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In this paper, we show that novel autonomous chaotic oscillators based on one or two bipolar

junction transistors and a limited number of passive components can be obtained via random

search with suitable heuristics. Chaos is a pervasive occurrence in these circuits, particularly after

manual adjustment of a variable resistor placed in series with the supply voltage source. Following

this approach, 49 unique circuits generating chaotic signals when physically realized were

designed, representing the largest collection of circuits of this kind to date. These circuits are

atypical as they do not trivially map onto known topologies or variations thereof. They feature

diverse spectra and predominantly anti-persistent monofractal dynamics. Notably, we recurrently

found a circuit comprising one resistor, one transistor, two inductors, and one capacitor, which gen-

erates a range of attractors depending on the parameter values. We also found a circuit yielding an

irregular quantized spike-train resembling some aspects of neural discharge and another one gener-

ating a double-scroll attractor, which represent the smallest known transistor-based embodiments

of these behaviors. Through three representative examples, we additionally show that diffusive

coupling of heterogeneous oscillators of this kind may give rise to complex entrainment, such as

lag synchronization with directed information transfer and generalized synchronization. The repli-

cability and reproducibility of the experimental findings are good. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4994815]

Transistor-based oscillators have been a ubiquitous sta-

ple of electronics for decades, generating periodic signals

in disparate applications, e.g., communications, timing,

and sound generation. It has been established that small

circuits comprising at most few transistors can also gen-

erate chaotic signals, which have complex features and

are inherently unpredictable, though not random.

Among other reasons, such chaotic oscillators have

attracted interest for their ability to replicate some phe-

nomena occurring in biological systems when intercon-

nected in networks. However, to date surprisingly little is

known about how to obtain them, even whether they rep-

resent “unusual” or “special” situations. Here, a large

number of transistor-based chaotic oscillators were auto-

matically designed. These circuits do not trivially repre-

sent known topologies, or variations thereof, and are

therefore “atypical.” They were physically built, then

studied in terms of their overall features and certain

cases of particular interest. Despite their simplicity, they

generated a diverse range of signals and behaviors,

including some typically associated with other systems.

The circuit diagrams and signals from all of them are

provided, considerably expanding the available reper-

toire of oscillators of this kind.

I. INTRODUCTION

Countless low-order continuous-time systems exhibit

chaos for certain combinations of parameter values; new

examples are continuously identified,1 including recent

advances in systems with lines of equilibria,2,3 hidden attrac-

tors,4,5 and memristors.6,7 While the underlying nonlinear-

ities often involve polynomial terms or products of the

state variables, many functions are suitable for obtaining

chaos.8 Mathematical models can be transformed into analog

circuits following a consolidated approach9,10 wherein each

state variable is associated with a physical circuit quantity

(e.g., voltage across a capacitor or current through an induc-

tor), and the nonlinearity is realized exploiting the character-

istics of a semiconductor device or approximated by piece-

wise linear functions. Efforts towards discovering or design-

ing simple chaotic systems and implementing them physi-

cally are significant.11 To the circuits obtained following

this approach, one should add many others which generate
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chaotic dynamics by design such as the well-known Chua’s

circuit,12–17 and those which can exhibit chaos as an unde-

sired or unexpected feature (e.g., power converters18 and

oscillators19). Chaotic circuits feature nonlinearities originat-

ing from diverse devices including diodes, varactors,20 oper-

ational amplifiers,21 ferroelectric components,22 and

memristors.23

Compared to the general abundance of known chaotic

oscillators, relatively few circuit topologies based on a small

number of discrete bipolar junction-transistors (BJTs),

including non-autonomous24,25 and autonomous26–30 cir-

cuits, have been reported to date. Discrete BJTs have served

as the fundamental staple of electronics for decades, and an

extensive repertoire of circuits has been developed to serve

signal generation, amplification, and processing functions,

for example, in radio and audio applications. Hence, this

paucity is surprising. Indeed, although there exist methodolo-

gies or, at least, guidelines to design chaotic circuits based,

for instance, on the interaction of active networks and pas-

sive nonlinear devices,14 on time-delay systems,16 and on

operational amplifiers,31 we are not aware of general techni-

ques yielding circuits based on a limited number of discrete

BJTs as the only source of nonlinearity. The instances of

such circuits reported in the literature have been arrived at

either by serendipity or by following specific considerations:

many stem from modifications of existing periodic oscilla-

tors (e.g., the Colpitts oscillator,26 the Hartley oscillator,27

the blocking oscillator,28 and the inductor-resistance-diode

circuit24), or implement particular principles such as distur-

bance of integration, which underlies the non-autonomous

Lindberg–Murali–Tamasevicius (LMT) chaotic circuit.25

A preliminary study addressing this issue attempted to

use genetic algorithms, wherein evolution was driven

towards obtaining high-entropy signals in SPICE simula-

tions, and arbitrary circuit topologies were searched for by

representing connections and component values as a bit-

string.32 A number of autonomous chaotic oscillators were

successfully obtained, some of which were subsequently

characterized experimentally.30 One of them, featuring par-

ticularly small size (1 BJT, 2 inductors and 1 capacitor), was

later used as a building block to realize large networks,

which were able to replicate some emergent phenomena

originally observed in biological neural systems.33,34 That

study, however, had severe limitations. First, it did not

address to what extent the evolutionary aspect of the genetic

algorithm was significant, compared to the random search

component introduced by random cross-over and finite muta-

tion probability. When circuit topology and component val-

ues are conjointly represented, the majority of individuals

resulting from cross-over are expected to be structurally

invalid or inactive oscillators. Second, the individual fitness

was determined based on SPICE simulations, whose level of

agreement with experimental measurements had not been

evaluated; indeed, several studies have indicated that it can

be poor for chaotic oscillators of this kind.30,35,36 The accu-

racy of such simulations was certainly also constrained by

the fact that the circuits were physically realized by means

of low-end commercially-available components, associated

with significant parasitics and simplified models. The study

introduced, nevertheless, the useful notion of connecting a

variable resistor in series to the fixed DC supply voltage

powering the circuits, and using it as a control parameter to

manually search for chaotic ranges; owing to this, it was pos-

sible to obtain chaotic dynamics with diverse properties in

the physical realizations of the circuits.32

Here, we report on a multitude of chaotic oscillators

based on a limited number of passive components alongside

one or two BJTs as the only source of nonlinearity. These

circuits were obtained by means of a random search over the

space of 285 possibilities according to a bit-string represent-

ing discrete component values, in terms of a catalog of com-

mercially-available devices, and the connections between

them. Heuristic rules were applied to substantially reduce the

search space by excluding invalid individuals. One hundred

circuits were chosen based on SPICE simulations, physically

realized with state-of-the-art components, and experimen-

tally characterized. We illustrate their overall characteristics

with a focus on some cases of particular interest. In addition

to expanding the available repertoire of oscillator circuits of

this kind, this work posits that there is nothing “special” or

“unusual” about BJT-based chaotic oscillators; on the con-

trary, chaoticity is a common occurrence in valid BJT-based

oscillator circuits.

II. OSCILLATOR DESIGN AND REALIZATION

A. Search and simulation

Similar to Ref. 32, each oscillator was encoded as a ran-

dom string of 85 bits, allocated as shown in Fig. 1(a) to rep-

resent a circuit with up to 8 nodes (including 5 V DC supply

via resistor, and ground), 1 supply series resistor (value R, 16

value steps in R¼ 464…2150 X), 6 inductors or capacitors

(1 bit determining type, value L or C, 8 values of each in

C¼ 150…1000 pF and L¼ 15…220 lH), and 2 BJTs of

fixed NPN type. The circuit was represented as a graph and

iteratively pruned until convergence, eliminating those ele-

ments that (i) had multiple terminals connected to the same

node (i.e., short-circuited components), or (ii) did not have

paths to both ground and supply nodes either directly or via

other elements, or (iii) had terminals not connected to at least

another component. Moreover, if (i) the circuit contained

fewer than two elements with connections to the ground and

supply nodes, or (ii) there was a path between the supply and

ground nodes comprising inductors only, or (iii) the supply

series resistor had been eliminated, the pruning process was

also canceled, and the individual discarded. If the process

completed and the circuit contained at least 1 inductor, 1

capacitor, and 1 BJT, the circuit was considered “valid” and

the corresponding SPICE netlist was written; otherwise it

was rejected as “invalid.” With the exception of not allowing

BJTs connected as diodes, effectively these rules did not

alter the outcome of the random search, only accelerating the

process by eliminating outright individuals that could not

oscillate in SPICE simulation. Similar search approaches

have been applied to other areas of electronic circuit design,

including layout optimization.37,38

An initial SPICE simulation was performed for each

valid circuit, running to 200 ls with a maximum step of
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10 ns, ramping up the supply voltage during 100 ls, and

maintaining default trtol and reltol settings. The time-

series segments for t> 175 ls were detrended with a 3rd-

degree polynomial, and oscillations were deemed present if

resulting peak-to-peak voltage values ranged >100 mV.

Circuits with at last one node meeting such a criterion were

deemed “active,” the others were rejected as “inactive.” A

second SPICE simulation was performed for each active cir-

cuit, running to 1 ms with a maximum step of 1 ns and reduc-

ing reltol to 0.0001.

The time-series for t> 500 ls were linearly interpolated

to produce a fixed sampling time-series with a sampling

interval of 1 ns. The “dominant period” was found based on

the cross-correlation function, and the data were windowed

and resampled to yield 10 000 points within 50 times this

interval. The resulting time-series were cut into 4 segments

of 2500 points, and if the peak-to-peak voltage value was

>100 mV, the correlation dimension D2 was calculated for

each segment, using the Grassberger-Procaccia method

implemented as in Ref. 39, applying non-linear noise reduc-

tion with an embedding dimension s/2, and setting time-

delay embedding s to the first minimum of the lag mutual

information function, embedding dimension m to the mini-

mum value yielding <5% false nearest neighbors, and

Theiler window w to twice the first maximum of the space-

time separation plot.

The search was performed on a Cray XD1 system (Cray

Inc., Seattle WA, USA) running ngspice-26.40 Out of

�2� 106 hypothetical oscillators considered (corresponding

to an extremely small fraction of all possible ones),

�1.5� 106 (i.e., the vast majority) were invalid, and

�4� 105 were inactive. Only �2500 were active and unique,

out of which, in the longer simulations, �250 were found not

to sustain oscillation and thus discarded. In these simulations,

the series resistor value had to be encoded and treated like

other parameters rather than being continuously swept, as this

would have resulted in an intractable computational load.

B. Construction and measurement

Among the individuals classified as unique and active,

the 100 circuits having the largest D2 across all nodes in sim-

ulation (1.7 6 0.7, median 6 inter-quartile range) were phys-

ically realized on custom-designed printed-circuit boards,

which also comprised a variable resistor to allow searching a
posteriori for chaotic ranges, and an LC power-supply

decoupling filter [Fig. 1(b)]. The commercially-available

components utilized for circuit realization, listed in

Supplementary Table I, were chosen attempting to maximize

simulation accuracy, namely, (i) inductors were shielded and

provided with realistic RLC models, which were necessary

as non-ideal behaviour and self-resonance could contribute

additional dynamical complexity with respect to a circuit

built with ideal inductors,41 (ii) capacitors had high Q and

were optimized for RF operation, and (iii) NPN BJTs (type

PRF949; NXP Semiconductor, Eindhoven, The Netherlands)

had a transition frequency in the GHz range, limiting the

effect of junction capacitances for oscillation in the low

MHz range. The circuits were realized verbatim, without

simplifying trivial serial or parallel combinations. All board

fabrication files are provided as the supplementary material.

Each circuit was measured twice at each node, once

powered via the fixed series resistor of the prescribed value

(R), once via the variable one adjusted manually (R0)
attempting to obtain chaoticity as in Refs. 30 and 32. As

detailed in Subsection III B, the latter set of measurements

were primarily considered, as the manual resistor adjustment

enhanced the probability of observing chaos. Measurements

were performed using low-capacitance probes (model

AP020, connected to WavePro 940 oscilloscope; LeCroy

Inc., Chestnut Ridge, NY, USA) in AC-coupled differential

configuration with respect to local ground to minimize cir-

cuit disturbance, yielding 434 time-series of 250 000 points

at 500 MSa/s, of which 35 were disregarded due to signal

peak-to-peak amplitude <100 mV or issues with correlation

dimension estimation; one circuit (no. 40) did not oscillate.

All raw time-series are freely available.42

The correlation dimension was thereafter calculated as

described above for each time-series cut in 10 segments of

25 000 pts. each; the median correlation dimension (D2), its

estimation error (dD2, spread of curves within identified scal-

ing range, representing level of self-similarity), and variability

across segments (DD2, inter-quartile range of D2, representing

level of stationarity) were recorded. Non-linear noise reduction

was applied to reduce quantization effects; analogous results

were obtained with low-pass filtering (data not shown).

III. RESULTS

A. Overall features

As shown in Fig. 2(a), clustering applying the DBSCAN

algorithm43 to [D2, dD2, DD2] given settings e¼ 0.2 and

FIG. 1. Circuit encoding and physical

realization. (a) Bit-string representing,

in order, the DC supply voltage series

resistor (R; value VAL and connection

node N), six capacitors or inductors

(C/L; type T, value VAL and connec-

tion nodes NA, NB), and two bipolar-

junction transistors (Q; connection

nodes NC, NB, NE). (b) Circuit board,

comprising selectable fixed (R) or vari-

able series resistor (trimmer, R0),
alongside capacitors (C), inductors (L),

transistors (Q), and node probing

points (0–7).
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minpts ¼ 20 automatically identified two clusters, corre-

sponding to periodic (n¼ 178, D2¼ 1.05 6 0.06) and chaotic

(n¼ 117, D2¼ 2.10 6 0.21) signals, alongside a smaller

number of unclassified signals (n¼ 104, e.g., due to poor

convergence of the correlation dimension curves in the cho-

sen sampling window, or intermittency). As shown in Fig.

2(b), the chaotic signals had a lower spectral centroid44

(f¼ 5.10 6 4.68 vs. 9.05 6 4.16 MHz), reflecting greater gen-

eration of slow fluctuations and, correspondingly, markedly

higher amplitude spectral flatness45 (n¼ 0.57 6 0.20 vs.

0.08 6 0.03, considered range 5%–95% for f< 10 MHz).

Assuming as boundary the maximum flatness observed in

periodic signals after rejection of one outlier, n< 0.27, 18

signals misclassified by DBSCAN as chaotic were found to

be actually quasi-periodic, and accordingly had a comb-like

spectrum.46 The characteristics of all signals are detailed in

supplementary material Table II. Altogether, these experi-

mental results confirm that it is possible to obtain novel BJT-

based chaotic oscillators of diverse circuit topology and fea-

tures, based on a simple random search with suitable

heuristics.

Multifractal detrended fluctuation analysis (MFDFA)

over q¼ –4…4 with a detrending order m¼ 2 was subse-

quently performed to determine the singularity spectrum f(a)

on the chaotic time-series, extracting separately minima and

maxima to query the structure of amplitude fluctuations.47–49

There were 30 signals for which the width Da> 0.2 of f(a)

suggests potential multifractality, but this was rejected in all

cases by consideration of the reshuffled and phase-

randomized time-series (also for larger range of q, data not

shown).50 This result indicates that even though chaoticity

was pervasive, the circuits did not produce multifractal

dynamics. Due to limited time-series length (median 1200

pts., analysis omitted if <500 pts.) and need for manual

adjustment of pick-picking procedure given widely heteroge-

neous signal features, this analysis should be considered ten-

tative. Consideration of the Hurst exponent48,49,51 [shown in

Fig. 2(c)] for q¼ 2 revealed an anti-persistent monofractal

behavior as a pervasive feature of these circuits (Hmax < 1/2

for 90% and Hmin < 1/2 for 84% of signals, where Hmax and

Hmin denote, respectively, the Hurst exponent of the time-

series of maxima and minima, rank correlation between

them r¼ 0.68), plausibly following energy storage in the

capacitor(s). Furthermore, consideration of amplitude vari-

ance asymmetry [Fig. 2(d)] indicated that, in agreement with

previous observations,30 these circuits generated signals with

diverse sine-like and positive/negative spike-like features

(log ðr2
max=r

2
minÞ ¼ �0:463:0). To the authors’ knowledge,

this is the first attempt to query the mono- or multifractal

nature of dynamics in BJT-based circuits of the present kind,

even though multifractality has been reported for a more

complex circuit with stochastic dynamics.52

Circuit features predicting chaoticity were searched for

by comparing the subsets of circuits generating chaotic and

periodic signals at all nodes (33 vs. 46) based on 52 mea-

sures, including counts of components, series, parallel and

tapped LC combinations, single- and double-transistor topol-

ogies, LC tank frequencies, and their relationships. As no

significant association was found, the details are not pre-

sented, and the view that chaos generation in these circuits

FIG. 2. Signal parameters from the

100 realized oscillators (one point per

node, multiple nodes per oscillator).

(a) Correlation dimension (D2) and its

uncertainty (dD2), revealing two clus-

ters corresponding to periodic (green)

and chaotic (red) dynamics (gray:

unclassified). (b) Spectral centroid (f)
and flatness (n), indicating broader

spectra at lower frequencies for the

chaotic signals. (c) Hurst exponents of

maxima and minima amplitudes, indi-

cating correlation and predominant

anti-persistent behavior (H< 1=2). (d)

Amplitude variance asymmetry and

average standard deviation, denoting

fluctuations of diverse amplitude with

sine-like, positive-, and negative-

spiking features. Triangles, hollow,

and filled circles: circuits with 4, 5,

and more components in addition to

the resistor.
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involves a complex relationship between circuit structure

and component values is reinforced.10 The circuits generat-

ing at least one chaotic signal according to DBSCAN (49 in

total) comprised 1 (1–4; median, range) capacitor, 3 (2–5)

inductors, 2 (1–2) BJTs, 6 (4–8) components excluding the

resistor, 5 (4–7) nodes, and 4 (1–8) LC combinations.

The full circuit diagrams of the 49 identified chaotic

oscillators, with associated waveforms, spectra, and attrac-

tors, are provided as supplementary material.

B. Simulation and measurement reliability

SPICE simulations had good accuracy predicting signal

amplitude (measured as voltage inter-quartile range, r¼ 0.75

and r0 ¼ 0:63, where r and r0 denote, respectively, rank-

order correlation between simulation and measurement

before and after manual resistor adjustment) and spectral

centroid f (r¼ 0.71 and r0 ¼ 0:69); however, they were poor

at predicting chaoticity, as indicated by weak correlation

between simulations and experiment for both spectral flat-

ness n (r¼ 0.14 and r0 ¼ 0:17) and correlation dimension D2

(r¼ 0.07 and r0 ¼ 0:17). This situation is in agreement with

previous observations for a chaotic Colpitts oscillator,35 the

LMT circuit,36 and other “atypical” circuits,30 but this study

is the first to systematically consider the issue of the accu-

racy of SPICE simulations in a large set of BJT-based cha-

otic circuits. While detailed investigation of this

disagreement is beyond the scope of this work, we performed

additional simulations with more stringent tolerance and step

settings, and rerun correlation dimension estimates for

SPICE waveforms attempting to closely replicate the experi-

mental settings (fixed sample rate, filtering <20 MHz, addi-

tive Gaussian noise of 5 mV). No relevant improvement in

agreement was observed (data not shown). As discussed

below, uncertainties in the component parameters and the

loading effect of oscilloscope probe connection plausibly

contributed to the disagreement, but are unlikely to be the

main cause, because the reliability of experimental measure-

ments was good.

Further DBSCAN analyses indicated that, compared to

using the simulated resistor value, manual resistor adjust-

ment (jR� R0j median absolute 679 X, relative 53%) yielded

chaoticity in an additional �12% of measured signals.

Eventually, �47% of signals were not chaotic regardless of

their status in simulations, �22% were chaotic according to

both, �10% were chaotic in the realized circuits but not in

simulation, and �22% were not classified. Overall, these

findings indicated that (i) regardless of careful experimental

choices aiming to maximize agreement with simulations,

accurate prediction of chaoticity was not possible and (ii)

chaoticity was nevertheless a rather common occurrence in

the chosen subset of 100 circuits which simulations identi-

fied as “active,” particularly when the series resistor was

manually adjusted.

To gain further insight into measurement reliability, the

15 circuits generating the signals with highest D2 (yielding

43 signals when considering all their nodes) were re-

evaluated. First, measurement repeatability was assessed by

re-acquiring data after >6 months: small errors for amplitude

(median absolute 6.3 mV, relative 1.7%), centroid frequency

f (43.1 kHz, 0.8%), spectral flatness n (0.012, 2.8%), and cor-

relation dimension D2 (0.07, 3.1%) indicated that it was very

good. Second, measurement reproducibility was assessed by

building a second specimen of each oscillator from different

components: errors were larger but still small, for amplitude

(25 mV, relative 5.8%), centroid frequency f (244.3 kHz,

3.1%), spectral flatness n (0.021, 5.3%), and correlation

dimension D2 (0.12, 6.3%), indicating that it was also good.

For 8 of these second specimens, as a consequence of com-

ponent tolerances, series resistor readjustment was necessary

to obtain chaoticity (jDR0j median absolute 142 X, relative

14.0%). Third, the loading effect of attaching the oscillo-

scope probe (approximately C¼ 3.9 pF, Rp¼ 106 X,

Rs¼ 150 X) was assessed by repeating all acquisitions multi-

ple times, each time connecting a third probe to another

node, and considering the worst-case deviation. Errors were

considerably larger for amplitude (56 mV, relative 13.7%),

centroid frequency f (717.0 kHz, 13.5%), spectral flatness n
(0.111, 39.8%). and correlation dimension D2 (0.22, 10.3%),

indicating that, at least for some oscillators, the effect of

loading was more important than other error sources.

Altogether, these results (summarized in supplementary

material Fig. S1) reveal that despite the 610% tolerance in

the capacitor and inductor parameters and 630% tolerance

in BJT parameters such as hFE, the reliability of the experi-

mental findings was overall good, conferring practical value

to the experimental results on the present extended collection

of oscillators.

C. Smallest-size and other representative circuits

The smallest-size chaotic oscillators, which required 4

components in addition to the resistor, consistently featured

the topology shown in Fig. 3(a), which comprised 2 inductors

and 1 capacitor. The inductors connected the supply node to

the base and collector of the BJT, which rendered the currents

through them inter-dependent. Remarkably, in the random

search, this circuit topology recurred 7 times with only mini-

mal variations (e.g., BJT orientation) but different values of

the inductors and the capacitor (Table I). As a function of such

values, upon time-delay embedding of the experimentally mea-

sured signals, diverse dynamics were observed, including spi-

ral, phase-coherent attractors [Figs. 3(b), 3(d), and 3(e)],

attractors resembling the R€ossler funnel attractor [Figs. 3(c)

and 3(g)], and attractors associated with a spiking behavior

[Figs. 3(f) and 3(h)].10,46 Both period-doubling and quasi-

periodicity (possibly favored by the presence of LC tanks with

mismatched frequencies) route-to-chaos were observed in

these circuits, a result that is relevant as quasi-periodicity has

been previously suggested as the prevalent route-to-chaos

mechanism in transistor-based chaotic circuits.30

The smallest-size BJT circuit previously studied in Refs.

30 and 32 was not identified, possibly due to the more

restricted component value ranges considered here, which

excluded its indicated inductor and capacitor values;

however, two variations of this circuit, including extra ele-

ments, were indeed found [circuits no. 21 and 23, see Figs.

4(b) and 4(c)].
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Considering the circuits with 5 components in addition

to the resistor, 9 occurrences were found, in this case with

heterogeneous topology. Two of them [circuits no. 9 and 69;

Fig. 4(a) and supplementary material Figs. S2(a) and S2(f)]

represented a variation of the smallest-size topology

obtained by “degenerating” the supply or ground node by

means of an additional inductor. A further one [no. 34; sup-

plementary material Fig. S2(c)] was similar, with the addi-

tional inductor providing an extra tap to the supply node.

Two others [no. 42 and 90, supplementary Figs. S2(d) and

S2(i)] were structurally identical and contained two series

inductors; the remaining ones were all different. None repre-

sented a straightforward variation of a known circuit topol-

ogy, and considerable diversity of attractors was again

observed.

Further representative examples of the dynamics and

diversity observed in the larger circuits are shown in Fig. 4.

All spectra were characterized by a dominant component

surrounded by a multitude of narrow-band peaks [e.g., Figs.

4(b), 4(c), and 4(f)] and varying intensity of broad-band con-

tent [e.g., Figs. 4(a), 4(d), and 4(e)]. Instances of R€ossler-

like funnel attractors [Figs. 4(a) and 4(f)], attractors similar

to the one of the Colpitts oscillator26 [Fig. 4(c)], reminiscent

of Shilnikov chaos53,54 [Fig. 4(d)], and an attractor with a

peculiar triple butterfly like shape [Fig. 4(e)] were observed;

instances of quasi-periodicity were also observed [Fig. 4(b)].

In all cases, close overlap in the spectra and attractors from

two different oscillator specimens was observed, confirming

good reliability of the experimental results.

D. Two notable circuits

Two further circuits demonstrated dynamics that were

particularly noteworthy. The first one (circuit no. 54), shown

in Fig. 5(a), consisted of two cascaded BTJs overlaid to a

network of 3 inductors in series and 1 capacitor, which pro-

vided multiple feedback paths. While at one node it gener-

ated a R€ossler-like funnel attractor [Fig. 4(f)], at another

node this circuit generated activity resembling a bursting

spike-train, with spikes (i.e., impulses of approximately

quantized height) appearing as positive fluctuation followed

by smaller negative undershoot, having duration �0.25 ls

[Fig. 5(b)]. All-or-nothing response was confirmed consider-

ing the distribution of local maxima amplitudes (<25 MHz,

3rd-order low-pass filtering, 20 points window, 1 000 000

points at 100 MSa/s, 10 repetitions), which showed clear

bimodal distribution with low-amplitude fluctuations in the

range of 0–0.5 V and spikes in the range of 2–2.5 V [Fig.

5(c)]; the threshold for spike detection was therefore set to

1 V. The resulting distribution of inter-event intervals (IEI)

was discrete, with largest peaks at �0.9, 1.9, 2.9 ls, median

1.9 6 1.9 ls [Fig. 5(d)]; consideration of signals at other

nodes indicated that this discontinuous distribution emerged

because the spikes were generated according to underlying

oscillation with a relatively strong dominant frequency com-

ponent [Fig. 4(f)]. The temporal Fano factor Ft,
55,56 com-

puted for time windows having a width of 1.3…655.4 ls,

was consistently under-dispersed with respect to a

Poissonian distribution (<1) at all scales, also with respect to

the reshuffled data, and no power-law scaling region was

identifiable [Fig. 5(e)]. The distribution p(s) of avalanche

size, calculated counting the number of events s in each ava-

lanche and setting the maximum spacing equal to the mean

IEI as customary,55,56 was accordingly exponential-like,

showing a substantial overlap between the experimental and

reshuffled data [Fig. 5(f)]. A simple auto-regressive

FIG. 3. Smallest chaotic oscillator obtained, and diversity of corresponding attractors. (a) Circuit comprising one resistor (value a, where a ¼ R0), one BJT,

two inductors (values b, c), and one capacitor (d). (b)–(h) Time-lag attractors obtained for the 7 instances of this circuit with component values as in Table I.

The time-lag attractors were reconstructed from signals at node A, except at node C in (f) and node B in (h). For (b), (d), and (f), the BJT was in reverse config-

uration (i.e., with emitter and collector exchanged). For (e), the resistor was connected to node B instead of A.

TABLE I. Inductor and capacitor values for the oscillator shown Fig. 3(a).

Circuit no. a ¼ R0 (X) b (lH) c (lH) d (pF) Attractor

37 3460 33 33 150 Fig. 3(b)

43 769 150 33 390 Fig. 3(c)

49 4170 100 100 390 Fig. 3(d)

53 1539 220 15 220 Fig. 3(e)

67 4310 150 150 390 Fig. 3(f)

70 978 220 15 220 Fig. 3(g)

88 1450 220 47 180 Fig. 3(h)
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network57 receiving two consecutive IEIs as input and hav-

ing 10 hidden neurons could predict the next IEI until �3 ls

[rank-order r >0.85, Fig. 5(g), for representative example].

Altogether, these findings indicate that the oscillator has all-

or-nothing dynamics which at the surface recall those of neu-

ral action potentials:56 however, even though the spike trains

qualitatively resembled bursts (avalanches), the dynamics

were not critical and the over-dispersion hallmarking “true”

burstiness was not present.58 Chaotic variants of BJT-based

blocking oscillators, which by their nature generate brief

pulses, have been proposed for broadband signal genera-

tion,28 and generation of bursts of pulses has been

observed;59 however, to the authors’ knowledge, the present

circuit does not represent a variation of a known topology. In

particular, oscillators generating a quantized response have

been previously described,61 but to the authors’ knowledge,

this is the first report of an autonomous BJT-based oscillator

with this behaviour; quantized spiking and bursting are more

often observed in complex circuits intentionally developed

as electronic models of neural dynamics.60 Future work

should explore the possibility of rendering this oscillator crit-

ical. Also in this case, there was a good overlap between two

specimens realized from different components.

The second circuit (no. 81), shown in Fig. 6(a), con-

sisted of two BJTs with a junction connected in anti-parallel,

2 inductors and 1 capacitor. Separate consideration of the

time-series at nodes 3 and 4 indicated that this oscillator

combined generation of continuous irregular activity with

switching between two unstable foci, resulting in a double-

scroll attractor [Figs. 6(b) and 6(c)]. Besides a complex spec-

trum featuring a large number of resonances overlapped to

broad activity [Fig. 6(d)], voltage at node 4 of this circuit

revealed a clear asymmetric double-scroll attractor [Fig.

6(e)] which was visible not only with time-delay embedding

but also when plotted with respect to voltage at node 3 [Fig.

6(f)]. Also for this oscillator, agreement between two

FIG. 4. Selection of oscillators having heterogeneous size, temporal, and spectral features: (a) circuit with 5 components, in addition to the resistor; (b), (c),

(d), and (f) circuits with 6 components; (e) circuit with 7 components. Replicability was confirmed by a close overlap between measurements from two physi-

cal specimens (blue, red; different series resistor values where indicated).
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realized specimens was good. The double-scroll attractor is

characteristic of Chua’s circuit, a paradigmatic circuit that

has been realized in many distinct ways, including opera-

tional amplifier-based nonlinearities, inductor-less imple-

mentations, cellular neural network layouts, and monolithic

designs; these implementations start from the system equa-

tions and subsequently implement the characteristic function

of the Chua’s diode in several ways, or reinterpret the state

variables to obtain an equivalent circuit.9 Here, the circuit

was not been intentionally designed to produce a double-

scroll chaotic attractor, but rather was obtained by serendip-

ity. To the authors’ knowledge, it is the simplest known

BJT-based circuit producing a double-scroll attractor.

Another embodiment of Chua’s circuit only using 2 BJTs as

active elements has been previously described; however, it

also includes 7 resistors, 2 diodes, 2 capacitors and 1 induc-

tor (total 15 elements).62 More recently, an inductorless

double-scroll chaotic oscillator has been proposed; however,

since it is based on the RC phase shift, it also requires a large

number of components in addition to the 2 BJTs, namely, 7

resistors and 4 capacitors (total 13 elements).63 The present

circuit requires less than half the number of components

(total 6 elements), and as such is particularly important

towards proving the generative potential of small BJT-based

oscillators.

E. Synchronization

While the synchronization of structurally different cha-

otic systems has been thoroughly studied, experimental data

on heterogeneous BJT-based oscillators are limited.64 Here,

three paradigmatic cases are shown based on arbitrarily cho-

sen circuit pairs, to demonstrate the capability of these cir-

cuits to yield complex synchronization phenomena when

coupled into network configurations.

Three oscillator pairs were physically realized on a dedi-

cated substrate inside a ceramic dual-in-line package, to

simultaneously show the potential for integration into a

hybrid module usable for realizing large networks. These

modules included read-out amplifiers to minimize oscillator

loading (type MAX4200; Maxim Inc., San Jose, CA, USA).

A dedicated test board was developed, including additional

current adjustment (jointly for the two oscillators) and facili-

ties for hardware-based generation of bit-streams based on

maxima amplitudes for use as entropy sources; while this

feature was not utilized for the present study, its full design

FIG. 5. Spiking chaotic oscillator. (a) Circuit diagram. (b) Time-series recorded at node 3 in two physical specimens (blue, red; different series resistor values),

demonstrating replicable generation of spikes and bursts. (c) Distribution of maxima amplitudes vmax, confirming all-or-nothing behavior (dashed line: spike

detection threshold). (d) Distribution of inter-event intervals dt, revealing discrete steps. (e) Distribution of temporal Fano factor Ft for experimental and

reshuffled series (dots, crosses), showing under-dispersion and absence of a power-law scaling region. (f) Corresponding distribution p(s) of avalanche size s,

showing absence of heavy tail. (g) Scatter-plot between predicted d̂t and measured dt (nonlinear auto-regression) inter-event intervals for representative time-

series, wherein strong correlation confirms deterministic dynamics.
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is provided alongside that of the modules as supplementary

material. In all three cases considered the coupling was dif-

fusive, i.e., implemented by means of a resistor, with an

additional DC-blocking capacitor to avoid exchange of bias-

ing current. The coupling nodes, series supply, and coupling

resistor values were determined empirically. All raw time-

series are freely available.42

The first case, shown in Fig. 7(a), demonstrates the

emergence of lag synchronization, wherein oscillator X leads

Y by d� 0.1 ls over a predominant period of �1.5 ls, as

shown by time-lag normalized mutual information. To con-

firm asymmetric information flow, the transfer entropy was

estimated on 10 time-series pairs (25 000 pts.) according to

the method proposed in Ref. 65, which makes use of the

nearest-neighbor entropy estimator66 (implemented with

kneigh ¼ 10) and employs a non-uniform embedding tech-

nique to limit the dimension of the variables involved in the

computation.67 The transfer entropy was considerably larger

in the X ! Y than in the Y ! X direction, with

0.264 6 0.009 vs. 0.144 6 0.005, and the self-entropy was

comparable between X and Y, with 3.10 6 0.019 and

3.27 6 0.02; the corresponding correlation dimension was

D2¼ 2.48 6 0.12 and 2.48 6 0.15, confirming chaoticity.

While lag synchronization is a common observation in

weakly coupled heterogeneous oscillators,64 it does not

straightforwardly imply asymmetric information flow in the

direction of the lag. It has been shown that measures such as

delayed mutual information can be misleading in this

regard.68 Here, asymmetric information flow was confirmed

using transfer entropy, which overcomes the problems of

possible spurious detected coupling over uncoupled direc-

tions often encountered using time-delayed mutual

information.68,69

The second case, shown in Fig. 7(b), demonstrates the

achievement of near-complete synchronization between

structurally different oscillators. The phase-coherence value

between the time-series for X and Y was 0.95 6 0.001, and

the corresponding maximum cross-correlation coefficient of

amplitude fluctuations extracted via Hilbert’s transform was

0.979 6 0.0001. The corresponding correlation dimension

values were D2¼ 2.53 6 0.20 and 2.51 6 0.35, confirming

that near-complete synchronization could be attained without

incurring oscillation death or destroying chaoticity. This

demonstrates the possibility of obtaining an almost-invariant

manifold between the two continuous chaotic systems.64,70

The third case, shown in Fig. 7(c), demonstrates the pos-

sibility of obtaining generalized synchronization, wherein a

complex functional relationship of the form y(t)¼w(x(t)) is

established, instead of one between the scalar time-series.

Induction and detection of generalized synchronization are

non-trivial problems, particularly when dealing with experi-

mental systems whose dynamics are often influenced by

small parametric variations and parasitics, meaning that ana-

lytical approaches are difficult to apply.64,71,72 We resorted

to a metric based on agnostically determining whether close-

ness in response space implies closeness in driving space:

the L-index73 was calculated for 10 time-series pairs (12 500

pts. each), time-delay embedded according to lag s set to the

FIG. 6. Double-scroll chaotic oscillator. (a) Circuit diagram. (b) and (c) Time-series recorded from two physical specimens (blue, red; different series resistor

values), showing irregular amplitude fluctuations at node 4 and switching behavior at node 3. (d) Amplitude spectra recorded at node 4, demonstrating replica-

ble generation of multi-component, broad spectrum. (e) Time-lag attractor reconstruction revealing asymmetric double-scroll geometry, closely overlapping

between the specimens (recorded with oscilloscope probe attached to node 4 only). (f) Corresponding physical-variable attractor reconstruction in voltages at

nodes 3 and 4.
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first minimum of mutual information, dimension m¼ 1…4

and kneigh ¼ 10. The maximum L-value between directions

was considered, and steadily increased with embedding

dimension m, reflecting representation of increasingly com-

plex synchronization manifold geometry: synchronization

was weak for m¼ 1 (0.144 6 0.006), substantially increased

for m¼ 2 (0.752 6 0.014), increased further for m¼ 3

(0.905 6 0.002), and reached a level effectively indicating

complete synchronization for m¼ 4 (0.951 6 0.007). The

corresponding correlation dimension values were D2¼ 2.79

6 0.16 and 2.79 6 0.28, confirming chaoticity. A similar sit-

uation was also observed for the circuit in Fig. 7(a).

Generalized synchronization has been obtained numerically

and experimentally for diverse nonlinear electronic circuits,

mostly based on operational amplifiers, unidirectional cou-

pling, or other more complex arrangements.71,74–77 To the

authors’ knowledge, this is the first experimental observation

in which it spontaneously emerged between two diffusely

coupled BJT-based oscillators.

Multifractal detrended fluctuation analysis (MFDFA)

was also applied to the time-series of minima and maxima

generated by these coupled oscillators under a variety of set-

tings, but no evidence of multifractality was obtained (data

not shown).

IV. CONCLUSIONS

The results presented in this work highlight that chaos is

a common occurrence in small electronic circuits wherein

the only sources of non-linearity are the v–i characteristics in

the bipolar junction-transistor(s), and wherein self-sustained

oscillation is present. In the circuits considered here, the

probability of observing chaos was enhanced through instan-

tiating a variable resistor connected in series to the DC sup-

ply voltage, whose resistance represented the main control

parameter and was purposefully adjusted searching for cha-

otic ranges. The observation of chaos in approximately half

of the realized circuits (notably preselected among those

who featured self-sustained oscillation), despite the limited

accuracy of simulations in predicting chaoticity, indicates

that chaotic oscillators of this kind are definitely neither

“uncommon” nor “special”; considering them as such would

only be a consequence of the fact that a formal synthesis

method is still missing, and that the limited existing literature

focuses on chaotic adaptations of canonical topologies or cir-

cuits discovered by serendipity.24–30

By contrast, critical phenomena were not detected.

Further, the dynamics provided no convincing instances of

multifractality; however, anti-persistent mono-fractal

dynamics were prevalent. There are thus profound differ-

ences with respect to many self-organized biological and

physical systems, which often dwell close to the point of

criticality and exhibit signatures of multifractality.48,49,78,79

In particular, criticality in electronic circuits has received

very limited attention thus far, but a recent study on a lattice

of glow lamps has demonstrated the possibility of eliciting

critical phenomena by external tuning, even in the absence

of opportunity for self-organization to drive dynamics

towards criticality.55 It should be noted that the target of

these simulations and experiments was obtaining chaoticity,

FIG. 7. Examples of coupled heterogeneous oscillators showing, in order, circuit diagram, physical realization, time-lag normalized mutual information plot,

and Lissajous figure. Configurations yielding (a) lag synchronization, (b) near-complete synchronization, and (c) generalized synchronization. vs< 5 V due to

shared current-adjustment circuitry on test board.
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not criticality; hence, the proximity of phase-transition

points, where critical phenomena preferentially occur, was

not explored systematically.

Owing to the fact that chaos is a pervasive occurrence in

these circuits, atypical topologies of chaotic oscillators, pre-

viously unknown and not intentionally representing varia-

tions of existing ones, could be identified by means of a

random search process. The search process was made com-

putationally tractable by applying suitable heuristics, elimi-

nating a-priori invalid circuits without attempting to

simulate them, and then using a two-step approach to only

run time-consuming simulations for circuits already ascer-

tained to be oscillating; this “funnel” approach meant that

time-consuming simulations were run only a small fraction

of the initial candidates (�0.1%). While the usage of genetic

algorithms to design these circuits was previously advo-

cated,32 the present results suggest that maintaining a similar

bit-stream representation of circuit topology and parameters,

the search process can effectively be approximated by a ran-

dom one. Such assertion is supported by the fact that, when

crossing-over the genetic code of two different oscillators,

the majority of resulting circuits are not functioning oscilla-

tors, as observed for other situations where structures and

parameters are conjointly represented. Future work may re-

consider the use of genetic algorithms applied in a narrower

scope for the optimization of parameter values in these

circuits.37,38

Compared to preexisting work,30,32 significant instru-

mental improvements were introduced, attempting to

enhance the accuracy of SPICE simulations; in particular,

the physical inductors were modeled by means of realistic

RLC networks, high-grade capacitors and transistors with

low parasitics were chosen, and interconnections were real-

ized with optimized printed circuit boards. Nevertheless,

SPICE simulations could only predict with good accuracy

the amplitude and frequency centroid of the generated sig-

nals, but they were unsuccessful at predicting onset of chaos,

as indexed by uncoupled spectral flatness and correlation

dimension in comparison to the experimental data. Because

the reproducibility of the experimental results across circuit

specimens realized with different components was good,

such disagreement could not only be due to parametric mis-

matches between physical components and canonical values.

This result thus highlights limitations inherent in the compo-

nent models and numerical solver. A substantial number of

chaotic oscillators were nevertheless identified, owing to the

fact that (i) as stated above, chaoticity is a common occur-

rence in these circuits, (ii) these circuits included a supply

series resistor, which was intentionally adjusted searching

for chaotic ranges, (iii) even though the simulations failed to

predict chaoticity, they successfully delivered a set of atypi-

cal circuits all of which (except one) actually oscillated

when physically realized: this restricted the search to a very

small fraction of the entire set of hypothetical oscillators

described by the generated random bit-strings.

A recurrent topology was identified in circuits compris-

ing 4 elements in addition to the series resistor. To the

authors’ knowledge, it did not represent a previously known

oscillator, and it demonstrated a remarkable universality in

that the 7 instances found generated a range of diverse attrac-

tors as a function of the component values. The size of this

circuit is comparable to the smallest known autonomous

oscillators of this kind.26–28,30 Even though a formal route-

to-chaos analysis was not conducted, both period-doubling

cascade and quasi-periodicity were commonly observed and

identified as primary mechanisms to the onset of chaos in

these circuits.

Furthermore, two novel oscillators noteworthy for their

dynamics were obtained. The first one generated spikes

approximating an all-or-nothing (quantized) response.

Analyses of temporal scaling and predictability of inter-event

intervals indicated that the underlying dynamics were strongly

deterministic, and signatures of criticality such as power-law

scaling of avalanche size were missing. Nevertheless, this

oscillator is of particular interest, as it demonstrates the possi-

bility of observing chaoticity in transistor-based circuits in

the form of irregular inter-event times between spikes, rather

than cycle amplitude fluctuations. While a range of quantized

oscillators capable of generating spikes and bursts have

been described previously, these often implement integrate-

and-fire dynamics based either on considerably more complex

circuits aiming to mimic neurons60 or on highly non-linear

components such as glow lamps (gas discharge tubes).55 Even

though critical signatures were missing, there were elements

of qualitative similarity to neural discharge time-series; hence

future work should explore the possibility of modifying or

externally tuning this circuit to yield critical behavior.

The second oscillator generated an asymmetric double-

scroll attractor via combining irregular cycle amplitude fluc-

tuations and alternation between two unstable foci. There are

a variety of numerical and experimental systems, which can

give rise to this attractor, of which to the authors’ knowledge

only two implementations based on bipolar-junction transis-

tors are known.62,63 Compared to them, the circuit consid-

ered in this study is considerably smaller as it involves less

than half the total number of elements, namely, 2 inductors,

2 transistors, 1 capacitor, and 1 resistor, and as such, it rein-

forces the universality of these oscillators.

By means of three arbitrary but representative examples,

it was also demonstrated that structurally heterogeneous cir-

cuits can be diffusively coupled, giving rise to non-trivial

synchronization scenarios. While diffusive (resistive) cou-

pling is inherently symmetrical, it was shown that, depend-

ing on the oscillator dynamics, asymmetric inter-dependency

can emerge, hallmarked by lag synchronization and directed

information transfer between the two oscillators. It was also

demonstrated that in some cases an invariant synchronization

manifold may exist enabling near-complete synchronization

between different oscillators, without incurring in oscillation

death or loss of chaos. Furthermore, the possibility of sponta-

neous emergence of generalized synchronization was shown,

by means of applying a rank-based affinity metric, which

consistently increased up to four-dimensional embedding.

Taken together, these results demonstrate the potential of

these circuits to spontaneously generate non-trivial synchro-

nization phenomena, leading to network complexity when

coupled in heterogeneous ensembles, as is often the case in

natural systems; this is of broad interest since, to date,
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limited experimental research has been done on emergence

in networks of electronic oscillators mismatched structurally

rather than just parametrically.64,80,81

More generally, this study provides a large collection of

transistor-based chaotic circuits, with substantial diversity of

topological and dynamical features. All circuit diagrams and

experimental time-series are freely available, supporting

future research and applications in this area, particularly as

the findings were largely reproducible across realizations of

each circuit.

SUPPLEMENTARY MATERIAL

See supplementary material for additional tables, fig-

ures, circuit diagrams, signals, circuit board fabrication

materials, and illustrations.
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50S. Dro _zd _z, P. O�swiȩcimka, A. Kulig, J. Kwapie�n, K. Bazarnik, I. Grabska-

Gradzi�nska, J. Rybicki, and M. Stanuszek, Inf. Sci. 331, 32 (2016).
51H. E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951).
52L. B. M. Silva, M. V. D. Vermelho, M. L. Lyra, and G. M. Viswanathan,

Chaos, Solitons Fractals 41, 2806 (2009).
53V. S. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, and L.

Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic
Systems: Tutorial and Modern Developments (Springer, Berlin, Germany,

2007).
54S. T. Kingni, L. Keuninckx, P. Woafo, G. Van der Sande, and J.

Danckaert, Nonlinear Dyn. 73, 1111 (2013).
55L. Minati, Chaos 26, 073103 (2016).
56J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167 (2003).
57J. T. Connor and R. D. Martin, IEEE Trans. Neural Networks 5, 240

(1994).
58U. T. Eden and M. A. Kramer, J. Neurosci. Methods 190, 149 (2010).
59E. V. Efremova and L. V. Kuzmin, in Proceedings of the 1st IEEE

International Conference on Circuits and Systems for Communications,
2002 (ICCSC ’02), p. 300.

60J. H. B. Wijekoon and P. Dudek, Neural Networks 21, 524 (2008).
61H. Torikai, T. Saito, and Y. Kawasaki, Int. J. Bifurcation Chaos 12, 1207

(2002).
62T. Matsumoto, L. Chua, and K. Tokumasu, IEEE Trans. Circuits Syst. I

33, 828 (1986).
63L. Keuninckx, G. Van der Sande, and J. Danckaert, IEEE Trans. Circuits

Syst. II 62, 891 (2015).
64S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou,

Phys. Rep. 366, 1 (2002).

073113-12 Minati et al. Chaos 27, 073113 (2017)

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-012707
http://dx.doi.org/10.1142/S021812741103009X
http://dx.doi.org/10.1016/j.chaos.2013.08.018
http://dx.doi.org/10.1134/S1063776114030121
http://dx.doi.org/10.1140/epjst/e2015-02472-1
http://dx.doi.org/10.1016/j.physrep.2016.05.002
http://dx.doi.org/10.1142/S0218127408022354
http://dx.doi.org/10.1109/TCSI.2010.2097731
http://dx.doi.org/10.1109/TCSII.2010.2058493
http://dx.doi.org/10.1109/81.295246
http://dx.doi.org/10.1109/81.915386
http://dx.doi.org/10.1109/TCSI.2011.2107190
http://dx.doi.org/10.1109/TCSI.2011.2107190
http://dx.doi.org/10.1109/TCSI.2013.2283994
http://dx.doi.org/10.1109/81.661675
http://dx.doi.org/10.1109/81.661675
http://dx.doi.org/10.1109/TCS.1986.1085855
http://dx.doi.org/10.1103/PhysRevLett.47.1349
http://dx.doi.org/10.1109/31.52733
http://dx.doi.org/10.1007/s11071-006-1935-3
http://dx.doi.org/10.1063/1.4729135
http://dx.doi.org/10.1016/j.chaos.2007.07.065
http://dx.doi.org/10.1109/TCSII.2005.850766
http://dx.doi.org/10.1109/81.331536
http://dx.doi.org/10.1142/S0218127402005777
http://dx.doi.org/10.1109/81.928150
http://dx.doi.org/10.1063/1.4833115
http://dx.doi.org/10.1063/1.4890530
http://dx.doi.org/10.1119/1.19538
http://dx.doi.org/10.1063/1.4896815
http://dx.doi.org/10.1063/1.4914938
http://dx.doi.org/10.1063/1.166424
http://ngspice.sourceforge.net
http://www.lminati.it/listing/2017/a/
http://dx.doi.org/10.1121/1.381843
http://dx.doi.org/10.1109/49.608
http://dx.doi.org/10.1103/PhysRevE.74.016103
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1016/S0378-4371(02)01383-3
http://dx.doi.org/10.1016/j.ins.2015.10.023
http://dx.doi.org/10.1016/j.chaos.2008.10.027
http://dx.doi.org/10.1007/s11071-013-0856-1
http://dx.doi.org/10.1063/1.4954879
http://dx.doi.org/10.1109/72.279188
http://dx.doi.org/10.1016/j.jneumeth.2010.04.012
http://dx.doi.org/10.1016/j.neunet.2007.12.037
http://dx.doi.org/10.1142/S0218127402005054
http://dx.doi.org/10.1109/TCS.1986.1085993
http://dx.doi.org/10.1109/TCSII.2015.2435211
http://dx.doi.org/10.1109/TCSII.2015.2435211
http://dx.doi.org/10.1016/S0370-1573(02)00137-0


65L. Faes, D. Kugiumtzis, A. Montalto, G. Nollo, and D. Marinazzo, Phys.

Rev. E 91, 032904 (2015).
66A. Kraskov, H. St€ogbauer, and P. Grassberger, Phys. Rev. E 69, 066138

(2004).
67I. Vlachos and D. Kugiumtzis, Phys. Rev. E 82, 016207 (2010).
68T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
69R. Vicente, M. Wibral, M. Lindner, and G. Pipa, J. Comput. Neurosci. 30,

45 (2011).
70J. K. Hale, J. Dyn. Differ. Equations 9, 1 (1997).
71N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel,

Phys. Rev. E 51, 980 (1995).
72H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53,

4528 (1996).
73D. Chicharro and R. G. Andrzejak, Phys. Rev. E 80, 026217 (2009).
74A. Kittel, J. Parisi, and K. Pyragas, Physica D 112, 459 (1998).

75V. Rubezic, B. Lutovac, and R. Ostojic, “Linear generalized synchroniza-

tion of two chaotic Colpitts oscillators,” in 9th International Conference
on Electronics, Circuits and Systems, 2002, p. 223.

76B. S. Dmitriev, A. E. Hramov, A. A. Koronovskii, A. V. Starodubov, D. I.

Trubetskov, and Y. D. Zharkov, Phys. Rev. Lett. 102, 074101 (2009).
77R. Mart�ınez-Guerra, J. L. Mata-Machuca, and A. Rodr�ıguez-Mart�ınez,

“Generalized synchronization between Colpitts and Chua circuits,” in

2013 IEEE 56th International Midwest Symposium on Circuits and
Systems (MWSCAS), Columbus OH, USA, 2013, p. 1423.

78D. Harte, Multifractals (Chapman & Hall, London, UK, 2001).
79D. Plenz, E. Niebur, and H. G. Schuster, Criticality in Neural Systems

(Wiley, Hoboken, NJ, USA, 2014).
80J. G. Restrepo, E. Ott, and B. R. Hunt, Physica D 224, 114 (2006).
81A. Arenas, A. D�ıaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Phys.

Rep. 469, 93 (2008).

073113-13 Minati et al. Chaos 27, 073113 (2017)

http://dx.doi.org/10.1103/PhysRevE.91.032904
http://dx.doi.org/10.1103/PhysRevE.91.032904
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1103/PhysRevE.82.016207
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://dx.doi.org/10.1007/s10827-010-0262-3
http://dx.doi.org/10.1007/BF02219051
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevE.53.4528
http://dx.doi.org/10.1103/PhysRevE.80.026217
http://dx.doi.org/10.1016/S0167-2789(97)00186-3
http://dx.doi.org/10.1103/PhysRevLett.102.074101
http://dx.doi.org/10.1016/j.physd.2006.08.026
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002

	s1
	l
	n1
	s2
	s2A
	s2B
	s3
	s3A
	f1
	f2
	s3B
	s3C
	s3D
	f3
	t1
	f4
	s3E
	f5
	f6
	s4
	f7
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81

