition (NRC).

Proof. Remember that uj is the location of token j in configuration c and that

Xj ∈ [d(uj) + 1] indicates the neighbour of u that token j is sent in the next

step. We show for any u ∈ V that (Xj)j : uj=u satisfies the negative regression

condition (NRC). The lemma’s statement follows since the permutation of tokens

on each node (πu) are chosen independently (if two independent vectors (Xj) and

91

3.4. PROTOCOL SHUFFLE

(Yj) satisfy the NRC, then so do both together). Fix a node u and disjoint subsets

L ,R ⊆ { j ∈ [γn] | uj = u } of tokens on u. Define d := d(u) to be the degree

of node u and let f : [d + 1]|L | → R be an arbitrary non-decreasing function. It

remains to show that E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] is non-increasing in each xr

(cf. Definition 3.4.2). That is, we need

E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] ≤ E [f(Xl, l ∈ L) | Xr = x̃r, r ∈ R] , (3.4)

where xr = x̃r holds for all r ∈ R \ { r̂ } and xr̂ > x̃r̂ for a fixed index r̂ ∈ R.

We prove Inequality (3.4) via a coupling of the processes on the left-hand side

(LHS process) and right-hand side (RHS process) of that inequality. The two pro-

cesses differ for a token r̂ that is sent to different neighbours in the next step. Since

xr̂ 6= x̃r̂, these processes involve two slightly different probability spaces Ω and

Ω̃, respectively. To couple these, we employ a common uniform random variable

Ui ∈ [0, 1). By partitioning [0, 1) into d + 1 suitable slots for each process (corre-

sponding to the slots Si mentioned above), we can use the outcome of Ui to set the

Xj in both Ω and Ω̃. We first explain how to handle the case xr̂ − x̃r̂ = 1. The case

xr̂ − x̃r̂ > 1 follows from this by a simple reordering argument.

So assume xr̂ − x̃r̂ = 1. We reveal the yet unset random variables Xj (i.e.,

j ∈ [γn] \ R) one by one in order of increasing indices. To ease the description

assume (w.l.o.g.) that the tokens from R are numbered from 1 to |R|. When we

reveal the j-th variable (which indicates the new location of the j-th token), note

that the probability pj,i that token j is assigned to N(u, i) depends solely on the

number of previous tokens j′ < j that were assigned to N(u, i). Thus, we can

consider pj,i : N → [0, 1] as a function mapping x ∈ N to the probability that j is

assigned to N(u, i) conditioned on the event that exactly x previous tokens were

assigned to N(u, i). Note that pj,i is non-increasing. For a vector x ∈ Nd+1, we

define a threshold function Tj,i : Nd+1 → [0, 1] by Tj,i(x) :=
∑

i′≤i pj,i′(xi′) for each

i ∈ [d + 1]. The vector x describes the number of tokens allocated to each of the

d+1 slots. To define our coupling, let βj,i := |{ j′ < j | Xj′ = i }| denote the number

92

CHAPTER 3. PLURALITY CONSENSUS

LHS

Tj,1 Tj,2 Tj,3 Tj,4

RHS
T̃j,1 T̃j,2 T̃j,3 T̃j,4

×

LHS

Tj+1,1 Tj+1,2 Tj+1,3 Tj+1,4

RHS
T̃j+1,1 T̃j+1,2 T̃j+1,3 T̃j+1,4

Figure 3.2: Illustration showing the d + 1 = 4 different slots for the LHS and RHS
process and how they change. In this example, xr̂ = 3 and x̃r̂ = 2. On the left, the
uniform random variable Uj falls into slot [T1, T2) for the LHS process (causing j to
be sent to node N(u, 2)) and into slot [T̃2, T̃3) for the RHS process (causing j to be
sent to node N(u, 3)).

of already revealed variables with value i in the LHS process and define, similarly,

β̃j,i := |{ j′ < j | X̃j′ = i }| for the RHS process. In other words, βj,i and β̃j,i describe

the number of tokens sent to the i’th neighbour prior to j. We use βj , β̃j ∈ Nd+1 to

denote the corresponding vectors.

Now, to assign token j we consider a uniform random variable Uj ∈ [0, 1) and

assign j in both processes using customized partitions of the unit interval. To this

end, let Tj,i := Tj,i(βj) and T̃j,i := Tj,i(β̃j) for each i ∈ [d+ 1]. We assign Xj in the

LHS and RHS process as follows:

• LHS Process: Xj = xj = i if and only if Uj ∈ [Tj,i−1, Tj,i),

• RHS Process: Xj = x̃j = i if and only if Uj ∈ [T̃j,i−1, T̃j,i).

See Figure 3.2 for an illustration. Our construction guarantees that, considered in

isolation, both the LHS and RHS process behave correctly.

At the beginning of this coupling, only the variables Xr corresponding to tokens

r ∈ R are set, and these differ in the LHS and RHS process only for the index r̂ ∈ R,

for which we have Xr̂ = xr̂ (LHS) and Xr̂ = x̃r̂ = xr̂ − 1 (RHS). Let ι := xr̂. For

the first revealed token j = r̂+ 1, this implies βj,ι = β̃j,ι + 1, βj,ι−1 = β̃j,ι−1− 1, and

βj,i = β̃j,i for all i 6∈ { ι, ι− 1 }. By the definitions of the slots for both processes,

we get Tj,i = T̃j,i for all i 6= ι − 1 and Tj,ι−1 > T̃j,ι−1 (cf. Figure 3.2). Thus, the

LHS and RHS process behave different if and only if Ui ∈ [T̃j,ι−1, Tj,ι−1). If this

happens, we get xj < x̃j (i.e., token j is assigned to a smaller neighbour in the LHS

93

3.4. PROTOCOL SHUFFLE

process). This implies βj+1 = β̃j+1 and both processes behave identical from now

on. Otherwise, if Ui 6∈ [T̃j,ι−1, Tj,ι−1), we have βj+1 − β̃j+1 = βj − β̃j and we can

repeat the above argument. Thus, after all Xj are revealed, there is at most one

j ∈ L for which xj 6= x̃j, and for this we have xj < x̃j. Since f is non-decreasing,

this guarantees Inequality (3.4). To handle the case xr̂ − x̃r̂ > 1, note that we can

reorder the slots [Tj,i−1, Tj,i) used for the assignment of the variables such that the

slots for xr̂ and x̃r̂ are neighbouring. Formally, this merely changes in which order

we consider the neighbours in the definition of the functions Tj,i. With this change,

the same arguments as above apply.

Before proving the majorization of tokens with random walks (Lemma 3.4.5)

we require further notation. Let S denote our random Shuffle process, and W

the random walk process in which each of the γn tokens performs an independent

random walk according to the sequence of random walk matrices (Pt)t∈N (i.e., a

token on u uses Pt[u, ·] for the transition probabilities). We use wP
j (t) to denote

the position of token j after t steps of a process P. We assume (w.l.o.g.) wS
j (0) =

wW
j (0) for all j. While there are strong correlations between the tokens’ movements

in S (e.g., not all tokens can move to the same neighbour), Lemma 3.4.5 shows

that these correlations are negative.

Lemma 3.4.5 (Majorizing RWs). Consider a time t ≥ 0, a token j, and node v.

Let B ⊆ [γn] and D ⊆ V be arbitrary subsets of tokens and nodes, respectively. The

following holds:

(a) Pr
(
wS
j (t) = v

)
= Pr

(
wW
j (t) = v

)
and

(b) Pr
(⋂

j∈B
(
wS
j (t) ∈ D

))
≤ Pr

(⋂
j∈B
(
wW
j (t) ∈ D

))
=
∏

j∈B Pr
(
wW
j (t) ∈ D

)
.

Proof. The first statement follows immediately from the definition of our process.

For the second statement, note that the equality on the right-hand side holds triv-

ially, since the tokens perform independent random walks in W . To show the in-

equality, we define the intermediate process S W (t′) (t′ ≤ t) that performs t′ steps

of S followed by t − t′ steps of W . By this definition, S W (0) is identical to W

94

CHAPTER 3. PLURALITY CONSENSUS

restricted to t steps and, similar, S W (t) is identical to S restricted to t steps.

Define

Et′ :=
⋂
j∈B

(
w

S W (t′)
j (t) ∈ D

)
(3.5)

(the event that all tokens from B end up at nodes from D under process S W (t′)).

The lemma’s statement is equivalent to Pr (Et) ≤ Pr (E0). To prove this, we show

Pr (Et′+1) ≤ Pr (Et′) for all t′ ∈ { 0, 1, . . . , t− 1 }. Combining these inequalities yields

the desired result.

Fix an arbitrary t′ ∈ { 0, 1, . . . , t− 1 } and note that S W (t′) and S W (t′ +

1) behave identical up to and including step t′. Hence, we can fix an arbitrary

configuration (i.e., the location of each token) c(t′) = c immediately before time

step t′+ 1. Remember that uj ∈ V denotes the location of j in configuration c. The

auxiliary functions hj : [d(uj) + 1] → [0, 1] describe the probability that a random

walk starting at time t′ + 1 from uj’s i-th neighbour ends up in a node from D.

Formally,

hj(i) := Pr
(
wW
j (t) ∈ D

∣∣ wW
j (t′ + 1) = N(uj, i)

)
. (3.6)

We can assume (w.l.o.g.) that all hj are non-decreasing (by reordering the neigh-

bourhood of uj).

Now, by Lemma 3.4.4 the variables (Xj)j∈B satisfy the negative regression con-

dition. Thus, we can apply Lemma 3.4.3 (a well-known characterization of negative

regression) to the functions hj. Using another simple auxiliary result (Claim 3.4.6)

we can relate the (conditioned) probabilities of the events Et′ and Et′+1 to the expec-

tations over the different hj(Xj). That is, for p := Pr (Et′+1 | c(t′) = c) we compute

p
Clm. 3.4.6.(a)

= E

[∏
j∈B

hj(Xj)

∣∣∣∣∣ c(t′) = c

]
Lem. 3.4.3

≤
∏
j∈B

E [hj(Xj) | c(t′) = c]

Clm. 3.4.6.(b)
= Pr (Et′ | c(t′) = c) .

95

3.4. PROTOCOL SHUFFLE

Using the law of total probability, we conclude Pr (Et′+1) ≤ Pr (Et′), as required.

Claim 3.4.6. Fix a time t′ ∈ { 0, 1, . . . , t− 1 } and consider an arbitrary configura-

tion c. Then the following identities hold:

(a) Pr (Et′+1 | c(t′) = c) = E
[∏

j∈B hj(Xj)
∣∣∣ c(t′) = c

]
, and

(b) Pr (Et′ | c(t′) = c) =
∏

j∈B E [hj(Xj) | c(t′) = c].

Proof. Remember the definitions from Lemma 3.4.5 and its proof. We use the

shorthand d(uj) = dt′+1(uj). Remember that each Xj indicates to which of the

d(uj) + 1 neighbours of uj (where uj is considered a neighbour of itself) a token j

moves during time step t′ + 1. Thus, given the configuration c(t′) = c immediately

before time step t′+1, there is a bijection between any possible configuration c(t′+1)

and outcomes of the random variable vector X = (Xj)j∈[γn]. Let cx denote the

configuration corresponding to a concrete outcome X = x ∈ [d(uj) + 1]γn. Thus,

we have Pr (c(t′ + 1) = cx | c(t′) = c) = Pr (X = x | c(t′) = c), and conditioning on

c(t′+1) is equivalent to conditioning on X and c(t′). For the claim’s first statement,

we calculate

Pr (Et′+1 | c(t′) = c) =
∑
cx

Pr (Et′+1 | c(t′ + 1) = cx) · Pr (c(t′ + 1) = cx | c(t′) = c)

=
∑
x

∏
j∈B

Pr
(
w

S W (t′+1)
j (t) ∈ D

∣∣∣X = x, c(t′) = c
)
· Pr (X = x | c(t′) = c)

=
∑
x

∏
j∈B

hj(xj) · Pr (X = x | c(t′) = c)

=
∑
x

∏
j∈B

hj(xj) · Pr (X = x | c(t′) = c)

= E

[∏
j∈B

hj(Xj)

∣∣∣∣∣ c(t′) = c

]

Here, we first apply the law of total probability. Then, we use the bijection between

c(t′ + 1) and X (if c(t′) is given) and that the process S W (t′ + 1) consists of

independent random walks if c(t′ + 1) is fixed. Finally, we use the definition of the

auxiliary functions hj(i), which equal the probability that a random walk starting

96

CHAPTER 3. PLURALITY CONSENSUS

at time t′ + 1 from uj’s i-th neighbour reaches a node from D.

For the claim’s second statement, we do a similar calculation for the process

S W (t′). By definition, this process consists already from time t′ onward of a col-

lection of independent random walks. Thus, we can swap the expectation and the

product in the last term of the above calculation, yielding the desired result.

Separating the Plurality via Chernoff

With Lemma 3.4.5 we are ready derive a Chernoff bound. In particular we show

that we can apply a Chernoff bound that will allow us to show in Lemma 3.4.9 that

with high probability nodes are able to distinguish the plurality opinion.

The following standard lemma is used in the proof of Lemma 3.4.8(Token Con-

centration).

Lemma 3.4.7 (Azar et al. [12, Lemma 3.1]). Let X1, X2, . . . , Xn be a sequence

of random variables with values in an arbitrary domain and let Y1, Y2, . . . , Yn be a

sequence of binary random variables with the property that Yi = Yi(X1, . . . , Xi). If

Pr (Yi = 1 | X1, . . . , Xi−1) ≤ p, then

Pr
(∑

Yi ≥ `
)
≤ Pr (Bin(n, p) ≥ `) (3.7)

and, similarly, if Pr (Yi = 1 | X1, . . . , Xi−1) ≥ p, then

Pr
(∑

Yi ≤ `
)
≤ Pr (Bin(n, p) ≤ `) . (3.8)

Here, Bin(n, p) denotes the binomial distribution with parameters n and p.

We are finally able to prove the following Chernoff-like bound.

Lemma 3.4.8 (Token Concentration). Consider any subset B of tokens, a node

u ∈ V , and an integer T . Let X :=
∑

t≤T
∑

j∈BXj,t, where Xj,t is 1 if token j is on

node u at time t·tmix. With µ := (1/n+1/n5)·|B|·T , we have Pr (X ≥ (1 + δ) · µ) ≤

eδ
2µ/3.

97

3.4. PROTOCOL SHUFFLE

Proof. Let vj,t denote the location of token j at time (t− 1) · tmix. For all t ≤ T and

` ∈ N define the random indicator variable Yj,t to be 1 if and only if the random

walk starting at vj,t is at node u after tmix time steps. By Lemma 3.4.5 we have for

each B′ ⊆ B and t ≤ T that

Pr

(⋂
i∈B′

Xj,t = 1

)
≤
∏
j∈B′

Pr (Yj,t = 1) . (3.9)

Hence for all t ≤ T and ` ∈ N we have Pr
(∑

j∈BXj,t ≥ `
)
≤ Pr

(∑
j∈B Yj,t ≥ `

)
and

Pr (X ≥ `) = Pr

(∑
t≤T

∑
j∈B

Xj,t ≥ `

)
≤ Pr

(∑
t≤T

∑
j∈B

Yj,t ≥ `

)
. (3.10)

Let us define p := 1/n + 1/n5. By the definition of tmix, we have for all j ∈ B and

t ≤ T that

Pr
(
Yj,t = 1

∣∣ Y1,1, Y2,1, . . . , Y|B|,1, Y1,2, . . . , Yj−1,t

)
≤ p. (3.11)

Combining our observations with Lemma 3.4.7 (see above), we get Pr (X ≥ `) ≤

Bin(T · |B|, p). Recall that µ = T · |B| · p. Thus, by applying standard Chernoff

bounds (Lemma 1.1.9) we get

Pr (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−δ

2µ/3, (3.12)

which yields the desired statement.

Together, these lemmas generalize a result given in Sauerwald and Sun [91] to a

setting with considerably more dependencies. Equipped with this Chernoff bound,

we prove concentration of the counter values.

98

CHAPTER 3. PLURALITY CONSENSUS

Lemma 3.4.9 (Counter Separation). Let c ≥ 16. For every time t ≥ c · T · tmix

there exist values `> > `⊥ such that

(a) For all nodes w with ow ≥ 2 we have (w.h.p.) cw ≤ `⊥.

(b) For all nodes v with ov = 1 we have (w.h.p.) cv ≥ `>.

for γ ≥ c·logn
α2T

Proof. For two nodes v and w with ov = 1 and ow ≥ 2, µi := (1/n+ 1/n5)c ·T ·γ ·nk

for all i ∈ [k], and µ′ := (1/n+ 1/n5)c · T · γ · (n− n1). For i ∈ [k] define

`⊥(i) := µi +

√
c2 · log n · T · γni

n
and `> := cTγ − µ′ −

√
c2 · log n · T · γn− n1

n
.

We set `⊥ := `⊥(2). We first confirm that for a suitable choice of γ that `> > `⊥

`> − `⊥ = cTγ − µ′ −
√
c2 · log n · T · γn− n1

n
− µ2 −

√
c2 · log n · T · γn2

n

= cTγ

(
n1 − n2

n
− 1

n4
+
n1 − n2

n5

)
−
√
c2 · log n · T · γ

(√
n− n1

n
+

√
n2

n

)

Since α := n1−n2

n
∈ [1/n, 1],

≥ cTγ

(
α− 1

n4

)
−
√
c2 · log n · T · γ

(√
n− n1

n
+

√
n2

n

)

For n ≥ 2,

≥ cTγ
(α

2

)
−
√
c2 · log n · T · γ

(√
n− n1

n
+

√
n2

n

)

≥
√
cTγ

(√
cTγ

α

2
− 2
√
c · log n

)

For the claim to hold we require that the second term must be positive,

=⇒
√
cTγ

α

2
− 2
√
c · log n > 0

99

3.4. PROTOCOL SHUFFLE

Finally solving for γ,

=⇒ √
γ > 4

√
log n

Tα2
=⇒ γ >

16 · log n

T · α2

It follows that `> > `⊥ for a suitable choice of γ > 16·logn
Tα2 .

We now show the two statements of the lemma. Let all γn tokens be labelled

from 1 to γn.

We begin by showing statement (a). Consider a node w with ow ≥ 2 and set

λ(ow) := `⊥(ow)−µow =
√
c2 · log n · T · γ · now/n. Set the random indicator variable

Xi,t to be 1 if and only if i is on node w at time t and if i’s label is ow. Let cw =∑c·T
j=1

∑
i∈BXi,j·tmix

where B is the subset of tokens with opinion ow We compute

Pr (cw ≥ `⊥) ≤ Pr (cw ≥ µow + λ(ow)) = Pr

(
cw ≥

(
1 +

λ(ow)

µow

)
· µow

)
≤ exp

(
−λ

2(ow)

3µow

)
≤ exp

(
− c

6
log n

)
,

(3.13)

where the last line follows by Lemma 3.4.8 applied to cw =
∑c·T

j=1

∑
i∈BXi,j·tmix

and

setting B to the set of all tokens with label ow. Hence, the claim follows for c large

enough after taking the union bound over all n− n1 ≤ n nodes w with ow ≥ 2.

For statement (b), consider a node v with ov = 1 and set λ′ := µ′ − `>. Define

the random indicator variable Yi,t to be 1 if and only if token i is on node v at time

t and if i’s label is not 1. Set Y =
∑c·T

j=1

∑
i∈B′ Yi,j·tmix

where B′ is the subset of

tokens with an opinion other than 1. Note that cv = cTγ − Y . We compute

Pr (cv ≤ `>) = Pr (cTγ − Y ≤ `>) = Pr (cTγ − Y ≤ cTγ − µ′ − λ′)

= Pr (Y ≥ µ′ + λ′) = Pr

(
Y ≥

(
1 +

λ′

µ′

)
· µ′
)

≤ exp

(
− λ

′2

3µ′

)
≤ exp

(
− c

6
log n

)
,

where the first inequality follows by Lemma 3.4.8 applied to Y . Hence, the claim

follows for c large enough after taking the union bound over all n1 ≤ n nodes v with

100

CHAPTER 3. PLURALITY CONSENSUS

ou ≥ 2.

We now give the proof of our main theorem.

Theorem 3.4.10. Let α = n1−n2

n
∈ [1/n, 1] denote the initial bias. Consider a

fixed communication pattern (Mt)t≤N and an arbitrary parameter T ∈ N. Protocol

Shuffle ensures that all nodes know the plurality opinion after O (T · tmix) rounds

(w.h.p.) and requires O (γ · log(k) + log(T · tmix) + log(γ · T)) memory bits per node

for γ ≥ c·logn
α2T

+ 2c′∆ ≥ 2∆.

Proof. Fix an arbitrary time t ∈ [c · T · tmix, N] with tmix | t, where c is the constant

from the statement of Lemma 3.4.9. From Lemma 3.4.9 we have that (w.h.p.) the

node u with the highest counter cu has ou = 1 (ties are broken arbitrarily). In the

following we condition on ou = 1. We claim that at time t′ = t+ tmix all nodes v ∈ V

have pluv = 1. This is because the counters during the “broadcast part” (Lines 4

to 9) propagate the highest counter received after time t. The time τ until all nodes

v ∈ V have pluv = 1 is bounded by the mixing by definition: In order for [t, t′] to be

1/n5-smoothing, the random walk starting at u at time t is with probability at least

1/n − 1/n5 on node v and, thus, there exists a path from u to v (with respect to

the communication matrices). If there is such a path for every node v, the counter

of u was also propagated to that v and we have τ ≤ tmix. Consequently, at time t′

all nodes have the correct majority opinion. This implies the desired time bound.

For the memory requirements, note that each node u stores γ tokens with a label

from the set [k] (γ · O (log k) bits), three opinions (its own, its plurality guess, and

the dominating opinion; O (log k) bits), the two counters cu and eu and the time

step counter. The memory to store the counter cu and eu is O (log(γT)). Finally,

the time step counter is bounded by O (log(T · tmix)) bits. This yields the claimed

space bound.

Note that our choice of γ is dependent on both our concentration measures

(Lemma 3.4.8) and the communication pattern being considered. In order to apply

Lemma 3.4.8 we require that γ is suitably large. It follows from our proof that

101

3.5. CONCLUSION

γ ≥ c·log(n)
α2T

is sufficient. Additionally, since each node sends 2∆ tokens over each

active edge, we require that γ ≥ 2∆2. This follows from γ being invariant. We

therefore choose γ such that

γ ≥ c · log n

α2T
+ 2c′∆ ≥ 2∆

for some c′ ≥ 0

3.5 Conclusion

We have presented two protocols (Balance and Shuffle) that solve the plurality

consensus problem on arbitrary graphs for any initial bias and a diverse set of natural

communication patterns that satisfy a smoothing property. Both our protocols are

inspired by load balancing. The Balance protocol can be thought of as a (slightly

simplified) version of Alistarh et al. [5] or Kempe et al. [67] that generalises to

arbitrary graphs and k ≥ 2 opinions. This protocol is particular suitable when the

number of opinions is small since the space required by depends on the number of

opinions. Our Shuffle protocol does not share this dependency and is therefore

more appropriate when the number of opinions is large. The protocol allows for a

trade off between running time and memory requirements. However, the protocol

may be impractical when the number of communication partners is large.

Using the terminology of Ghaffari and Parter [56] both our protocols can be re-

ferred to as “reading protocols”. Ghaffari and Parter [56] suggest that, “Generally, it

seems implausible that reading style algorithms would lead to a plurality algorithm

for the random gossip model with polylogarithmic size messages and polylogarith-

mic time complexity”. Our protocols show that this is in fact possible for a range

of parameters. For example, our Balance protocol solves the plurality consen-

sus problem on arbitrary graphs for any initial bias using polylogarithmic space and

time when the number of opinions k = O (log n). This dependence on the number of

opinions is removed by our Shuffle protocol. When the maximum number of com-

102

CHAPTER 3. PLURALITY CONSENSUS

munication partners ∆ is small and for a sufficiently high bias α = Ω
(

1
polylog(n)

)
, the

Shuffle protocol also solves the plurality consensus problem using polylogarithmic

space in polylogarithmic time.

103

Chapter 4

Restricted PULL

In this chapter we study the effect of a modified communication pattern on the

performance of algorithms for rumour spreading. We study a restricted version of the

classical PULL algorithm (RPULL). Through demonstrating a relationship between

our RPULL algorithm and the classical PUSH algorithm on d-regular graphs we

are able to show that the broadcast time of RPULL can be upper bounded by the

broadcast time of PUSH. Using this relationship we extend our results to arbitrary

graphs. In particular we are able to show that RPULL is an optimal algorithm for

a number of graph classes.

4.1 Introduction

Rumour spreading (broadcast) is a fundamental task in distributed computing. Ini-

tially a single source node knows a rumour that must be spread to all other nodes

in the network. Examples of applications include maintaining consistency in repli-

cated database systems [40], data aggregation problems [30, 67, 78], understanding

social networks [33], and as a subroutine for running arbitrary distributed compu-

tations [29].

One of the most common models for the study of the rumour spreading problem

is the random phone call model [66]. Consider a graph G = (V,E) where |V | = n

and a source node u ∈ V with a message that must be disseminated to all other

104

CHAPTER 4. RESTRICTED PULL

nodes of the graph. In synchronous rounds, each node of the graph initiates contact

with a single neighbour chosen at random. In any round a node is said to be either

informed or uninformed. Depending on the state of the node initiating contact a

distinction between two types of operations is made. Nodes that are informed push

the message to the neighbour they initiate contact with. Conversely, nodes that

are uninformed attempt to pull the message from their chosen neighbour. When

used exclusively these two approaches are referred to as the PUSH and PULL

algorithms respectively. The combination of the two algorithms is known as the

PUSH-PULL algorithm.

The suitability of each of the above algorithms may be application dependent.

For example, the PUSH algorithm is particularly suitable when updates or the

injection of new messages are infrequent. However, a drawback of the PUSH algo-

rithm is that it is known to create a large message overhead [66]. On the complete

graph, PUSH requires Θ (log n) rounds and Θ (n log n) message transmissions [40,

85]. On the other hand, Karp et al. [66] show that using the combination of PUSH

and PULL spreads the rumour in O (log n) rounds with O (n log log n) message

transmissions. Berenbrink et al. [22] show a similar result for random d-regular

graphs. The authors present an algorithm that uses both PUSH and PULL op-

erations that has time complexity O (log n) and uses O (n log log n) transmissions.

This demonstrates a benefit of the PUSH-PULL algorithm. This is further demon-

strated when we consider the broadcast time of PUSH-PULL on arbitrary graphs

in comparison to either PUSH or PULL alone. For example, either PUSH or

PULL alone require Ω (n) rounds on a Star graph. In contrast, the PUSH-PULL

algorithm requires Θ (1) rounds. In this example the improvement relies on the abil-

ity of nodes to participate in more than one interaction per round. In particular,

consider the centre node of a star graph. The centre node might be contacted by

all of its n − 1 neighbours. If the centre node knows the rumour then all nodes

will learn the rumour after a single round of PULL. When the nodes are compu-

tationally limited or capable of limited communication this might not be feasible.

105

4.1. INTRODUCTION

In order to obtain scalable solutions it is therefore desirable to limit the number

of interactions that a node participates in. This limitation has been the subject of

recent papers by Daum et al. [39], Ghaffari and Newport [55] and Kiwi and Caro

[69]. The authors have proposed variants of the PULL algorithm that limit the

number of interactions a node can participate in.

4.1.1 Related Work

There is an extensive body of literature for the basic rumour spreading process.

Early results consider the PUSH algorithm on the complete graph. For the com-

plete graph, the PUSH algorithm spreads the rumour to all nodes in O (log n)

rounds with high probability. Strong results are given by Frieze and Grimmett

[54] and Pittel [85]. Frieze and Grimmett [54] show that with high probability the

PUSH algorithm informs all nodes in (1 + o (1)) log2 n + lnn rounds. A tighter

result is given by Doerr and Künnemann [43]. The authors show that the number

of rounds required by the PUSH algorithm on a complete graph is very closely

described by log n+ 1
n
·Cn where Cn is the completion time of the coupon collector

problem with n coupons.

Demers et al. [40] propose the use of randomised rumour spreading algorithms

for the maintenance of distributed database systems. Due to the distributed nature

of the application, it is natural to analyse the performance of these algorithms on

networks. Feige et al. [50] upper bound the broadcast time of the PUSH protocol

on general graphs by O (n log n) w.h.p.

The result of Feige et al. [50] shows there are graphs where PUSH alone per-

forms poorly in comparison to the performance on the complete graph. Karp et al.

[66] show that even on the complete graph PUSH incurs a large message overhead.

Karp et al. [66] consider the PUSH-PULL algorithm. This reduces the num-

ber of message transmissions required. The authors show that the PUSH-PULL

algorithm requires Θ (n ln lnn) messages to inform all nodes in Θ (lnn) rounds in

comparison to the O (n lnn) message transmissions required by PUSH alone.

106

CHAPTER 4. RESTRICTED PULL

Subsequently there has been a large volume of work that considers the per-

formance of the PUSH-PULL algorithm. Chierichetti et al. [33] consider the

PUSH-PULL algorithm on preferential attachment graphs due to their relevance

to models of social networks. The authors prove that the PUSH-PULL algorithm

informs all nodes within O
(
log2 n

)
rounds w.h.p where as PUSH or PULL alone

require polynomially many rounds. The result for PUSH-PULL was subsequently

improved by Doerr et al. [41]. In other cases, random power law graphs are used

to model social networks. A random power law graph is a random graph whose

degree sequence follows a power law. i.e., the number of vertices with degree k is

proportional to k−β. Fountoulakis et al. [53] show for 2 < β < 3 the PUSH-PULL

algorithm requires Θ (log log n) rounds w.h.p. where as for β > 3 then Ω (log n)

rounds are required.

There are studies that suggest that several real world networks exhibit good

expansion properties [71, 75]. Bounds for the broadcast time of the PUSH-PULL

algorithm are known in terms of graph expansion properties. In particular, there

are tight bounds for the broadcast time of the PUSH-PULL algorithm in terms

of both conductance and vertex expansion. The vertex expansion, α = α(G), of a

graph G is defined for a non-empty set of vertices S as,

α(G) := min
0<|S|<n

2

|∂S|
|S| (4.1)

where ∂S = {u : (u, v) ∈ E ∧ v ∈ S ⊆ V ∧ u 6∈ S} is the outer boundary of S. Gi-

akkoupis [59] shows that for graphs with vertex expansion at least α, O
(
log2(n)/α

)
rounds suffice with high probability for PUSH-PULL. This result is tight in that

the bound matches the lower bound given by Giakkoupis and Sauerwald [60]. The

conductance φ = φ(G) of a graph G is defined as,

φ(G) := min
0<vol(S)<

vol(V)
2

|E(S, V − S)|
vol(S)

(4.2)

where vol(S) =
∑

v∈S dv and E(S, V − S) is the set of edges with an endpoint in S

107

4.1. INTRODUCTION

and the other in V − S. Giakkoupis [58] shows that for a graph with conductance

φ, PUSH-PULL spreads the rumour in O(φ−1 log n) rounds with high probability.

This bound matches the lower bound given by Chierichetti et al. [32].

Despite the large volume of work that considers the PUSH-PULL algorithm

it is still of interest to consider the performance of the individual algorithms. The

suitability of each algorithm depends on the nature of the application. As noted

by Karp et al. [66], the PULL algorithm is particularly suited where changes are

frequent or PULL operations are being performed due to some other task. The

result of Feige et al. [50] states that there are graphs where PUSH alone performs

“badly”. It is therefore interesting to ask when PUSH or PULL alone is sufficient

to spread a rumour quickly. There are both positive and negative results in the

literature that explore this direction.

Fountoulakis et al. [51] generalise the result of Frieze and Grimmett [54] for the

PUSH algorithm to dense random graphs with degree ω (lnn). Fountoulakis and

Panagiotou [52] show that PUSH behaves almost identically on random d-regular

graphs as on the complete graph. The authors show that w.h.p (1 + o (1))cd lnn

rounds are sufficient where cd is a constant that depends on d.

Elsässer and Sauerwald [48] show a relationship between the mixing time of a

random walk and the broadcast time of the PUSH algorithm on several Cayley

graphs. Sauerwald [89] derives an upper bound on the runtime of the PUSH

algorithm of O (tmix + log n) where tmix is the mixing time of a certain random

walk. When tmix = O (log n) this gives an asymptotically optimal bound for the

PUSH algorithm. This is the case for several notable graph classes. The author

notes that this bound is not tight for Hypercubes and therefore employ separate

methods to prove a bound of Θ (log n) for Hypercubes w.h.p.

Meier and Peter [73] consider random power law graphs and build on the result

of Fountoulakis et al. [53]. Meier and Peter [73] show that for every ε > 0, O (log n)

rounds are sufficient for PUSH to inform all but a ε-fraction of the nodes with

probability 1−o (1). Combined with the results of Fountoulakis et al. [53] this shows

108

CHAPTER 4. RESTRICTED PULL

that although PULL asymptotically improves the running time for 2 < β < 3, the

same is not true for β > 3.

The performance of the PUSH algorithm has been studied in terms of the

expansion properties of the graph. Sauerwald and Stauffer [90] bound the runtime

of PUSH byO (α−1 · polylog n) for regular graphs with vertex expansion α. Despite

strong results for the PUSH-PULL algorithm, Sauerwald and Stauffer [90] note

that vertex expansion does not guarantee the performance of the PUSH algorithm.

For example, consider a complete graph with a single node connected with a single

edge. This graph has constant vertex expansion but the PUSH algorithm requires

Ω (n) rounds. For regular graphs, it is known that O (log n/φ) rounds w.h.p where φ

is the conductance [78]. However, conductance does not guarantee the performance

of PUSH or PULL alone on arbitrary graphs.

Despite each node initiating contact with at most one neighbour in the ran-

dom phone call model, the PULL algorithm might require nodes to participate

in multiple interactions per round. This might limit the suitability of the PULL

algorithm for applications where the nodes are limited in their communicational

abilities. Daum et al. [39] analyse a variant of the PULL algorithm that restricts

the number of interactions each node participates in. The authors main result upper

bounds the broadcast time of this restricted PULL (RPULL) algorithm in terms

of the runtime of the classical PULL algorithm. They show that O
(
Tl · ∆

δ
log(n)

)
rounds are needed w.h.p. where Tl is the runtime of PULL

Ghaffari and Newport [55] formalise an extension of the work by Daum et al. [39].

Ghaffari and Newport [55] call their model the mobile telephone model. In the mobile

telephone model, each node can participate in at most one interaction per round.

In addition to this restriction, the model allows the graph to undergo a bounded

rate of change. The authors investigate if the expansion properties of a graph still

provide good indicators of how fast a rumour can spread. The authors show that an

optimal algorithm terminates in O (α−1 · log n) rounds. There are however graphs

with constant vertex expansion where PUSH-PULL requires Ω (
√
n) rounds. The

109

4.1. INTRODUCTION

optimal algorithm terminates in O
(

∆
δ·φ · log n

)
. There also exists a graph where

every algorithm requires Ω
(

∆
δ·φ

)
rounds.

4.1.2 Our Contribution

In this chapter we study the RPULL algorithm introduced by Daum et al. [39].

Under the RPULL algorithm each informed node that receives requests is able

to reply to exactly one request where tie breaking is performed uniformly at ran-

dom. We study the relationship between RPULL and PUSH. In doing so we are

able to utilise known relationships between PUSH and PULL. Consequently we

are able to draw conclusions about the relationship between RPULL and PULL.

Daum et al. [39] show that comparing RPULL with PULL is not straight forward.

The authors show by means of counter examples that standard approaches such

as stochastic dominance and couplings between RPULL and PULL are not possi-

ble. This motivates our study of the relationship between RPULL and PUSH. In

turn we will then use known relationships between PUSH and PULL to compare

RPULL to PULL.

It is the relationship between PUSH and RPULL on d-regular graphs that

we exploit in order to extend our results to arbitrary graphs. Our result is shown

using a coupling between RPULL and a lazy variant of PUSH on d-regular graphs.

Using this coupling we are able to show that RPULL is asymptotically the same as

PUSH for d-regular graphs. By utilising the known results for PUSH of Sauerwald

[89] we are able to bound the broadcast time of RPULL by O (tmix + log n) where

tmix is the mixing time of a certain random walk.

Daum et al. [39] state their bound on the broadcast time of RPULL in terms

of the broadcast time of PULL. Combining the bound given by Giakkoupis [58]

with the result of Daum et al. [39] gives a bound of O
(
φ−1 · log2(n)

)
rounds for

RPULL on a d-regular graph with conductance φ. It follows from our result and

that of Giakkoupis [58] that RPULL requires O (φ−1 · log(n)) rounds where φ is

the conductance of the graph. This improves the bound given by Daum et al. [39]

110

CHAPTER 4. RESTRICTED PULL

by a logarithmic factor for d-regular graphs. Furthermore it matches a lower bound

for the optimal algorithm given in Ghaffari and Newport [55]. RPULL is therefore

an optimal algorithm for d-regular graphs in the “mobile telephone model”.

4.1.3 Definitions and Model

Let G = (V,E) be a (simple) undirected graph and let A denote the adjacency

matrix of G. Recall that A is defined as follows,

Ai,j =

1 if {i, j} ∈ E

0 otherwise

For a graph G we define the n×n matrix P(G) to be the transition matrix. The

entry Pi,j is defined as follows.

Pi,j =

1
di

if Ai,j = 1

0 otherwise

(4.3)

The transition matrix determines the communication pattern of our algorithms. i.e.,

Pi,j is the probability that i contacts j. 1

Recall that the Laplacian matrix L of a graph G is defined as follows:

Definition 4.1.1. Given an undirected, unweighted graph G = (V,E) with n ver-

tices, the Laplace Matrix L(G) is an n× n matrix defined by

Lu,v =

du if u = v

−1 if {u, v} ∈ E

0 otherwise

(4.4)

Let I t be the set of informed nodes at the start of round t. The broadcast time

1Note that this is not the same as the event that i informs j.

111

4.1. INTRODUCTION

of an algorithm is the first time step after which every vertex is informed. TR
A (G, p)

denotes the number of rounds algorithm A requires to inform all nodes of G with

probability at least 1− p and a transition matrix R (cf. [89]). For 0 < p < 1,

TR
A (G, p) := min{t ∈ N|Pr

(
I t = V

)
} ≥ 1− p

The PUSH algorithm is defined as follows. In each round, each node u ∈

I t chooses a neighbour to send the rumour to according to the u’th row for the

transition matrix P(G).

The RPULL algorithm is defined similarly. Our definition is the same as the

algorithm found in Daum et al. [39] In each round, i 6∈ I t sends a request to a

neighbour i with probability Pi,j. Each node v ∈ I t that receives 1 or more requests

responds to a single request. A node v ∈ I t that receives rv ≥ 1 requests, chooses

a single request to respond to with probability 1
rv

. i.e., where an informed node

receives multiple requests tie breaking is done uniformly at random.

Denote the outer boundary of a set of vertices S by ∂S. The outer boundary is

the set of nodes u such that for u 6∈ S there exists an edge (u, v) such that v ∈ S.

∂S = {u : (u, v) ∈ E ∧ v ∈ S ⊆ V ∧ u 6∈ S}

We denote the inner boundary of a set of vertices S as H(S). u ∈ H(S) if u ∈ S

and there exists an edge (u, v) such that v ∈ ∂S.

H(S) = {u : (u, v) ∈ E ∧ u ∈ S ∧ v ∈ ∂S}

Let tRmix(G, ε) denote the mixing time of a random walk on the graph G with

transition matrix R. Using Definition 1.1.13, tRmix(G, ε) is defined as follows,

tRmix(G, ε) = min
{
t ∈ N | ‖rts − π‖ ≤ ε for any starting vertex s

}
where π denotes the stationary distribution vector, rts denotes the probability dis-

112

CHAPTER 4. RESTRICTED PULL

tribution of a random walk after t steps starting at vertex s with transition matrix

R and ‖µ− ν‖ is the variation distance (See Definition 1.1.12).

4.2 Analysis

In this section we show bounds for the broadcast time of RPULL on arbitrary

graphs. To show these results we first establish a relationship between RPULL and

PUSH on d-regular graphs. We show that the broadcast time of RPULL is upper

bounded by the broadcast time of PUSH for d-regular graphs (Theorem 4.2.8).

Using known relationships between the classical PUSH and PULL algorithms this

shows that the broadcast times of RPULL and PULL are asymptotically the same

on d-regular graphs (Corollary 4.2.3).

Using our upper bound for the broadcast time of RPULL on d-regular graphs we

extend our results to arbitrary graphs by utilising arguments and results from Sauer-

wald [89] for the PUSH algorithm. We obtain two results. Firstly, Lemma 4.2.10

extends the relationship between RPULL and PUSH to arbitrary graphs. The

lemma upper bounds the broadcast time of RPULL as a function of the broadcast

time of PUSH and the ratio of the minimum and maximum degrees of the graph.

This result establishes a result between RPULL and PUSH on arbitrary graphs.

However the resulting upper bound is not necessarily tight. We therefore follow

the approach of Sauerwald [89] and upper bound the broadcast time of RPULL

in terms of the mixing time of a certain random walk that we define in our analy-

sis(Theorem 4.2.12). This bound for RPULL matches the bound given for PUSH

by Sauerwald [89, Theorem 4].

We believe that the results shown in Lemma 4.2.10 and Theorem 4.2.12 both to

be interesting since there are graphs where one or the other may not be tight. For ex-

ample, consider the star graph. Lemma 4.2.10 implies a bound ofO (n2 · log n) where

as Theorem 4.2.12 recovers a bound of O (n log n). On the other hand, in the case of

Hypercubes Theorem 4.2.12 is known not to be tight for PUSH due to the results

of Feige et al. [50]. However using the regularity of Hypercubes(Theorem 4.2.8), we

113

4.2. ANALYSIS

have that the broadcast time of RPULL is asymptotically upper bounded by the

broadcast time of the classical PUSH algorithm and therefore the broadcast time

of RPULL is O (log n).

4.2.1 Regular Graphs

We first consider the family of d-regular graphs for d ≥ 2. Our goal of this section

is to show the following result that states that on d-regular graphs the broadcast

time of the RPULL algorithm is asymptotically upper bounded by the broadcast

time of PUSH. This result is obtained through the construction of a coupling

between RPULL and a lazy variant of PUSH (Lazy PUSH). Using our coupling

we show that the growth of the informed set under RPULL stochastically dominates

the growth of the informed set under Lazy PUSH. The theorem follows since the

broadcast time of PUSH ad Lazy PUSH are asymptotically the same.

Theorem 4.2.8. Let TP
rp(G) and TP

p (g) be the broadcast time of RPULL and

PUSH on a graph G with transition matrix P. For d-regular G (equivalently for

symmetric transition matrix P),

TP
rp(G) = O

(
TP
p (G)

)

Theorem 4.2.8 allows us to show a relationship between the broadcast time of

RPULL and the classical PULL algorithm on d-regular graphs. In particular we

show that the broadcast time of RPULL and PULL are asymptotically the same

on d-regular graphs (Corollary 4.2.3).

To show Corollary 4.2.3 we use the following lemma by Sauerwald [89] that

relates the classical PUSH algorithm with the classical PULL algorithm as well

as the PUSH-PULL algorithm.

114

CHAPTER 4. RESTRICTED PULL

Lemma 4.2.1 (Sauerwald [89] Lemma 11). If Q is a symmetric and stochastic n×n

matrix then,

TQ
PUSH(G, n−1) = TQ

PULL(G, n−1)

TQ
PUSH(G, n−1) = Θ

(
TQ
PUSH−PULL(G, n−1) + log(n)

)

In order to apply Lemma 4.2.1 we observe that the transition matrix P for d-

regular graphs is symmetric. Using this observation, we can apply the first statement

of Lemma 4.2.1 to relate PUSH and PULL on d-regular graphs. It follows that

PUSH and PULL are asymptotically the same for d-regular graphs.

Observation 4.2.2. For undirected, d-regular graphs, all non-zero entries of the

transition matrix P take the value 1
d
. It follows that P is symmetric since ∀i, j : Pij =

Pji. Since P is symmetric and stochastic, it follows that P is doubly stochastic. i.e.,

all rows and columns sum to one.

Corollary 4.2.3 bounds the broadcast time RPULL in terms of the broadcast

time of PULL for d-regular graphs. The result states that for d-regular graphs, the

broadcast times of RPULL and PULL are asymptotically the same. This improves

the bound of Daum et al. [39] on the family of d-regular graphs by a logarithmic

factor.

Corollary 4.2.3. Let TP
rp(G) and TP

l (g) be the broadcast time of RPULL and

PULL on a graph G with transition matrix P. For d-regular G (equivalently for

symmetric transition matrix P),

TP
rp(G) = Θ

(
TP
l (G)

)

Proof. The upper bound follows from the result shown in Lemma 4.2.8 relating

PUSH and RPULL combined with Lemma 4.2.1 and Observation 4.2.2. For the

115

4.2. ANALYSIS

lower bound, observe that for any set of choices by the uninformed nodes, RPULL

can not inform more nodes that PULL.

In the remainder of this section we show Theorem 4.2.8. Theorem 4.2.8 upper

bounds the broadcast time of RPULL by the broadcast time of PUSH. To compare

the different algorithms we will consider the growth of the number of informed

nodes in a given round. If we are able to show that in any round the growth of

the number of informed nodes under RPULL is at least the growth of the number

of informed nodes under PUSH, it follows that the broadcast time of RPULL is

upper bounded by the broadcast time of PUSH. We begin by showing that it is not

straight forward to compare RPULL and PUSH directly. In particular we show

that it is not possible to show that for any round that a single round of RPULL

stochastically dominates a single round of PUSH. Recall that a random variable

X stochastically dominates Y (denoted X � Y) if for all c > 0,

Pr (X > c) ≥ Pr (Y > c) .

For this reason we instead show that a single round of RPULL stochastically dom-

inates a lazy variant of PUSH. Since the broadcast time of our lazy variant of

PUSH is asymptotically the same as the broadcast time of PUSH it follows that

the broadcast time of RPULL is asymptotically upper bounded by the broadcast

time of PUSH.

The following example shows that it is not possible to show that for any round

that a single round of RPULL stochastically dominates a single round of PUSH.

Let ∆I trp and ∆I tp be the random variables denoting the number of nodes informed

in a round t for RPULL and PUSH respectively. We would like to be able to

show that for any round t, ∆I trp � ∆I tp. i.e., the growth of the informed set under

RPULL stochastically dominates the growth of the informed set under PUSH.

However, it is possible to show that such a stochastic dominance is not possible.

Consider the following counter example. Figure 4.1 depicts the initial state with

116

CHAPTER 4. RESTRICTED PULL

a single informed node where edges (i, j) where both i and j are uninformed are

omitted. For the state shown in Figure 4.1, observe that an execution of PUSH

informs a new node with probability 1 in the first round. In fact this is true for any

graph where self loops are excluded. In comparison, the first round of RPULL on

a d-regular graph informs a new node with probability,

0.63 ≤ 1− e−1 ≤ 1−
(

1− 1

d

)d
≤ 3

4
(4.5)

for d ≥ 2.

u ... d neighbours

Figure 4.1: Restricted PULL: Initial State

This example shows that it is not possible to show that for any round a single

round of RPULL stochastically dominates a single round of PUSH. For this reason

instead of comparing RPULL and PUSH directly we will instead compare RPULL

and a lazy variant of PUSH. We will refer to this variant of PUSH as Lazy PUSH

and it is defined as follows. Under Lazy PUSH, each informed node participates

in a given round with probability 1/2. If an informed node is participating in a

round it executes a single round of PUSH. i.e., it sends the rumour to a neighbour

chosen uniformly at random. Otherwise, if a node chooses not to participate then

it performs no operations in that round. More formally we define the transition

matrix Q for Lazy PUSH as follows:

Q :=
1

2
(P + I)

117

4.2. ANALYSIS

where P is the transition matrix defined in Eq. 4.3.

The following observation states that the broadcast time of Lazy PUSH and

PUSH are asymptotically the same.

Observation 4.2.4. For a graph G = (V,E), let Tlp(G) and Tp(G) denote the

broadcast time of Lazy PUSH and PUSH respectively.

Tlp(G) = Θ (Tp(G))

If we now revisit the previous example of the initial state (Figure 4.1), it follows

that since in the first round PUSH creates a newly informed node with probability

1 that Lazy PUSH informs a new node with probability 1/2. Using our previous

calculation (Eq. 4.5) it follows that for the initial state (Figure 4.1) we obtain that,

Pr
(
∆I1

RP

)
> Pr

(
∆I1

LP

)
where ∆I t := I t − I t−1 for t > 0. i.e, Starting in the initial state, a single round of

RPULL stochastically dominates a single round of Lazy PUSH.

It remains to show that for any round t, ∆I tRP � ∆I tLP . Once shown it fol-

lows from this stochastic dominance that the broadcast time for RPULL is upper

bounded by the broadcast time and Lazy PUSH. Furthermore, since the broad-

cast time of Lazy PUSH is asymptotically the same as PUSH, it follows that the

broadcast time of RPULL is asymptotically upper bounded by the broadcast time

of PUSH.

In the remainder of this section we prove that for an arbitrary round t that a

single round of RPULL stochastically dominates a single round of Lazy PUSH

(Lemma 4.2.7).

Comparing RPULL and Lazy PUSH

In order to show that RPULL stochastically dominates Lazy PUSH (Lemma 4.2.7)

we construct a coupling for a single round of the RPULL and Lazy PUSH processes.

118

CHAPTER 4. RESTRICTED PULL

Lemma 4.2.7 can then be applied in successive rounds to show the desired result.

In the previous example we considered the contribution of a single informed node.

This approach is based on the observation that each informed node can inform at

most one new node per round under PUSH, Lazy PUSH and RPULL. Using

this observation we are able to construct a coupling between a single round of Lazy

PUSH and RPULL. Our coupling in Lemma 4.2.7 considers the following setup.

Let H(I t) := {u1, u2, . . . , uht} be the set of nodes that constitute the inner boundary

of I t and ht = |H(I t)|. The set H(I t) contains all nodes that are able to inform a

new node and thus contribute to the growth of the informed set. We must therefore

consider the contribution of each ui ∈ H(I t).

At the start of each round, each node u ∈ H(I t) generates a token. We consider

the outcome of each token sequentially. i.e., we consider a single round as |H(I t)|

substeps. For u’s token to create a newly informed node in a given substep the

following two conditions must be satisfied:

(a) The token needs to traverse an edge (u, v) such that u ∈ I t and v ∈ ∂I t and,

(b) v ∈ ∂I t is a vertex that has not received a token in a previous substep.

The number of tokens that satisfy both of the above conditions describes exactly

the growth of the informed set. We will say that these tokens create newly informed

nodes.

For a node ui ∈ H(I t), the probability that ui’s token creates a newly informed

node depends on the outcome of the other nodes uj 6=i ∈ H(I t). For example, consider

the node dk shown in Figure 4.2. If the event that u’s token informs dk is true, this

changes the number of nodes adjacent to v without a token. We refer to dk as a

shared neighbour.

We begin by handling the simpler case where u is a node such that it does not

share a neighbour with any other node in I t. That is the outcome for the tokens of

ui ∈ H(I t) and ui−1 ∈ H(I t) are independent.

Let u ∈ I t be a fixed node with k ≤ d uninformed neighbours such that the

119

4.2. ANALYSIS

u ...

di

dk

v ...

dj

Figure 4.2: Restricted PULL: Dependency between shared neighbours

probability that u’s token informs a new node is independent of the outcome of any

other v ∈ I t. i.e., u has no shared neighbours.

The probability that under RPULL u informs a new node is 1−
(
1− 1

d

)k
whilst

the probability that under Lazy PUSH u informs a new node is 1
2
· k
d
. This can be

seen as a generalisation of the example given in Figure 4.1. Lemma 4.2.5 shows that

for a node u (as defined above) the probability that under RPULL u informs a new

node is at least the probability that u informs a new node under Lazy PUSH.

Lemma 4.2.5. For all d > 1 and k ≤ d, the following inequality holds:

1

2
· k
d
≤ 1−

(
1− 1

d

)k

Proof. First rewrite the term
(
1− 1

d

)k
as a binomial series.

(
1− 1

d

)k
=

∞∑
m=0

(
k

m

)(
−1

d

)m
= 1− k

d
+
k(k − 1)

2d2
− k(k − 1)(k − 2)

6d3
+O

(
1

d4

)

120

CHAPTER 4. RESTRICTED PULL

Note that this series converges absolutely, as
∣∣−1

d

∣∣ < 1 for all values of d.

=⇒ 1−
(

1− 1

d

)k
=
k

d
− k(k − 1)

2d2
+
k(k − 1)(k − 2)

6d3
−O

(
1

d4

)

Since the binomial series for (1 − 1
d
)k converges absolutely it follows that each

positive term of 1− (1− 1
d
)k will be larger than the negative term that follows. By

considering the first two terms we obtain the following lower bound

1−
(

1− 1

d

)k
≥ k

d
− k(k − 1)

2d2

Hence if we can prove that k
d
− k(k−1)

2d2
≥ 1

2
· k
d

our claim will follows.

Assume that k
d
− k(k−1)

2d2
≥ 1

2
· k
d

and rearrange:

1

2
· k
d
≥ k(k − 1)

2d2
=⇒ k · d

2d2
≥ k(k − 1)

2d2
=⇒ d ≥ k − 1

This is always true, by the definition of k, hence the expression is always true,

and the proof is complete.

Lemma 4.2.5 states that for any node without shared neighbours the probability

that it is informed during in a single round of RPULL is greater than or equal to

the probability that it is informed during a single round of Lazy PUSH. However,

as previously stated we must consider situations such as the one shown in Figure 4.2

where there are additional dependencies. In order to handle the dependencies be-

tween nodes when there are shared neighbour we construct a coupling between

RPULL and Lazy PUSH. This coupling will allow us to apply Lemma 4.2.5 to

show the required stochastic dominance between RPULL and Lazy PUSH.

121

4.2. ANALYSIS

Overview of Coupling

For a fixed round t, we consider ht substeps. Define the following set of events

E Au1 , . . . ,E
A
uht

where

E Aui := {ui creates a new informed node under algorithm A}

For i ∈ [1, ht] we reveal the events E Aui sequentially.

We define the following indicator random variables,

X t
i =

1 if E LP

ui

0 otherwise

and Y t
i =

1 if E RP

ui

0 otherwise

and let,

X t =
ht∑
i=1

Xi and Y t =
ht∑
i=1

Yi

Note that the probability that Xi = 1 depends on X1, X2, . . . Xi−1. Similarly the

probability that Yi = 1 depends on Y1, Y2, . . . Yi−1.

We begin by considering the following equivalent definitions of Lazy PUSH and

RPULL that will allow us to couple the movement of tokens in the two processes.

Let u be a node with k ≤ d uninformed neighbours. Under Lazy PUSH u

informs a new node with probability,

Pr (Xu = 1) = Pr
(
E LP
u

)
=

1

2
· k
d

We define Lazy PUSH as follows. If Xu = 1, u sends its token to one of its k

uninformed neighbours uniformly at random. i.e, each of the uninformed neighbours

v1, v2, . . . vk receives the token from u with probability 1
k
.

We formulate RPULL in a similar way. Under RPULL u informs a new node

122

CHAPTER 4. RESTRICTED PULL

with probability,

Pr (Yu = 1) = Pr
(
E RP
u

)
= 1−

(
1− 1

d

)k

If Yu = 1, then u gives its token to an uninformed neighbour vi with probability 1
k

for

i ∈ [1, k]. Since Pr (Yu = 1) is the probability that u informs a new node, to confirm

that the movement of tokens in this process has the same marginal distribution as

RPULL it remains to show that the u’s token moves to each of the k uninformed

neighbours with the same probability i.e., 1
k
. This is shown in Lemma 4.2.6.

By formulating the processes it allows us to defer the decisions of the uninformed

nodes and couple the movement of tokens. Since in both cases, the token moves to an

uninformed neighbour with equal probability we are able to use a common random

variable to couple the movement of the tokens. This ensures that in each substep

the two processes are in the same state and allows us to apply Lemma 4.2.5 in each

substep.

Using Lemma 4.2.5, we know that if in a substep i both processes are in the

same state then,

Pr (Yi = 1) ≥ Pr (Xi = 1)

i.e., the probability that RPULL informs a new node in the substep i is at least the

probability then Lazy PUSH informs a new node. We use this intuition to couple

RPULL and Lazy PUSH.

The following lemma states that given that u informs a new node under RPULL,

the token moves to any of the k uninformed neighbours of u with equal probability.

Lemma 4.2.6. Let G = (V,E) be a d-regular graph. For u ∈ H(I t) with k ≤ d

uninformed neighbours, let v1, v2, . . . vk be the k uninformed neighbours of u. For

each i ∈ [1, k], then

Pr
(
u informs vi

∣∣ ERPu)
=

1

k

123

4.2. ANALYSIS

Proof. The lemma follows by the definition of RPULL. Since the event ERPu holds it

follows that u has received one or more requests from the nodes v1, v2, . . . vk. Assume

there is a node vj such that Pr
(
u informs vj

∣∣ ERPu)
6= 1

k
. Without loss of generality,

assume Pr
(
u informs vj

∣∣ ERPu)
≥ 1

k
. This implies that either u was more likely to

choose vj during the tie breaking step or that vj was more likely to choose u. Since

G is d-regular and tie breaking is done uniformly at random, this contradicts the

definition of RPULL.

We now show the following lemma that states that a round of RPULL stochas-

tically dominates a round of Lazy PUSH.

Lemma 4.2.7. For a d-regular graph G and an arbitrary round t. Let ∆I t+1
A :=

|I t+1
A − I tA| be the number of newly informed nodes for algorithm A.

For every c ≥ 0 it holds that

Pr
(
∆I t+1

LP > c
)
≤ Pr

(
∆I t+1

RP > c
)

where LP denotes Lazy PUSH and RP denotes RPULL.

Proof. Recall the definition of the following indicator random variables,

X t
i =

1 if E LP

ui

0 otherwise

and Y t
i =

1 if E RP

ui

0 otherwise

and let,

X t =
ht∑
i=1

Xi and Y t =
ht∑
i=1

Yi

Rewriting Lemma 4.2.7 using these random variables we have:

Pr
(
∆I tLP > c

)
= Pr

(
X t > c

)
≤ Pr

(
Y t > c

)
= Pr

(
∆I tRP > c

)
In subsequent descriptions we omit the superscript because it is clear from context

124

CHAPTER 4. RESTRICTED PULL

since we only discuss a single round.

We consider the round t as ht substeps where ht = |H(I t)| is the number of

nodes that form the inner boundary of the informed set.

It remains to show that,

Pr

(
ht∑
i=1

Xi > c

)
≤ Pr

(
ht∑
i=1

Yi > c

)
(4.6)

Let i ∈ (1, ht) be the current substep and let pi := Pr (Xi = 1 | Ni−1) and qi :=

Pr (Yi = 1 | Ni−1) where Ni−1 denotes the nodes in ∂I t that have received a token

in the substeps 1, . . . , i− 1. That is, the probability that i creates a newly informed

node given the outcome of the previous substeps.

Let ki be the number of uninformed neighbours of ui. Define Ui ∈ {1, . . . , ki} be

a shared random variable that takes the values in {1, . . . , ki} uniformly at random.

The coupling proceeds as follows:

• If Xi = 1, then Yi = 1, then the token moves to Ui in both processes

• If Xi = 0, then Yi = 1 with probability qi − pi

The crucial point here is that when both Xi = Yi = 1 both processes inform the

same neighbour. This ensures that the number of uninformed neighbours of a node

uj for j ∈ [i + 1, ht] is the same for both processes and that in subsequent steps

pi+1 ≥ qi+1.

Let t′ be the first substep such that Xt′ 6= Yt′ . By the definition of our coupling

it follows that Xt′ = 0 and Yt′ = 1, hence
∑ht

i=1Xi ≤
∑ht

i=1

∑
Yi. This is irrespective

of the outcome of subsequent steps since each node can inform at most one new

node.

It therefore follows that Y ≥ X which yields that in each time step RPULL �

Lazy PUSH.

Lemma 4.2.7 states that for any round, the growth of the informed set un-

der RPULL stochastically dominates the growth of the informed set under Lazy

125

4.2. ANALYSIS

PUSH. With this lemma we are now ready to show the main result in this sec-

tion (Theorem 4.2.8). Theorem 4.2.8 states that the broadcast time of RPULL is

asymptotically upper bounded by the broadcast of PUSH on d-regular graphs. To

show the theorem, we reason through repeated application of Lemma 4.2.7 that the

broadcast time of RPULL is upper bounded by the broadcast time of Lazy PUSH.

The statement of the theorem then follows since the broadcast time of Lazy PUSH

and PUSH are asymptotically the same.

Theorem 4.2.8. Let TP
rp(G) and TP

p (g) be the broadcast time of RPULL and

PUSH on a graph G with transition matrix P. For d-regular G (equivalently for

symmetric transition matrix P),

TP
rp(G) = O

(
TP
p (G)

)

Proof. Let Tlp(G) be the broadcast time of Lazy PUSH on G. From our previous

observation we have that Tp(G) = Θ (Tlp(G)). Lemma 4.2.7 states that in any

round t, the growth of the informed set under RPULL stochastically dominates

the growth of the informed set under Lazy PUSH. By applying the lemma in each

round it follows that the broadcast time of RPULL is stochastically smaller than

the broadcast time of Lazy PUSH. Since Trp(G) is stochastically smaller than Tlp(G)

it follows that

Trp(G) = O (Tlp(G)) = O (Tp(G))

4.2.2 Non-regular graphs

For non-regular graphs, our approach used for d-regular graphs can prove difficult to

generalise. A key element of the coupling in the previous section is that conditioned

on the event that an informed node u creates a newly informed node, each of u’s

uninformed nodes is equally likely to be the newly informed node. This is not

126

CHAPTER 4. RESTRICTED PULL

necessarily true in a non-regular graph since the neighbours of u have different

degrees. It follows that the probability that each neighbour sends a request to u

differs for each uninformed neighbour of u.

To generalise our result to arbitrary graphs we utilise results from Sauerwald

[89]. The work of Sauerwald [89] studies the performance of PUSH on general

graphs. In particular, Sauerwald [89] show that the broadcast time of PUSH is

bounded by O (tmix + log(n)) where tmix is the mixing time of a certain random

walk. When tmix is O (log(n)) the results of Sauerwald [89] match optimal bounds.

Using our result for d-regular graphs in combination with results by Sauerwald [89],

we are able to show results that apply in a more general setting.

Our first result, Lemma 4.2.10 establishes a relationship between RPULL and

PUSH on arbitrary graphs. This relationship is in terms of the maximum and

minimum degrees of the graph. To show Lemma 4.2.10, we use the following results

from Sauerwald [89]. Lemma 4.2.9 bounds the effect of changing the transition

matrix on the broadcast time of PUSH. In particular, the effect of replacing the

transition matrix P for Q. Note that the transition matrix Q as defined above is

symmetric.

Lemma 4.2.9 (Sauerwald [89] Lemma 12). Let TP
p (G) denote the broadcast time of

PUSH with transition matrix P. For Q := I− 1
∆
·L, where I is the identity matrix

and L is the Laplacian matrix of G, we have

TP
p (G, n−1) ≤ TQ

p (G, n−1) =
∆

δ
· O
(
TP
p (G, n−1) + log(n)

)
where ∆ and δ are the maximum and minimum degrees of G.

Lemma 4.2.10 establishes a relationship between PUSH and RPULL for a

graph G with maximum degree ∆ and minimum degree δ.

Lemma 4.2.10. For a graph G with minimum degree δ and maximum degree ∆,

TP
rp(G, n

−1) =
∆

δ
· O
(
TP
p (G, n−1) + log(n)

)
127

4.2. ANALYSIS

where Tp(G) and Trp(G) denote the broadcast time of PUSH and RPULL respec-

tively.

Proof. The result follows from the result of Sauerwald [89] stated in Lemma 4.2.9

combined with Theorem 4.2.8 that states that RPULL asymptotically upper bounded

by PUSH on regular graphs.

Let Q := I − 1
∆
· L be a n × n transition matrix. Applying Theorem 4.2.8, It

follows that TQ
rp(G) is asymptotically the upper bounded TQ

p (G). By substituting

into Lemma 4.2.9, we get that

TQ
rp(G) =

∆

δ
· O
(
TP
p (G) + log(n)

)
Using a standard coupling argument it follows that TQ

rp(G) is greater than or

equal to TP
rp(G).

The same bound therefore holds for TP
rp(G) and the statement follows.

This establishes a relationship between the broadcast times of RPULL and

PUSH on arbitrary graphs. However, the result in Lemma 4.2.10 is not necessarily

tight. For example, consider a star graph on n vertices. Using the solution to the

coupon collector problem, the broadcast time of PUSH, TP
p (G) = O (n log n) w.h.p.

The above lemma implies that TP
rp(G) = O (n2 log n).

For RPULL, when the source node is a leaf node, then the first step of RPULL

is equivalent to the final step of PUSH. Once the rumour has reached the centre

node, a further Θ(n) rounds is sufficient for RPULL to inform all nodes. It follows

that in the worst case, TP
rp(G) = O (n log n) w.h.p.

Since there are cases where the result in Lemma 4.2.10 is not necessarily tight

we now follow the same approach as Sauerwald [89] and bound the broadcast of

RPULL in terms of the mixing time of a random walk. Theorem 4.2.12 bounds the

broadcast time of RPULL in terms of the mixing time of a random walk on G with

transition matrix Q = I− 1
∆
·L where ∆ is the maximum degree of G. The proof of

the theorem follows from arguments found in the proof of Theorem 4 in Sauerwald

128

CHAPTER 4. RESTRICTED PULL

[89].

The proof of Theorem 4.2.12 will use the following result stated as Theorem 3

in Sauerwald [89] that follows from results found in Boyd et al. [27]. Theorem 4.2.11

(Sauerwald [89, Theorem 3]) bounds the broadcast time of the PUSH-PULL al-

gorithm in terms of the mixing time of a random walk.

Theorem 4.2.11 (Theorem 3 Sauerwald [89]). For any graph G and a symmetric

stochastic matrix Q it holds

TQ
PUSH−PULL(G, n−1) = O

(
t
1
2
Q+ 1

2
I

mix (G, n−2) + log(n)
)

Theorem 4.2.12. For any graph G with maximum degree ∆,

TP
rp(G, n

−1) = O
(
tQmix(G, n

−2) + log(n)
)

where P is the transition matrix defined in Eq. 4.3, Q := I − 1
∆
· L and L is the

Lapalcian matrix of G

Proof. Since Q is symmetric, we first apply Lemma 4.2.1 to obtain,

TQ
rp(G) = O

(
TQ
p (G)

)
= Θ

(
TQ
PUSH−PULL(G, n−1) + log(n)

)

The first equality holds since as previously stated TQ
p (G) asymptotically upper

bounds TQ
rp(G) (Lemma 4.2.8).

In order to obtain the result we apply Theorem 4.2.11,

TP
rp(G) ≤ TQ

rp(G) = Θ
(
TQ
PUSH−PULL(G, n−1) + log(n)

)
= O

(
t
1
2
Q+ 1

2
I

mix (G, n−2) + log(n)
)

= O
(
tQmix(G, n

−2) + log(n)
)

129

4.3. CONCLUSION

Observe that when tQmix(G) = O (log(n)), Theorem 4.2.12 gives a bound of

O (log(n)). This is optimal for both PUSH and RPULL since both the broadcast

time of both processes is Ω (log(n)) 2. As stated in Sauerwald [89] it is the case

that tQmix(G) = O (log(n)) for graph classes such as the complete graphs, expanders

and random graphs and, also for several Cayley graphs. For these graphs classes it

follows that the bound is optimal for RPULL.

However, there are also graphs where the bound in Theorem 4.2.12 is not tight.

For example, consider the Hypercube. Since tQmix(G, e
−1) = Θ (log(n) log log(n)) us-

ing Theorem 4.2.12 implies a bound on the broadcast time of RPULL of

O (log(n) log log(n)). However, since it is known that for the Hypercube the broad-

cast time of PUSH is bounded by O (log(n)) we are able to recover this bound

using either Lemma 4.2.8 or Lemma 4.2.10 since the Hypercube is a regular graph.

It follows that the same bound holds for RPULL. For these reasons, we believe

both results (Lemma 4.2.10 and Theorem 4.2.12) to be of interest.

4.3 Conclusion

In this chapter we have studied a restricted version of the classical PULL algorithm

introduced by Daum et al. [39]. In each round of the restricted PULL (RPULL)

algorithm, each uninformed node sends a request to a neighbour chosen uniformly

at random. Each informed node that receives 1 or more requests is able to reply to

exactly 1 of these requests where tie breaking is uniformly random.

By studying the relationship between the classical PUSH algorithm and RPULL

we have shown that the broadcast time of RPULL is asymptotically the same as

the classical PULL algorithm on d-regular graphs. It follows that RPULL obtains

an optimal bound for d-regular graphs. Using known results for the classical ru-

mour spreading algorithms on d-regular graphs, this result improves the previous

bound by Daum et al. [39] for the running time of RPULL for d-regular graphs by

a logarithmic factor.

2 The number of informed nodes can at most double in each round

130

CHAPTER 4. RESTRICTED PULL

For arbitrary graphs we have shown that the broadcast time of RPULL is

O (tmix + log n) where tmix is the mixing time of a certain random walk. When tmix

is O (log n) this bound is optimal since the number of informed nodes can at most

double in each round. This is the case for several notable graph classes such as

complete graphs, expanders, random graphs and several Cayley graphs.

131

Chapter 5

Conclusions and Outlook

We have presented algorithms for three problems relating to the efficient dissemi-

nation of information in large networks. Namely the problems of load balancing,

plurality consensus and, rumour spreading. When designing efficient algorithms

for these problems the communication pattern employed is an important consider-

ation. Besides influencing the design of our algorithms, the communication pattern

employed may also impact various measures of performance and determine the suit-

ability of the algorithm for a given application.

Choosing a suitable communication pattern is a multifaceted problem. Tradi-

tional wisdom suggests that additional communication allows an algorithm to obtain

better results. Certainly, in some cases this holds and additional communication can

be beneficial to the performance of an algorithm. Seminal works have shown that

for the Greedy[d] allocation scheme a small increase in the communication over-

head exponentially improves the maximum load. This is the so called power of two

choices. Many of the results in the literature consider models where tasks are al-

located sequentially. This is a limitation of these models when considered in the

context of distributed load balancing. In Chapter 2 we present an infinite, paral-

lel model. This model considers a client-server scenario where in each time step

each non-idle server (bins) processes a task and a number of concurrent new tasks

(balls) arrive to be allocated. Our results show that the “power of two choices”

phenomenon carries over to this novel infinite and parallel model. However, unlike

132

CHAPTER 5. CONCLUSIONS AND OUTLOOK

previous models where tasks are allocated sequentially, allowing extra communica-

tion in our model is no guarantee of better performance. In fact, in our model it

is possible that allowing tasks to query extra servers may have a negative impact.

This highlights the need to consider the communication pattern carefully.

Our results are not the first to consider an infinite process. However, our model

addresses the criticism of previous models that the total number of balls in the

system is fixed. i.e, the number of balls that are removed are then reallocated. In

each time step of our model, the number of balls being allocated is a random variable

and is independent of the number of balls that are removed. It is therefore possible

for the total number of balls in the system to be arbitrarily large. Despite this we

are able to show a strong self stabilization property. This property combines the

notion of positive recurrence with a snapshot property that bounds the maximum

load of any bin in an arbitrary time step (with high probability).

An open question concerns the removal of the restriction our model has on the

number of tasks allocated in a time step. The task generation model we consider

upper bounds the number of tasks being allocated by the number of bins. By

removing this restriction, our model could be adapted for analysing the Greedy[d]

allocation schemes in scenarios where there is a high volume of traffic. Although

further work is required to analyse how the maximum load diverges, our results

regarding the smoothness of the allocation under the two choice process still hold

when this restriction is removed.

When designing algorithms for the problems related to the efficient dissemina-

tion of information in large networks it is not sufficient to consider performance

metrics such as the runtime or maximum load in isolation. The problems studied

in the preceding chapters have found application in a number of different areas.

It is therefore necessary to consider the suitability of the algorithm based on the

requirements of a given application. These requirements are often determined by

the limitations of the nodes in the network. These limitations may exist due to the

heterogeneity of nodes or due to the network consisting of simpler devices such as

133

sensors or biological entities. In these cases our models must reflect that the nodes

are limited in both their computational and communication ability. This is the fo-

cus of Chapter 3 and Chapter 4. The algorithms presented solve their respective

problem where communication is limited.

In Chapter 4, we consider a variant of the classical PULL algorithm under weaker

assumptions for the rumour spreading problem. The classical PULL algorithm has

been extensively studied along with its symmetric counterpart PUSH. Both are suit-

able where nodes have limited computational resources. Recent work has begun to

consider the effect of restricted communication. Under the classical PULL algorithm

a node may inform multiple nodes in a given round. This is an unrealistic assumption

in some of the previous examples of networks consisting of simpler nodes. The work

of Daum et al. [39] and Ghaffari and Newport [55] consider the effect of removing

this assumption. Our results have shown that for a number of notable graph classes,

our restricted PULL algorithm is an optimal algorithm. Moreover, for certain graph

classes our results positively answer a conjecture by Daum et al. [39] regarding the

difference in runtime between the classical PULL and restricted PULL algorithms.

It remains an open question to answer this for arbitrary graphs or under different

tie breaking assumptions.

In addition to communicational limitations, in networks that consist of simple

devices we must also consider the computational limitations of the nodes. The algo-

rithms we presented in Chapter 3 are able to solve the plurality consensus problem

for numerous communication patterns and on arbitrary network topologies. How-

ever, in order to be able to solve the plurality consensus problem under such a wide

range of parameters there is a price. This price is paid by the memory overhead of

the algorithms. This gives rise to scenarios where the algorithms may not be suit-

able due to the memory requirements of the algorithms exceeding the capability of

the nodes. In these scenarios previous studies have presented algorithms that may

be more suitable. For example, recent results by Berenbrink et al. [23] and Ghaffari

and Parter [56] showed that there exists protocols that solve the plurality consensus

134

CHAPTER 5. CONCLUSIONS AND OUTLOOK

problem in a polylogarithmic number of rounds using only polylogarithmic mem-

ory. This answered an open question in the literature. The approach taken by the

authors’ algorithms is to amplify the bias towards the plurality opinion. These algo-

rithms apply when the network topology is the complete graph. It remains an open

question if algorithms based on this approach are able to generalise to arbitrary

network topologies.

The work in the preceding chapters has studied the performance of algorithms

under a number of communication patterns. The study of problems related to the

efficient dissemination of information in large scale networks remains a fundamental

problem. As examples of large scale networks continue to grow in size and number,

the heterogeneity of devices is an important consideration. It is important that

future models reflect the restrictions this imposes on the communication patterns

considered.

135

Bibliography

[1] Micah Adler, Petra Berenbrink, and Klaus Schröder. “Analyzing an Infinite

Parallel Job Allocation Process”. In: Proceedings of the 6th Annual European

Symposium on Algorithms. ESA ’98. London, UK, UK: Springer-Verlag, 1998,

pp. 417–428. isbn: 3-540-64848-8. url: http://dl.acm.org/citation.cfm?

id=647908.740138.

[2] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Ras-

mussen. “Parallel randomized load balancing”. In: Random Structures & Al-

gorithms 13.2 (1998), pp. 159–188. issn: 1098-2418. doi: 10.1002/(SICI)

1098 - 2418(199809) 13 : 2<159 :: AID - RSA3 > 3 . 0 . CO ; 2 - Q. url: http :

//dx.doi.org/10.1002/(SICI)1098-2418(199809)13:2%3C159::AID-

RSA3%3E3.0.CO;2-Q.

[3] Attahiru Sule Alfa. “Algorithmic analysis of the BMAP/D/k system in dis-

crete time”. In: Adv. in Appl. Probab. 35.4 (Dec. 2003), pp. 1131–1152. doi:

10.1239/aap/1067436338. url: http://dx.doi.org/10.1239/aap/

1067436338.

[4] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald

L Rivest. “Time-space trade-offs in population protocols”. In: Proceedings of

the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms.

SIAM. 2017, pp. 2560–2579.

[5] Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. “Fast and Exact Majority

in Population Protocols”. In: Proceedings of the 2015 ACM Symposium on

Principles of Distributed Computing, (PODC). 2015, pp. 47–56.

136

http://dl.acm.org/citation.cfm?id=647908.740138
http://dl.acm.org/citation.cfm?id=647908.740138
http://dx.doi.org/10.1002/(SICI)1098-2418(199809)13:2<159::AID-RSA3>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1098-2418(199809)13:2<159::AID-RSA3>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1098-2418(199809)13:2%3C159::AID-RSA3%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1098-2418(199809)13:2%3C159::AID-RSA3%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1098-2418(199809)13:2%3C159::AID-RSA3%3E3.0.CO;2-Q
http://dx.doi.org/10.1239/aap/1067436338
http://dx.doi.org/10.1239/aap/1067436338
http://dx.doi.org/10.1239/aap/1067436338

BIBLIOGRAPHY

[6] Noga Alon, Chen Avin, M Koucký, Michal Koucky, Gady Kozma, Zvi Lotker,

and Mark R. Tuttle. “Many Random Walks Are Faster Than One”. In: Com-

binatorics, Probability and Computing (2007), p. 15. issn: 0963-5483. doi:

10.1017/S0963548311000125. eprint: 0705.0467. url: http://arxiv.org/

abs/0705.0467.

[7] Dana Angluin, James Aspnes, and David Eisenstat. “A simple population

protocol for fast robust approximate majority”. In: Distributed Computing

21.2 (2008), pp. 87–102.

[8] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. “The com-

putational power of population protocols”. In: Distributed Computing 20.4

(2007), pp. 279–304.

[9] James Aspnes and Eric Ruppert. “An Introduction to Population Protocols”.

In: Bulletin of the EATCS 93 (2007), pp. 98–117.

[10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things:

A survey”. In: Computer Networks 54.15 (2010), pp. 2787–2805. issn: 1389-

1286. doi: http://doi.org/10.1016/j.comnet.2010.05.010. url: http:

//www.sciencedirect.com/science/article/pii/S1389128610001568.

[11] Chen Avin, Michal Koucký, and Zvi Lotker. “How to Explore a Fast-Changing

World (Cover Time of a Simple Random Walk on Evolving Graphs)”. In: Au-

tomata, Languages and Programming, 35th International Colloquium, ICALP.

2008, pp. 121–132.

[12] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. “Balanced Al-

locations”. In: SIAM Journal on Computing 29.1 (1999), pp. 180–200. doi:

10.1137/S0097539795288490.

[13] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale,

and Gustavo Posta. “Self-Stabilizing Repeated Balls-into-Bins”. In: Proceed-

ings of the 27th ACM on Symposium on Parallelism in Algorithms and Archi-

tectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015. Ed. by Guy E.

137

http://dx.doi.org/10.1017/S0963548311000125
0705.0467
http://arxiv.org/abs/0705.0467
http://arxiv.org/abs/0705.0467
http://dx.doi.org/http://doi.org/10.1016/j.comnet.2010.05.010
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://dx.doi.org/10.1137/S0097539795288490

BIBLIOGRAPHY

Blelloch and Kunal Agrawal. ACM, 2015, pp. 332–339. isbn: 978-1-4503-3588-

1. doi: 10.1145/2755573.2755584. url: http://doi.acm.org/10.1145/

2755573.2755584.

[14] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale,

Riccardo Silvestri, and Luca Trevisan. “Simple dynamics for plurality consen-

sus”. In: 26th ACM Symposium on Parallelism in Algorithms and Architec-

tures, (SPAA). 2014, pp. 247–256.

[15] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and

Riccardo Silvestri. “Plurality Consensus in the Gossip Model”. In: Proceedings

of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

2015, pp. 371–390.

[16] Florence Bénézit, Patrick Thiran, and Martin Vetterli. “Interval consensus:

From quantized gossip to voting”. In: Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, ICASSP. IEEE, 2009,

pp. 3661–3664.

[17] Florence Bénézit, Patrick Thiran, and Martin Vetterli. “The Distributed Mul-

tiple Voting Problem”. In: J. Sel. Topics Signal Processing 5.4 (2011), pp. 791–

804.

[18] Petra Berenbrink, Colin Cooper, Tom Friedetzky, Tobias Friedrich, and Thomas

Sauerwald. “Randomized diffusion for indivisible loads”. In: J. Comput. Syst.

Sci. 81.1 (2015), pp. 159–185.

[19] Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars

Nagel. “Multiple-Choice Balanced Allocation in (Almost) Parallel”. English.

In: Approximation, Randomization, and Combinatorial Optimization. Algo-

rithms and Techniques. Ed. by Anupam Gupta, Klaus Jansen, José Rolim, and

Rocco Servedio. Vol. 7408. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2012, pp. 411–422. isbn: 978-3-642-32511-3. doi: 10.1007/978-

138

http://dx.doi.org/10.1145/2755573.2755584
http://doi.acm.org/10.1145/2755573.2755584
http://doi.acm.org/10.1145/2755573.2755584
http://dx.doi.org/10.1007/978-3-642-32512-0_35
http://dx.doi.org/10.1007/978-3-642-32512-0_35

BIBLIOGRAPHY

3-642-32512-0_35. url: http://dx.doi.org/10.1007/978-3-642-32512-

0_35.

[20] Petra Berenbrink, Artur Czumaj, Tom Friedetzky, and Nikita D. Vvedenskaya.

“Infinite Parallel Job Allocation (Extended Abstract)”. In: Proceedings of the

Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures.

SPAA ’00. Bar Harbor, Maine, USA: ACM, 2000, pp. 99–108. isbn: 1-58113-

185-2. doi: 10.1145/341800.341813. url: http://doi.acm.org/10.1145/

341800.341813.

[21] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking.

“Balanced Allocations: The Heavily Loaded Case”. In: SIAM Journal on Com-

puting 35.6 (2006), pp. 1350–1385. doi: 10.1137/S009753970444435X.

[22] Petra Berenbrink, Robert Elsässer, and Tom Friedetzky. “Efficient randomised

broadcasting in random regular networks with applications in peer-to-peer

systems”. In: Distributed Computing 29.5 (2016), pp. 317–339.

[23] Petra Berenbrink, Tom Friedetzky, George Giakkoupis, and Peter Kling. “Effi-

cient Plurality Consensus, or: The Benefits of cleaning up from time to time”.

In: Proceedings of the 43rd International Colloquium on Automata, Languages

and Programming (ICALP). to appear. 2016.

[24] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn,

Lars Nagel, and Christopher Wastell. “Self-stabilizing Balls into Bins in Batches:

The Power of Leaky Bins [Extended Abstract]”. In: Proceedings of the 2016

ACM Symposium on Principles of Distributed Computing. PODC ’16. Chicago,

Illinois, USA: ACM, 2016, pp. 83–92. isbn: 978-1-4503-3964-3. doi: 10.1145/

2933057.2933092. url: http://doi.acm.org/10.1145/2933057.2933092.

[25] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn,

and Chris Wastell. “Plurality Consensus in Arbitrary Graphs: Lessons Learned

from Load Balancing”. In: 24th Annual European Symposium on Algorithms,

ESA 2016, August 22-24, 2016, Aarhus, Denmark. Ed. by Piotr Sankowski and

139

http://dx.doi.org/10.1007/978-3-642-32512-0_35
http://dx.doi.org/10.1007/978-3-642-32512-0_35
http://dx.doi.org/10.1007/978-3-642-32512-0_35
http://dx.doi.org/10.1007/978-3-642-32512-0_35
http://dx.doi.org/10.1145/341800.341813
http://doi.acm.org/10.1145/341800.341813
http://doi.acm.org/10.1145/341800.341813
http://dx.doi.org/10.1137/S009753970444435X
http://dx.doi.org/10.1145/2933057.2933092
http://dx.doi.org/10.1145/2933057.2933092
http://doi.acm.org/10.1145/2933057.2933092

BIBLIOGRAPHY

Christos D. Zaroliagis. Vol. 57. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2016, 10:1–10:18. isbn: 978-3-95977-015-6. doi: 10.4230/

LIPIcs.ESA.2016.10. url: http://dx.doi.org/10.4230/LIPIcs.ESA.

2016.10.

[26] Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre

Stauffer. “Balls-into-bins with Nearly Optimal Load Distribution”. In: Pro-

ceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures. SPAA ’13. Montréal, Québec, Canada:

ACM, 2013, pp. 326–335. isbn: 978-1-4503-1572-2. doi: 10.1145/2486159.

2486191. url: http://doi.acm.org/10.1145/2486159.2486191.

[27] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. “Ran-

domized gossip algorithms”. In: IEEE Transactions on Information Theory

52.6 (2006), pp. 2508–2530. issn: 00189448.

[28] Luca Cardelli and Attila Csikász-Nagy. “The cell cycle switch computes ap-

proximate majority”. In: Scientific reports 2 (2012).

[29] Keren Censor-Hillel, Bernhard Haeupler, Jonathan a. Kelner, and Petar May-

mounkov. “Global Computation in a Poorly Connected World: Fast Rumor

Spreading with No Dependence on Conductance”. In: Proceedings of the Forty-

fourth Annual ACM Symposium on Theory of Computing. 2011, pp. 961–970.

isbn: 9781450312455. doi: 10.1145/2213977.2214064. arXiv: 1104.2944.

url: http://arxiv.org/abs/1104.2944.

[30] Jen-Yeu Chen and Gopal Pandurangan. “Optimal gossip-based aggregate com-

putation”. In: Proceedings of the twenty-second annual ACM symposium on

Parallelism in algorithms and architectures. ACM. 2010, pp. 124–133.

[31] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca

Cardelli, David Soloveichik, and Georg Seelig. “Programmable chemical con-

trollers made from DNA”. In: Nature nanotechnology 8.10 (2013), pp. 755–

762.

140

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.10
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.10
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.10
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.10
http://dx.doi.org/10.1145/2486159.2486191
http://dx.doi.org/10.1145/2486159.2486191
http://doi.acm.org/10.1145/2486159.2486191
http://dx.doi.org/10.1145/2213977.2214064
http://arxiv.org/abs/1104.2944
http://arxiv.org/abs/1104.2944

BIBLIOGRAPHY

[32] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. “Almost tight

bounds for rumour spreading with conductance”. In: Proceedings of the 42nd

ACM symposium on Theory of Computing (2010), pp. 1–20.

[33] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. “Rumor spread-

ing in social networks”. In: Theoretical Computer Science 412.24 (2011), pp. 2602–

2610. issn: 03043975. doi: 10.1016/j.tcs.2010.11.001. arXiv: arXiv:

1102.1487v1. url: http://dx.doi.org/10.1016/j.tcs.2010.11.001.

[34] Andrea E. F. Clementi, Miriam Di Ianni, Giorgio Gambosi, Emanuele Natale,

and Riccardo Silvestri. “Distributed community detection in dynamic graphs”.

In: Theor. Comput. Sci. 584 (2015), pp. 19–41.

[35] Colin Cooper, Robert Elsässer, and Tomasz Radzik. “The Power of Two

Choices in Distributed Voting”. In: Automata, Languages, and Programming

- 41st International Colloquium, (ICALP). 2014, pp. 435–446.

[36] Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolas Rivera, and Take-

haru Shiraga. “Fast Consensus for Voting on General Expander Graphs”. In:

Proceedings of the 29th International Symposium on Distributed Computing

(DISC). 2015, pp. 248–262. doi: 10.1007/978-3-662-48653-5_17.

[37] A. Czumaj and V. Stemann. “Randomized allocation processes”. In: Founda-

tions of Computer Science, 1997. Proceedings., 38th Annual Symposium on.

Oct. 1997, pp. 194–203. doi: 10.1109/SFCS.1997.646108.

[38] Artur Czumaj. “Recovery Time of Dynamic Allocation Processes”. In: Pro-

ceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and

Architectures. SPAA ’98. Puerto Vallarta, Mexico: ACM, 1998, pp. 202–211.

isbn: 0-89791-989-0. doi: 10.1145/277651.277686. url: http://doi.acm.

org/10.1145/277651.277686.

[39] Sebastian Daum, Fabian Kuhn, and Yannic Maus. “Rumor Spreading with

Bounded In-Degree”. In: 336495.336495 (2015). issn: 16113349. eprint: 1506.

00828. url: http://arxiv.org/abs/1506.00828.

141

http://dx.doi.org/10.1016/j.tcs.2010.11.001
http://arxiv.org/abs/arXiv:1102.1487v1
http://arxiv.org/abs/arXiv:1102.1487v1
http://dx.doi.org/10.1016/j.tcs.2010.11.001
http://dx.doi.org/10.1007/978-3-662-48653-5_17
http://dx.doi.org/10.1109/SFCS.1997.646108
http://dx.doi.org/10.1145/277651.277686
http://doi.acm.org/10.1145/277651.277686
http://doi.acm.org/10.1145/277651.277686
1506.00828
1506.00828
http://arxiv.org/abs/1506.00828

BIBLIOGRAPHY

[40] Alan Demers, Dan Greene, Carl Houser, Wes Irish, John Larson, Scott Shenker,

Howard Sturgis, Dan Swinehart, and Doug Terry. “Epidemic algorithms for

replicated database maintenance”. In: ACM SIGOPS Operating Systems Re-

view 22.1 (1988), pp. 8–32. issn: 01635980. doi: 10.1145/43921.43922.

[41] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. “Social Networks

Spread Rumors in Sublogarithmic Time”. In: Electronic Notes in Discrete

Mathematics 38 (2011), pp. 303–308. issn: 15710653. doi: 10.1016/j.endm.

2011.09.050. url: http://dx.doi.org/10.1016/j.endm.2011.09.050.

[42] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald,

and Christian Scheideler. “Stabilizing consensus with the power of two choices”.

In: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures, (SPAA). 2011, pp. 149–158.

[43] Benjamin Doerr and Marvin Künnemann. “Tight Analysis of Randomized

Rumor Spreading in Complete Graphs”. In: 2014 Proceedings of the Eleventh

Workshop on Analytic Algorithmics and Combinatorics (ANALCO). 2014,

pp. 82–91.

[44] Moez Draief and Milan Vojnovic. “Convergence Speed of Binary Interval Con-

sensus”. In: SIAM J. Control and Optimization 50.3 (2012), pp. 1087–1109.

[45] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for

the Analysis of Randomized Algorithms. Cambridge University Press, 2009.

isbn: 978-0-521-88427-3. url: http://www.cambridge.org/gb/knowledge/

isbn/item2327542/.

[46] Devdatt P. Dubhashi and Desh Ranjan. “Balls and bins: A study in negative

dependence”. In: Random Struct. Algorithms 13.2 (1998), pp. 99–124.

[47] Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Frederik Mallmann-Trenn,

and Horst Trinker. “Efficient k-Party Voting with Two Choices”. In: CoRR

abs/1602.04667 (2016). url: http://arxiv.org/abs/1602.04667.

142

http://dx.doi.org/10.1145/43921.43922
http://dx.doi.org/10.1016/j.endm.2011.09.050
http://dx.doi.org/10.1016/j.endm.2011.09.050
http://dx.doi.org/10.1016/j.endm.2011.09.050
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://arxiv.org/abs/1602.04667

BIBLIOGRAPHY

[48] Robert Elsässer and Thomas Sauerwald. “Broadcasting vs. mixing and infor-

mation dissemination on Cayley graphs”. In: Annual Symposium on Theoret-

ical Aspects of Computer Science. Springer. 2007, pp. 163–174.

[49] G. Fayolle, V.A. Malyshev, and M.V. Menshikov. Topics in the Constructive

Theory of Countable Markov Chains. Cambridge University Press, 1995. isbn:

9780521461979. url: https://books.google.ca/books?id=lTJltFEnnHcC.

[50] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. “Random-

ized broadcast in networks”. In: Random Structures & Algorithms 1.4 (1990),

pp. 447–460.

[51] Nikolaos Fountoulakis, Anna Huber, and Konstantinos Panagiotou. “Reliable

broadcasting in random networks and the effect of density”. In: Proceedings

- IEEE INFOCOM (2010), pp. 1–9. issn: 0743166X. doi: 10.1109/INFCOM.

2010.5462084.

[52] Nikolaos Fountoulakis and Konstantinos Panagiotou. “Rumour Spreading on

Random Regular Graphs and Expanders”. In: Random Structures & Algo-

rithms 43.2 (2013), pp. 201–220.

[53] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Thomas Sauerwald. “Ultra-

fast rumor spreading in social networks”. In: Proceedings of the Twenty- . . .

(2012), pp. 1642–1660. url: http : / / dl . acm . org / citation . cfm ? id =

2095246.

[54] A.M. Frieze and G.R. Grimmett. The shortest-path problem for graphs with

random arc-lengths. 1985.

[55] Mohsen Ghaffari and Calvin Newport. “How to Discreetly Spread a Rumor in

a Crowd”. In: Distributed Computing (DISC) 2.5 (2016), pp. 623–626. issn:

0302-9743.

[56] Mohsen Ghaffari and Merav Parter. “A Polylogarithmic Gossip Algorithm for

Plurality Consensus”. In: PODC ’16 Proceedings of the 2016 ACM Symposium

on Principles of Distributed Computing 16 1 (2016), pp. 117–126.

143

https://books.google.ca/books?id=lTJltFEnnHcC
http://dx.doi.org/10.1109/INFCOM.2010.5462084
http://dx.doi.org/10.1109/INFCOM.2010.5462084
http://dl.acm.org/citation.cfm?id=2095246
http://dl.acm.org/citation.cfm?id=2095246

BIBLIOGRAPHY

[57] Bhaskar Ghosh and S. Muthukrishnan. “Dynamic Load Balancing by Random

Matchings”. In: J. Comput. Syst. Sci. 53.3 (1996), pp. 357–370.

[58] George Giakkoupis. “Tight bounds for rumor spreading in graphs of a given

conductance”. In: STACS11. 2011, pp. 1–17.

[59] George Giakkoupis. “Tight Bounds for Rumor Spreading with Vertex Expan-

sion”. In: SODA14. 2013, pp. 1–27. eprint: 1302.6243.

[60] George Giakkoupis and Thomas Sauerwald. “Rumor spreading and vertex

expansion”. In: Proceedings of the twenty-third annual ACM-SIAM symposium

on Discrete Algorithms (SODA’12). 2012, pp. 1623–1641.

[61] Gaston H. Gonnet. “Expected Length of the Longest Probe Sequence in Hash

Code Searching”. In: J. ACM 28.2 (Apr. 1981), pp. 289–304. issn: 0004-5411.

doi: 10.1145/322248.322254. url: http://doi.acm.org/10.1145/

322248.322254.

[62] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete math-

ematics - a foundation for computer science (2. ed.) Addison-Wesley, 1994.

isbn: 978-0-201-55802-9.

[63] B. Hajek. “Hitting-Time and Occupation-Time Bounds Implied by Drift Anal-

ysis with Applications”. In: Advances in Applied Probability 14.3 (), pp. 502–

525.

[64] Juraj Hromkovič, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and Walter Unger.

Dissemination of information in communication networks: broadcasting, gos-

siping, leader election, and fault-tolerance. Springer Science & Business Media,

2005.

[65] A.E. Kamal. “Efficient solution of multiple server queues with application to

the modeling of ATM concentrators”. In: INFOCOM ’96. Fifteenth Annual

Joint Conference of the IEEE Computer Societies. Networking the Next Gen-

eration. Proceedings IEEE. Vol. 1. Mar. 1996, 248–254 vol.1. doi: 10.1109/

INFCOM.1996.497900.

144

1302.6243
http://dx.doi.org/10.1145/322248.322254
http://doi.acm.org/10.1145/322248.322254
http://doi.acm.org/10.1145/322248.322254
http://dx.doi.org/10.1109/INFCOM.1996.497900
http://dx.doi.org/10.1109/INFCOM.1996.497900

BIBLIOGRAPHY

[66] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. “Randomized rumor

spreading”. In: Proceedings 41st Annual Symposium on Foundations of Com-

puter Science (2000). issn: 0272-5428. doi: 10.1109/SFCS.2000.892324.

[67] David Kempe, Alin Dobra, and Johannes Gehrke. “Gossip-Based Computation

of Aggregate Information”. In: Proceedings 44th Symposium on Foundations

of Computer Science (FOCS). 2003, pp. 482–491.

[68] Nam K Kim, Mohan L Chaudhry, Bong K Yoon, and Kilhwan Kim. “A Com-

plete and Simple Solution to a Discrete-Time Finite-Capacity BMAP/D/c

Queue”. In: Applied Mathematics 3.12 (2012), p. 2169.

[69] Marcos Kiwi and Christopher Thraves Caro. “FIFO Queues are Bad for Rumor

Spreading”. In: IEEE Transactions on Information Theory (2016).

[70] Fabian Kuhn, Thomas Locher, and Stefan Schmid. “Distributed computation

of the mode”. In: Proceedings of the 26th Annual ACM Symposium on Prin-

ciples of Distributed Computing (PODC). 2008, pp. 15–24.

[71] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.

“Statistical properties of community structure in large social and information

networks”. In: Proceedings of the 17th international conference on World Wide

Web. ACM. 2008, pp. 695–704.

[72] David A. Levin and Yuval Perres. Markov Chains and Mixing Times. American

Mathematical Society, Dec. 2008. isbn: 978-0-8218-4739-8.

[73] Florian Meier and Ueli Peter. “Push Is Fast On Sparse Random Graphs”.

In: SIAM Journal on Discrete Mathematics 51.6 (2017), pp. 3232–3258. doi:

10.1137/090745854.

[74] George B. Mertzios, Sotiris E. Nikoletseas, Christoforos Raptopoulos, and Paul

G. Spirakis. “Determining Majority in Networks with Local Interactions and

Very Small Local Memory”. In: Automata, Languages, and Programming -

41st International Colloquium, (ICALP). 2014, pp. 871–882.

145

http://dx.doi.org/10.1109/SFCS.2000.892324
http://dx.doi.org/10.1137/090745854

BIBLIOGRAPHY

[75] Milena Mihail, Christos Papadimitriou, and Amin Saberi. “On certain con-

nectivity properties of the internet topology”. In: Journal of Computer and

System Sciences 72.2 (2006), pp. 239–251.

[76] Michael Mitzenmacher. “The Power of Two Choices in Randomized Load Bal-

ancing”. In: IEEE Trans. Parallel Distrib. Syst. 12.10 (2001), pp. 1094–1104.

doi: 10.1109/71.963420. url: http://doi.ieeecomputersociety.org/

10.1109/71.963420.

[77] Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized

algorithms and probabilistic analysis. Cambridge University Press, 2005. isbn:

978-0-521-83540-4.

[78] Damon Mosk-Aoyama and Devavrat Shah. “Computing Separable Functions

via Gossip”. In: Proceedings of the Twenty-fifth Annual ACM Symposium on

Principles of Distributed Computing. Denver, Colorado, USA, 2006, pp. 113–

122. isbn: 1595933840. doi: 10.1145/1146381.1146401.

[79] Elchanan Mossel, Joe Neeman, and Omer Tamuz. “Majority dynamics and

aggregation of information in social networks”. In: Autonomous Agents and

Multi-Agent Systems 28.3 (2014), pp. 408–429.

[80] Elchanan Mossel and Grant Schoenebeck. “Reaching Consensus on Social Net-

works”. In: Innovations in Computer Science - (ICS). 2010, pp. 214–229.

[81] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-

bridge University Press, 1995. isbn: 0-521-47465-5.

[82] David Peleg. “Local majorities, coalitions and monopolies in graphs: a review”.

In: Theor. Comput. Sci. 282.2 (2002), pp. 231–257.

[83] Yuval Peres, Kunal Talwar, and Udi Wieder. “The (1 +β)-choice Process and

Weighted Balls-into-Bins”. In: Proceedings of the 21st Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA). SODA ’10. Austin, Texas: Soci-

ety for Industrial and Applied Mathematics, 2010, pp. 1613–1619. isbn: 978-

0-898716-98-6.

146

http://dx.doi.org/10.1109/71.963420
http://doi.ieeecomputersociety.org/10.1109/71.963420
http://doi.ieeecomputersociety.org/10.1109/71.963420
http://dx.doi.org/10.1145/1146381.1146401

BIBLIOGRAPHY

[84] Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. “Using Three States

for Binary Consensus on Complete Graphs”. In: 28th IEEE International Con-

ference on Computer Communications, (INFOCOM). 2009, pp. 2527–2535.

[85] Boris Pittel. “On Spreading a Rumour”. In: SIAM Journal on Applied Math-

ematics 47.1 (1987), pp. 245–255.

[86] Martin Raab and Angelika Steger. “”Balls into Bins” - A Simple and Tight

Analysis”. In: Randomization and Approximation Techniques in Computer

Science, Second International Workshop, RANDOM’98, Barcelona, Spain, Oc-

tober 8-10, 1998, Proceedings. Ed. by Michael Luby, José D. P. Rolim, and

Maria J. Serna. Vol. 1518. Lecture Notes in Computer Science. Springer, 1998,

pp. 159–170. isbn: 3-540-65142-X. doi: 10.1007/3-540-49543-6_13. url:

http://dx.doi.org/10.1007/3-540-49543-6_13.

[87] Kenneth H. Rosen, John G. Michaels, Jonathan L. Gross, Jerrold W. Gross-

man, and Douglas R. Shier, eds. Handbook of Discrete and Combinatorial

Mathematics. CRC Press, 1999.

[88] Thomas Sauerwald. “Randomized protocols for information dissemination”.

PhD thesis. University of Paderborn, Germany, 2008. url: http://ubdok.

uni-paderborn.de/servlets/DerivateServlet/Derivate-7251/Dissertation%

20Sauerwald.pdf.

[89] Thomas Sauerwald. “On mixing and edge expansion properties in randomized

broadcasting”. In: Algorithmica (New York) 56 (2010), pp. 51–88. doi: 10.

1007/s00453-008-9245-4.

[90] Thomas Sauerwald and Alexandre Stauffer. “Rumor Spreading and Vertex

Expansion on Regular Graphs”. In: Proceedings of the twenty-second annual

ACM-SIAM symposium on Discrete Algorithms. 2011, pp. 462–475. isbn: 9780898719932.

[91] Thomas Sauerwald and He Sun. “Tight Bounds for Randomized Load Balanc-

ing on Arbitrary Network Topologies”. In: 53rd Annual IEEE Symposium on

Foundations of Computer Science, (FOCS). 2012, pp. 341–350.

147

http://dx.doi.org/10.1007/3-540-49543-6_13
http://dx.doi.org/10.1007/3-540-49543-6_13
http://ubdok.uni-paderborn.de/servlets/DerivateServlet/Derivate-7251/Dissertation%20Sauerwald.pdf
http://ubdok.uni-paderborn.de/servlets/DerivateServlet/Derivate-7251/Dissertation%20Sauerwald.pdf
http://ubdok.uni-paderborn.de/servlets/DerivateServlet/Derivate-7251/Dissertation%20Sauerwald.pdf
http://dx.doi.org/10.1007/s00453-008-9245-4
http://dx.doi.org/10.1007/s00453-008-9245-4

BIBLIOGRAPHY

[92] Thomas Sauerwald and He Sun. “Tight Bounds for Randomized Load Bal-

ancing on Arbitrary Network Topologies”. In: CoRR abs/1201.2715 (2012).

full version of FOCS’12. arXiv: 1201.2715 [cs.DM].

[93] Khosrow Sohraby and Ji Zhang. “Spectral decomposition approach for tran-

sient analysis of multi-server discrete-time queues”. In: INFOCOM’92. Eleventh

Annual Joint Conference of the IEEE Computer and Communications Soci-

eties, IEEE. IEEE. 1992, pp. 395–404.

[94] Volker Stemann. “Parallel Balanced Allocations”. In: Proceedings of the Eighth

Annual ACM Symposium on Parallel Algorithms and Architectures. SPAA ’96.

Padua, Italy: ACM, 1996, pp. 261–269. isbn: 0-89791-809-6. doi: 10.1145/

237502.237565. url: http://doi.acm.org/10.1145/237502.237565.

[95] Kunal Talwar and Udi Wieder. “Balanced Allocations: A Simple Proof for the

Heavily Loaded Case”. In: CoRR abs/1310.5367 (2013). url: http://arxiv.

org/abs/1310.5367.

[96] Kunal Talwar and Udi Wieder. “Balanced Allocations: A Simple Proof for the

Heavily Loaded Case”. English. In: Automata, Languages, and Programming.

Ed. by Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsou-

pias. Vol. 8572. Lecture Notes in Computer Science. Springer Berlin Heidel-

berg, 2014, pp. 979–990. isbn: 978-3-662-43947-0. doi: 10.1007/978-3-662-

43948-7_81. url: http://dx.doi.org/10.1007/978-3-662-43948-7_81.

148

http://arxiv.org/abs/1201.2715
http://dx.doi.org/10.1145/237502.237565
http://dx.doi.org/10.1145/237502.237565
http://doi.acm.org/10.1145/237502.237565
http://arxiv.org/abs/1310.5367
http://arxiv.org/abs/1310.5367
http://dx.doi.org/10.1007/978-3-662-43948-7_81
http://dx.doi.org/10.1007/978-3-662-43948-7_81
http://dx.doi.org/10.1007/978-3-662-43948-7_81

