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Universal scaling for the quantum Ising chain with a classical impurity
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We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open
quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ �= 1.
In the homogeneous chain limit at μ = 1, we find the expected finite-size scaling for the longitudinal impurity
magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity
limit μ = 0, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does
not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well
as numerical evidences for the scaling behavior. At intermediate values of μ, finite-size scaling is violated, and
we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length
scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive
the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a
square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ.
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I. INTRODUCTION

Quantum phase transitions embody one of the most striking
collective behaviors of many-body systems [1]. At variance
with thermal fluctuation-induced phase transitions, a quantum
phase transition in a many-body system is typically triggered
by quantum fluctuations and, therefore, it can take place even
at zero temperature, once a system parameter (say h) is tuned
across its critical value (hc). In analogy with thermal ones,
the classification of quantum phase transitions relies upon the
Eherenfest-Landau scheme, by which one defines the order
of a transition as that of the lowest derivative of the pertinent
free-energy functional, showing a discontinuity at the critical
point (see Ref. [2] for a review on the subject). A milestone in
the construction of a systematic theory of the phase transitions
is the concept of universality, stating that all the physical
systems sharing the same dimensionality, symmetry of the
order parameter, and range of the interaction are expected
to behave alike, close to a phase transition and are said to
belong to the same universality class [3,4]. Universality is a
consequence of the divergence of the correlation length ξ at
the critical point [4]. Indeed, near a second-order quantum
phase transition, the growth of ξ makes it the only relevant
length scale of the system, and makes the microscopic details
of the system irrelevant. Furthermore, it implies the scaling
of physical quantities as power laws of (hc − h), with critical
exponents that take the same values throughout the whole
universality class [5]. In addition, close to a critical point,
the algebraic divergence of ξ implies scale invariance of
the system; that is, general physical quantities behave as
powers of control parameters times some scaling functions of
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dimensionless ratios such as, for instance, energy/(Boltzmann
constant times) temperature, etc. [4,6]. An astonishing con-
sequence of such a prediction is that observables such as
magnetization, susceptibility, correlation length and time,
specific heat, as well as quantities which are not observables
in the quantum-mechanical sense, such as entanglement [7–9],
Schmidt gap [10], irreversible work [11], all exhibit a scaling
behavior according to a set of critical indexes which define the
universality class the model belongs to.

Due to the recent progress in designing and fabricating
quantum devices with engineered properties, a remarkable
interest has been triggered in the physics of impurities in
critical or quasicritical systems [12]. As an example, local
impurities have been proposed to improve the efficiency in
quantum state transfer protocols [13,14].

When impurities are realized in a critical system (the
“bulk”), the lack of reference (energy or length) scales in
the bulk allows for the emergence of dynamically generated
impurity-related scales, such as the Kondo temperature, or the
Kondo length, in the case of magnetic impurities antiferro-
magnetically coupled to a bulk of itinerant electrons [15,16],
or of lattice quantum spin systems [17,18], or the healing
length, in the case of tunneling between interacting electronic
systems in one spatial dimension [19]. Typically, the impurity
dynamics affects bulk quantities (such as the conductance,
or the spin susceptibility), and, in turn, it can be probed by
looking at the bulk response through suitably designed devices.
Recently, impurity-induced dynamics has been investigated,
e.g., in Josephson junction networks [20–23], quantum spin
chains [24–29], and cold fermion gases [30–33].

While there are a remarkably large number of possible
bulk effects induced by the impurity dynamics, in this paper
we take a complementary point of view; namely, we rather
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look at the effects that a critical many-body bulk system has
on the impurity. In fact, several proposals have recently put
forward to engineer fully controllable quantum objects as
“quantum probes” of many-body condensed matter systems
(see, e.g., Refs. [34–38]). In the specific context of a quantum
impurity embedded within a bulk system close to a quantum
phase transition, either the impurity generates a dynamic
scale that rules the scaling of its observables or, if this
does not happen, the impurity-related observables scale with
exponents that are directly linked to the system ones. In
the context of thermal phase transitions, this effect has
been demonstrated, e.g., for the surface magnetization in
inhomogeneous two-dimensional Ising lattices [39]. Due to
the remarkable correspondence between (d + 1)-dimensional
classical systems and quantum d-dimensional ones [40,41],
one expects a similar behavior to emerge for a quantum
impurity embedded within one-dimensional critical systems,
namely, that the scaling in the bulk implies some sort of scaling
in the impurity observables, as well [42,43].

To spell out the consequences of the bulk scaling on
observable quantities of a boundary impurity, here we study the
open, one-dimensional, quantum Ising model in a transverse
field h containing a side impurity. Since the seminal works
dating back to the 1960s [44,45], the transverse field Ising
model has received a great attention in the literature; its
critical indexes are since long well known [46,47], as well as
experimentally verified (see Ref. [48] and references therein).
The effects of disorder and/or impurities have been considered
as well, unveiling quite a rich phenomenology that ranges
from the so-called Griffiths-McCoy singularities [49] to the
rounding of a quantum phase transition [50] (for an up-to-date
review of theoretical and experimental aspects, see Ref. [51]).

In this paper, we consider a side impurity at the first site of
the Ising chain, realized with a local transverse magnetic field
equal to a fraction of the bulk one, μh with 0 � μ � 1. At
μ = 1, our model reduces back to the homogeneous one with
open boundary conditions. In contrast, for μ = 0, we can
explore the physics of a classical impurity (see Ref. [52]).
As outlined there, a classical impurity gives rise to a twofold
degeneracy for the spectrum of the whole system Hamiltonian.
We show here that such an emerging degeneracy results
in the scaling behavior of the impurity observables close
to the bulk quantum phase transition. Specifically, working
at zero temperature, we will perform a finite-size scaling
analysis of the physical properties of the impurity and
derive the corresponding scaling exponents. In particular,
we will investigate the finite-size scaling behavior of the
impurity magnetization by looking at both its longitudinal and
transverse components (directed along the coupling axis and
along the applied magnetic field, respectively).

Close to the homogeneous chain limit (μ ∼ 1), we recover
the finite-size scaling of the longitudinal magnetization, which
is consistent with the behavior of the edge magnetization
in the two-dimensional classical model [39]. At the same
time, the transverse magnetization shows no particular scaling
properties. On the other hand, when moving towards the
classical impurity limit (μ → 0), we find the emergence of
finite-size scaling in the transverse magnetization, as well.
While this appears to be an already remarkable finding per
se, it becomes particularly relevant when interpreted along

the results obtained in Ref. [53] where the energy spectrum is
obtained for the Hamiltonian of the inhomogeneous transverse
field Ising model.

The transverse field Ising model is known to exhibit a
quantum phase transition between an ordered phase and a
paramagnetic one [1]. Both phases are characterized by an
excitation spectrum with a finite-energy gap, with spectra that
appear quite similar to each other, except for the appearance of
a subgap mode in the ordered phase, which eventually evolves
towards an actual zero-energy excitation as the size of the
system increases. It is exactly the appearance of the subgap
mode that determines the scaling behavior of the longitudinal
impurity magnetization in the ordered phase [39] and, by
converse, its absence which determines the scaling to zero
of the longitudinal magnetization in the thermodynamic limit.
The analogous contribution to the transverse magnetization
is, in general, overwhelmed by the contributions from the
modes with energy above the gap, which yields no particular
scaling behavior. In our inhomogeneous case, when μ → 0,
two important things happen: first, an additional subgap
mode emerges in the paramagnetic region and, second, the
contribution to the transverse magnetization from above-the-
gap modes shrinks to zero, thus providing the transverse
magnetization itself with an order-parameter-like behavior
analogous to that of the longitudinal magnetization, but now
in the paramagnetic phase, rather than in the ordered one. As
a result, the behavior of the transverse magnetization close
to the quantum phase transition can be directly linked to the
emergence of such a subgap mode in the paramagnetic region,
which is the second, remarkable conclusion of our work.

The paper is organized as follows: In Sec. II, for the
sake of self-completeness, we briefly recap the main results
for the Ising model with open boundary conditions and
a single edge impurity reported in Ref. [53]; in Sec. III,
we report the critical exponents of the impurity magnetic
observables, which are then used in Sec. IV to obtain the
predicted data collapse. Finally in Sec. V, the universality
hypothesis is checked by verifying that the scaling exponents
remain the same also for the XY model. Going along the
correspondence between d-dimensional quantum models and
(d+1)-dimensional classical statistical systems, in Sec. VI we
derive the classical, two-dimensional analog of the transverse
field Ising model with an end-point impurity. Finally, in
Sec. VII we provide our main conclusions.

II. IMPURITY MODEL HAMILTONIAN

We model the quantum impurity by rescaling the transverse
magnetic field h at one end point of an N -site quantum
Ising chain to μh, with μ being a dimensionless parameter.
Accordingly, our model Hamiltonian Hμ can be regarded as a
special case of the transverse field Ising model Hamiltonian in
a nonuniform transverse magnetic field hn, that is,

Ĥμ = −J

N−1∑
n=1

σ̂ x
n σ̂ x

n+1 − J

N∑
n=1

hnσ̂
z
n , (1)

with σ̂ α
n (α = x,y,z) being the Pauli matrices corresponding

to (two times) the components of a spin- 1
2 quantum operator

at site n of the chain, J being an overall energy scale (used as
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FIG. 1. Distribution of the discrete modes �n (n=1,2) in the
h,μ plane. In the region R1 (vertical lines), only the mode �1 is
present, while in the region R2 (horizontal lines), there is only the
mode �2, either below or above the band in the two subregions with
μ < 1 or μ > 1, respectively. Both discrete modes are present in the
intersection ofR1 andR2. On the solid green line (μ = 0 with h � 1),
mode 2 becomes an actual zero mode at any finite N (�2 = 0) and
the impurity becomes classical [52]. Finally, only quasicontinuous
modes are present in the white region.

a reference scale henceforth), and hn = h(1 − δn,1) + μhδn,1.
The model in Eq. (1) undergoes a quantum phase transition
if the magnetic field is set at the critical value hc = 1. In the
following, we will discuss the impurity physics for h ∼ hc.

By the standard Jordan-Wigner representation of the spin- 1
2

operators in terms of lattice spinless fermion operators {cn,c
†
n},

giving [54] σ̂ x
n = [cn + c

†
n] eiπ

∑n−1
r=1 c

†
r cr and σ̂ z

n = 1 − 2c
†
ncn,

Ĥμ is traded for an exactly solvable quadratic fermion
Hamiltonian. The derivation of the eigenvalues of Ĥμ and
of the corresponding eigenmodes is discussed in detail in
Ref. [53]. Here, for the sake of the presentation, we just review
the main results. By introducing the Bogoliubov–de Gennes
quasiparticle operators {ηq,η

†
q}, related to the {cn,c

†
n} by the

Bogoliubov-Valatin transformations

η̂q =
∑

n

{
ψqn + φqn

2
ĉn + ψqn − φqn

2
ĉ†n

}
,

η̂†
q =

∑
n

{
ψqn − φqn

2
ĉn + ψqn + φqn

2
ĉ†n

}
, (2)

we can recast Ĥμ in the form

Ĥμ =
∑

κ

�κη̂
†
κ η̂κ + χ1�1η̂

†
1η̂1 + χ2�2η̂

†
2η̂2. (3)

In Eq. (3), κ labels the quasicontinuous modes, with energy
larger than the single-quasiparticle bulk gap 
m = |1 − h|:
these are typically parametrized in terms of the “angles” θκ

which solve the secular equations (A12) of Ref. [53]. In addi-
tion, Ĥμ includes contributions from the two discrete modes
η1,η2, which, depending on the values of h and μ, may appear
at energies lying within 
m. On labeling with Rn the region
in parameter space where mode n = 1,2 exists, we see that
R1 is the ferromagnetic region h � 1, while R2 = {(h,μ) :
(∀ h ∧ |μ|>√

1+1/h) ∨ (h > 1 ∧ |μ|<√
1−1/h)} (R1,2 are

depicted in Fig. 1; the details about their construction are
provided in Ref. [53]). Furthermore, in Eq. (3), we used
χ1 = �(1 − h) and χ2 to denote the characteristic functions
of R1 and R2, respectively, so that the corresponding fermion
mode n = 1 (n = 2) is absent if h,μ are taken outside R1

(R2). The wave functions ψqn,φqn entering Eq. (2), derived in
Ref. [53], are reported here in Table I, where we list the energy
eigenvalues of Ĥμ and the corresponding eigenstates (in the
N → ∞ limit).

III. SCALING ANALYSIS OF THE TRANSVERSE AND
LONGITUDINAL MAGNETIZATION IN THE

THERMODYNAMIC LIMIT

In this section, we investigate the scaling of the transverse
and longitudinal impurity magnetization in the vicinity of the
bulk quantum phase transition (h ∼ hc = 1) in the thermody-
namic limit N → ∞. In addition, we also discuss the scaling
of the impurity transverse susceptibility close to the critical
point.

A. Local transverse magnetization

The transverse magnetization at site n of the transverse
field Ising model is defined as the average value of the z

component of the spin operator at that site 〈σ̂ z
n 〉. Using the

Jordan-Wigner transformations and inverting the Bogoliubov-
Valatin transformations in Eqs. (2), setting vqn = ψqn−φqn

2 , one
obtains

〈σ̂ z
n 〉 = 1 − 2

〈
c†ncn

〉 = 1 − 2
∑

q

v2
qn. (4)

When computing Eq. (4) for n = 1 (transverse impurity mag-
netization), we see that 〈σ̂ z

1 〉 consists of various contributions,
due to the quasicontinuous modes λκ and to the discrete modes

TABLE I. Expressions for the energy eigenvalues and the {ψ,φ} matrix elements in the (h,μ) plane [see Eq. (A12) of Ref. [53] for the
definition of the parameter θκ ].

(h,μ) � ψ φ

∀ (h,μ) �κ=2
√

1+h2−2h cos θκ ψn(θκ )=
√

2
N

sin(nθκ )+(μ2−1)h sin[(n−1)θκ ]√
1+(μ2−1)2h2+2h(μ2−1) cos θκ

φn(θκ )= 2h

�κ
ψn(θκ )− 2(μ+1)hδn1

�κ
ψ1(θκ )− 2(1−δn1)

�κ
ψn−1(θκ )

R1 �1= 2|μ|(1−h2)hN√
|1+(μ2−1)h2|

ψ (1)
n =√

1−h2(hN−n− μ2hN+n

1+(μ2−1)h2 ) φ(1)
n =

√
1−h2

√
|1+(μ2−1)h2|

|μ|h[1+(μ2−1)h2]
{1−(μ + 1)[δn1+(1−δn1)(1 − μ)]}hn

R2 �2 = 2|μ|
√

1+(μ2−1)h2

(μ2−1)
ψ (2)

n = (−1)nh−n
√

(μ2−1)2h2−1

(μ2−1)n
φ(2)

n = 2h

�(2) ψ
(2)
n − 2(μ+1)hδn1

�(2) ψ
(2)
1 −2 1−δn1

�(2) ψ
(2)
n−1
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FIG. 2. Left panel: transverse magnetization 〈σ̂ z
n 〉 in the thermodynamic limit (N → ∞) as a function of the magnetic field h, as μ → 0,

for the impurity spin n = 1 and, for comparison, for spins n = 2 and 10 as well. Apparently, only 〈σ̂ z
n 〉 behaves as a continuous (dis)order

parameter as h → hc. Right panel: transverse impurity magnetization 〈σ̂ z
n 〉 (in the limit N → ∞), near hc and for μ = 0,0.002,0.005. The

steplike behavior holds only for μ = 0.

�1,2. On singling out these three terms, one may write

〈σ̂ z
1 〉 = ϕcm + ϕ1 + ϕ2, (5)

with

ϕcm = −4μ

N

∑
κ

{
sin2 θκ

�κ [1+(μ2−1)2h2+2h(μ2−1) cos θκ ]

}
,

ϕ1 = −2

[
hN sgn(μ)

2h

][
(1−h2)2√

1+(μ2−1)h2

]
sgn[1+(μ2−1)h2],

ϕ2 = −2

[
sgn(μ)

h(μ2−1)
3
2

] [
(μ2−1)2h2−1√

(μ2−1)h2+1

]
. (6)

Equations (5) and (6) allow us to separately discuss the
large-N limit of the various contributions to 〈σ̂ z

1 〉 close to
the quantum phase transition. First of all, we note that, in the
homogeneous chain limit (μ → 1), ϕ2 does not contribute as
the mode �2 is not present in the spectrum on the horizontal
line μ = 1 in the parameter space (see Fig. 1). In this case,
one simply obtains

〈σ̂ z
1 〉 = −hN−1 (1 − h2)2 − 4

N

∑
κ

{
sin2 θκ

�κ

}
. (7)

As N → ∞, the contribution from the discrete mode �1 is
exponentially suppressed, and one obtains

〈σ̂ z
1 〉 → − 2

π

∫ π

0
dθ

{
sin2 θ√

1 + h2 − 2h cos θ

}
, (8)

which is the standard result for the homogeneous transverse
field Ising model.

At variance, when μ → 0, the discrete mode �2 emerges
with vanishing energy at any finite N . This corresponds to
the impurity at n = 1 becoming classical [52]. Accordingly,
the Hamiltonian spectrum becomes twofold degenerate at
any finite N and one may always construct a conserved
operator commuting with Ĥμ=0, but anticommuting with the
Jordan-Wigner total fermion parity operator (see Ref. [52] for
a detailed discussion of this point). Taking the N → ∞ limit

of Eq. (6), one eventually obtains

〈σ̂ z
1 〉 = 1−2

[ ∫ π

0
dθ v2

1(θ )+�(h−1)�(x+)�(y+)
(
v

(2)
1

)2

+ �(1−h)
(
[�(y−)+�(x−)]

(
v

(2)
1

)2+(v(1)
1

)2)]
,

(9)

with x± = μh + √
h(h ∓ 1), y±= − μh + √

h(h ∓ 1), and
�(x) being the Heaviside step function. As μ → 0,
Eq.(9) yields

lim
μ→0±

〈σ̂ z
1 〉= ∓ (h + 1)

1
2 (h − 1)

1
2

h
�(h − 1). (10)

From Eq. (10), we see that the transverse magnetization
has a power-law behavior near hc. Indeed, as h → hc, one has
〈σ̂ z

1 〉 
 2(h − 1)β̃ , with critical exponent β̃ = 1
2 . Moreover,

Eq. (10) hints towards a singular behavior of the μ →
0 impurity transverse susceptibility χ (1)

z = ∂〈σ̂ z
1 〉

∂h
at h ∼ hc.

Remarkably, such a singular behavior of χ (1)
z only holds in

the μ → 0 limit (see Fig. 2). Note that the transverse mag-
netization does not show any singularity in the homogeneous
transverse field Ising model (μ = 1), regardless of whether the
boundary conditions are open or periodic. Now, from Eq. (10),
we see that, instead, as μ → 0, 〈σ̂ z

1 〉 acquires a behavior similar
to what one would expect from an order parameter, except
that it takes a nonzero ground-state expectation value in the
disordered paramagnetic phase (h > hc = 1) rather than in the
ordered ferromagnetic one. This behavior is, in fact, a direct
consequence of the emergence of the discrete mode �2 and
of the fact that it becomes a zero mode as μ → 0. The key
point is that, for all μ, one has [Ĥμ,P̂ ] = 0, where P̂ is the
parity operator defined as P̂ σ̂

x,y
n P̂ = −σ̂

x,y
n and P̂ σ̂ z

n P̂ = σ̂ z
n .

In fermionic coordinates, P̂ can be regarded as the operator
that changes the total fermion parity of a state,

P̂ =
N∏

n=1

σ̂ z
n =

N∏
n=1

eiπc
†
ncn , (11)

with the middle term of Eq. (11) yielding the realization of P̂

in spin coordinates, while the last term that for Jordan-Wigner
fermions. By construction, one has P̂ ηq = −ηqP̂ , where ηq
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is any one of the fermion operators in Eq. (2). Therefore, the
emergence of a zero-energy ηq mode is enough to ensure the
twofold degeneracy of the spectrum of Ĥμ. As it can be readily
inferred from Table I, in a homogeneous chain (μ = 1), this
only happens for h < 1 and for N → ∞, where the onset of
the degeneracy implies a twofold-degenerate ground state for
the system and, accordingly, the possibility for σ̂ x

1 to acquire a
nonzero ground-state expectation value, and to act as an order
parameter for the ferromagnetic phase.

In few words, in order to recover a nonzero ground-state
expectation value for a certain operator and use it as a nonzero
order parameter to characterize a given phase, one needs a
degenerate ground state to emerge in that phase. This is not
the case for the paramagnetic phase of the homogeneous trans-
verse field Ising model (μ = 1) which, indeed, does not show
any nonzero order parameter. On the contrary, when μ → 0,
from Eq. (1) one obtains [σ̂ x

1 ,Ĥμ=0] = 0. Combining this last
identity with the observation that P̂ σ̂ 1

x = −σ̂ 1
x P̂ , we eventually

find two operators, both commuting with Ĥμ=0, but not com-
muting with each other. This is enough to ensure the twofold
spectral degeneracy of Ĥμ, which is ultimately consistent with
a nonzero ground-state expectation value 〈σ̂ z

1 〉 playing the role
of a characteristic parameter for such a phase. Remarkably,
in this classical impurity limit, the degeneracy emerges at any
finite N , without the need of the thermodynamic limit [52].
In Jordan-Wigner fermion coordinates, the twofold spectral
degeneracy at μ = 0 occurs when the discrete mode η2

becomes gapless: it corresponds to the zero-mode operator in
Eq. (14) of Ref. [52], adapted to the case of a classical impurity
at the end point of a “semi-infinite” chain. Another important
point to stress here is that, while in the ferromagnetic phase one
gets 〈σ̂ x

n 〉 �= 0 for all n, both at the boundary and in the bulk of
the transverse field Ising model (see Fig. 2), on the contrary, as
μ → 0, only 〈σ̂ z

1 〉 behaves like a (dis)order parameter for the
paramagnetic phase, as 〈σ̂ z

n 〉 for n > 1 does not become zero
when entering the ferromagnetic phase h < hc.

As for the impurity transverse susceptibility, for N → ∞
and for μ → 0 one obtains χ (1)

z = �(h−1)
2h2

√
h2−1

. Thus, at the

quantum phase transition, χ (1)
z exhibits an algebraic divergence

ruled by the critical exponent α̃ = 1
2 , at variance with what

happens to the transverse susceptibility in the bulk, which, at
the quantum phase transition, diverges only logarithmically,
hence with critical exponent α = 0.

B. Local longitudinal magnetization

To discuss the behavior of the longitudinal magnetization
of the impurity 〈σ̂ x

1 〉 in the thermodynamic limit, one has
to consider that, as discussed before, while P̂ is always a
symmetry of Ĥμ, the twofold ground-state degeneracy is only
recovered as N → ∞, if μ �= 0. Therefore, in performing the
calculation for finite-N systems first, and then letting N → ∞
(as we do below, when discussing the impurity finite-size
scaling), one would obtain 〈σ̂ x

1 〉 = 0. To fix this point, in
the following we adopt the method based on the asymptotic
factorizability. Specifically, we compute 〈σx

1 〉 at any finite
N as

〈σ̂ x
1 〉 =

√
lim

r→∞〈σ̂ x
1 σ̂ x

r 〉, (12)

which is equivalent [55] to

〈σ̂ x
1 〉 ≡ |〈E0|σ̂ x

1 |E1〉| ≡ |h(0)
1 |, (13)

with |E0〉 and |E1〉 being the ground and first excited states
of the transverse field Ising Hamiltonian at given N and μ,
respectively. Labeling the corresponding eigenfunctions as
ψ (0)

n and φ(0)
n , as in Table I, one therefore obtains h

(0)
1 = φ

(0)
1 .

As a result, if |E0〉 and |E1〉 become degenerate as N → ∞,
giving rise to spontaneous symmetry breaking, a nonzero value
for 〈σ̂ x

1 〉 occurs. On the contrary, if a finite-energy gap between
the two states persists even as N → ∞, so that no spontaneous
symmetry breaking takes place, we have 〈σ̂ x

1 〉 = 0. It is worth
noticing that Eq. (12) is actually valid only after the limiting
procedure (in fact, the exponent β computed in Refs. [39,56]
refers to the critical scaling in a semi-infinite chain: no mention
is made of finite-size scaling). Let us point out that Eq. (12)
makes sense only if the edge spins are exchangeable. While
this is clearly true for the homogeneous transverse field Ising
model, it does not apply to our system at μ �= 1. Therefore, in
order to correctly evaluate 〈σ̂ x

1 〉 with Eq. (12), in performing
the calculation at finite N , we consider a mirror-symmetric
version of our system, that is, we modify hn to h̃n, given by

h̃n = h(1 − δn,1)(1 − δn,N ) + μh{δn,1 + δn,N } (14)

with a second, symmetric impurity at the end of the chain.
Apparently, this should yield the appropriate result for our
impurity system, provided one takes a large enough N .
Taking all the above caveats into account, and performing
the calculation using the wave functions in Table I, one
eventually obtains that, as N → ∞, the longitudinal impurity
magnetization is given by

〈σ̂ x
1 〉 =

√
1 − h2

1 + h2(μ2 − 1)
�(1 − h). (15)

Equation (15) shows that, as expected, one gets 〈σ̂ x
1 〉 = 0 for

h � 1. At the same time, for h → 1−, one obtains to leading
order

〈σ̂ x
1 〉 


√
2(1 − h)

|μ| . (16)

From Eq. (16) we infer that, on one hand, a value of μ<1
gives rise to an effective renormalization of the magnetic
moment of the impurity spin [52]. On the other hand, and
more importantly, the critical index β = 1

2 obtained for the
boundary magnetization in the homogeneous open boundary
transverse field Ising model [56,57] is not affected for μ �= 1.

We now move to discussing the impurity finite-size scaling
in our inhomogeneous transverse field Ising model.

IV. FINITE-SIZE IMPURITY SCALING

The idea of finite size scaling [58] is based on the
observation that the behavior of a finite-size statistical system
of typical size ∼aN , with a being the lattice step (we set a = 1
throughout this paper), is determined by a scaled variable
x = N

ξ
, with ξ being the correlation length. As scaling is a

property of large-size (i.e., thermodynamical) systems, one
expects it to be recovered only over a scale x such that x � 1.
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In this section, we discuss finite-size scaling of the impurity
magnetization (transverse and longitudinal) as well as of
the transverse susceptibility eventually showing how, and for
which values of the system parameters, on varying the size N ,
the corresponding data for the various impurity observables
collapse onto each other, with scaling exponents consistent
with those derived in Sec. III in the thermodynamic limit.
Specifically, we first compute the various impurity-related
quantities at a finite system size N . Then, by fitting the results
obtained in this way with the standard finite-size scaling
formulas, we extract the correlation length ξ (h) associated
to the bulk quantum phase transition as a function of h. We
find that ξ (h) ∼ |h − hc|−ν , with ν = 1. Thus, when either
h � hc or h � hc (that is, far enough from the quantum
phase transition), one finds that ξ (h) � N . Accordingly, in
this regime the various observable quantities do not depend
on N and their values correspond to what one finds in the
thermodynamic limit. On the other hand, by approaching
the quantum phase transition ξ (h) 
 N and, consequently, the
observables take a finite-size dependence on N , which is the
key point of our scaling analysis [42,43].

We now start to perform the finite-size scaling analysis for
the transverse impurity magnetization close to the quantum
phase transition. According to the derivation of Sec. III, we
expect 〈σ̂ z

1 〉 to exhibit scaling only for |μ| � 1. In this regime,
the finite-size scaling ansatz for 〈σ̂ z

1 〉 gives

〈σ̂ z
1 〉 ∼ N− β̃

ν f
(
N

1
ν

∣∣h − h′
c

∣∣), (17)

with the critical exponents β̃ and ν describing the singular
behavior of the transverse impurity magnetization and of the
correlation length, respectively, and with f (x) being a suitable
scaling function. According to Eq. (17), we determine the ratio
β̃

ν
by plotting the rescaled magnetization N

β̃

ν 〈σ̂ z
1 〉 versus h. In

order to do so, recalling that, for μ → 0, only the �2 mode
contributes to 〈σ̂ z

1 〉 [see Eqs. (5) and (6)], we have to employ
the finite-N version of the functions ψ (2)

n and φ(2)
n of Table I,

which, for μ = 0, are

ψ (2)
n =

√
h2 − 1

1 − h−2N
h−n, φ(2)

n = δn1. (18)

This implies

〈σ̂ z
1 〉 = 1

2h

√
h2 − 1

1 − h−2N
. (19)

To first order in (h − hc), Eq. (19) gives

〈σ̂ z
1 〉 ≈ N− 1

2

(
1

2
+ N − 1

4
(h − 1)

)
. (20)

From Eq. (19) for n = 1, we construct the plot reported in the
upper left inset of Fig. 3, where, in particular, we show that
the curves representing the rescaled magnetization versus h

intersect with each other at h = hc = 1 once one sets β̃

ν
= 1

2 .

Having determined β̃

ν
, we can proceed to the estimation of ν

from the ansatz in Eq. (17) by looking for the best exponent for
which the data collapse onto a single curve. A sample of our
results is shown in the lower-right inset of Fig. 3. From such
an analysis, we obtain ν = 1 and, therefore, β̃ = 1

2 , a result
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FIG. 3. Upper plot: transverse impurity magnetization 〈σ̂ z
1 〉 as a

function of the bulk magnetic field h for different system sizes N .

Inset: finite-size scaling ansatz N
β̃
ν 〈σ z

0 〉 versus h, with β

ν
= 1

2 . The
intersection shows the location of the critical point at hc = 1. Lower
plot: data collapse obtained with the scaling ansatz of Eq. (17).

that fully agrees with the critical exponent for 〈σ̂ z
1 〉 derived in

Sec. III in the thermodynamic limit.
Next, we move on to discuss the finite-size scaling of the

impurity transverse susceptibility. As shown in the main plot
of Fig. 4, χ (1)

z diverges for h → 1 in the thermodynamic limit.
From the corresponding plots, we can fit the shift exponent
λ ruling the approach to hc of the pseudocritical value h′

c

via the relation |h′
c − hc| ∝ N−λ. Our results are consistent

with the value λ = 1 (upper right inset of Fig. 4). Finally, from
the relation λ = 1

ν
, we again obtain ν = 1. Using the relation

χ (1)
z |h=h′

c
∼ N

α
ν , we obtain for the ratio α

ν
a value compatible

with 1
2 (lower right inset of Fig. 4). Given the above results,

we can now verify the consistency of the data collapse of χ (1)
z

with the finite-size scaling ansatz

χ (1)
z (h) = N

α
ν χ̃
(
N

1
ν (h − h′

c)
)
. (21)

In the upper left inset of Fig. 4, we actually see such a data
collapse for the predetermined values ν = 1 and for α = 1

2 .
Finally, in addition to the critical exponents for χ (1)

z (h), and
in analogy with the analysis for 〈σ̂ z

1 〉, we can also analytically
determine the corresponding scaling. Indeed, from Eq. (19),
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FIG. 4. Upper plot: impurity susceptibility χ (1)
z for different

system sizes, in the vicinity of h = 1, where a diverging behavior
is clearly displayed. Inset: data collapse for the impurity transverse
susceptibility obtained with scaling exponents ν = 1 and α = 1

2 .
Lower left plot: log-log plot of the pseudocritical point hc(N ) vs
N , obtained from the position of the maximum of χ (1)

z , which allows
to extract the shift exponent λ. Lower right plot: plot of the maximum
of χ (1)

z vs N which shows the logarithmic nature of the divergence
reported in the upper plot.

we obtain

χ (1)
z = d

〈
σ̂ z

1

〉
dh

= h2(N−1)[N (1 − h2) + h2N − 1]

2(h2N − 1)2
√

h2N (h2−1)
h2N−1

. (22)

Expanding Eq. (22) for h 
 1 and for N � 1, we eventually
find

χ (1)
z ∼ N

1
2

[
1

4
+
(

N

12
− 1

)
h − 1

2

]
. (23)

Equation (23) states that the critical exponent for the impurity
transverse susceptibility is 1

2 , as well. From Eq. (22), we can
also determine the position of the maximum, obtaining, once
again, the shift of the pseudocritical point as h′

c − 1 
 2
3N−1.

This indicates that the shift exponent is λ = 1 = 1
ν
, in full

agreement with previous theoretical [58] and numerical [59]
predictions.

To summarize, so far we have performed a finite-size
scaling analysis of the impurity-related observables close
to the quantum phase transition, obtaining the following
critical exponents: ν = 1, β̃ = 1

2 , and α = 1
2 . It is important

to stress once more that the condition μ = 0 is crucial, in
order to witness the quantum phase transition. Finally, let us
remark that the susceptivity of the homogeneous Ising model,
corresponding to the specific heat in the two-dimensional
(2D) classical Ising, has a logarithmic divergence χz|h=hm

∼
log N , and the critical exponent is α = 0. As a consequence,
the impurity susceptibility signals a qualitatively different

phenomenon occurring at the system’s edge. We now move
on to consider the finite-size scaling of the longitudinal
magnetization 〈σ̂ x

1 〉.
First of all, in order to recover an (approximate) analytic

counterpart of the numerical results we discuss in the follow-
ing, we have to properly generalize Eq. (15) to a finite N . Using
again the wave functions listed in Table I, it is not difficult to
show that, for finite N and for h → 1−, one obtains

〈σ̂ x
1 〉 =

√
1 − h2

1 + (μ2 − 1)h2

×
{

1 + μ2(1 − h2)

1 + (μ2 − 1)h2
Nh2N + O(Nh2N )

}
. (24)

As a preliminary check, in Fig. 5 we show the finite-size
scaling data collapse for 〈σ̂ x

1 〉 as a function of h in the absence
of the impurity (μ = 1). From the main plot in Fig. 5, as
N gets large, we recover the expected scaling of 〈σ̂ x

1 〉 as
(1 − h)

1
2 for h < 1, as from Eq. (15) for μ = 1, while 〈σ̂ x

1 〉
experiences a steep decrease to zero for h > 1 (disordered
phase). To actually check finite-size scaling, in the bottom-left
inset of Fig. 5, we plot N

β

ν 〈σ̂ x
1 〉, for various values of N (see

figure caption for details). We find the expected intersection
between all the curves drawn for various values of N once
we set β = 1

2 , ν = 1, consistently with Eq. (24) taken for
μ = 1 and for h → 1−, as well as with the finite-size scaling
hypothesis for a homogeneous chain. In fact, our result is
further corroborated by the plot in the top-right inset of Fig. 5,
where we draw N

β

ν 〈σ̂ x
1 〉 for β = 1

2 , ν = 1, as a function of

the rescaled variable N
1
ν [h − hc(N )], finding an excellent data

collapse, in agreement with finite-size scaling analysis based
on the scaling formula for 〈σ̂ x

1 〉, given by

〈σ̂ x
1 〉 = N− β

ν g
(

(h − hc)N
1
ν

)
, (25)

with β = 1
2 , ν = 1. For μ �= 1, the behavior of the longitudinal

magnetization changes substantially. Indeed, from Fig. 6,
Eq. (25) appears to be definitely violated if μ < 1. On the
other hand, as soon as N gets large enough, Eq. (15) fits well
the numerical data at any μ. A possible explanation of such
a finite-size scaling violation can be recovered by combining
the results for the phase diagram in Fig. 1 with the finite-N
approximate formula for 〈σ̂ x

1 〉 in Eq. (24). From Fig. 1, one sees
that on varying h from left to right at a fixed μ, one actually
encounters two phase transitions: a first one, corresponding to
the closure of the bulk Ising ordered phase at h ∼ 1, and a
second one, corresponding to the appearance of the mode �2

at |h(1 − μ)| � 1. The former (ferromagnetic-paramagnetic)
quantum phase transition is a bulk phenomenon, that is, it
affects the longitudinal magnetization at any point of the open
Ising chain, though with different exponents in the bulk and
at the boundary. The latter transition, instead, has to be rather
regarded as an impurity phase transition, not accompanied
by a change in the bulk phase of the system. Nevertheless,
in analogy with the emergence of a dynamically generated
Kondo length [12], a length scale ξμ different from ξ (h) seems
to appear near this second transition, with eventually ξμ → ∞
right at the critical point. An approximate explicit formula for
ξμ valid for h ∼ 1 can be inferred from Eq. (24), which can be
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FIG. 5. Left plot: longitudinal impurity magnetization 〈σ̂ x
1 〉 as a function of h for the homogeneous finite-size spin chain (μ = 1), evaluated

according to Eq. (12). Inset: zoom around the critical point of N
β
ν 〈σ̂ x

1 〉 as a function of h, with β = 1
2 , ν = 1. Right plot: data collapse

according to the finite-size scaling relation in Eq. (25) with β = 1
2 , ν = 1.

rewritten as

〈σ̂ x
1 〉 = 1

μ

√
1

ξ (h) + ξμ

{
1 + N

ξ (h) + ξμ

e
− N

ξ (h)

}
, (26)

with ξμ = μ2/|1 − μ2|. Equation (26) provides a possible
explanation of the scaling violation for μ ∈ (0,1). Indeed,
when comparing it with the generic finite-size scaling ansatz
formula in Eq. (25), we see that in order for the two of them
to be consistent with each other, Eq. (25), which can be recast
in the form 〈σ̂ x

1 〉 = N− β

ν g̃( N
ξ (h) ), must be generalized to an

expression of the general form

〈
σ̂ x

1

〉 = N− β

ν φ

[
N

ξ (h)
,
N

ξμ

]
. (27)

While it would be definitely of interest to corroborate the
two-length scenario with, for instance, a detailed analytical
derivation of the formula for ξμ(h) at a generic value of h, this
would require a careful analytical study of the transverse field
Ising model in the presence of a boundary impurity, which goes
beyond the scope of this paper, focused on the discussion of the
finite-size scaling in the transverse field Ising model on a finite
chain. Therefore, while we plan to address in detail this issue
in a forthcoming publication, here we limit ourselves to a few
additional observations on the two-length generalized scaling
formula in Eq. (27). First of all, we note that, as μ → 1 (that

FIG. 6. Longitudinal impurity magnetization 〈σ̂ x
1 〉 for N = 500

at different values of μ.

is, when going back to the homogeneous chain case), one gets
ξμ → ∞, which implies that, in this limit, Eq. (27) reduces
back to the standard, single-length finite-size scaling formula
in Eq. (25), as it must be.

In the complementary limiting case μ → 0, we have ξμ →
0; then, looking at Eq. (27), one would again expect a finite-size
scaling formula such as in Eq. (25). In fact, this is quite a
peculiar scaling limit in that, as μ → 0, one finds that σ̂ x

1
becomes an exactly conserved quantity, even at finite N . In
Fig. 7, we plot 〈σ̂ x

1 〉 as a function of h for a rather small value
of μ (the μ = 0 limit was hard to recover in the numerical
calculations, due to the increasing lack of numerical precision
for μ < 0.1). Apparently, Fig. 7 is consistent with the previous
discussion since 〈σ̂ x

1 〉 remains basically constant and finite, for
h < 1, while it suddenly jumps to 0, as soon as h crosses the
quantum phase transition point. Looking back at Eq. (25), one
may actually state that this behavior corresponds to an effective
β = 0, which appears to be consistent with σ̂ x

1 being an exactly
conserved quantity for μ = 0, at any value of N .

As a one-sentence summary of this section, one can state
that, while the longitudinal magnetization 〈σ̂ x

1 〉 exhibits a
neat finite-size scaling with β = 1

2 , ν = 1 at μ = 1, with
increasing deviation from this behavior as μ moves from 1
to 0, the transverse magnetization 〈σ̂ z

1 〉 shows a sort of fully
complementary behavior: no scaling at any μ > 0, with an
emerging scaling behavior recovered at μ = 0.

FIG. 7. Longitudinal impurity magnetization 〈σ̂ x
1 〉 for different

values of N evaluated for μ = 0.1.
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V. FINITE-SIZE SCALING IN THE XY MODEL

In this section, we test the universality of the impurity
magnetic observables scaling properties by extending the
previous analysis to the XY model, which belongs to the same
universality class as the Ising model. To this end, we consider
the following model Hamiltonian, describing a side impurity
in the XY chain,

ĤXY
μ = −J

[
N−1∑
n=1

{
(1 + γn)σ̂ x

n σ̂ x
n+1 + (1 − γn)σ̂ y

n σ̂
y

n+1

}

+
N∑

n=1

hnσ̂
z
n

]
, (28)

with the side impurity at n = 1 defined by setting

γn = γ (1 − δn1) + γ1δ1n,

hn = h(1 − δn1) + μhδn1. (29)

This choice corresponds to both the magnetic field and the
anisotropy parameter staying homogeneous on the bulk, with
values h and γ , but taking different values at the edge of the
chain, where they become μh and γ1, respectively.

With the bulk anisotropy parameter γ ∈ (0,1], the XY

model undergoes a quantum phase transition at a critical value
of h = hc, which falls into the same universality class as
the transverse field Ising model. Our aim here is to investigate
whether the bulk equivalence extends to the impurity finite-size
scaling, as well.

An analytical solution of the impurity model for γ �= 1
analogous to that provided in Ref. [53] for the Ising model
is lacking. Nevertheless, one may readily check that, as
μ → 0, the parity operator P̂ is again a good symmetry of
the model, that is, [ĤXY ;μ=0,P̂ ] = 0, provided that γ1 = ±1
(which means an Ising-type coupling, either along the X or
the Y direction). One can then analytically verify that both
possibilities imply the presence of a zero-energy eigenvalue,
in analogy to what happens in the transverse field Ising model
in Eq. (1). It is hence reasonable to expect that, also in this
case, one recovers the behavior of a classical edge impurity,
just as in the Ising model. Indeed, we obtain, for the whole
Ising universality class, γ ∈ (0,1], the same finite-size scaling
exponents as in the transverse field Ising model, that is, ν = 1,
β̃ = 1

2 , and α = 1
2 . To highlight this result, in Fig. 8 we show

the data collapse of the transverse impurity magnetization and
susceptibility, according to Eqs. (17) and (21) for the XY

model with bulk anisotropy γ = 0.5.

VI. CLASSICAL-TO-QUANTUM CORRESPONDENCE
IN THE ISING MODEL WITH AN IMPURITY

The one-dimensional quantum Ising model can be mapped
onto the two-dimensional classical model as a special case
of the general correspondence between critical phenomena
in d-dimensional quantum statistical models and those in
(d+1)-dimensional classical statistical models. Such a cor-
respondence has been largely discussed and reviewed in the
literature, particularly in the context of lattice gauge theories
and classical, as well as quantum, lattice spin models [40,41].
The classical two-dimensional Ising model is one of the

FIG. 8. Main plot: data collapse of the transverse impurity
magnetization 〈σ̂ z

1 〉 for an XY model [Eq. (28)] with γ = 0.5 and
γ1 = 1. Inset: transverse local spin susceptibility for the same value
of γ . The critical exponents take the same values as in the plots in
Figs. 3 and 4, respectively.

best-known classical statistical systems, especially (but not
only) in view of the remarkable Onsager’s exact solution of
the model (see, for instance, Ref. [56] for an extensive review
on the topic). According to this correspondence, one finds, e.g.,
that the transverse field Ising model with periodic boundary
conditions is related to a d = 2 classical Ising model on a torus
[44], while the homogeneous transverse field Ising model with
open boundary conditions corresponds to a finite-size cylinder
whose boundary circles map onto the (quantum) end points
of the chain [39,56]. One may generalize the mapping to the
case of models with generic, position-dependent parameters
as outlined in Ref. [60]. Following [60], in this section we
construct the mapping between the inhomogeneous transverse
field Ising model with an impurity at its left-hand side end
point and the corresponding 2D classical spin model.

Following the approach discussed in Appendix B of
Ref. [60], we choose as a reference 2D classical system the
planar Ising model with inhomogeneous couplings, described
by the Hamiltonian

E[{σn,m}] = −
Mx∑
n=1

My∑
m=1

Ky(n)σn,mσn,m+1

−
Mx−1∑
n=1

My∑
m=1

Kx(n)σn,mσn+1,m, (30)

with the couplings Kx and Ky generically depending on n and
with σn,m being a classical (binary) spin variable at site n,m

of the lattice (which we shall identify with the x component
of the quantum spin when mapping to a 1D inhomogeneous
transverse field Ising model) and with periodic boundary
conditions assumed in the y direction, that is, σn,m+My

=
σn,m, ∀ n = 1, . . . ,Mx (so that, pictorially, the lattice may be
thought as wrapped around a cylinder along the y direction).
At temperature T = β−1, one obtains the classical partition
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function for the model in Eq. (30) as

Z[{Kx,Ky}; T ] =
∑

{σn,m=±1}
exp

⎧⎨
⎩β

⎡
⎣ Mx∑

n=1

My∑
m=1

Ky(n)σn,mσn,m+1 +
Mx−1∑
n=1

My∑
m=1

Kx(n)σn,mσn+1,m

⎤
⎦
⎫⎬
⎭. (31)

To complete the mapping onto the 1D quantum Ising model,
one has to to rewrite Eq. (31) as the partition function of a
one-dimensional transverse field Ising model with nonhomo-
geneous parameters. This requires constructing an appropriate
transfer matrix T, whose matrix elements can be regarded as
the partition function for two subsequent rows (say m and
m + 1) with assigned spin configurations {|{σn,m}n=1,...Mx

〉m
and {|{σ ′

n,m+1}n=1,...Mx
〉m+1}, so that

[T ]{σ ′
n},{σn} =m+1 〈σ ′

n|T|σn〉m. (32)

In the low-T (large-β) limit, one may explicitly write T as [60]

T = exp[−Ĥ1D], (33)

with Ĥ1D being the Hamiltonian of the inhomogeneous
quantum Ising chain given by (apart for an irrelevant overall
constant term)

Ĥ1D = −
Mx∑
n=1

hnσ̂
z
n −

Mx−1∑
n=1

Jnσ̂
x
n σ̂ x

n+1 (34)

with

Jn = βKx(n),

e−2hn = tanh[βKy(n)], (35)

and σ̂ x,z
n being quantum spin operators on a 1D lattice.

Equation (35) gives the classical correspondent of the
quantum Ising chain with an impurity at its leftmost site.
In fact, one has to assume that Eq. (35) holds with hn and
Ky(n) independent of n at any n but for n = 1. Basically,
the classical model can be regarded as a cylinder that, as
N → ∞, goes all the way to ∞ towards the positive-x axis.
The cylinder is cut in correspondence of the first site of
the quantum chain. The smaller is h1, the stronger is the
effective Ising coupling βKy(1) on the circumference running
around the cut. Eventually, the limit of classical impurity in
the chain (h1 → 0) corresponds to the limit βKy(1) → ∞, in
which, consistently with what one expects from the classical-
to-quantum correspondence, all the thermal fluctuations are
suppressed in the classical Ising chain lying over the circle at
n = 1.

VII. CONCLUDING REMARKS

In this paper, we have studied finite-size scaling for an
impurity residing at the boundary (first site) of an otherwise ho-
mogeneous quantum Ising chain in a transverse magnetic field
h, modeled by rescaling h on the first site by h → h1 = μh.
To highlight finite-size scaling at the impurity, we computed
in a finite-size chain (with N sites) both the transverse and
the longitudinal magnetization at the first site of the chain.
This allowed us to single out the limits μ → 1 and μ → 0
as the two regimes in which “standard” finite-size scaling

is recovered, though in complementary fashions. Indeed,
while in the homogeneous chain limit (μ → 1) 〈σ̂ x

1 〉 exhibits

finite-size scaling with N− β

ν , with β = 1
2 and ν = 1, with 〈σ̂ z

1 〉
showing no finite-size scaling at all, in the complementary
“classical impurity” limit (μ → 0), full finite-size scaling is
recovered for the transverse magnetization 〈σ̂ z

1 〉 with the same
exponents reported above. On the other hand, the longitudinal
magnetization 〈σ̂ x

1 〉 does not show scaling at μ = 0. This
nicely corresponds to the fact that σ̂ x

1 is an exactly conserved
quantity in the finite chain, at μ = 0. In this limit, on extending
the finite-size scaling analysis to the impurity transverse
susceptibility χ (1)

z (h), we have found again results consistent
with the finite-size scaling ansatz and, in addition, have been
able to recover the shift exponent governing the location of the
quantum pseudocritical point at finite N .

Our analysis, thus, extends the finite-size scaling behavior
of the homogeneous transverse field Ising model [42,43] with
open boundary conditions to the case in which an impurity
is present at one end point of the chain by showing that, as
μ = 0, the transverse surface magnetization 〈σ̂ z

1 〉 works as a
sort of “disorder” parameter for the bulk (being nonzero in the
disordered phase), with the same exponents characterizing the
finite-size scaling of 〈σ̂ x

1 〉 for the homogeneous model (μ = 1).
As mentioned in the discussion of Sec. IV, the intermediate
situation 0 < μ < 1 is much less clear, in that the scaling
ansatz of Eq. (25) appears not to reproduce the finite-size
behavior of 〈σ̂ x

1 〉. In fact, the smaller μ, the more severe is
the deviation of 〈σ̂ x

1 〉 from the general scaling formula. As
outlined above, a possible explanation, consistent with the
asymptotic expressions for 〈σ̂ x

1 〉 in Eqs. (15) and (24), relies
on the emergence of two length scales, associated with the
two QPTs the system goes through, for μ �= 1. While this
appears to be a suggestive and promising hypothesis, its careful
analytical and numerical verification goes beyond the scope
of this work and, accordingly, we chose to postpone it to a
forthcoming publication.

Finally, on employing the standard quantum-to-classical
mapping for our specific impurity model, we have been able
to construct the (two-dimensional) statistical model providing
the classical counterpart of a transverse field Ising model with
an impurity at one of its end points as a classical Ising model
on a rectangular lattice wrapped on a half-infinite cylinder,
with the links along the first circle altered, as a function of μ,
according to Eq. (35).
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