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Abstract
Purpose Cerebral microbleeds (CMBs) are small rounded lesions representing cerebral hemosiderin deposits surrounded by 
macrophages that results from previous microhemorrhages. The aim of this study was to review the distribution of cerebral 
microbleeds in patients with end-stage organ failure and their association with specific end-stage organ failure risk factors.
Materials and methods Between August 2015 and June 2017, we evaluated 15 patients, 9 males, and 6 females, (mean age 
65.5 years). Patients population was subdivided into three groups according to the organ failure: (a) chronic kidney failure 
(n = 8), (b) restrictive cardiomyopathy undergoing heart transplantation (n = 1), and (c) end-stage liver failure undergo-
ing liver transplantation (n = 6). The MR exams were performed on a 3T MR unit and the SWI sequence was used for the 
detection of CMBs. CMBs were subdivided in supratentorial lobar distributed, supratentorial non-lobar distributed, and 
infratentorial distributed.
Results A total of 91 microbleeds were observed in 15 patients. Fifty-nine CMBs lesions (64.8%) had supratentorial lobar 
distribution, 17 CMBs lesions (18.8%) had supratentorial non-lobar distribution and the remaining 15 CMBs lesions (16.4%) 
were infratentorial distributed. An overall predominance of supratentorial multiple lobar localizations was found in all types 
of end-stage organ failure. The presence of CMBs was significantly correlated with age, hypertension, and specific end-stage 
organ failure risk factors (p < 0.001).
Conclusions CMBs are mostly founded in supratentorial lobar localization in end-stage organ failure. The improved detec-
tion of CMBs with SWI sequences may contribute to a more accurate identification of patients with cerebral risk factors to 
prevent complications during or after the organ transplantation.

Keywords Cerebral microbleeds · Susceptibility-weighted imaging · Magnetic resonance imaging · End-stage organ 
failure · Transplantation

Introduction

Cerebral microbleeds (CMBs) consist of small cerebral 
hemosiderin deposits surrounded by macrophages that 
result from previous microhemorrhages, usually asympto-
matic due to the rupture of small arteries, arterioles, and/or 
capillaries [1, 2]. Cerebral microbleeds can be visualized on 
T2*-weighted gradient-recalled-echo (GRE) magnetic reso-
nance (MR) imaging sequences, as small, rounded, or ovoid 
blooming homogeneous hypointense lesions, localized in the 
brain parenchyma, measuring 5–10 mm in diameter [3–6].

In recent years, the introduction of susceptibility-
weighted imaging (SWI) MR sequences has improved 
CMBs detection of previously undetected small intracerebral 
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hemorrhages (< 5–10 mm in diameter) compared to the 
GRE MR sequences [7, 8].

The SWI sequence is a velocity compensated high-reso-
lution 3D gradient-echo sequence that uses magnitude and 
filtered phase information to create a new contrast [9, 10]. 
As a result, CMBs are more sensitively detected by SWI 
compared to T2*-weighted GRE [3, 8, 11–14].

The presence of cerebral microbleeds was found in up to 
5% of healthy adults, but they were most commonly corre-
lated with aging, hypertension, cerebral amyloid angiopathy, 
ischemic stroke, intracerebral hemorrhage, and cognitive 
disorders [1, 12, 15]. In these patients, CMBs represent an 
important marker of the cerebral small vessel pathology [7, 
16, 17]. Moreover, the presence of CMBs is an independent 
risk factor for subsequent larger intracerebral hemorrhages, 
and they are also associated with higher incidence of cogni-
tive decline [18, 19].

Regarding the localization, cerebral microbleeds can be 
classified in supratentorial lobar, supratentorial deep (or 
non-lobar), infratentorial, and mixed distributed.

The lobar distribution involves the cortex and the sub-
cortical white matter. Deep CMBs are localized in the 
basal ganglia, internal and external capsule, thalamus, deep 
and periventricular white matter. The infratentorial pat-
tern includes the brainstem and cerebellum. Finally, mixed 
CMBs are a combination of both cortical and deep localiza-
tion [20].

The distribution of CMBs could be correlated to the sys-
temic disease of the patient.

A supratentorial lobar pattern was associated with the 
presence of cerebral amyloid angiopathy [21] and with 
degenerative brain disease, most commonly Alzheimer dis-
ease [11, 22, 23]. A distribution of CMBs in the deep white 
matter or in the infratentorial structure was significantly 
higher in patients with hypertension [16].

Patients with end-stage organ failure share several risk 
factors strongly associated with the presence of cerebral 
microbleeds, such as cardiovascular risk factors, low glo-
merular filtration rate, and platelet dysfunction. Moreover, 
advanced hepatic failure, such as in Child–Pugh class C, or 
fulminant hepatitis, are associated with hepatic coagulopa-
thy due to decreased liver production of coagulation proteins 
[24].

Cerebral microbleeds have also an increased incidence 
in patients who underwent anticoagulation therapy due to 
chronic heart disease that finally brings to end-stage heart 
failure [25].

As the presence of CMBs is considered a risk factor for 
future development of CMBs, and it may predict the devel-
opment of ischaemic stroke and secondary intracranial hem-
orrhage [26, 27], it has become of fundamental relevance to 
assess the number and distribution of CMBs by MR imaging 
[3–6].

The aim of this study was to review the distribution of 
cerebral microbleeds in patients with end-stage organ failure 
and their association with specific end-stage organ failure 
risk factors as a neuroimaging biomarker for the underling 
disease.

Materials and methods

Patient population

Our retrospective cohort study was reviewed and approved 
by the Institutional Research Review Board (IRRB) of our 
institution, and informed consent form was waived; how-
ever, informed written consent to the MR was obtained in 
all patients.

We examined 79 patients candidate for liver, kidney or 
heart transplantation between August 2015 and June 2017 
as a part of a research protocol aimed to assess preexistence 
of cerebral risk factor in patients candidate for organ trans-
plantation at our institution. Among the 79 patients, only 29 
consecutive patients who underwent brain MR imaging at 
3T were selected while the remaining 50 patients that under-
went brain MR imaging at 1.5T were excluded.

Patients were referred for end-stage liver, kidney or heart 
failure, according to following clinical characteristics: stage 
5 chronic kidney failure having estimated glomerular filtra-
tion rate (eGFR) less than 15, or patient already on dialysis; 
chronic heart failure classified with the New York Heart 
Association (NYHA) criteria [28] on class III or IV, requir-
ing heart transplantation; end-stage hepatic failure due to 
cirrhosis requiring hepatic transplantation in Child–Pugh 
class B–C [24].

Clinical and laboratory data were collected for each 
patient including duration of the disease leading to end-stage 
organ failure, hypertension, diabetes mellitus, hyperlipi-
demia, coronary artery disease, atrial fibrillation, glomerular 
filtration rate, platelet dysfunction, and hepatic coagulopa-
thy. Drug therapy, which could increase bleeding risk, such 
as aspirin, clopidogrel, and warfarin, was reported for each 
patient.

Exclusion criteria were the presence of acute or chronic 
ischemic or hemorrhagic stroke, intracranial hemangioma, 
cerebral cavernous malformation, arteriovenous malforma-
tions, cerebral aneurysm, Alzheimer’s disease, intracerebral 
lesions with a hemorrhagic component associated with 
tumors and abscesses.

Patients with unavailable SWI images (n = 8), or poor 
image quality (n = 6) were excluded from the study.

Ultimately, the study population consisted of 15 patients 
(mean age 63.5 years, age range 48–82 years, ± 9.15), 9 
males (60%) and 6 females (40%).
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Patients population was subdivided into three groups 
according to the organ failure: patients with end-stage kid-
ney failure (n = 8), a patient undergoing heart transplanta-
tion due to restrictive cardiomyopathy (n = 1), and patients 
with end-stage liver failure undergoing liver transplantation 
(n = 6). Data are summarized in Table 1.

MR examination

The MR exams were performed on a 3T MR scanner (Dis-
covery 750w, General Electric, Healthcare, Milwaukee, 
USA).

MR imaging protocol included axial and sagittal fast-spin 
echo (FSE) T2W (8000/90 [TR/TE]) images, axial fluid-
attenuated inversion-recovery (FLAIR) (9000/150/2250 
[TR/TE/TI]) images, along with axial, sagittal and coro-
nal non-enhanced and contrast-enhanced (0.1 mmol/kg 
gadobutrol–Gadovist, Bayer, Germany), FSE T1W (600/20 
[TR/TE]) images with a field of view (FOV) of 24 cm, 
matrix 320 × 320, slice thickness 4 mm, intersection gap 
1 mm, number of excitations 1.

The SWI images (3D GRE 48/23 ms [TR/TE], flip angle 
10°) were obtained with a FOV of 24 cm, matrix 256 × 256, 
slice thickness 2.5 mm, gap 1 mm, number of excitations 1, 
and acquisition time 4:04 min.

The SWI images were also post-processed with the min-
imum intensity projection (MinlP) algorithm in the axial 
plane with a slice thickness of 3–10 mm to better visualize 
“signal void” of the vessels structures.

Image analysis

The images were analyzed in consensus by two neuroradi-
ologists, each with at least 10 years of experience, who were 
unaware of the patients’ clinical information. Any disagree-
ment about image assessment was resolved in consensus by 
the two radiologists by discussion.

SWI images, presented in random order on a picture 
archiving and communication system (PACS) (Agfa Health-
Care GmbH—Bonn, Germany), were analyzed by the two 
neuroradiologists for the presence and localization of the 
CMBs lesions.

Cerebral microbleeds were defined as small, hypointense, 
rounded lesions within the brain parenchyma that measured 
less than 10 mm on the SWI images [29].

Using the SWI-filtered phase images, cortical calcifications, 
as well as choroid plexus, globus pallidum, and pineal calcifi-
cations, were easily identified as they appear with the opposite-
sign phase compared to hemosiderin [30]. Hypointense lesions 
in the basal ganglia, not clearly identified as calcifications, 
were excluded as most likely they represent iron deposits.

Hypointense spots near the neurocranium and the 
splanchnocranium were not considered because of their 
vicinity to the bone and their consequent uncertain artifact 
nature.

To better differentiate between CMBs and blood vessels, 
the minimum intensity projection (MinIP) post-processed 
SWI images were used as they are able to demonstrate the 
“signal void” of the vessels structures [5].

Number and distribution of cerebral microbleeds were 
recorded based on their location as supratentorial lobar 
(strictly cortical and subcortical), supratentorial non-lobar 
(in deep regions including the basal ganglia, thalamus, inter-
nal capsule, external capsule, corpus callosum, deep and 
periventricular white matter), and infratentorial (brainstem, 
cerebellum) as previously reported in the literature [29].

Statistical analysis

Continuous variables are presented as mean ± standard 
deviation (SD) and compared using two-tailed, unpaired 
Student’s t test. Fisher’s test was used to test for differences 
in categorical variables.

Multivariate logistic regression analysis was performed to 
assess the association between the number of CMBs lesions 
with patient’s age, sex, duration of the disease leading to 
end-stage organ failure, hypertension, diabetes mellitus, and 
hyperlipidemia.

Multivariate regression analysis was then performed tak-
ing in account risk factors specific for end-stage liver, kid-
ney, or heart failure such as platelet dysfunction and hepatic 
coagulopathy, glomerular filtration rate, coronary artery 
disease, atrial fibrillation, and drug therapy which could 
increase bleeding risk.

Differences for a p value of < 0.05 were considered sta-
tistically significant.

Statistical analysis was performed using the statistical 
software package SPSS (SPSS, Chicago, USA).

Results

Cerebral microbleeds were demonstrated as small, rounded, 
hypointense lesions within the brain parenchyma that meas-
ured less than 10 mm on the SWI images.

Table 1  Characteristics of patients

Variables No.

Number of patients 15
Mean age (± SD), years 63.5 (± 9.15)
Sex (male/female) 9/6
End-stage kidney failure 8
End-stage heart failure 1
End-stage liver failure 6
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A total of 91 microbleeds were observed in 15 patients. 
Fifty-nine CMBs lesions (64.8%) had supratentorial lobar 
distribution, 17 CMBs lesions (18.8%) had supratentorial 
non-lobar distribution, and the remaining 15 CMBs lesions 
(16.4%) were infratentorial distributed (Figs. 1, 2, 3, 4) 
(Table 2).

The mean count of microbleeds was 3.9 (± 5.4) per 
patient for supratentorial lobar distribution, 1.1 (± 1.1) 
per patient for supratentorial non-lobar distribution, and 1 
(± 1.4) per patient for infratentorial distribution.

The frequency of the number of CMBs was as follow: 
three patients (3%) had one microbleed, ten patients (50.8%) 
had multiple microbleeds ranging from 2 to 9 microbleeds, 
one patient (17.6) had 16 microbleeds and one patient 
(28.6%) had 26 microbleeds.

A predominance of supratentorial lobar distribution of 
CMBs was seen in all type of end-stage organ failure, and it 
was characterized by the presence of multiple CMBs (range 
2–26 CMBs) (Table 2).

The number of CMBs were significantly correlated with 
the age of the patients (age coefficient 0.56, p < 0.001), 
which means that the older the patients the more numerous 
the CMBs were found.

In multivariate logistic regression analysis, adjusted for 
age and sex, the presence of CMBs was significantly cor-
related with hypertension (p = 0.001), diabetes (p = 0.015), 
duration of the disease leading to end-stage organ failure 
(p = 0.002), glomerular filtration rate (p = 0.001), platelet 
dysfunction (p = 0.008), hepatic coagulopathy (p = 0.006), 
and anticoagulation or antiplatelet drug therapy (p = 0.001).

Discussion

The results of our study show that the presence of cerebral 
microbleeds is significantly correlated with several risk fac-
tors related to end-stage liver, kidney or heart failure such as 
low glomerular filtration rate, platelet dysfunction, hepatic 
coagulopathy, anticoagulation or antiplatelet drug therapy, 
and duration of the disease leading to end-stage organ fail-
ure. Age and hypertension are also significantly correlated 
to the presence of CMBs as demonstrated in this study and 
as reported in the literature [19].

Cerebral microbleeds, according to guideline pro-
posed in the literature [3–6], are defined as round or ovoid 
lesions, that appear hypointense and with a blooming effect 

Fig. 1  Supratentorial lobar distributed cerebral microbleeds in end-
stage kidney failure patient. Axial minimum intensity projection 
(MinIP) susceptibility-weighted imaging (SWI) image shows two 
small, rounded, hypointense cerebral microbleeds in the left parietal 
lobe, and other smaller microbleeds in both frontal and parietal lobes 
of the right and left hemispheres

Fig. 2  Supratentorial lobar and non-lobar distributed cerebral micro-
bleeds in end-stage hepatic failure patient. Axial minimum intensity 
projection (MinIP) susceptibility-weighted imaging (SWI) image 
shows a rounded, hypointense, non-lobar cerebral microbleed in the 
right thalamus, and several small rounded, hypointense, lobar distrib-
uted cerebral microbleeds in the left and right frontal lobes, and in the 
right temporal and parietal gray/white matter junction
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on T2*-GRE and SWI sequences. CMBs represent small 
perivascular hemosiderin deposits surrounded by normal 
brain tissue. After extravasation of erythrocytes into the 
perivascular space, degradation of hemoglobin contained 
in the erythrocytes leads to the formation of hemosiderin. 
Hemosiderin is a paramagnetic substance which can be 
detected by T2*-GRE and SWI MR sequences [19].

The detection of CMBs depends on many MR imaging 
parameters, such as field strength, echo time, and resolu-
tion. In recent years, with the introduction of susceptibility-
weighted imaging sequences, and with the wider availability 
of 3T MR units, there was an increased sensitivity of detec-
tion of small cerebral microbleeds [7, 8, 19].

Supratentorial lobar distribution of cerebral microbleeds 
was the most typical distribution founded in our series of 
end-stage organ failure patients (64.8%), and it was charac-
terized by the presence of multiple cortical and subcortical 
white matter CMBs (range 2–26 CMBs). Particularly, the 
highest number (n = 45) of lobar CMBs was seen in patients 
with chronic kidney failure.

A lobar distribution of CMBs is considered to relate to 
cerebral amyloid angiopathy, while CMBs located in the 
basal ganglia or in infratentorial brain regions are thought 
to relate to hypertensive vasculopathy [21].

Our results confirm that cerebral microbleeds can be 
commonly found in patients with chronic kidney failure, 
especially in dialytic patients [31]. This association was not 
related to the presence of other CMB risk factors such as 
other neurological diseases [32].

The incidence of microbleeds in hemodialysis patients is 
significantly higher compared with the general population 
without a history of chronic kidney failure or stroke.

Fig. 3  Infratentorial distributed cerebral microbleed in end-stage 
heart disease patient. Axial minimum intensity projection (MinIP) 
susceptibility-weighted imaging (SWI) image shows a small, 
rounded, hypointense, right cerebellar hemisphere microbleed

Fig. 4  Infratentorial distributed cerebral microbleed in end-stage 
heart disease patient. Axial minimum intensity projection (MinIP) 
susceptibility-weighted imaging (SWI) image shows a small, 
rounded, hypointense, brainstem microbleed

Table 2  Distribution of cerebral microbleeds (CMBs)

Location: Lobar supratentorial CMBs located in cortical-subcortical 
parenchyma of frontal, parietal, occipital or temporal lobes, Non-
lobar supratentorial CMBs located in supratentorial deep regions 
including the basal ganglia, thalamus, internal capsule, external 
capsule, corpus callosum, deep and periventricular white matter, 
Infratentorial CMBs located in brainstem and cerebellum
CMBs cerebral microbleeds

Location CMBs (n) %

Supratentorial lobar 59 64.8
Supratentorial non-lobar 17 18.7
Infratentorial 15 16.5
Total 91 100
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In the chronic kidney failure population, diminished esti-
mated glomerular filtration rate has been found to be a risk 
factor for CMBs [31]. Moreover, chronic kidney failure is 
correlated with the number of CMBs, thus, the number of 
CMBs can provide an indirect estimation of chronic kidney 
failure severity [33–36].

In our patient who underwent heart transplantation, a 
predominance of supratentorial lobar distribution of CMBs 
was found. The anticoagulant therapy, in this case, was 
the major risk factor that explains the presence of cerebral 
microbleeds. Although it has been established that warfarin 
treatment is effective for preventing cerebral embolism aris-
ing from atrial fibrillation, the most serious adverse event in 
atrial fibrillation is hemorrhage complication [25].

The literature evidence suggests that the presence of cere-
bral microbleeds is a risk factor for intracerebral hemorrhage 
in patients treated with antiplatelet therapy and a higher risk 
of mortality was demonstrated for patients with more than 
five cerebral microbleeds [37].

Ueno et al. [27] demonstrated how the presence of cer-
ebral microbleeds may be an independent risk factor for war-
farin-related intracerebral hemorrhage. Also, Lee et al. [38] 
found that the presence of cerebral microbleeds was more 
commonly found in patients with warfarin-related intracer-
ebral hemorrhage when compared to anticoagulated patients 
without intracerebral hemorrhage.

In end-stage liver failure patients studied in our series, the 
most common complication of the disease was the hepatic 
encephalopathy, which is an important prognostic factor of 
the disease [39].

Hepatic encephalopathy is characterized by high signal 
intensity in the globus pallidum on T1-weighted MR images, 
likely a reflection of increased tissue concentrations of man-
ganese, and white matter abnormality [40].

However, hepatic failure is also associated with coagu-
lopathy due to decreased liver production of coagulation pro-
teins. The presence of CMBs on SWI images was reported 
in patients with hepatic coagulopathy in the corpus callosum 
and in the paraventricular white matter, and they may arise 
from rupture of small penetrating arterial vessels [41].

Cerebral microbleeds were related to the degree of liver 
fibrosis, with a significantly increased number of cerebral 
microhemorrhages in case of advanced fibrosis [42].

In our series, supratentorial lobar distribution of CMBs 
was the most commonly reported location in end-stage 
liver disease patients with a significant positive correla-
tion with platelet dysfunction and hepatic coagulopathy 
due to decreased liver production of coagulation proteins in 
advanced hepatic failure.

There is clinical evidence for the role of cerebral micro-
bleeds in cognitive decline and for the correlation between 
CMBs and small vessel disease, cerebral stroke, and increase 
mortality. Particularly, there is strong evidence that higher 

number of CMBs is associated with a more severe cognitive 
dysfunction, which comprises impaired executive function, 
and decreased attention and processing speed [7, 11, 34]. The 
development of novel imaging technique and large prospective 
studies is expected to better understand the pathogenesis of 
CMBs and the clinical implication of this currently underdi-
agnosed clinical entity.

Limitations of this study are the relatively small group of 
patients, the lack of randomization of groups, the prevalence 
of end-stage kidney failure patients over other end-stage organ 
failure, particularly to the only one end-stage heart failure 
patient, and the retrospective nature of the study.

Another limitation was due to the fact that patient image 
analysis was limited by the lack of SWI images (n = 8) or poor 
image quality (n = 6) due to the motion artifact.

Conclusions

The use of SWI sequences in a more widely available very 
high field strength MR units (3T) has increased the detection 
of CMBs underlying an emerged new important imaging bio-
marker of cerebral involvement in a variety of diseases and 
syndromes.

Cerebral microbleeds are mostly founded in supratentorial 
lobar localization in end-stage organ failure patients and they 
are associated to several specific risk factors related to end-
stage organ failure.

The radiologist involved in brain imaging in end-stage 
organ failure patients should be aware of the evidence that 
the presence of CMBs might identify patients at risk of future 
cerebral stroke, intracranial hemorrhage, and cognitive impair-
ment, which in turn represents risk factor for complication 
during or after the transplantation.
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