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Abstract: Neurodegenerative diseases (ND) result from the gradual and progressive degeneration
of the structure and function of the central nervous system or the peripheral nervous system or
both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of
sensory information transmission and loss of movement control. There is no effective treatment
for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects.
Within the past decades, several natural remedies have gained attention as potential neuroprotective
drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables
and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of
polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables,
cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our
review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus
flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for
the development of nutraceuticals, food supplements or complementary and alternative drugs to
maintain and improve the neurophysiological status.
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1. Introduction

The increase of the lifespan in populations of developed countries is leading to a rise in the
incidence of age-related illnesses such as neurodegenerative diseases (ND). ND are a heterogeneous
group of chronic and untreatable conditions that, in terms of human suffering and economic cost for
society, represent the fourth highest source of overall disease burden in high-income countries. ND
result from the gradual and progressive degeneration of the structure and function of both the central
nervous system (CNS) and the peripheral nervous system (PNS), characterized by deterioration of
neurons and/or myelin sheath, sensory information transmission disruption and movement control.
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It is known that oxidative stress and chronic inflammation play an important role in ND.
Free radicals represent a common denominator of many oxidative-based diseases, including ND,
although they are normally and continuously produced in CNS, acting as important cellular messenger.
However, excessive levels of reactive oxygen species (ROS) or reactive nitrogen species (RNS) are
involved in numerous neuroinflammatory processes. In physiological conditions, the levels of free
radicals are tightly regulated by a complex antioxidant defense system including both enzymatic
and non-enzymatic antioxidants. Disruption of the delicate oxidant/antioxidant balance between
the production and removal of oxidizing chemical species can lead to oxidative stress triggering cell
damage. This may be due to an excessive production of ROS and RNS and/or at a reduced efficiency
of the physiological antioxidant defense systems. Moreover, because of their high metabolic activities
and low antioxidant defense capability, neural cells in brains are more vulnerable to oxidative stress,
especially those of the aging brain. Furthermore, cytokines released by the activated glial cells amplify
the free radicals-induced damage responsible for uncontrolled proteolysis, DNA mutagenesis, lipid
peroxidation and cell death.

Currently there is no effective treatment for ND, and the marketed drugs are mainly
symptom-oriented, albeit with many side effects, limited efficacy and partial capability to inhibit
disease progression. Therefore, in order to develop novel preventive strategies or co-adjuvant therapy
for ND, within the past decades, a great number of natural medicinal plants has gained attention as
potential neuroprotective agents [1]. Moreover, an increasing number of studies have suggested that
dietary intake of vegetables and fruits can prevent or delay the onset of ND [2,3]. These properties
might be due to the presence of polyphenols, an important group of phytochemicals that are
abundantly present in fruits, vegetables, cereals and beverages [4]. The main class of polyphenols
is flavonoids which display a remarkable spectrum of biological activities, including antioxidant,
free radical scavenger, metal ions chelating, vasoprotective, hepatoprotective, anti-inflammatory,
anti-cancer and anti-infective [5,6]. Main dietary sources of flavonoids are fruits, especially Citrus fruits,
vegetables, fruit juices, tea, coffee, and red wine [7]. Several lines of evidence have demonstrated the
beneficial effects of Citrus fruits in the context of numerous pathologies, including ND, inflammation,
cardiovascular diseases, dyslipidemia, diabetes, allergy, immune system diseases and cancer [8–24].

Our review is an overview on the scientific literature concerning the neuroprotective effects of the
Citrus flavonoids in the prevention or treatment of ND.

2. Focus on Neurodegenerative Disorders

ND are incurable conditions due to the progressive nervous system dysfunction caused by
degeneration and loss of nerve cells for reasons that have not yet been fully understood. Today,
a growing number of people worldwide are affected by ND, characterized by deterioration in
emotional control, social behavior and social communication. ND exist in many forms, such as
Multiple Sclerosis, Alzheimer’s, Parkinson’s, Huntington’s, human prion and motoneuron diseases.

Alzheimer’s disease (AD) is a debilitating ND classified as the major subtype of dementia [25],
and is characterized by progressive loss of memory. It results in decline in cognitive and behavioral
functions like memory, thinking and language skills [26]. The hallmarks of AD are (i) the accumulation
of amyloid-beta (Aβ) peptide in the brain; (ii) the presence of neurofibrillary tangles (NFTs) containing
hyper-phosphorylated tau fragments and (iii) the loss of cortical neurons and synapses [27,28]. It is also
known that the innate immune system activation plays a relevant role in the age-related ND, including
AD. Microglia are innate immune cells in the CNS that mediate inflammatory responses to injury
and pathogens by releasing pro-inflammatory cytokines that amplify and aggravate inflammation
throughout the brain. These pro-inflammatory factors may induce degeneration of normal neurons
through upregulation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK),
and c-Jun N-terminal kinase (JNK) [29].

Parkinson’s disease (PD) is the second common neurodegenerative disorder and its incidence
is increasing among people over the age of 60 years [30]. It is consistently higher in men than in
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women [31]. Pathologically, it is characterized by the progressive and diffuse loss of dopaminergic
neurons in the substantia nigra and the accumulation of Lewy bodies (inclusions containing
α-synuclein) in nerve cells. The major clinical symptoms are tremor at rest, rigidity, bradykinesia and
postural instability. It has been suggested that activated microglia may be beneficial to the host in the
early phase of neurodegeneration but excessive activation of microglia leads to the elevated expression
of pro-inflammatory mediators such as tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β),
interleukin-6 (IL-6) and interferon gamma (IFN-γ) [32], that induce the degeneration of substantia
nigra pars compacta dopaminergic neurons [29,33]. Furthermore, the release of these pro-inflammatory
mediators can activate astrocytes that participate to the neuroinflammatory processes linked to PD [34].

Huntington’s disease (HD) is a hereditary neurological disorder inherited as an autosomal
dominant trait [35] caused by an expanded polyglutamine tract in the N-terminal region of mutant
huntingtin [36]. HD usually occurs in early middle life even if there is an uncommon juvenile
form [37]. It is an illness that recurs with abnormal movements together with psychiatric symptoms
including psychosis, depression, and obsessive-compulsive disorder and progressive cognitive
impairment [38–40]. In the early stage of disease, neuronal loss occur preferentially in the striatum,
while in the later stages the extensive neurodegeneration happens in a variety of brain regions [36,41].

Human prion diseases are fatal neurodegenerative disorders which include Kuru,
Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia [42].
Prion diseases result from the conformational conversion of a normal cellular prion protein (PrPC) into
an abnormal misfolded pathological form (PrPSc). Its accumulation in the CNS resulted in progressive
neuronal degeneration and vacuolation [43].

Motor neuron disease (MND) is a neurodegenerative condition, among which the most common
is the amyotrophic lateral sclerosis (ALS). MND affects both brain and spinal cord, and is due to the
degeneration of motor neurons, that in turn causes muscle weakness. The major clinical symptoms
include muscle weakness, wasting, cramps and stiffness of arms and/or legs, problems with speech
and/or swallowing or, more rarely, with breathing problem [44]. The etiopathogenesis of MND is
unknown and the aim of the cure is to maintain functional ability and enabling MND patients to live
life as fully as possible [45].

Multiple sclerosis (MS) is a CNS chronic inflammatory disease that is caused by
autoimmune-mediated loss of myelin and axonal damage. Its etiopathogenesis is poorly understood.
MS is the most common neurological disorder affecting young adults, with a total of 2.5 million people
in worldwide [46]. It causes a range of relapsing symptoms during the early phase of the disease,
but becomes more persistent and less amenable to treatment at later stages. The research focused on
identifying treatments that slow progression of neurodegeneration and also restore myelin of affected
CNS regions [47].

3. Citrus Flavonoids

The genus Citrus belongs to the family Rutaceae, subfamily Aurantioideae, tribe Citreae, subtribe
Citrinae. According to statistics of Food and Agriculture Organization of the United Nations (FAO),
Citrus species are grown in more than 140 countries. China, Brazil, USA, India, Mexico, and Spain
are the world’s leading Citrus fruit-producing countries, representing close to two-thirds of global
production (FAO STAT) [48].

The basic structural feature of flavonoid is 2-phenyl-benzo-γ-pyrane nucleus, contains a
C6−C3−C6 heterocyclic skeleton, consisting of two benzene rings linked through a heterocyclic
pyran ring. Based on the oxidization of the heterocyclic (C3) ring, Citrus flavonoids can be divided in
flavanones, flavonols, flavones, and polymethoxiflavone (Figure 1). Anthocyanins are considered as
metabolites of flavones and are present only in blood oranges. Structurally, they derived from pyran or
flavan. Flavonoids are mainly present in plants as glycosides, while aglycones (the forms lacking sugar
moieties) occur less frequently. Therefore, the large number of flavonoids is a result of many different
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combinations of aglycones and sugars, mainly D-glucose and L-rhamnose, bounded the hydroxyl
group at the C-3 or C-7 position.Molecules2016, 21, 1312 4 of 24 
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Figure 1. Chemical structure of Citrus flavonoids subclasses.

Flavanones comprise approximately 95% of the total flavonoids. Their concentration depends
on the age of the plant, and the highest levels are detected in tissues, showing pronounced cell
divisions [49]. They are present in both the glycoside and aglycone forms. Glycosylation occurs at
position 7 either by rutinose or neohesperidose. The most important flavanones present in the aglycone
forms are naringenin and hesperetin. Among flavanones with neohesperidose (rhamnosyl-α-1,2
glucose), naringin, neoeriocitrin, neohesperedin and poncirin are the most abundant. Hesperidin,
narirutin, eriocitrin and didymin are the main flavanone with rutinose (rhamnosyl-α-1,6 glucose).
Luteolin and diosmetin are the most present flavones in the aglycone form, while diosmin
and neodismin represent the major flavones in the rutinosides and neohesperidosides forms,
respectively [50]. Flavonols are the 3-hydroxy derivatives of flavones. Glycosylation occurs
preferentially at the 3-hydroxyl group of the central ring. The most common flavonol aglycones
are quercetin and kaempferol, while rutin and rutinosides are the main in the glycosidic form. Even
if present in smaller quantities, the most common polymethoxiflavones are tangeretin and nobiletin.
The chemical structures of Citrus flavonoids discussed in this review are presented in Figure 2.
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3.1. Flavanones

In Table 1 are summarized the studies reporting the neuroprotective activity of Citrus flavanones.

Table 1. Citrus flavanones and experimental models of neurodegenerative diseases.

Flavanones Model Disease/Condition References

naringin

In vivo MPP+-treated rats Leem et al., 2014 [51]
In vivo 6-OHDA-injected mice Kim et al., 2016 [52]
In vivo 3-NP-injected rats Gopinath and Sudhandiran, 2012 [53]
In vivo aluminum-treated rats Prakash et al., 2013 [54]
In vivo colchicine-treated rats Kumar et al., 2010 [55]

hesperidin

In vivo 6-OHDA-injected mice Antunes et al., 2014 [56]
In vivo 3-NP-treated mice Menze et al., 2012 [57]
In vivo APP/PS1–21 transgenic mice Li et al., 2015 [58]
In vivo APPswe/PS1dE9 transgenic mice Wang et al., 2014 [59]
In vivo ICV-STZ-injected mice Javed et al., 2015 [60]
In vivo AlCl3-injected rats Thenmozhi et al., 2015 [61]
In vivo AlCl3-injected rats Thenmozhi et al., 2016 [62]

In vivo 4-AP-treated rats
KA-injected rat Chang et al., 2015 [63]

hesperetin

In vivo Mice Choi and Ahn, 2008 [64]
In vivo 6-OHDA-injected rats Kiasalari et al., 2016 [65]
In vitro staurosporine-treated cortical neurons cultures Rainey-Smith et al., 2008 [66]
In vitro H2O2-treated cortical neurons Vauzour et al., 2007 [67]

neohesperidin In vitro H2O2-treated PC12 cells Hwang et al., 2008 [68]

naringenin

In vivo ICV-STZ-injected rats Khan et al., 2012 [69]
In vivo ICV-STZ-injected rats Baluchnejadmojarad and Roghani, 2006 [70]
In vitro Aβ-treated PC12 cells Heo et al., 2004 [71]
In vitro microglial cells Wu et al., 2016 [72]
In vitro LPS/IFN-γ exposed primary neuronal-glial cells Vafeiadou et al., 2009 [73]

didymin In vitro H2O2-treated neuronal cells Morelli et al, 2014 [74]

3.1.1. Naringin

Naringin is a major flavanone glycoside in Citrus fruits and it is considered a neuroprotective
agent mainly because its anti-apoptotic [75,76] and anti-oxidant activities [77], together with its
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capability to induce neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and
vascular endothelial growth factor (VEGF). Recently, Leem and coworkers (2014) evaluated the
effect of naringin in a neurotoxic model of PD in vivo. They found that the flavanone could
prevent the degeneration of the nigrostriatal dopaminergic (DA) projection by increasing the level of
glia-derived neurotrophic factor (GDNF) in nigral DA neurons, with activation of mammalian target
of rapamycin complex 1 (mTORC1). Furthermore, they observed that naringin could attenuate
the rise of TNF-α induced by 1-methyl-4-phenylpyridinium (MPP+) in microglia, indicating its
anti-inflammatory activity in CNS [51]. Very recently, the same research group evaluated the
effects of pre- or post-treatment with naringin in a 6-hydroxydopamine (OHDA)-treated mice [52],
suggesting that it protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity by
both the activation of mTORC1 and the inhibition of microglial activation [51]. In 2012, Gopinath
and Sudhandiran investigated on the neuroprotective effect of naringin on 3-nitropropionic acid
(3-NP)-induced neurodegeneration [53]. The 3-NP is a natural environmental toxin that causes
selective neuronal degeneration in the striatum, reproducing in animal models the brain lesions
observed in HD patients [78]. The experimental protocol required that rats received naringin orally
(80 mg/kg body weight/day) 1 h prior to the intraperitoneal injection of 3-NP (10 mg/kg body
weight/day) for 2 weeks (the time to develop neurodegeneration). The Authors observed that naringin
can mitigate 3-NP-induced neurodegeneration, through the enhancement of antioxidant enzyme gene
expressions via nuclear factor E2-related factor 2 (Nrf2) activation, thus modulating oxidative stress
and inflammatory responses.

In the last decade, flavonoids have been used to reduce neurotoxic effects of aluminum (Al)
chloride (AlCl3) in rats. In this field, Prakash and collaborators (2013), explored the possible role
of naringin against Al-induced cognitive dysfunction and oxidative damage in rats. The Authors
observed that chronic administration of naringin (40 and 80 mg/kg) for six weeks significantly
improved cognitive performance and attenuated mitochondria oxidative damage, acetyl cholinesterase
activity, and Al concentration in Al-treated (100 mg/kg) rats [54]. The same authors showed that
treatment with naringin (40 and 80 mg/kg/day) for 25 consecutive days beginning 4 days prior
to colchicine (15 µg/5 µL) injected intracerebroventricularly significantly improved the cognitive
performance and attenuated oxidative damage in colchicine-treated rats [55].

3.1.2. Hesperidin

Hesperidin, a flavonoid that is particularly abundant in oranges and lemons, exerts
anticarcinogenic, antihypertensive, antiviral, antioxidant and antiinflammatory effects [79]. In addition,
hesperidin can cross the blood-brain barrier [80] and can protect the neurons against various types of
insult associated with neurodegenerative diseases, including AD, PD, and HD. A study performed by
Antunes and collaborators (2014) was aimed to evaluate the role of hesperidin in an animal model of PD
induced by 6-OHDA. The Authors demonstrated that hesperidin (50 mg/kg), administrated for 28 days
after an intracerebroventricular injection of 6-OHDA, was effective in preventing memory impairment
and depressive-like behavior in mice. Furthermore, in the striatum of aged mice, hesperidin attenuated
the 6-OHDA-induced reduction in (i) glutathione peroxidase (GPx) and catalase (CAT) activity, (ii) the
total reactive antioxidant potential and (iii) the dopamine levels. Finally, the flavanone mitigated both
the increased levels of ROS and the activity of glutathione reductase induced by 6-OHDA [56].

The implications of nitric oxide (NO) in a variety of neurodegenerative diseases suggests a
potential role of flavonoids in HD and other oxidative-based disorders. Menze et al., (2012) investigated
the potential effect of hesperidin on 3-NP-induced behavioral, neurochemical, histopathological
and cellular changes. They showed that pretreatment with hesperidin (100 mg/kg) ahead of 3-NP
(20 mg/kg) for 5 days prevented any changes of locomotor activity or prepulse inhibition, slightly
increased malondialdehyde (MDA) levels and reduced inducible nitric oxide synthase (iNOS) positive
cells as well as CAT activity in cortex, striatum and hippocampus evoked by 3-NP [57].
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One of the most distinctive neuropathological characteristics of AD, are the senile plaques of
aggregates Aβ peptide. Moreover, besides the well-known Aβ aggregation, neuro-inflammation also
plays a pivotal role in the etiopathogenesis of this multifactorial disorder [81]. Li and coworkers (2015),
evaluated the potential therapeutic effect of hesperidin on behavioral dysfunction, Aβ deposition
and neuro-inflammation in the transgenic APP/PS1 mouse, a useful model of cerebral amyloidosis
for AD. Hesperidin (100 mg/kg body weight) was orally given to the mice for 10 days. It recovered
deficits in non-cognitive nesting capability and social interaction and attenuated Aβ deposition,
plaque associated amyloid precursor protein (APP) expression, microglial activation and TGF-β1
immunoreactivity in both cerebral cortex and hippocampus of APP/PS1 mice [58]. The same dose of
hesperidin (100 mg/kg) administrated for 16 weeks to three-month-old APPswe/PS1dE9 transgenic
mice reduced their learning and memory deficits, improved locomotor activity and increased glycogen
synthase kinase-3β (GSK-3β) phosphorylation, anti-oxidative defense and mitochondrial complex
I–IV enzymes activities [58]. However, there was not observed obvious change in Aβ deposition [59].
Hesperedin was effective also in the experimental model of intracerebroventricular streptozotocin
(ICV-STZ)-induced sporadic dementia of Alzheimer’s type (SDAT) [60]. Indeed, pretreatment with
hesperidin (100 or 200 mg/kg/day orally for 15 days) improved memory consolidation process
possibly through modulation of acetylcholine esterase activity (AChE) in mice injected bilaterally
with single dose of ICV-STZ (2.57 mg/kg body weight each side). Moreover, hesperidin decreased
neuronal cell death by reducing the overexpression of pro-inflammatory mediators like NF-κB, iNOS,
cyclooxygenase-2 (COX-2) and attenuated astrogliosis [60].

One of the key factors in the progression of neurodegenerative diseases is the deregulation of
metal ion homeostasis, such as Al, a major risk factor for the AD [82]. Thenmozhi and coworkers
(2015) evaluated the protective effect of hesperidin on AlCl3 induced neurobehavioral and pathological
changes in Alzheimeric rats. Orally administration of hesperidin (100 mg/kg) along with AlCl3
injection (100 mg/kg) for 60 days, significantly reduced the Al concentration in hippocampus and
cortex, the acetylcholinesterase (AChE) activity, the APP expressions, the levels of both Aβ1–42 and its
synthesis-related molecules (β and γ secretases). Moreover, hesperidin significantly attenuated the
behavioral impairments caused by AlCl3 and preserved the normal histoarchitecture pattern of the
hippocampus and cortex, as observed by histopathological studies [61]. Very recently, with the same
experimental model Thenmozhi et al., (2016) showed that hesperidin prevented oxidative stress and
apoptosis induced by AlCl3 compared to control group [62].

Excitotoxicity is considered one of the constitutive components of the neurodegenerative diseases
pathogenesis [83] caused by excessive release of aminoacids such as glutamate, a crucial excitatory
neurotransmitter in the mammals CNS. This provokes the overstimulation of glutamate receptors
which leads to an overload of intracellular Ca2+, generation of free radicals and subsequent neuronal
cell death [84]. Chang and coworkers (2015) evaluated the potential role of hesperidin in neurotoxicity
induced by glutamate release in rat hippocampus. They observed that hesperidin (IC50 20 µM)
inhibited both the release of glutamate and the elevation of cytosolic free Ca2+ concentration evoked
by 4-aminopyridine (4-AP) in rat hippocampal nerve terminals (synaptosomes). Furthermore,
in hippocampal slice preparations, whole-cell patch clamp experiments showed that hesperidin
reduced the frequency of spontaneous excitatory postsynaptic currents without affecting their
amplitude, indicating the involvement of a presynaptic mechanism. In addition, the Authors observed
that pre-treatment with hesperidin (10 or 50 mg/kg) attenuated the rise of extracellular glutamate and
the neuronal loss in the hippocampal CA3 area caused by the intraperitoneal injection of kainic acid
(KA; 15 mg/kg) [63].

3.1.3. Hesperetin

Hesperetin is a flavanone abundant in Citrus fruit and juice, and represents the major circulating
aglycone metabolite of hesperidin. Hesperetin displays several biological properties, such as
antioxidant, neuroprotective and anti-inflammatory activities.
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Experiments performed in vitro showed that 1 µM hesperetin has neuroprotective effects against
H2O2-induced cytotoxicity in PC12 cells [68], and that much lower concentrations both inhibit
H2O2-induced apoptosis and counteract staurosporine-induced cell death in primary cortical neurons
(0.01 µM/L and 300 nM, respectively) [66,67], suggesting its potential role in the intervention for
neurodegenerative diseases.

In vivo, Choi and Ahn (2008) observed that hesperetin (10 or 50 mg/kg body weight) inhibited
biomarkers of oxidative stress, such as the thiobarbituric acid-reactive substance (TBARS) and
carbonyl, in the brains of mice, and activated both CAT and superoxide dismutase (SOD). Moreover,
hesperetin increased the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, the glutathione
peroxidase (GSH-px) and the glutathione reductase (GR) activities [64]. Very recently, Kiasalari and
coworkers (2016), evaluated the protective effect of hesperetin against 6-OHDA-induced striatal lesion
and have explored some underlying mechanisms including apoptosis, inflammation and oxidative
stress. They administrated hesperetin (50 mg/kg/day) for 1 week at intrastriatal 6-OHDA-lesioned rats.
They observed that hesperetin reduced the rotational asymmetry induced by apomorphine, as well as
the latency and the total time on the narrow beam task. It also decreased striatal malondialdehyde and
increases both striatal CAT activity and GSH content. Moreover, hesperetin lowered striatal level of
glial fibrillary acidic protein (GFAP) and increased Bcl2 [65]. Finally, hesperetin treatment was also
capable to mitigate nigral DNA fragmentation and to prevent loss of SNC dopaminergic neurons [65].

3.1.4. Neohesperidin

Neohesperidin is a flavanone glycoside found in Citrus fruits. Hwang and coworkers (2008)
demonstrated the protective effects of pretreatments (6 h) with neohesperidin, hesperidin and
hesperetin (0.8, 4, 20, and 50 µM) on H2O2-induced (400 µM, 16 h) neurotoxicity in PC12 cells by
scavenging ROS, attenuating the elevation of intracellular free Ca2+, preventing membrane damage and
increasing CAT activity. Furthermore, neohesperidin attenuated both the decrease of mitochondrial
membrane potential and the increase of caspase-3 activity evoked by H2O2 [68].

3.1.5. Naringenin

It is known that naringenin possesses various pharmacologic properties including antioxidant,
free radical scavenger, anticancer, anti-inflammatory, immunomodulator and memory enhancer.

It’s known that ICV-STZ administration at a sub-diabetogenic dose provided a relevant model for
AD-type neurodegeneration with cognitive impairment (AD-TNDCI) [85,86]. In this field, Khan and
collaborators (2012), investigated the effects of naringenin on cognitive dysfunction and, oxidative
stress in a rat model of AD-TNDCI. The rats were orally pre-treated with naringin at 50 mg/kg for 2
weeks followed by ICV-STZ (3 mg/kg; 5 µL per site) injection bilaterally. The Authors observed that the
imbalance of several markers of oxidative stress (enzymatic and non-enzymatic) with impairments in
spatial learning and memory, loss of ChAT positive neuron and damage to hippocampal ones induced
by ICV-STZ, were ameliorated by pre-treatment with naringenin [69]. The ability of naringenin to
improve learning, memory and cognitive impairment was also confirmed by Baluchnejadmojarad and
Roghani (2006) in an experimental model very similar to those described above [70].

Heo et al., (2004) examined the neuroprotective effect of naringenin found in C. junos
against oxidative cell death induced by Aβ peptide in PC12 cells, and evaluated the anti-amnesic
activity of naringenin using ICR mice with scopolamine-induced amnesia (1 mg/kg body weight).
They showed that pretreatment with naringenin prevented the generation of Aβ-induced ROS and
decreased Aβ toxicity in a concentration dependent manner. Furthermore, naringenin (4.5 mg/kg
body weight), significantly ameliorated scopolamine-induced amnesia [71]. Vafeiadou and
coworkers (2009) [73] demonstrated that naringenin (0.01–0.3 µmol/L) protected against
LPS/IFN-gamma-induced neuronal death in a primary neuronal-glial co-culture system by inhibiting
the p38 mitogen-activated protein kinase (MAPK) phosphorylation and downstream signal transducer
and activator of transcription-1 (STAT-1).



Molecules 2016, 21, 1312 9 of 25

More recently, Wu and coworkers (2016) demonstrated that naringenin inhibits the expression of
cytokine signaling (SOCS)-3, iNOS and COX-2, as well as the release of NO and pro-inflammatory
cytokines in microglial cells. These actions were modulated by adenosine monophosphate-activated
protein kinase α (AMPKα) and protein kinase C δ (PKCδ) [72].

3.1.6. Didymin

Only one paper suggested a neuroprotective effect of didymin that was found to increase cell
viability of neuronal cells injured by H2O2 by decreasing mitochondrial dysfunctions and levels
of intracellular ROS, stimulating SOD, CAT and GPx activity [74]. The mechanism underlying the
protective effects of didymin in differentiated-SH-SY5Y exposed to H2O2 might be related to the
activation of antioxidant defense enzymes as well as to the inhibition of apoptotic features such as
p-JNK and caspase-3 [74].

3.2. Flavones

3.2.1. Apigenin

Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables.
It has long been considered to have various biological activities such as antioxidant, antiinflammatory,
anti-mutagenic and anti-tumorigenic properties. Apigenin has been shown to exert neuroprotective
activity against endoplasmic reticulum stress-induced apoptosis in the HT22 murine hippocampal
neuronal cells [87], in primary cultures of human neurons subjected to quinoloinic acid-induced
excitotoxicity [88] and in glutamate-induced neurotoxicity in both murine cerebellar and cortical cell
cultures [89].

Zhao et al. (2013) [90] reported the neuroprotective effects of the flavone in the amyloid precursor
protein/presenilin 1 protein (APP/PS1) double transgenic AD mouse model. After feeding four
month-old mice with apigenin (40 mg/kg) for 3 months, they observed both improvements in memory
and learning deficits and reduction of fibrillar amyloid deposits. Additionally, the apigenin-treated
mice showed restoration of the cortical extracellular signal-regulated protein kinase 1 (ERK)/
cAMP response element-binding protein (CREB)/BDNF pathway that is known to be involved in
learning and memory typically affected AD patients. Finally, apigenin enhances both SOD and GPx
activities [90]. Likewise, in Aβ25–35-induced amnesia mouse models, Liu et al. (2011) reported the
capability of apigenin (20 mg/kg) to improve the spatial learning and memory and the neurovascular
functionality [91]. Cognitive enhancing effects by apigenin (20 mg/kg, intraperitoneally) have
been described also in an animal model in which the flavone delayed the long-term forgetting [92].
Another study performed by Taupin et al. (2009) highlighted that the administration of apigenin
(25 mg/kg) for 10 days stimulated neurogenesis in the hippocampal region of the brain in 7-week
old mice and resulted in improved performance in the Morris water maze [93]. Patil and its
research group demonstrated that chronic intraperitoneally administration of apigenin (5–20 mg/kg)
reversed cognitive deficits in aged and lipopolysaccharide (LPS)-intoxicated mice [94]. Additionally,
apigenin improved motor skills and enhanced neurotrophic potential which has been reduced in
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism in mice [95]. Particularly,
MPTP (25 mg/kg) was administrated for five consecutive days and then apigenin (10 and 20 mg/kg)
was orally administrated for 26 days, including 5 days of pretreatment. After that, the Author
performed behavioral study and biochemical estimation of oxidative stress biomarkers, observing
(i) a reduced tyrosine hydroxylase (TH)-positive cells; (ii) a rise of BDNF amount and (iii) a decreased
level of GFAP in the substantia nigra of MPTP-treated mice [95]. More recently, Liu et al. (2015)
demonstrated that apigenin exerts a protective effect against MPP+-induced neurotoxicity in neuronal
like catecholaminergic PC12 cells. This effect is mediated through the inhibition of oxidative
stress, the stabilization of mitochondrial function and the reduction of neuronal apoptosis via the
mitochondrial pathway [96]. The cytoprotective effect of apigenin was also evaluated by Wu and
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coworkers (2015), showing that apigenin restored cell viability and repressed both caspase-3 and
PARP-1 activation in 4-HNE-treated PC12 cells. Moreover, apigenin activated MAPK and Nrf2
signaling, which in turn evoked adaptive cellular stress response pathways, restored ER homeostasis
altered by 4-HNE and inhibited cytotoxicity [97].

Table 2 reported the studies in which was evaluated apigenin as potential neuroprotective agent.

Table 2. Studies employed the Citrus flavones and their experimental models of neurodegeneration.

Flavones Model Disease/Condition Reference

apigenin

In vitro HT22 cells Choi et al., 2010 [87]
In vitro QUIN-treated primary human neuron Braidy et al., 2010 [88]
In vitro glutamate-treated cerebellar and cortical neurons Losi et al., 2004 [89]
In vivo APP/PS1 double transgenic mouse Zhao et al., 2013 [90]
In vivo Aβ25–35-treated mouse Liu et al., 2011 [91]
In vivo young male Wistar rats Popovic et al., 2014 [92]
In vivo 7-week old mice Taupin et al., 2009 [93]
In vivo MPTP-treated mice Patil et al., 2014 [95]
In vitro MPP+-incubated PC12 cells Liu et al., 2015 [96]
In vitro 4-HNE-exposed PC12 cells Wu et al., 2015 [97]
In vivo aged and LPS-intoxicated mice Patil et al., 2003 [94]

luteolin

In vivo chronic cerebral hypoperfusion in rats Fu et al., 2014 [98]
In vivo chronic cerebral hypoperfusion in rats Xu et al., 2010 [99]
In vivo obesity mice Liu et al., 2014 [100]
In vivo ICV-STZ injected rat Wang et al., 2016 [101]
In vitro 6-OHDA-exposed PC12 cells Hu et al., 2014 [102]
In vivo MPTP-treated mice Patil et al., 2014 [95]
In vitro MPP+-exposed PC12 and glial C6 cells Wruck et al., 2007 [103]
In vitro IFN-γ-incubated N9 and microglia cells Rezai-Zadeh et al., 2008 [104]
In vitro N2a cells transfected with SweAPP Rezai-Zadeh et al., 2009 [105]
In vitro LPS/IFN-γ-treated rat primary microglia and BV-2 microglial cells Kao et al., 2011 [106]
In vitro LPS-incubated microglia cells Chen et al., 2008 [107]
In vitro LPS-exposed BV2 microglia Zhu et al., 2011 [108]
In vitro SH-SY5Y cells co-cultured with LPS-stimulated BV2 microglia Zhu et al., 2014 [109]
In vitro LPS-treated microglia cells Dirscherl et al., 2010 [110]

3.2.2. Luteolin

In the last decades, several studies reported the neuroprotective properties of luteolin [111].
They are summarized in Table 2. In vivo studies showed that luteolin protected against cognitive
dysfunction induced by chronic cerebral hypoperfusion in rats [98,99]. Luteolin also protected against
high fat diet-induced cognitive defects in obesity mice [100]. Recently, Wang et al., (2016) demonstrated
that the flavone significantly ameliorated the spatial learning and memory impairment and increased
the thickness of CA1 pyramidal layer in STZ-treated animals [101]. Moreover, luteolin (20 µM) can
attenuate 6-OHDA-caused oxidative stress, cytotoxicity, and caspase-3 activation in PC12 cells [102].
Another study displayed as luteolin (10 and 20 mg/kg) could improve locomotor and muscular
alterations in mice exposed to MPTP, also decreasing the TH-positive cells, the neurotrophic factors,
the GFAP, and the BDNF [95]. In addition, Wruck et al., (2007) demonstrated that luteolin protected
rat neural PC12 and glial C6 cells from MPP+-induced toxicity and activated Nrf2 [103]. The research
group of Rezai-Zadeh (2008) demonstrated that treatment of both N9 and murine-derived primary
microglia cell lines with luteolin significantly reduced both the IFN-γ-induced CD40 expression and
the release of pro-inflammatory cytokines IL-6 and TNF-α through the inactivation of STAT1 [104].
One year later, the same authors showed that luteolin treatment of murine N2a cells transfected
with SweAPP and primary neuronal cells derived from SweAPP overexpressing mice resulted in
a significant reduction in Aβ generation. The mechanism seems to be involved in the selective
inactivation of the GSK-3α isoform, which in turn increases the phosphorylation of PS1, the catalytic
core of the γ secretase complex, thereby reducing PS1 APP interaction and Aβ generation [105].

Excessive production of NO and pro-inflammatory cytokines by activated microglia plays a
pivotal role in the pathogenesis of ND. Kao and collaborators (2011) reported the inhibitory effect
of luteolin on LPS/interferon γ (IFN-γ)-induced NO and cytokines production in rat primary
microglia and BV-2 microglial cells. Particularly, luteolin concentration-dependently abolished
LPS/IFN-γ-induced NO, TNF-α and IL-1β production as well as iNOS expression. Luteolin also
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exerted inhibitory effect on transcription factor activity including NF-κB, signal transducer and
activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF-1). These effects were
accompanied by down-regulation of ERK, p38, JNK, protein kinase B (Akt) and Src [106].

Chen and coworkers (2008) demonstrated that luteolin may protect dopaminergic neurons from
LPS-induced injury and its efficacy in inhibiting microglia activation [107]. Another research showed
that luteolin inhibited the LPS-stimulated expression of inducible iNOS, COX-2, TNF-α and IL-1β
as well as blocked the LPS-induced NF-κB activation [108]. A few years later, the same authors,
demonstrated that luteolin inhibited the LPS-stimulated expression of TLR-4, blocked LPS-induced
NF-κB, p38, JNK and Akt activation, but had no effect on ERK. In addition, pre-treatment with luteolin
increased cell viability and reduced apoptosis of SH-SY5Y cells co-cultured with LPS-stimulated BV2
microglia [109]. To better understand the immuno-modulatory effects of luteolin, Dirscherl et al.,
(2010) carried out a genome-wide expression study in LPS-exposed BV-2 microglia cells treated with
luteolin and performed a phenotypic and functional profile. They observed that luteolin suppressed
pro-inflammatory marker expression in LPS-activated microglia and triggered global changes in
the microglial transcriptome with more than 50 differentially expressed transcripts. Moreover,
pro-inflammatory and pro-apoptotic gene expression was blocked by luteolin, while mRNA levels
of genes involved into anti-oxidant metabolism, phagocytosis, ramification, and chemotaxis were
significantly induced [110].

3.3. Flavonols

3.3.1. Kaempferol

There are few evidences for the neuroprotective effect of kaempferol (Table 3). LPS-activated
microglial cells have been suggested to be a useful in vitro model to test the potential of
drugs for neuroinflammatory disorders [112,113]. Park and coworkers (2011) demonstrated the
activity of kaempferol against neuroinflammatory toxicity caused by LPS-activated microglia.
Particularly, they showed that kaempferol inhibit the LPS-induced expression of iNOS, COX-2,
matrix metalloproteinases (MMPs) and the subsequent production of ROS, TNF-α, NO, PGE2 and
IL-1β in BV2 microglial cells, through the inhibition of TLR4, NF-κB, p38 MAPK, JNK and AKT
activation [114]. Yang and collaborators (2014) demonstrated the neuroprotective effects of kaempferol
in glutamate-treated hippocampal neuronal cells, suggesting that kaempferol may be a useful candidate
for neurodegenerative diseases [115].

Table 3. Citrus flavonols kaempferol and rutin in models of neurodegenerations.

Flavonols Model Disease/Condition Reference

kaempferol In vitro LPS-activated microglia Park et al., 2011 [114]
In vitro glutamate-treated hippocampal neuronal Yang et al., 2014 [115]

rutin

In vitro 6-OHDA-incubated PC-12 cells Magalingam et al., 2013 [116]
In vitro ethanol-exposed HT22 cells Song et al., 2014 [117]
In vitro amylin-treated SH-SY5Y cells Yu et al., 2015 [118]
In vitro neuronal cells Na et al., 2014 [119]
In vivo KA-injected BALB/c mice Nasiri-Asl et al., 2013 [120]
In vivo 6-OHDA-treated rats Kham et al., 2012 [121]
In vitro Ab42-incubated SH-SY5Y cells Wang et al., 2012 [122]
In vivo APPswe/PS1dE9 transgenic mice Xu et al., 2014 [123]
In vivo mice Machawal and Kumar, 2014 [124]
In vivo Aβ-injected rats Moghbelinejad et al., 2014 [125]

3.3.2. Rutin

Rutin is a multifunctional flavonoid glycoside acting on various cellular functions under
pathological conditions such as ND, maybe due to its ability to cross the blood brain barrier (BBB) [126].
Table 3 summarizes the studies aimed to evaluate the effects of rutin in models of neurodegenerations.
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In an in vitro model of PD, it has been demonstrated that rutin reduced lipid peroxidation in
6-OHDA-treated PC-12 cells, activating antioxidant enzymes like SOD, CAT, GPx and GSH [116].
The neuroprotective effects of rutin against 6-OHDA were evaluated also in vivo. Rats was pre-treated
with this flavonoids (25 mg/kg body weight, orally) for 3 weeks and then subjected to unilateral
intrastriatal injection of 6-OHDA (10 µg in 0.1% ascorbic acid). Rutin prevented the deficits in locomotor
activity and motor coordination, and protected neurons from deleterious effects of 6-OHDA in the
substantia nigra, as suggested by histopathological and immunohistochemical assays [121].

Oxidative stress has been proposed to be a potential mechanism underlying ethanol-induced
damage and may contribute to neuronal degeneration [127]. Song et al., (2014) investigated the
antioxidant effect of rutin in hippocampal neuronal cells exposed to ethanol, and found that it
prevented the ethanol-induced decrease in nerve growth factor expression, GDNF and BDNF in
HT22 cells. Moreover, rutin significantly increased the level of the antioxidant glutathione, and the
activities of SOD and CAT [117]. Oxidative stress may play a role also in hippocampal cell death
associated with KA-induced neurotoxicity [128]. It has been reported that rutin (100 and 200 mg/kg,
i.p. for 7 days) has potential anticonvulsant and antioxidative activities against oxidative stress in
KA-induced (10 mg/kg, i.p.) seizures in mice [120].

Wang and coworkers (2012) showed that rutin can inhibit Aβ42 fibrillization in concentration
dependent manner and can attenuate Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells [122].
More recently, the same authors demonstrated that orally administered rutin significantly attenuated
memory deficits in APPswe/PS1dE9 transgenic mice, decreased oligomeric Aβ level, reduced oxidative
stress, downregulated gliosis and diminished IL-1 and IL-6 levels in the brain [123]. Another study
suggested a role for rutin in protecting against AD. Moghbelinejad and coworkers (2014) showed that
rutin improved memory retrieval in rats injected with Aβ by increasing ERK1, CREB and BDNF [125].

Recently, Yu et al., (2015) showed that rutin inhibited amylin-induced neurocytotoxicity,
decreasing the production of ROS, NO, glutathione disulfide (GSSG), MDA, TNF-α and IL-1β, thus
attenuating mitochondrial damage and increasing the GSH/GSSG ratio. These protective effects could
be derived by its ability to inhibit amylin aggregation, enhance the activity of SOD, CAT, and GPx, and
reduce that of iNOS [118]. Machawal and Kumar (2014) suggested that the neuroprotective mechanism
of rutin against immobilization stress-induced anxiety-like behavioral and oxidative damage in mice
is mediated by a reduction of NO [124]. Finally, it has been proposed that rutin protects against
the neurodegenerative effects of prion accumulation in vitro, by reducing levels of ROS and NO,
increasing production of neurotropic factors and inhibiting mitochondrial apoptotic events leading to
HT22 neuronal cell death [119].

3.3.3. Quercetin

Quercetin exhibits numerous pharmacological activities including anti-cancer, anti-inflammatory,
anti-atherosclerotic, anti-thrombotic and anti-hypertensive effects, as well as benefits for human
endurance exercise capacity. Several in vitro and in vivo studies have provided supportive evidence
also for its neuroprotective effects in various models of neuronal injury and chronic neurodegenerative
diseases (Table 4). In vitro studies have shown that low micromolar concentrations of quercetin
inhibited cell toxicity induced by neurotoxic molecules known to be inducer of oxidative stress.
In particular, several research employed H2O2 as stressor. Suematsu et al., (2011) demonstrated
that quercetin suppressed the H2O2-caused cytotoxicity and inhibited apoptosis in human neuronal
SH-SY5Y cells [129]. Quercetin also decreased H2O2-induced oxidative stress in SK-N-MC cells
by reducing HIF-1a, Foxo-3a, NICD and pro-apoptotic mediators including p53 and Bax [130].
The anti-oxidative and anti-apoptotic role of quercetin was further supported by the study of
Jazvinšćak Jembrek and coworkers (2012) [131]. Sajad et al., (2013) showed that pre-treatment
with quercetin prevented protein nitration and glycolytic block of proliferation in cultured neuronal
precursor cells (NPCs) [132].
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Table 4. Studies employed quercetin in experimental models of neurodegeneration.

Flavonol Model Disease/Condition Reference

quercetin

In vitro H2O2-incubated SH-SY5Y cells Suematsu et al., 2011 [129]
In vitro H2O2-exposed SK-N-MC cells Roshanzamir and Yazdanparast, 2014 [130]
In vitro H2O2-treated NPCs cells Sajad et al., 2013 [132]
In vitro H2O2-treated -P19 neurons Jazvinšćak J et al., 2012 [131]
In vitro neuronal cells Ansari et al., 2009 [133]
In vivo Aβ-injected mice Zhang et al., 2016 [134]
In vivo MPTP-treated mice Lv et al., 2012 [135]
In vitro LPS- and IFN-γ-treated BV-2 microglia Chen et al., 2005 [136]
In vitro LPS-treated BV-2 microglia Kang et al., 2013 [137]
In vitro high-glucose exposed PC12 cells Bournival et al., 2012 [138]
In vivo high-fat diet in mice Xia et al., 2015 [139]
In vivo high-cholesterol diet in mice Lu et al., 2010 [140]
In vivo intracerebral hemorrhage in rats Zhang et al., 2015 [141]
In vivo ischemia reperfusion injury in rats Arikan et al., 2015 [142]
In vivo STZ-treated mice Tota et al., 2010 [143]
In vivo scopolamine-treated zebrafish Richetti et al., 2011 [144]
In vivo Pb-exposed rats Hu et al., 2008 [145]
In vivo ethylmercury-exposed rats Barcelos et al., 2011 [146]
In vivo tungsten-exposed rats Sachdeva et al., 2015 [147]
In vivo Al-treated rats Sharma et al., 2013 [148]
In vivo Al -treated rats Sharma et al., 2015 [149]
In vivo Al -treated rats Sharma et al., 2016 [150]
In vivo PCBs-treated rats Bavithra et al., 2012 [151]
In vivo PCBs-treated rats Selvakumar et al., 2013 [152]
In vivo ethidium bromide-treated rats Beckmann et al., 2014 [153]

Protection of neuronal cells from the toxicity of Aβ peptide-induced toxicity has also been
reported. Ansari et al., (2009) showed that low concentration of quercetin significantly attenuated
protein oxidation, lipid peroxidation and apoptosis induced by Aβ1–42 in neuronal cultures [133],
while Zhang et al., (2016) demonstrated that quercetin enhanced brain apoE levels and decreased Aβ

levels in the cortex of amyloid model mice [134]. Moreover, the orally administration of quercetin
(50, 100 and 200 mg/kg body weight) markedly improves MPTP-induced dopamine depletion in the
brain tissue, the motor balance and the coordination which is significantly altered following MPTP
injection in an animal model of PD [135].

In 2005, Chen and collaborators, demonstrated that quercetin suppressed LPS- and IFN-γ-induced
NO production and iNOS gene transcription and enhanced heme oxygenase-1 (HO-1) expression [136].
More recently, Kang and coworkers (2013) found that the suppression of NO system in BV2 microglial
cell line is mediated by the inhibition of NF-κB and the induction of Nrf2/HO-1 [137]. Furthermore,
quercetin protected neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and
apoptosis [138], and antagonized cognitive impairment induced by feeding mice with a high fat [139]
or high-cholesterol diet [140].

There is a lot of evidence showing that memory deficit is associated with impaired cerebral
circulation and a decrease in the cholinergic system. It has been shown that quercetin protected
the retina from apoptotic damage due to ischemia reperfusion injury in vivo [142] and was also
neuroprotective in models of intracerebral hemorrhage in rats [141]. Tota et al., (2010) demonstrated
that orally daily pre-treatment with quercetin (2.5, 5 and 10 mg/kg) showed a dose-dependent
restoration of cerebral blood flow (CBF) and ATP content, significantly reduced by the administration
of STZ (0.5 mg/kg) in mice. Further, quercetin prevented STZ-induced memory impairment and
decreased AChE activity as well as oxidative and nitrosative stress, as evidenced by a significant
decrease in MDA and nitrite, and increase in GSH levels [143]. Richetti et al., (2011) demonstrated the
protective role of quercetin (single injection of 50 mg/kg concentration) against scopolamine-induced
inhibitory avoidance memory deficits in zebrafish [144]. However, Nassiri-Asl (2013) observed
that quercetin (50 mg/kg) could not be effective against oxidative stress in the hippocampus and
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cerebral cortex in kindled rats besides its anticonvulsant effects and protection against memory
impairment [154].

Quercetin provided protection also against the neurotoxicity of several metals. Hu et al., (2008)
evaluated the effect of quercetin on chronic lead (Pb) exposure-induced impairment of synaptic
plasticity in dentate gyrus (DG) area of rat hippocampus. The results showed that quercetin
significantly increase the depressed input/output (I/O) functions, paired-pulse reactions (PPR) and
long-term potentiation (LTP) of Pb-exposed group. In addition, concentration of Pb in hippocampus
was partially reduced after quercetin treatment [145]. Quercetin (0.5–50 mg/kg/bw/day) protected
also against DNA damage caused by exposure to methylmercury [146] and tungsten [147]. Several
lines of evidences suggested that Al has severe toxic manifestations on the CNS. The research group
of Sharma, found that pre-treatment with quercetin (10 mg/kg/bw/day) before intragastrically
administration of Al (10 mg/kg/bw/day) decreased ROS levels, mitochondrial DNA oxidation and
citrate synthase activity in both hippocampus and corpus striatum regions, while increased MnSOD
activity of rat brain. In addition, quercetin prevented Al-induced translocation of cytochrome c (cyt-c),
up-regulated Bcl-2, and down-regulated Bax, p53 and caspase-3 activation. It also reduced DNA
fragmentation and increased the mitochondrial DNA copy number and mitochondrial content in the
regions of rat brain [148–150].

Polychlorinated biphenyls (PCBs) are very toxic environmental contaminants known to trigger
neurochemical damages and behavioral disorders. Bavithra et al. (2012) showed that quercetin acted
as scavenger of the PCBs-induced free radicals and protected dopaminergic receptors in the cerebellum
of rat [151]. Another study carried out by Selvakumar and coworkers (2013), evidenced that quercetin
(50 mg/kg) suppresses ROS, enhances both enzymatic antioxidants and neurotransmitter levels and
improves the cognitive functions damned by PCBs (2 mg/kg) [152]. Moreover, quercetin prevented
alterations on cholinergic neurotransmission and in the behavioral tests also in rats experimentally
demyelinated by ethidium bromide [153].

3.4. Polymethoxiflavones

In Table 5 are summarized the studies reporting the neuroprotective activity of
Citrus polymethoxiflavones.

Table 5. Studies and experimental models of neurodegenerative diseases in which tangeretin or
nobiletin were used.

Polymethoxyflavones Model Disease/Condition Reference

tangeretin In vivo 6-OHDA-injected rat Datla et al., 2001 [155]
In vitro LPS-stimulated microglia and BV-2 cells Shu et al., 2014 [156]

nobiletin

In vitro Aβ1–42 or Aβ1–40-exposed hippocampus neurons of rats Matzukazi et al., 2006 [157]In vivo Aβ1–40-treated rats
In vivo APP-SL 7-5 mice Onozuka et al., 2008 [158]
In vivo SAMP8 mice Nakajima et al., 2013 [159]
In vivo 3XTg-AD mice Nakajima et al., 2015 [160]
In vivo transgenic mice Yamakuni et al., 2010 [161]
In vivo MPP+- injected mice Jeong et al., 2014 [162]
In vitro LPS-treated BV-2 microglia cell Cui et al., 2010 [163]
In vivo cerebral ischemia inducted mice Yamamoto et al., 2009 [164]
In vivo cerebral ischemia inducted rats Zhang et al., 2016 [165]

3.4.1. Tangeretin

Tangeretin is a polymethoxyflavone present exclusively in Citrus fruit peels. Neuroprotective
effects of tangeretin were elucidated in an animal model of PD. Sub-chronic treatment of rats
with tangeretin (20 mg/kg/day) for 4 days before 6-OHDA injection markedly reduced the loss
of both TH+ cells and striatal dopamine content evoked by unilateral infusion of 6-OHDA (8 µg)
onto medial forebrain bundle [155]. More recently, Shu and coworkers (2014) demonstrated that
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tangeretin suppressed microglial activation in the LPS-stimulated primary rat microglia and BV-2 cell
culture [156] (Table 5).

3.4.2. Nobiletin

Nobiletin is a polymethoxylated flavone that is commonly presents in Citrus peels. Several papers
reported the protective effect of nobiletin in different model of AD. Matsuzaki and coworkers (2006)
observed that nobiletin (10 and 30 µM) reversed a reduction in the activity of CREB-phosphorylation
by the sublethal concentration of Aβ1–42 or Aβ1–40 in cultured rat hippocampus neurons. Moreover,
it ameliorated Aβ1–40-induced impairment of memory in AD model rats [157].

Onozuka and collaborators (2008) demonstrated that daily administrated nobiletin (10 mg/kg,
i.p.) for 4 months reduced Aβ plaque pathology and improved cognitive deficits in APP-SL 7–5 mice,
a transgenic mouse model of AD [158]. More recently, the same authors showed that nobiletin
(10–50 mg/kg/day, i.p.) improved age-related cognitive impairment of senescence-accelerated mouse
prone 8 (SAMP8) mice, and reduced both the oxidative stress and tau phosphorylation in their
brain [159]. Moreover, they showed that nobiletin (30 mg/kg) administered for 3 months counteracted
the impairment of short-term memory and recognition memory in a triple transgenic mouse model of
AD (3XTg-AD mice). In addition, nobiletin reduced the levels of both soluble Aβ1–40 and ROS in the
brain and in the hippocampus of 3XTg-AD mice, respectively [160]. Furthermore, daily administration
of nobiletin for four months rescued the memory impairment in fear conditioning, and decreased
hippocampal Aβ deposit in the transgenic mice [161].

The effect of nobiletin on neurological disorders was also evaluated in a neurotoxic model of
PD. MPP+ was unilaterally injected into the median forebrain bundle of rat brains with or without
daily intraperitoneal injection of nobiletin (1, 10 and 20 mg/kg). The latter, at a dose of 10 mg/kg,
but not at 1 or 20 mg/kg, significantly protected DA neurons in the substantia nigra of MPP+-treated
rats, also reducing microglial activation [162]. The capability of nobiletin to suppress microgliosis
was demonstrated also by the results of the study performed by Cui et al. (2010) [163]. They found
that the polymethoxiflavone suppressed the activation of NF-κB signaling pathway and the release of
NO, TNF-α and IL-1β, as well as the phosphorylations of ERK, JNK and p-38 evoked by LPS in BV-2
microglia cells.

It is known that decreased cerebral blood flow causes cognitive impairments and neuronal
injury in the progressive age-related neurodegenerative disorders such as AD and vascular dementia.
Yamamoto et al., (2009) showed that treatment with 50 mg/kg of nobiletin (i.p.) for the consecutive
7 days before and after the induction of brain ischemia significantly inhibited delayed neuronal death
in the hippocampal CA1 neurons and improved the contextual cerebral ischemia-induced memory
deficits [164]. Very recently, Zhang et al. (2016) demonstrated that nobiletin (10 and 25 mg/kg/day; i.p.)
administrated for 3 days prior to the experimental ischemia and immediately after surgery reduced
brain edema and neurological deficit, as well as increased the expression of Nrf2, HO-1, SOD1 and
GSH, while decreased the levels of NF-κB, MMP-9 and MDA [165].

4. Conclusion Remarks and Future Perspectives

During the last decades, several studies were performed to evaluate the neuroprotective effects of
Citrus flavonoids and to identify their molecular targets. Literature data collected in our review support
their protective activity in neuropathological conditions, especially in the presence of prooxidants
or neurotoxins. These findings highlight the antioxidant nature of flavonoids, able to arrest free
radical-induced oxidative damage, which is known to play a pivotal role in many degenerative diseases.
Moreover, their neuroprotective action is mediated by the interaction with specific intracellular targets
that are implicated in several signaling pathways important for maintaining the physiological status.
In this way, Citrus flavonoids prevent the neuronal dysfunction due to both acute and chronic injuries
in several in vivo experimental models. Nevertheless, the majority of studies on the beneficial effects of
Citrus flavonoids have been performed in vitro and in vivo, without evidence from equivalent clinical
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trials. This means that in some cases, the experimental research on the neuroprotective effects of Citrus
flavonoids does not take into account some aspects which are of great importance in clinical practice.
For example, in some study, the pharmacological effect was observed at concentrations or dosages
(in vitro and in vivo studies, respectively) of active substance which are unlikely to be reached in the
clinical setting. Moreover, in some study it was used routes of administration that highly unlikely to
be used by humans. Generally, a natural drug is orally administered (often as nutraceutical or dietary
supplement), but bioavailability and presystemic elimination issues are often ignored by researchers.
Consequently, the beneficial effects of orally administered flavonoids to improve or prevent CNS
pathologies still remain an uncompleted debated topic. This because their poor absorption, rapid
metabolism and selective permeability across the BBB limits their access to the CNS and, consequently,
their neuroprotective efficacy. In other words, we do not know if the exciting preclinical results
correspond to a real therapeutic success. This is the reason for their limited clinical application both
alone and as an add-on therapy. Nevertheless, the development of novel natural compound-loaded
delivery systems has improved the bioavailability of flavonoids together with their delivery to the
brain, enhancing the potential of flavonoids as neuroprotective agents. Further studies are necessary
to unravel more pharmacokinetics aspects of flavonoids, which in turn would be very important to
stimulate well designed and well-controlled clinical trials confirming the excellent preclinical results.

Anyway, as suggested by this literature revision, we can consider Citrus flavonoids as key
compounds for the development of a new generation of pharmacological agents effective in preventing
and treating neurodegenerative diseases.

This review may be used as a starting point for novel nutraceuticals, food supplements or
complementary and alternative drugs to maintain or improve the neurophysiological status.
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