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Abstract: Exercise training prevents the onset and the development of many chronic diseases, acting as an 
effective tool both for primary and for secondary prevention. Various mechanisms that may be the effectors 
of these beneficial effects have been proposed during the past decades: some of these are well recognized, 
others less. Muscular myokines, released during and after muscular contraction, have been proposed as key 
mediators of the systemic effects of the exercise. Nevertheless the availability of an impressive amount of 
evidence regarding the systemic effects of muscle-derived factors, few studies have examined key issues: (I) if 
skeletal muscle cells themselves are the main source of cytokine during exercise; (II) if the release of myokines 
into the systemic circulation reach an adequate concentration to provide significant effects in tissues far 
from skeletal muscle; (III) what may be the role carried out by muscular cytokine regarding the well-known 
benefits induced by regular exercise, first of all the anti-inflammatory effect of exercise. Furthermore, 
a greater part of our knowledge regarding myokines derives from the muscle of healthy subjects. This 
knowledge may not necessarily be transferred per se to subjects with chronic diseases implicating a direct or 
indirect muscular dysfunction and/or a chronic state of inflammation with persistent immune-inflammatory 
activation (and therefore increased circulating levels of some cytokines): cachexia, sarcopenia due to multiple 
factors, disability caused by neurological damage, chronic congestive heart failure (CHF) or coronary artery 
disease (CAD). A key point of future studies is to ascertain how is modified the muscular release of myokines 
in different categories of unhealthy subjects, both at baseline and after rehabilitation. The purpose of this 
review is to discuss the main findings on the role of myokines as putative mediators of the therapeutic 
benefits obtained through regular exercise in the context of secondary cardiovascular prevention.
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Introduction

Regular physical activity protects against several pathologic 
conditions, the main of which are type 2 diabetes, 
cardiovascular diseases (CVD), colon cancer, breast cancer, 
and dementia (1). Recently, it has been proposed that the 

protective effects of physical activity could also be attributed 
to the muscular production of various peptide mediators 
called myokines. Once they are secreted during skeletal 
muscle contraction, they may carry out autocrine, paracrine 
and endocrine activities triggering specific metabolic 
pathways in different tissue and organs far from the muscle 
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such as visceral fat, bone, liver, and nervous system, among 
others (1-4).

Since skeletal muscle represents the most extended 
organ in the human body, the identification of myokines 
is an important finding and may provide a biochemical 
explanation in recognizing molecular mechanisms that 
provide health beneficial effects in chronic disorders 
associated with systemic low-level inflammation (1,5).

Sedentary life has a higher prevalence than that of all 
other cardiovascular modifiable risk factors (6,7). In recent 
times, the profits of regular exercise were extended to 
subjects with established CVD as a treatment option to 
improve the natural history of the disease in secondary 
prevention (8,9). This was a revolutionary changing of view 
because, for a long time, physical rest had been prescribed 
for patients with CVD. 

Numerous biological effects are considered responsible 
for the primary and secondary prevention of CVD and for 
the reduction in the rate of death and inability associated 
with routine exercise. In fact, regular physical activity 
has been demonstrated to reduce abdominal adiposity 
and improve weight control (10-12), reduce triglyceride 
levels, increase high-density lipoprotein (HDL) cholesterol 
levels and decrease low-density lipoprotein (LDL)-to-
HDL ratios (10,13), ameliorate glucose homeostasis and 
insulin sensitivity (14), lower blood pressure (BP) (15,16), 

improve autonomic tone (17,18), balance blood coagulation 
(19,20), augment coronary blood flow (21), improve cardiac 
function (22,23) and enhance endothelial function (24-26). 
Moreover, physical activity seems to play a fundamental 
role in the primary and secondary prevention of CVD 
modulating chronic inflammation as demonstrated by high 
circulating levels of inflammatory mediators that have been 
shown to be directly associated with most of the chronic 
diseases (1,27).

Regular exercise is also associated with improved 
psychological wellness through the reduction of stress, 
anxiety, and depression (10,28,29). Psychological health 
is recognized to be important for the prevention and 
management of CVD.

Finally, findings for the improvements of physical activity 
in the treatment and rehabilitation of subjects with chronic 
CVD should be based on well-designed randomized 
controlled trials (RCTs) (30). Up until now, a large number 
of RCTs studying the therapeutic role of physical activity 
in specific chronic disease has been accomplished allowing 
systematic reviews and meta-analyses. The intent of this 

paper is to analyze, review and discuss the present findings 
on the role of myokines as putative mediators of the 
therapeutic benefits obtained in the main CVD: essential 
hypertension, chronic heart failure (HF), coronary artery 
disease (CAD) and in the cerebrovascular diseases after 
regular physical activity or specific rehabilitation programs.

Myokines expression and secretion by skeletal 
muscle cells 

Many excellent reviews have tried to summarize the 
findings that skeletal muscle represents a secretory organ  
(2,31-34), having the capacity to release hundreds of 
myokines, and the possible clinical implications of this 
evidence. Currently myokines are defined as proteins 
produced by skeletal muscle that are not necessarily induced 
by exercise nor do they have to have a systemic function but 
only work with a paracrine or autocrine mechanism (2,35). 
In order to underline the concept that not all the myokines 
have the same clinical relevance, some authors support 
the alternative definition of “exercise factors”, referring 
to a subgroup of myokines released by skeletal muscle in 
response to exercise and that is secreted into the circulation 
working in a “hormone-like” manner (2,36). For the 
purpose of this review, the list of the myokines potentially 
involved is much more limited, in fact, the greater part 
of the myokines identified to date is the result of the 
secretome analysis over human muscle biopsies collected 
before and after acute exercise (37) often lacking concrete 
confirmations of any clinical effect. The main myokines 
of which we discuss in this review are interleukin (IL)-6, 
IL-8, IL-15, brain-derived neurotrophic factor (BDNF), 
monocyte chemotactic protein 1 (MCP1) and myostatin. 
These are the only molecules which we have enough 
information in unhealthy subjects in the context of cardiac 
rehabilitation and secondary cardiovascular prevention.

It should be underlined that any variation of the gene 
expression of the muscular production and/or of the 
plasmatic release of the myokines after exercise is generally 
dependent on the combination of mode, intensity, and 
duration of exercise (38) and that often is impossible to 
ascertain that a molecule identified as a myokine is of 
exclusive production of skeletal muscle (2).

The prototype myokine, IL-6, seems to be mostly 
responsible for a strong metabolic activity during exercise, 
by ensuring that enough fuel gets to the contracting muscle 
during exercise. Several works during last decades have 
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demonstrated that IL-6 is expressed by both types I and 
II muscle fibers in response to muscle contraction. When 
released by skeletal muscle, IL-6 operates locally to signal 
through gp130Rβ/IL-6Rα, determining the stimulation of 5’ 
adenosine monophosphate-activated protein kinase (AMPK) 
and/or PI3-kinase to enhance glucose uptake and fat 
oxidation. IL-6 may also play an endocrine role to increase 
hepatic glucose synthesis during physical activity or lipolysis 
in adipose tissue (33). IL-6 is greatly generated and released 
after physical activity when circulating insulin levels are 
elevated but, on the other hand, IL-6 has also shown to be 
associated with obesity and decreased insulin action. 

Numerous works found that IL-6 plasma concentration 
is enhanced in patients with unstable angina in comparison 
with those with stable angina or healthy subjects and 
that it may be helpful as a prognostic marker of CVD  
outcome (39), increases the risk of future myocardial 
infarction (40) and has been associated with CVD 
mortality (41). IL-6 also has been supposed to promote 
atherosclerosis by increasing the endothelial synthesis of 
chemokines and adhesion molecules, enhancing endothelial 
dysfunction and stimulating coagulation (42,43). In some 
studies IL-6 is considered as a sensor in the muscle, being 
released when the local glycogen concentration is low. 
It is plausible that a large number of IL-6, derived from 
muscle, reaching the circulation, may act as a hormone 
determining mobilization of extracellular substrates and/or 
to increased substrate delivery during exercise (44). During 
acute physical activity, in addition to high circulating 
concentration of IL-6, other myokines are often detectable 
such as IL-1 receptor antagonist (IL-1 ra), IL-10, soluble 
TNF-receptor (sTNF-R) (with prevalent anti-inflammatory 
properties), IL-8 and IL-15.

A very limited number of papers tried to ascertain 
the effect of regular exercise training on IL-6 levels. In 
patients with chronic HF, regular exercise training is 
reported to decrease the expression of skeletal muscle 
IL-6 mRNA (45), although the basal IL-6 levels of this 
category of patients are higher than healthy age- and 
sex-matched controls. Conflicting results have been 
obtained in subjects with coronary heart disease (CHD), 
comparing IL-6 plasma levels before and after training. 
The skeletal muscle is a major contributor to IL-6 in the  
circulation (46); there is only moderate evidence that regular 
training will decrease plasmatic levels of IL-6 (45,47,48), 
but is reasonable to hypothesize that during acute exercise 
increased levels of IL-6 serve to sustain muscular and not-

muscular metabolism (IL-6 also augments hepatic glucose 
and increases adipose tissue fatty acid release) whereas after 
regular exercise the genomic adaptation to training makes 
less necessary the role of IL-6, whose circulating levels are 
in fact reduced, and in order to avoid the disadvantageous 
effects of a chronic elevation of IL-6, is moreover promoted 
the clearance of this cytokine through the hepatosplanchnic 
blood flow.

IL-15 is a myokine synthesized in human skeletal muscle, and 
has been shown to have an anabolic effect on muscle growth, 
and also to play a role in lipid metabolism (49). Recently, it 
was demonstrated that IL-15 mRNA concentration was 
upregulated in human skeletal muscle following physical 
activity (50), suggesting that IL-15 could reach high levels 
within the muscle after regular exercise. Furthermore, there 
is a negative association between plasma IL-15 levels and fat 
mass (51). 

BDNF is a neurotrophin involved in regulating 
growth and survival of existing neurons (52), and also 
growth and differentiation of new neurons and synapses, 
playing an active role in learning and memory (53-57). 
Various lines of evidence reported low levels of circulating 
BDNF in individuals affected by both obesity and type 2  
diabetes (58) as well as in several chronic neurological 
diseases (Alzheimer’s disease, major depression, impaired 
cognitive function). BDNF mRNA and protein synthesis 
were upregulated in human skeletal muscle after physical 
activity or after electrical stimulation; unfortunately, to date, 
no study has been able to find muscle-derived BDNF into 
the circulation. BDNF appears to be a myokine working 
only with autocrine or paracrine action determining 
powerful effects on peripheral metabolism [for example, fat 
oxidation with a consequent effect on the amount of adipose 
tissue (59)].

MCP1 is a chemokine released into the bloodstream 
from skeletal muscle after specific types of exercise such as 
marathon running or high-duration resistance exercise (60). 
The systemic role in the release of this pro-inflammatory 
mediator after acute high-intensity endurance training is 
debated, being possibly merely linked to an acute skeletal 
muscle injury (61). After chronic training the behavior of 
plasmatic MCP1 is similar to IL-6, IL-8 and other pro-
inflammatory and pro-atherosclerotic mediators: decrease. 
This finding has been reported in various categories 
of unhealthy subjects such as patients with metabolic  
syndrome (62), subjects with chronic HF (63), persons with 
CAD (64).
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Myostatin is a molecule of great interest expressed 
by skeletal muscle because of its potential therapeutic 
role. It is a released ligand of growth and differentiation 
factors belonging to the transforming growth factor 
(TGF) superfamily. Several lines of research suggest that 
myostatin may be involved in the regulation of muscle 
mass (65,66) through its autocrine and paracrine effects 
once it has reached an appropriate concentration into the  
circulation (67). Myostatin has been shown to have a role 
also in the crosstalk between skeletal muscle and adipose 
tissue and may exert an effect on insulin sensitivity (68), 
although it has been recognized to have not a direct 
effect on adipocytes function and metabolism. However, 
an enhanced concentration of myostatin in muscle mass 
provokes to a higher energy amount, increased lipid 
uptake, and more active metabolism, reducing the volume 
of adipose tissue (69). Myostatin, acting as a key regulator 
of skeletal muscle mass, is elevated in advanced stages 
of chronic HF, possibly acting as a mediator of cardiac 
cachexia. Lenk et al. reported that 12 weeks of exercise 
training may induce a significant reduction of myostatin 
in skeletal muscle, demonstrating the reversibility of 
the muscle wasting in chronic HF (70). Higher levels of 
myostatin than controls have been found also in patients 
with chronic diseases associated with decreased mobility, 
inflammation, and weight loss such as chronic obstructive 
pulmonary disease (COPD) (71,72) or end-stage chronic 
kidney disease (CKD) undergoing to hemodialysis (73).

The list of myokines is steadily increasing over the 
years; several of which potentially of interest. Fibroblast 
growth factor (FGF)-21, is a member of the FGF family 
involved in carbohydrate and lipid homeostasis that seems 
to be associated with obesity, diabetes and atherosclerotic  
damage (74,75). 

Apelin, is an interesting insulin-related factor localized 
in cardiomyocytes and vascular cells that seem to play a key 
role in the regulation of vascular tone and cardiovascular 
function (76,77).

Follistatin like-1(FSTL1) is a glycoprotein that has been 
associated with an improved vascular health and function, 
counteracting endothelial dysfunction (78). 

The finding that skeletal muscle during contraction 
expresses and releases many myokines in the circulation 
suggests a relationship between myokines and metabolism 
both in physiologic and in pathologic conditions. Since 
circulating markers of inflammation are chronically elevated 
in CVD and other vascular diseases, a change in their levels 

induced through physical activity may play a role in the 
treatment of these diseases; in the second part of this review, 
we tried to discuss this issue, referring to the main vascular 
pathologic conditions.

Arterial hypertension

The main guidelines indicate that routine exercise is 
considered to play a fundamental role in the prevention 
and treatment of hypertension (79). Several studies 
demonstrated that exercise is associated with a lower BP, 
and meta-analyses of RCTs have indicated that chronic 
dynamic aerobic endurance training can be effective to 
reduce BP levels both in normotensives and in hypertensive 
subjects (16,80-83). A recent meta-analysis (84) examines 
the effect of regular dynamic aerobic endurance exercise on 
resting and ambulatory BP, on BP-regulating mechanisms, 
and on concomitant cardiovascular risk factors, like body 
fatness, waist circumference, blood lipids, and glucose/
insulin dynamics, finding beneficial effects of exercise in all 
outcomes and concomitant risk factors. They recognized 
that the BP decline was most evident in the hypertensive 
study groups, but a good BP reduction may also be found 
in normotensive and pre-hypertensive subjects (85). A 
reduction in the activity of the autonomic nervous system is 
supposed to be involved in the decrease of BP after exercise, 
as demonstrated by the 29% lower plasma norepinephrine 
levels in trained subjects when compared with unfit 
counterparts. Interestingly, some studies recognized a lack 
of an effect on BP during sleep (86), when sympathetic 
activity is reduced, that may be compatible with the 
hypotensive effect of the sympathetic nervous system after 
regular exercise. The 20% decrease of plasma renin activity 
suggests the role of the renin-angiotensin system (87,88). 
Moreover, the decreased level of plasma renin activity 
supports the hypothesis that the reduction in the activity 
of the sympathetic nervous system also affects the kidney, 
which is the most potent factor involved in long-term BP 
regulation (89). Another import role in the exercise-induced 
reduction of BP levels is played also by the consequent 
reduction of insulin resistance and improvement of the 
endothelial function obtained through regular training (1).

Other studies conducted with untreated patients 
with mild essential hypertension who walked quickly for  
30 minutes 5 to 7 times per week for 12 weeks found a 
reduction in systolic and diastolic BPs and an augmented 
forearm blood flow in response to acetylcholine infusion. 
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This increased blood flow seems blocked by a nitric oxide 
(NO) inhibitor (90), suggesting a role for NO. Sedentary 
hypertensive rats seem to have augmented adrenergic 
agent-induced vasoconstricting responses, associated with 
reduced NO expression, of thoracic aortas and carotid 
arteries compared with exercise-trained hypertensive  
rats (91). Moreover, plasma nitrate (an index of NO 
quantity) was decreased in sedentary hypertensive rats 
compared with allowed access to 35 days of voluntary wheel 
running (92). Interestingly, this effect persists for 36 h, but 
exercised rats returned to sedentary levels by the 7th day of 
detraining. 

The most validated mechanism supposed to lower BP 
through physical activity contemplates the synergism of 
both vascular and neurohumoral systems that determine a 
reduction in total peripheral resistance and catecholamines 
level (93). A comprehensive study of the benefits that 
exercise exerts on BP is very complicated since physical 
activity is involved in many other different effects like lipid and 
glucose control, weight loss, improved endothelial function 
and enhanced antioxidant capacity. Some data suggest that 
a genetic link is present between the grade of BP reduction 
and acute and chronic exercise in accord to the variability of 
results in individuals that was encountered (94). Moreover, 
angiotensin-converting enzyme (ACE), apolipoprotein 
E (apoE), and lipoprotein lipase (LPL) genotypes can be 
found in hypertensive subjects whose BP and cardiovascular 
risk can be markedly reduced with regular exercise. These 
genotype-dependent responses can support the hypothesis 
that endurance physical activity can lead to a more 
significant improvement of BP and circulating lipid levels 
in genetically advantaged subjects. Despite this significant 
amount of evidence supporting the role of regular exercise 
in improving the BP profile both in normotensive and in 
hypertensive subjects, to date no studies addressed the issue 
of the possible role carried out by myokines in causing these 
beneficial effects. Future studies are needed to clarify this 
topic.

Cerebrovascular disease

Neuroinflammation represents a key mechanism during 
both the acute phase of an ischemic stroke and in the 
recovery phase during the post-stroke rehabilitation. The 
level of systemic inflammation in stroke patients strongly 
depends on the diagnostic subtype of stroke and is directly 
related to the extent of the neurological damage during 
the acute phase and to the residual disability (95-101). 

Following neurological rehabilitation, usually initiated 
early as possible after the clinical stabilization, various 
authors demonstrated the change of plasma concentrations 
of different circulating mediators, whose role is under 
investigation. An increase of the plasmatic levels of the most 
famous neurotrophic factor, BDNF, has been demonstrated 
after acute aerobic exercise in an intensity-dependent 
manner both in healthy subjects (102,103) and in multiple 
sclerosis patients (104). The main origin of exercise-induced 
circulating BDNF is likely to be the brain rather than 
the muscle (specific areas of the human brain such as the 
hippocampus and cerebral cortex) (103,105). Nevertheless 
with the uncertainty regarding the main source, exercise-
induced BDNF may be reasonably considered as an 
effective mediator of improved neurological health.

Another recently discovered factor associated with 
exercise-induced neuronal recovery after ischemic injury is 
the insulin growth factor (IGF)-1. Various reports indicate 
that IGF-1, released by various tissues including the skeletal 
muscle, may have a relevant role in neuroplasticity together 
with BDNF (106-108). IGF-1 would play an active role 
in mediating the recovery of neuronal function through 
the rehabilitation, despite an excessive release of IGF-1 is 
reported to have opposite effects, inducing an increased 
level of neuroinflammation and a worst outcome (109).

Other putative myokines having a certain neurotrophic 
activity are various molecules belonging to the family of 
the neurotrophins (110), the vascular endothelial growth 
factor (VEGF) (111), the neurotrophin ciliary neurotrophic 
factor (CNTF) (112), FGF21 (113), even if any significant 
muscular release of these substances after acute exercise or 
exercise training is far from being proven.

Congestive HF 

Physical inactivity seems to play a role in the development 
of a great percentage of cases of congestive heart failure 
(CHF) and also aggravate conditions associated with 
previously diagnosed CHF patients. A sedentary lifestyle 
can account for 9.2% of all cases of CHF. Physical activity 
of individuals affected by moderate to severe CHF can 
reduce all-cause mortality by 63% and decreased hospital 
readmission for HF by 71% (114). Moreover, subjects 
with CHF improved their quality of life from participating 
in physical training programs (115). According to 14 
RCTs, physical activity showed a physiological favorable 
effect in CHF patients focusing on short-term training 
program benefits (116). In the Cochrane systematic 
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review of exercise-based interventions for HF (117), the 
authors concluded that physical activity clearly ameliorates 
short-term exercise capacity. The meta-analysis by the 
ExTraMATCH Collaborative Group (118) found that there 
was no evidence that supervised exercise training programs 
for CHF patients were dangerous and indeed authors 
encountered an overall reduction in mortality. 

Even if the principal affected organ in CHF is recognized 
to be the heart, skeletal muscle is thought to be a secondary 
defective organ involved in reducing exercise tolerance. 
Moreover, skeletal muscle dysfunction in CHF experiments 
great benefits with regular physical training, even if the 
function of the heart remains unaffected by exercise. 
In many HF subjects, the limitation in skeletal muscle 
function is more predominant than the hemodynamic 
impairment due to the cardiac dysfunction (119). In these 
patients the reduction of the functional capacity may lead 
to a progressive reduction of the mobility; this condition 
has shown to increase the risk of appearance of other 
chronic diseases. The worsening of the health status due 
to the multiple comorbidities causes further exercise 
restriction and increased hospitalization and mortality in 
individuals with symptomatic HF (119). It is recognized 
that the reductions in physical capacity in CHF are not just 
secondary to alterations in myocardial function (120). In 
fact, some indexes of cardiac function like ejection fraction 
are not improved by exercise in CHF patients (121). On 
the other hand, exercise capacity does correlate greatly with 
measures of peripheral muscular strength and endurance 
which explain the exercise intolerance in CHF patients with 
cellular alterations in the periphery (122). An interesting 
study (123) showed that 4–6 months of aerobic training 
in CHF subjects ameliorate exercise capacity and increase 
blood flow to the peripheral musculature. These muscular 
changes are accompanied by a decreased skeletal muscle 
expression of tumor necrosis factor -alpha, IL-1-beta, 
and IL-6 (45), with the following reduction of systemic 
inflammation in these patients. 

The precise mechanisms through which regular physical 
activity determines its positive effect in patients with HF 
remains not completely clear. Certainly, the significant 
clinical improvement obtained through the regular training 
in CHF patients is the result of a complex interplay of 
different effects:

(I) Improved cardiopulmonary efficiency and 
pulmonary functional capacity (124); 

(II) Amelioration of myocardial perfusion in ischemic 
subjects by reducing endothelial dysfunction 

and by inducing new vessel formation by way of 
intermittent ischemia (118); 

(III) Improved myocardial contractility and diastolic 
filling (125); 

(IV) Counteract the muscle wasting and cachexia. 
Myostatin may be involved in the pathophysiology 
of cardiac progressive dysfunction in chronic 
HF. In the already cited study of Lenk et al. (70), 
chronic HF subjects at baseline showed a two-
fold increase of myostatin mRNA (P= 0.05) and 
a 1.7-fold (P= 0.01) augmentation of protein 
content in skeletal muscle compared to healthy 
subjects. Also in animal models, myostatin seems 
to be involved: myocardial gene and protein 
expression are increased in response to chronic 
volume overload-induced by aortocaval shunt in 
rats (126) and after acute myocardial infarction 
in rat cardiomyocytes (127); 

(V) Reduction of the systemic inflammation;
(VI) Attenuation of the sympathoexcitation, a typical 

feature of CHF, helping to restore autonomic 
balance to the heart even in the persistence of 
cardiac dysfunction (128);

(VII) Modulation of the cardiac angiotensin receptor, 
with a secondary restoration of the overactivated 
renin-angiotensin-aldosterone system (129). 

CAD 

Many interesting papers have suggested a positive effect of 
physical activity on coronary vasodilation and endothelial 
function. Animal studies have largely demonstrated that 
physical activity determines a flow-mediated epicardial 
coronary vasodilation that seems to be dependent upon the 
integrity of the endothelium (130,131). 

As we have already discussed, hypertension seems to be 
associated with decreased expression and/or augmented 
degradation of vascular NO (132), causing a reduction in 
vessel vasodilation. The altered availability of vascular NO, 
expression of endothelial dysfunction, is also involved in 
the progress of atherosclerosis. Physical activity increases 
NO expression in endothelial cells (21,133). Vasodilation 
secondary to exercise training is supposed to be mediated 
by shear stress (134). In fact, when in studies where fluid 
flow was increased in culture, endothelial cells register 
an augmentation of NOS mRNA (135). The augmented 
levels of NO stimulate vasodilation, which then lessens the 
enhancing in shear stress across an endothelial cell. 
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Numerous systematic reviews have shown the fundamental 
role played by regular training to attenuate or reverse 
the disease process in patients with CAD. For instance, a 
systematic review and meta-analysis involving 48 clinical 
trials (136) indicated that, compared with usual care, cardiac 
rehabilitation determine a marked reduction of incidence 
of premature death from any cause and from CVD in 
particular. In another systematic review, RCTs show that 
physical activity in documented CHD decrease all-cause 
mortality by 27% and total cardiac mortality by 31%, but 
not the rate of non-fatal myocardial infarction (9).

Milani et al. conducted the first studies elucidating the 
benefits of physical activity and cardiovascular rehabilitation 
on the plasma levels of C-reactive protein (CRP). They 
encountered a great reduction in CRP after the 3-month 
intervention in CAD patients with and without metabolic 
syndrome (137), in weight gainers and losers (138), and 
in subjects with or without statin therapy (138). These 
findings were confirmed by other studies (139-141). An 
important study (142), assessing the results of aerobic 
exercise training on concentrations of pro- and anti-
inflammatory cytokines, IL-1, IL-6, IL-10, INF-gamma, 
and CRP in CAD subjects attending a cardiac rehabilitation 
program demonstrated a consistent reduction of CRP levels 
after 12 weeks of training, along with a significant decrease 
of all pro-inflammatory cytokines, IL-1, IL-6, interferon-
gamma and a great increase in the main anti-inflammatory 
cytokine: IL-10 (142). In another study (140) after  
24 months of exercise, CRP concentration was reduced by 
41% and IL-6 levels by 18 % but no change was observed 
in the percutaneous intervention group. Furthermore, these 
findings indicate that cardiac rehabilitation and physical 
activity exert an anti-inflammatory effect independent 
of statin therapy and weight loss. Similarly, in patients 
with CAD, 6 months of routine exercise showed an 
important decrease of IL-6 and other pro-inflammatory  
cytokines (143). Conversely, Astengo et al. in 62 individuals 
with stable angina followed for 8 months before and after 
the intervention of percutaneous coronary intervention 
(PCI) with a training program that consisted of home-
based training on a bicycle ergometer did not find 
any modifications of plasmatic concentration of pro-
inflammatory or anti-inflammatory cytokines (IL-6, IL-8, 
and IL-10) (144). Niessner et al. (64) evaluated the benefits 
of endurance exercise on atherosclerosis inflammatory 
markers in patients with CAD and cardiovascular risk 
factors. In this study, after a training intervention period 

of 12 weeks, authors encountered a great reduction of the 
chemokines IL-8, monocyte chemoattractant protein-1 
and of matrix metalloproteinase-9 (MMP-9), that markedly 
reduced after training, but an insignificant modification of 
IL-6 and hsCRP (64). These results also indirectly confirm 
the improved stabilization of the atherosclerotic plaque 
induced by regular exercise and provide an explanation for 
the reduced rate of vascular event exercise-related.

In a study examining 86 cardiac surgery patients after  
15 days of cardiovascular rehabilitation authors encountered 
a significant reduction of baseline concentration of  
IL-8 (145), moreover 15 weeks of exercise training decreased 
IL-8 plasmatic levels in 27 obese subjects (146) and 12 weeks 
of controlled endurance exercise lowered IL-8 concentration 
in individuals with CAD and multiple cardiovascular risk 
factors (64). 

The overall effect observed after cardiac rehabilitation 
in CHD patients seems to be a reduction of the main 
circulating cytokines associated with chronic inflammation. 
In relation to the other main myokines discussed in this 
review, a higher serum level of myostatin has been related 
to lower muscle function, given the fact that myostatin 
acts as a negative regulator of muscular growth. In 
experimental models of myocardial ischemia-related injury, 
it has been reported an immediate upregulation of cardiac  
myostatin (147). This finding allows us to hypothesize both 
an active role of this molecule in the ischemia-induced 
myocardial damage and a putative role for the inhibitors of 
myostatin (i.e., follistatin) induced by exercise in mediating 
the recovery after an acute episode of CHD.

Conclusive remarks

Everyone agreed on having to advise routine exercise 
among individuals with CVD; several lines of research 
confirm the significant benefits associated with an improved 
physical fitness without causing adverse effects on disease 
progression. Work on subjects with CAD as well as studies 
on individuals with CHF show that physical activity is 
associated with lower all-cause mortality compared with 
controls. Among old patients with CVD, both enhanced 
fitness levels and a decrease in disease-related symptoms are 
very important effects although several RCTs are too short 
to document differences in the true disease progression 
between groups. Although recommended characteristics of 
a training program ameliorating aerobic fitness are known 
to include at least 20 minutes of moderate-intensity training 
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twice a week or more during at least 6 weeks in accord to 
American College of Sports Medicine, in older patients 
with CVD there is a need of more tailored programs with 
a specific intensity of exercise. Low-intensity regimens are 
effective as high-intensity programs in different pathologic 
conditions such as type 2 diabetes (14) and 5 to 10 minutes 
of running/day also at slow speed (<6 miles/hour) has 
been associated with markedly reduced risk of death from 
all causes and CVD (148), while 92 minutes per week or  
15 minutes a day of moderate intensity endurance training 
have been reported to provide a 14% reduced risk of all-
cause mortality and 3 years longer life expectancy (149). 
But, on the other hand, several lines of evidence indicate 
that seems to be a threshold to the dose/effectiveness curve 
of exercise benefit: to stay on the safe side, the progression 
of exercise programs must be slow and tailored considering 
patients’ ability and occurrence of different symptoms. Most 
of the patients seem to have a positive effect from low- to 
moderate-intensity exercise training. However, according to 
the available RCTs, final comprehensive conclusions about 
the kind of training or dose-response of exercise therapy in 
the treatment of CVD cannot be finally assessed. 

The mechanisms through which regular exercise 
is of benefit for these categories of subjects are only 
partly understood. Improved overall control of the main 
cardiovascular risk factors, enhanced NO-mediated 
vasodilation and optimized shear stress are surely main 
benefits. Myokines exert various endocrine effects on 
various tissues and organs, including adipose tissue, the 
liver, the pancreas and the brain; mainly exerting a certain 
metabolic role. Acute exercise and regular training exert 
very different effects on muscular myokinome, with acute 
exercise eliciting a more stress-like response compared with 
a chronic adaptive response observed after habitual exercise. 
To date, conclusive evidence is lacking regarding a possible 
role exerted by myokines released into the bloodstream 
after exercise and acting in a hormone-like manner as 
mediators of the beneficial effects of exercise in patients 
in secondary prevention after a vascular event. Other 
well-known hemodynamic, immunomodulatory and anti-
atherosclerotic effects of regular exercise are convincingly 
able to explain the epidemiologic data showed in this review. 
But nevertheless, molecules such as myostatin, FGF21 
(150,151), apelin, and FSTL1 (152), to name just a few, are 
promising therapeutic agent of absolute interest. We are 
expecting ad hoc trials clarifying their real potential. 

Regarding the putative anti-inflammatory effect of 

exercise, confirmed by several lines of evidence, a conclusive 
message may be similar: the expression of myokines from 
skeletal muscle is directly related to training intensity, 
while the anti-inflammatory effect of exercise is not. It is 
largely accepted that the expression of IL-6 after acute 
physical activity do not reach consistent concentrations 
with short durations or low-to-moderate intensity of 
training (153) and that routine physical activity determines 
a decrease of IL-6 levels (instead of IL-10 concentration 
that is shown to increase). On the other hand, many studies 
reported data that assess how also low-intensity programs 
of exercise, such as fast walking (16,27,154,155), could 
produce a consistent decrease in plasma markers of systemic 
inflammation although does not determine any enhance 
in circulating cytokines expression (156). These data allow 
us to hypothesize that other well-known mechanisms 
(direct and indirect modulation of the activity of immune 
cells, neuroendocrine changes induced by exercise, 
reduced fat mass, for example) could explain a great part 
of the anti-inflammatory effect of exercise. Moreover, in 
clinical practice, physical activity is not prescribed alone 
but rather with other lifestyle advice such as weight loss, 
low-fat diet, smoking cessation or also in combination 
with pharmacological treatments. How may coexisting 
treatments influence skeletal muscle myokines expression? 
Is there any synergic effect between drugs and exercise? 
Well-designed cross-sectional and longitudinal studies are 
needed to better explain the potentiality of exercise in the 
context of cardiac rehabilitation.
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