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“To call in the statistician after the experiment is done may be no more than
asking him to perform a post-mortem examination: he may be able to say what
the experiment died of.”

“Natural selection is a mechanism for generating an exceedingly high degree of
improbability.”

Ronald Fisher
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Abstract
Penalized regression and clustering in high-dimensional data

by Gianluca SOTTILE

The main goal of this Thesis is to describe numerous statistical techniques
that deal with high-dimensional genomic data.

The Thesis begins with a review of the literature on penalized regres-
sion models, with particular attention to least absolute shrinkage and se-
lection operator (LASSO) or L1-penalty methods. L1 logistic/multinomial
regression models are used for variable selection and discriminant anal-
ysis with a binary/categorical response variable.

The Thesis discusses and compares several methods that are com-
monly utilized in genetics, and introduces new strategies to select mark-
ers according to their informative content and to discriminate clusters by
offering reduced panels for population genetic analysis.

After having accomplished its main objective, the thesis addresses the
issue of tuning parameter selection in LASSO models, studying consis-
tency with high-dimensional data. The tuning parameter balances the
trade-off between model fit and variance reduction in sparse models and
its value is crucial in all the lasso-type regression.

Finally, this Thesis introduces a LASSO method that can be applied to
quantile regression coefficients modeling (QRCM), an approach that per-
mits describing the coefficients of a quantile regression model as para-
metric functions of the order of the quantile. Compared with standard
quantile regression, QRCM facilitates estimation, inference, and interpre-
tation of the results, and generally yields a gain in efficiency. However,
since each predictor has multiple associated coefficients, the total number
of parameters escalates quickly with the size of the model matrix, caus-
ing numerical problems and large standard errors. Using the L1-penalty
in this framework permits keeping a parsimonious set of parameters and
performing variable selection in an efficient way.

http://www.unipa.it
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Chapter 1

Introduction

1.1 The high-dimensional problem

In fields such as as biology and genomics usually many information are
avaliable for a limited number of observations. As a result statistical un-
certainty can be high and common models cannot be applied. The combi-
nation of small sample size N and large number of variables p configures
the high dimensional framework. Intuitively, in high-dimensional set-
ting, not all covariates are equally relevant, and the concept of sparsity
plays an important role. To shrink to zero most of the covariates’ coeffi-
cients, if irrelevants, leads to identifiability avoiding the overparametriza-
tion problem.

With such data, regularized or penalized methods are needed to fit
the model and variable selection is often the most important aspect of the
analysis. The Least Absolute Shrinkage and Selection Operator (LASSO)
introduced by Tibshirani, (1996) is a penalized method similar to the
ridge regression (Tikhonov, 1943; Hoerl and Kennard, 1970) but uses the
L1-penalty k�k1 =

Pp
j=1|�j | instead of the L2-penalty k�k22 =

Pp
j=1 �

2
j .

Figure 1.1 shows the geometric interpretation of the two penalty con-
straints.

An important feature of the LASSO is that it can be used for vari-
able selection. Compared to classical variable selection methods, the
LASSO has two advantages. First, the selection process is based on con-
tinuous trajectories of regression coefficients as function of the penalty
level and is hence more stable than subset selection methods. Second, the
LASSO is computationally feasible for high-dimensional data (Osborne,
Presnell, and Turlach, 2000a; Osborne, Presnell, and Turlach, 2000b; Efron
et al., 2004). Several authors have studied the model-selection consis-
tency of the LASSO in the sense of selecting exactly the set of variable
with nonzero coefficients, that is, identifying the subset {j : �j 6= 0} of
{1, . . . , p}. In the low dimensional setting with fixed p, Knight and Fu,
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β1

β2

●

β1

β2

●

FIGURE 1.1: Left: Contour lines of residual sum of squares, with �̂ be-
ing the least squares estimator, and L1-ball corresponding to the lasso
problem. Right: Analogous to left panel but with L2-ball correspond-
ing to ridge regression.

(2000) showed that, under appropriate conditions, the LASSO is consis-
tent for estimating the regression parameters �j . However, the LASSO is
not variable-selection consistent without proper assumptions (Bühlmann
and Van De Geer, 2011).

Penalized regression models have gained popularity and attractive-
ness to perform selection of variables, and while several extensions have
been discussed, such as elastic net (Zou and Hastie, 2005), adaptive lasso
(Zou, 2006), fused lasso (Tibshirani et al., 2005) and grouped lasso (Yuan
and Lin, 2006), the ‘naive’ lasso still represents a valuable tool, in both
theory and applications (Tibshirani, 2011).

1.2 The LASSO

LASSO was originally introduced in the context of least squares and was
later extended to a wider variety of statistical models including general-
ized linear models, generalized estimating equations, proportional haz-
ards models and quantile regression. Consider a sample consisting of N
observations, each of which consists of p covariates and a single outcome.
Let y be the outcome and X be the model matrix of dimension N⇥p. The
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objective of LASSO is to solve the Lagrangian form

min
�2Rp

⇢
N

�1ky �X�k22 + �k�k1
�
, (1.1)

where � is the tuning parameter. The tuning parameter balances the
trade-off between model fit and model sparsity, and selecting an appro-
priate value is the key point of LASSO regression. If � is 0, then the prob-
lem becomes unconstrained and the coefficients �̂ are simply obtained
by ordinary least squares. Vice versa, all coefficients �̂ shrink to 0 when
� goes to infinity. Figure 1.2 shows an example path of regression coeffi-
cients as function of log (�).

−6 −4 −2 0

−3
−2

−1
0

1
2

Log Lambda

Co
eff

ici
en

ts

95 75 5 3

FIGURE 1.2: The grey lines are the paths of regression coefficients
shrinking towards zero as � increases. If we draw a vertical line in
the figure, it will give a set of regression coefficients corresponding to
a fixed �. The x-axis shows the logarithm of shrinkage instead of �.

1.3 The role of simulation studies in statistical
methodology research

In many applications, such as studies involving microarray data, theoret-
ical assumptions are quite hard or impossible in practice to meet, since
most of them are unverifiable or simply violated. Planning simulation
studies can help to assess the gap between theory and realistic expec-
tations. Different simulation scenarios can be created. For example, by
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building a scenario in which all assumptions are fulfilled, optimal per-
formance is expected; conversely, when assumptions are not met, perfor-
mance is generally lower. One important drawback of simulation studies
is that they are artificial and far from real data. We can combine simu-
lated data and real data to better mimic realistic situations, in order to
give a better idea of what has to be expected from the real data.

1.4 Outline of thesis

The contribution of this thesis includes several aspects of penalized mod-
els and clustering and is summarized in the following.

• Penalized Multinomial Regression and Stability Selection. In
Chapter 2, we propose a mixed strategy to do variable selection
and discriminant analysis. Starting from available high-throughput
SNP data, Penalized Multinomial Regression and Stability Selec-
tion are applied to identify the optimal set of informative SNPs use-
ful to discriminate among Sicilian dairy sheep breeds. This method-
ology, as proposed in this thesis, could be considered as a high level
strategy to select markers in high-throughput genotyping.

This Chapter has been published as Sottile et al., (2017). Different
sections of the paper were written by different co-authors according
to their expertise.

• Tuning parameter selector. In Chapter 3, a new criterion to select
the tuning parameter � is proposed. The criterion is quite simple to
compute and can be interpreted as the maximization of the signal-
to-noise ratio. This tuning parameter selector enables to identify
the true model consistently when the true model is among a set
of candidate models. This methodology could be used as a valid
alternative to classical criteria.

This Chapter is an extension of the poster presented at the Interna-
tion Workshop on Statistical Modeling (Sottile and Muggeo, 2016).

• Penalized qunantile regression coefficients modeling. In Chap-
ter 4, applying the L1-penalty to the integrated loss function de-
scribed by Frumento and Bottai, (2016) is proposed. This method-
ology allows to select variables in a new parametric approach to
model the quantile function, in a quantile regression framework.

This Chapter is based on a paper currently under review in a jour-
nal as Sottile et al.
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• Clusters of effects curves. In Appendix A, a new dissimilarity
measure based on both the shape of curves and their distances is
proposed. This measure, useful for the application of any hiearchi-
cal clustering method, can be used to cluster curves computed in a
quantile regression framework, namely effects curves, or waveform
curves as in functional data analysis.

This Appendix is an extension of the poster presented at the In-
ternation Workshop on Statistical Modeling (Sottile and Adelfio,
2017). It is currently under review in a journal.

• R packages. In Appendix B, I provide a description of four different
R packages (asnr, qrcmNP, clustEff, islasso) that I implemented, is
provided.

Codes for the R packages were written mainly by me and inspired,
in some cases, by original codes of V. Muggeo and P. Frumento.





7

Chapter 2

Selection of markers from
high-throughput genotyping:
Application in Sheep Breeds

2.1 Introduction

Assignment tests using genetic information to establish population mem-
bership of individuals provide the most direct methods to determine
population of origin of unknown individuals (Negrini et al., 2009). The
identification of individuals’ breed/population of origin has several prac-
tical applications in livestock and is useful in different biological con-
texts, such as management of livestock genetic resources for breed con-
firmation, estimation of hybridization level and authentication of brand
products that are produced using only a few particular breeds or popula-
tions (Wilkinson et al., 2011; Bertolini et al., 2015). Moreover, assignment
of individuals to a specific breed is very important both for biodiversity
purposes and products traceability, especially when the phenotypic dif-
ferentiation among breeds is difficult (Tolone et al., 2012).

Recently developed genomic technologies, such as medium and high-
density SNP arrays, are important tools that can be used for these pur-
poses. Dense genome-wide data is valuable but is relatively costly and
time-consuming or computationally expensive to analyze. However, some
methods are tractable and capable to efficiently predict breed compo-
sition using breed frequencies of thousands of markers (Kuehn et al.,
2011). Therefore, it is often desirable to reduce the number of markers
according to their information content, in order to create reduced panels
for population genetic analysis (Paschou et al., 2007). Many clustering
algorithms have been developed employing population genetic data to
assign individuals to clusters (Jakobsson and Rosenberg, 2007). Several
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statistical methods were used to determine which genetic markers con-
tain the most information to discriminate among populations (Wilkinson
et al., 2011; Rosenberg, 2005), such as the combined approach of Prin-
cipal Component Analysis (PCA) and Random Forest (RF) (Bertolini et
al., 2015), multivariate canonical discriminant analysis (Dimauro et al.,
2013), the statistic delta (Shriver et al., 1997), and Wright’s Fst (Bowcock
et al., 1994). While all these methodologies yielded reduced marker pan-
els useful for breed identification, the power of assignment depended on
the utilized method.

2.2 Materials and methods

2.2.1 Data

A total of 236 animals, randomly collected from several farms in different
areas of Sicily, were used for the analysis. Samples consisted of 30 Bar-
baresca (Bar), 51 Comisana (Com), 77 Pinzirita (Pin), 30 Sarda (Sar) and 48
Valle del Belice (VdB) individuals. The procedures involving animal sam-
ples collection followed the recommendation of Directive 2010/63/EU.
All animals were genotyped for 54,241 SNPs using the Illumina Ovi-
neSNP50K Genotyping BeadChip. Genotyping was performed by Di-
partimento Scienze Agrarie e Forestali, University of Palermo. Input data
were genotyping data of 54 241 SNPs, i.e. GType data in Illumina AB for-
mat exported from GenomeStudio v1.0 (Illumina, Inc.). We excluded all
SNPs not assigned to chromosome (OAR) or assigned to X and Y chromo-
somes. Markers were filtered according to the following quality criteria:
i) call frequency ( 95%), ii) Minor Allele Frequency (MAF 0.01). SNPs
that did not satisfy these quality criteria were excluded. A total of 48
068 SNPs were retained for subsequent analyses. We transformed the
genotyping data to numeric values, without any loss of information, in
order to apply into PMR. The initial data table X consisted of N rows,
one per animal, and p columns, one per SNP. Each entry of X , AA, AB
and BB, was scored as -1, 0, 1, or empty. SNPs with missing genotypes
were randomly imputed within each breed according to the correspond-
ing genotype frequency.

2.2.2 Statistical analysis of Single Nucleotide Polymorphisms
and variable reduction

Each sheep breed was divided into a test sample and a validation sample.
The validation sample, generated by randomly sampling 15% of animals
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within each breed, was used for the final validation procedure of breed
assignment. The test sample consisted of the remaining animals.

Suppose to have a set of N individuals and p SNPs, with p � N ,
partitioned into K groups. The main goal is to select a limited number
of SNPs from an initially large set, to be used to predict group member-
ship with high discrimination power. To achieve this aim some authors
proposed the LASSO method (Tibshirani, 1996) or L1-penalty, a shrinkage
and selection method for linear regression. In statistics, LASSO (least ab-
solute shrinkage and selection operator) is a regression analysis method
that performs both variable selection and regularization in order to en-
hance the prediction accuracy and interpretability of the statistical model.
The idea behind LASSO is to shrink towards zero the coefficients that are
less than a certain fixed value. LASSO was originally introduced in the
context of least squares. Let yi be the outcome and xi = (x1, x2, . . . , xp)T

be the covariate vector for the i
th observation, i = 1, . . . , n. LASSO linear

regression solves

min
�0,�

⇢
N

�1
NX

i=1

(yi � �0 � xT
i �)

2

�
subject to

pX

j=1

|�j |  t

where t is a prespecified free parameter that determines the amount of
regularization, �0 is the intercept of the model and � is the p-variate vec-
tor of regression coefficients. Letting X be the covariate matrix, so that
Xij = (xi)j and xT

i is the i
th row of X we can write this in the so-called

Lagrangian form

min
�2Rp

�
N

�1ky �X�k22 + �k�k1
 

where the relationship between � and t is t ⇡ �
�1, i.e., it is approxi-

mately the multiplicative inverse of �. The L1-norm of � is a constraint
on the regression coefficients that strictly depends on the tuning param-
eter �.

Although LASSO regression was originally defined for least squares,
it is easily extended to a wide variety of statistical models including gen-
eralized linear models. In our framework, given the nature of the out-
come y that is a categorical variable with K > 2 levels, we used a penal-
ized multinomial regression. Here, we model the probability to belong to
breed k given the SNPs’ matrix X of dimension N ⇥ p,

Pr(y = k|X) =
e
X�k

PK
l=1 e

X�l
, k = 1, . . . ,K.
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Let the outcome y be the N ⇥K indicator response matrix, with elements
yil = I(yi = l), l = 1, . . . ,K and i = 1, . . . , N . Then the regression coeffi-
cients are obtained as the solution of the following optimization problem

min
�2Rk(p+1)

⇢
�N

�1
NX

i=1

✓ KX

l=1

yilX�l � log

✓ KX

l=1

e
X�l

◆◆
+ �

pX

j=1

KX

l=1

|�jl|
�
,

where � is a p ⇥ K matrix coefficients, �k refers to the k-th column (for
outcome breed k), and �j the j-th row (vector of K coefficients for vari-
able j).

The analysis was conducted using the glmnet R package (Friedman,
Hastie, and Tibshirani, 2010) All the following analysis was computed
using glmnet package of the R software 3.3.0 (2017). The Stability Se-
lection method (Meinshausen and Bühlmann, 2010) was used to discover
the most stable subset of variables that have nonzero weight in the model.
Assume to have a generic structure estimation algorithm (i.e., the LASSO)
that takes a dataset X and a regularization parameter �, and returns a
selection set S�. The j-th covariate belongs to S

� if the regression coeffi-
cient �j 6= 0. The SS algorithm runs as follows:

1. Define a candidate set of dimension m of regularization parameters
⇤ = {�1, . . . ,�m} and a number n of subsample.

2. For each � 2 ⇤, do:

a. Start with the full dataset X
b. For each i = 1, . . . , n:

i. Subsample from X without replacement to generate a smaller
dataset of size N/2, namely Zi.

ii. Run the selection algorithm on dataset Zi with parameter
� to obtain a selection set S�.

c. Given the n selection sets from each subsample, calculate the
empirical selection probability for each covariate:

⇧�
j = P{j 2 S

�} = n
�1

nX

i=1

I(j 2 S
�), j = 1, . . . , p.

The selection probability for covariate j is its probability of
being selected by the algorithm.

3. Given the selection probabilities for each covariate and for each
value � 2 ⇤, construct the stable set according to the following
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definition:
Ŝ

stable =

⇢
j : max

�2⇤
⇧�

j � ⇡thr

�

where ⇡thr is a predefined threshold.

In our study, fixing a sequence of 100 values of �, step 2.(b) was repeated
B times by randomly splitting, within each breed, the test sample. After
calculating the empirical selection probability for each SNP and fixing
the threshold value, a final set Ŝstable of p1 SNPs was selected. For this
reduced panel, a new multinomial regression model was then fitted. To
assess the classification performance of this set of p1 SNPs we tested the
discrimination rule using the validation sample which is considered to
be an independent subset of samples.

2.2.3 Other Statistical and Genetic Methods

To better understand the potential of our strategy and the strength of a
reduced panel of SNPs we decided to use the k-means approach, which
is an unsupervised technique. In particular, we used all the principal
components up to 70% of explained variance of the model matrix X . We
applied this technique once to the whole set of SNPs and once to the
reduced set p1. The efficiency of the selected markers to cluster indi-
viduals was also tested using model-based clustering algorithm imple-
mented in the Admixture software 1.3.0 (Alexander and Lange, 2011)
which used unsupervised classification approaches and Genepop soft-
ware 4.1.4 (Rousset, 2008) to calculate Fst (Bowcock et al., 1994). The most
probable number of populations in the dataset (K) was estimated using
the default (5-fold) Admixture’s cross-validation procedure, by which es-
timated prediction errors are obtained, for each K value, by adopting a
kind of ‘leave-one-out’ approach through which an estimation of predic-
tion errors can be assumed to be the most suitable one. Genepop was
also used to estimate population relatedness using pair-wise estimates
of Fst among breeds. The reduced panel was analyzed using SNPchiMp
(Nicolazzi et al., 2015) to obtain information on the genomic distribution
of SNPs.

In order to compare our approach to those previously reported, an-
other mixed strategy was considered (Bertolini et al., 2015). In particular,
PCA and RF was used to discover a new SNP panel able to discriminate
among the breeds. For each autosome, the top 20 SNPs were selected and
merged together, leading to a final panel of 520 markers. RF based on the
selected 520 SNPs were built on the test sample. The Mean Decrease in
the Gini Index (MDGI) or the Mean Accuracy Decrease (MAD) were used
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in order to select the most discriminant SNPs. Four different SNP pan-
els were created selecting the first 48 and 96 SNPs from the MDGI and
the first 48 and 96 from the MAD, respectively. This SNP panels’ size
was chosen considering the practical possibilities to develop multiplex
SNP panels containing a reduced number of SNPs for field applications
(Bertolini et al., 2015). For each of the four reduced panels, a new RF was
fitted and the corresponding out-of-bag (OOB) error rate was calculated.
Classification performance of these four RFs was assessed also using the
validation sample.

A simulation study has been done to compare the performance of our
proposed strategy and the PCA-RF strategy. A group of genetic variants
has been randomly generated by using the real dataset. In general, we
sampled with replacement N observations of the real dataset, so to main-
tain the same structure and association between SNPs. Moreover, we
built X̃test which is the simulated test sample and X̃val which is the sim-
ulated validation sample (15% of the sample size). The response variable
ỹ was the label vector of length n, indicating the membership of each an-
imal to their own breed in the simulated data. X̃test and X̃val were used
to evaluate the out-of-bag error and misclassification error rate for both
strategies.

2.3 Results

2.3.1 Penalized Multinomial Regression and Stability Selection

Out of a total of 54,241 genotyped SNPs, 378 were unmapped and 1,450
were located on sex chromosomes. Thus, 52,413 SNPs mapped onto 26
sheep autosomes were used, and after filtering (see 2.2), the final number
of common SNPs was 48,068. On these SNPs, PMR and SS procedure,
with B = 500, were performed to select the most informative markers
obtaining a final small set of 48 SNPs.

Figure 2.1 shows the 201 animals of the test sample in the subspace de-
fined by the first three principal components calculated on these 48 SNPs.
This allowed an assessment of whether the reduced SNP panel leads to
loss of important genetic information which is relevant to explain the dif-
ferences across breeds. Figure 1 shows partial overlaps of historically-
and phylogenetically-related breeds (Tolone et al., 2012; Mastrangelo et
al., 2012; Mastrangelo et al., 2014) and the difficulty in separating them.
To analyze the structure of each cluster, we used the standard deviations
(SD) as a measure of spread within each breed in the first three principal



2.3. Results 13

components. We observed a standard deviation average of about 0.65 for
each principal component.

PC1
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FIGURE 2.1: Plot of the first three principal components obtained us-
ing the panel of 48 Single Nucleotide Polymorphisms (coded as geno-
type), selected after the first step with the Penalized Multinomial Re-
gression and Stability Selection procedure. • = Valle del Belice (VdB),
• = Comisana (Com), • = Pinzirita (Pin), • = Barbaresca (Bar), • =
Sarda (Sar).

Using this SNP panel, the corresponding misclassification error rate
both for test and validation sample was equal to 0%. The unsupervised
strategy which consists of the combination of PCA and k-means also pro-
vided excellent results. Using the first 15 principal components, which
are highly correlated (> 0.50) with 31 SNPs and explain 70% of total vari-
ability, we only missed one individual to perfectly discriminate the five
breeds involved in the study.

Moreover, using the whole set of SNPs and applying the same un-
supervised strategy, we still missed the same individual. In this case,
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112 principal components, which are highly correlated (> 0.50) with 608
SNPs, are used in the k-means step.

2.3.2 Random Sampling of Single Nucleotide Polymorphisms

In order to assess the ability of the 48 selected SNPs to efficiently discrim-
inate sheep breeds, a simulation was performed. Another sets of 48 SNPs
were randomly sampled 500 times from the whole set of SNPs and the av-
erage classification accuracy in the validation sample was about 60%. Re-
peating this procedure, sampling different numbers of SNPs (i.e. 50, 100,
200, 400, 800, 1 600, 3 200, 6 400), the classification accuracy was tested
using Kruskal-Wallis, also rank-sum test (Kruskal and Wallis, 1952), to
evaluate if any increment in accuracy was significant. Results are shown
in Table 2.1.

TABLE 2.1: Accuracy of classification in the test and validation sam-
ple, when different numbers (p) of SNPs are sampled from the whole
set. Results are based on 500 simulated datasets. The last two columns
report the Kruskal-Wallis rank-sum statistic and its p-value, that com-
pare each pair of consecutive values of accuracy.

p Avg % test Avg % val Kruskal-Wallis test p-values

48 99.9% 60.6% - -
50 99.9% 63.3% 27.66 <.0001

100 100% 75.2% 376.50 <.0001
200 100% 83.1% 254.08 <.0001
400 100% 87.7% 126.38 <.0001
800 100% 90.8% 82.10 <.0001

1 600 100% 92.7% 41.67 <.0001
3 200 100% 94.5% 265.60 <.0001
6 400 100% 95.2% 16.63 <.0001

Figure 2.2 shows the strength of the selected panel of 48 SNPs to dis-
criminate across all the breeds, and the difficulty to perfectly discriminate
among them using a large set of SNPs. Moreover, the Kruskal-Wallis
test results were significant for each increment after sampling even more
SNPs (Table 2.1).
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FIGURE 2.2: Plot of the mean accuracy to classify among the five breeds
after repeating, for different number of Single Nucleotide Polymor-
phisms (SNPs), a random sampling procedure from the whole set of
available SNPs. Black dot is the accuracy level of the selected 48 SNP
panel.

2.3.3 Penalized Multinomial Regression and Stability Selection
versus Principal Component Analysis and Random Forest

PMR-SS procedure is a new strategy used for assigning animals to a
breed. In order to compare our approach with other previously reported
strategies and to test its efficiency in assigning individuals, PCA and RF
strategy (Bertolini et al., 2015) were also used with the real data. With re-
spect to the two first ranking of SNP panels (MDGI and MAD for 48 and
96 SNPs), the OOB errors in the test sample were 4.09% and 2.03%, re-
spectively, whilst the misclassification error rates for the validation sam-
ple were both 2.86%. In the second ranking, the OOB errors for the test
sample were 2.55% for the 48 SNP panel and 2.55% for the 96 SNP panel,
whilst the misclassification error rates are 5.71% and 2.86%, respectively.
These results are summarized in Table 2.2.
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TABLE 2.2: Out-of-bag (OOB) errors on the test sample and misclas-
sification error rates on the validation sample for the two Single Nu-
cleotide Polymorphism panels and the two rankings, Mean Decrease
in the Gini Index (MDGI) and Mean Accuracy Decrease (MAD) and
for the mixed strategy Penalized Multinomial Regression and Stability
Selection (PMR-SS).

Rankings n. of SNPs OOB Misclassification

MDGI 48 8.21/201 1/35
96 4.08/201 1/35

MAD 48 5.12/201 2/35
96 5.12/201 1/35

PMR-SS 48 0/201 0/35

Figure 2.3 shows the distribution of the 48 selected SNPs across the 26
chromosomes, and the four SNPs panels obtained through PCA and RF
procedure. 15 and 13 SNPs out of 48 are the same as in two 48 rankings
MDGI and MAD, respectively.
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FIGURE 2.3: Chromosome distribution of the Single Nucleotide Poly-
morphisms (SNPs) selected according to the proposed strategy, Pe-
nalized Multinomial Regression and Stability Selection (PMR-SS), and
based on the two panels Mean Decrease in the Gini Index (MDGI) and
the two panels Mean Accuracy Decrease (MAD).

To compare PMR-SS and PCA-RF strategies in more depth, we per-
formed a simulation study. We artificially built, 300 times, test (X̃test)
and validation (X̃val) samples by sampling with replacement observation
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from the real dataset (X). For each replicate, OOB and misclassification
error rates were calculated according to a new reselected SNP panel. Re-
sults are summarized in Table 2.3.

TABLE 2.3: Out-of-bag (OOB%) error and misclassification error rate
(MER%) on the test and validation sample for both strategies, Penal-
ized Multinomial Regression-Stability Selection and Principal Compo-
nent Analysis-Random Forest. Standard deviations in brackets. Re-
sults are based on 300 simulation runs.

MDGI 48 MDGI 96 MAD 48 MAD 96 PMR-SS 48

OOB% 1.63 (0.81) 1.29 (0.80) 1.49 (0.77) 1.25 (0.83) 0.00 (0.00)
MER% 2.11 (2.60) 1.49 (1.89) 1.91 (2.49) 1.49 (1.97) 1.46 (1.82)

MDGI = mean decrease in the Gini index; MAD = mean accuracy decrease;
PMR-SS = Penalized Multinomial Regression-Stability Selection

2.3.4 Breed assignment

The performance of the selected informative SNP markers in individual
assignment test was evaluated using traditional genetic statistics such
as model-based clustering algorithm and Wright’s fixation index. These
analyses were conducted using the whole set of SNPs (48,068) and the
final number of selected SNPs (48). Results from within-population sub-
structure, using admixture analysis and considering a range of 2 through
10 potential clusters (K), indicated that the most probable number of in-
ferred populations was K = 5. A graphic representation of the estimated
membership coefficients, using the whole set of SNPs and the final num-
ber of selected SNPs is shown in Figure 2.4, where model-based cluster-
ing partitioned the genome of each sample into a predefined number of
components. Some breeds tend to have their own distinct cluster (Bar,
Sar and VdB), whereas other breeds, such as Pin and Com, showed a
complex admixture-like pattern. These results support the findings on
the basis of PCA.
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FIGURE 2.4: Model-based clustering of the five sheep breeds analyzed
for the most likely clusters (K=5), using (a) the whole set of Single Nu-
cleotide Polymorphisms (SNPs; 48,068); and (b) the final number of
selected SNPs (48).

The degree of genetic differentiation between pairs of breeds is re-
ported in Table 2.4. The highest Fst value, for both SNPs panels, is seen
between Bar and Sar and the lowest value was for Com versus Pin. Based
upon the reference population, the average pairwise breeds Fst showed a
higher value using the 48 SNPs, confirming the ability of this method to
select discriminating markers.

TABLE 2.4: Population genetic differentiation (statistic) across the five
sheep breeds using the whole set of Single Nucleotide Polymorphisms
(SNPs; 48,068) (top triangular) and the final number of selected SNPs
(48) (bottom triangular).

VdB Com Pin Bar Sar

VdB 0 0.05 0.04 0.10 0.07
Com 0.24 0 0.02 0.08 0.06
Pin 0.26 0.18 0 0.07 0.04
Bar 0.43 0.37 0.30 0 0.11
Sar 0.31 0.31 0.25 0.42 0

VdB = Valle del Belice; Com = Comisana; Pin = Pinzirita;
Bar = Barbaresca; Sar = Sarda
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2.4 Discussion

The aim of this study was to apply a new strategy to identify the min-
imum number of informative SNPs from high-throughput genotyping
data in sheep breeds reared in Sicily and to investigate their usefulness
for breed assignment purposes. Generally, the selection of genetic mark-
ers useful for these purposes is based on two approaches: a deterministic
one, in which markers with different allelic variants fixed in the com-
pared breeds are used, and the probabilistic one, in which selected mark-
ers present typical allelic frequencies in different breeds (Negrini et al.,
2009).

Several strategies have been already proposed to identify breed infor-
mative SNPs derived from high-throughput genotyping platforms. These
systems usually include a first step in which SNPs are preselected and a
second step in which different assignment methods are applied (Bertolini
et al., 2015). For example, Allen et al., (2010) in a study on Irish cattle,
reported a set of 43 SNPs for breed identification on the basis of allele
frequency. Heaton et al., (2014) identified 163 SNPs for use in parent-
age testing and traceability in sheep, using the minor allele frequency (>
0.3). In Mastrangelo et al., (2014), a subset of 119 SNPs was tested to
evaluate their ability to assign individuals to the same groups that have
been used in the present study. These SNPs were selected according to
their informativeness in breed pair comparison, meaning that SNPs with
the largest allele frequency differences between pairs of breeds were cho-
sen (fixed alleles in one breed and MAF > 0.25 in the others). Principal
Component Analysis and k-means using this subset of SNPs showed a
lack of ability to discriminate among the breeds and the presence of over-
lapped areas. Recently, Dimauro et al., (2015) used three complemen-
tary multivariate statistical techniques (stepwise discriminant analysis,
canonical discriminant analysis and discriminant analysis) and two re-
duced pools of 110 and 108 SNPs, respectively, to discriminate between
divergent sheep breeds.

In this Chapter, supervised approaches, Penalized Multinomial Re-
gression and Stability Selection procedures were applied to identify the
minimum number of informative SNPs from high-throughput genotyp-
ing data. These were used as a classification method for unknown sam-
ples. The method proposed in the present work differs from other stud-
ies due to the statistical technique used to reduce the number of SNPs.
The main result was the selection of 48 SNPs from a whole set of 48,068.
These contained enough genetic information to produce sufficient power
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for individuals’ breed assignment, using a relatively low number of indi-
viduals for breed and closely related breeds. The majority of the SNPs are
in non-coding/intergenic regions of the sheep genome, which is ideal for
identification and assignment purpose since these regions/SNPs should
be less influenced by natural or artificial selection (Allen et al., 2010).

The study proved that the combination of these methods allowed
efficient discrimination between individuals of the studied breeds. Of
course, the 48 identified SNPs that were useful to discriminate among
the sheep breeds under study are probably not useful to discriminate
other sheep breeds. However, the same strategy could be applied to other
breeds, using different markers. Wilkinson et al., (2011) reported poor
assignment power for breeds with low sample size and closely related
individuals, showing that closely related breeds require about 200 mark-
ers to achieve 95% assignment success. Bertolini et al., (2017) in a study
on cosmopolitan and autochthonous cattle breeds, showed that a 96-SNP
panel was generally sufficient to discriminate all breeds. For the 48-SNP
panel, the error rate was larger for autochthonous breeds, probably as a
consequence of their admixed origin, lower selection pressure and due
to bias in the construction of the SNP chip. In fact, where there is suffi-
cient genetic heterogeneity across populations, few genetic markers can
be easily used to identify and verify the origin of individuals. This be-
comes more complicated for population with low genetic differentiation,
such as the sheep breeds involved in this study (Mastrangelo et al., 2012;
Tolone et al., 2012). It is well known that a high number of genotyped an-
imals can capture the whole within-population variability reducing the
possibility that some individuals would not be assigned correctly due to
atypical genotypes (Hulsegge et al., 2013). Considering the high level of
admixture among these sheep breeds (Mastrangelo et al., 2017), and the
relative low number of analyzed individuals, our study produced rel-
evant results. A good separation among breeds was obtained with high
percentages of correct assignment. The applicability of reduced SNP pan-
els with low classification error rate is therefore still possible also for local
breeds in which the total or partial lack of selection programs have not
shaped the genome as it might be the case for cosmopolite breeds.

The combined use of Principal Component Analysis and Random
Forest proposed by Bertolini et al., (2015), applied to our sheep breeds,
appeared to perform poorly, even using larger panels of 96 SNPs. Simu-
lation results showed that the proposed strategy performed slightly bet-
ter than PCA-RF, and similar results were found in the application to
real data. Therefore, the proposed strategy could provide a new tool that
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overcomes the limitation of the existing approaches when breeds are phy-
logenetically close.

The results reported using independent analyses, such as the model-
based clustering algorithm implemented in Admixture software (Alexan-
der and Lange, 2011) and Fst confirmed the ability of this method in se-
lecting discriminating markers. The reduced SNP panel captured a large
proportion of genetic variation between the dairy sheep breeds with es-
timates of Fst exceeding those previously reported using microsatellites
(Tolone et al., 2012) and SNPs (Mastrangelo et al., 2014). Moreover, a
previous study on Sicilian sheep breeds (Tolone et al., 2012), using a set
of 20 microsatellites, reported that the Bayesian assignment test showed
a low assignment value for these breeds, and the low robustness of the
assignment test prevented its use for traceability purposes.

Validation analyses will be conducted on the identified SNPs using a
wider sample of individuals and other laboratory assay, e.g. Sanger se-
quencing. Finally, a multiplexed genotyping-by-sequence assay will be
developed highlighting the economic advantage on of reduced SNP pan-
els, compared to dense genome-wide assay, for routine use in the man-
agement of local populations.

2.5 Conclusion

Results for assignment test using the mixed strategy were interesting, be-
cause 100% of the individuals were correctly assigned to their breeds of
origin. Using genotypic data, a small set of SNPs was identified. The
results laid the basis to improve the existing strategies. Potential uses of
the described approach include breed assignment, and tracing the origin
of animal products in an industrial setting.
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Chapter 3

Selecting tuning parameter in
lasso regression:
a new proposal

3.1 Introduction

In the context of high-dimensional data, typically only a small number of
variables are truly informative whilst most of them are redundant. Select-
ing the appropriate variables is a crucial step of the data analysis process.
In fact underfitted models excluding truly informative covariates may
lead to severe bias of the estimators. On the other hand, overfitting may
hinder interpretation and cause large standard errors (Fan and Li, 2001).

Penalized regression methods have gained popularity as a tool to per-
form variable selection. This approach requires defining a tuning param-
eter that affects the degree of shrinking to be applied to the model co-
efficients. Among the different penalized procedures, the least absolute
shrinkage and selection operator (lasso, Tibshirani, 1996) appears to be
the most widely utilized approach.

The tuning parameter balances the trade-off between model fit and
model sparsity, and selecting an appropriate value is fundamental of
lasso regression. Traditional selection criteria include simple and gen-
eralized cross-validation (respectively CV and GCV, Craven and Wahba,
1979), Akaike information criterion (AIC, Akaike, (1974)), Bayesian in-
formation criterion (BIC, Schwarz, 1978), and its extended version (EBIC,
Chen and Chen, 2008), the more recent Generalized information criterion
(GIC, Zhang, Li, and Tsai, 2010) and stability selection (Meinshausen and
Bühlmann, (2010)).

Unfortunately, no method appears to perform systematically better
than others. Broadly speaking, it is recognized that AIC is similar to GCV,
and both of them tend to select too complex models (Wang, Li, and Tsai,
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2007b); the BIC and EBIC are able to identify consistently the true model
but in finite samples they typically leave out important covariates. How-
ever, many authors proposed to select the tuning parameters through k-
fold CV, which is also the default option in several R packages.

We propose a new criterion to select the tuning parameter in lasso re-
gression. The criterion is quite simple to compute and can be interpreted
as maximization of the signal-to-noise ratio. We show that our tuning
parameter selector enables to consistently identify the true model when
the true model is among a set of candidate models.

3.2 New information/selection criterion

3.2.1 Penalized estimators and penalty condition

Consider data (x1, y1), . . . , (xN , yN ) where y1, . . . , yN are independent
given x. yi is the response from the i-th subject, and xi the associated p-
dimensional covariate vector with corresponding parameter � = (�1, . . . ,�p)T .
Assume that E(yi) = xT

i �. Let `(�,�) be the model log-likelihood func-
tion depending on the p dimensional regression parameter � and the dis-
persion parameter �.

In lasso regression, the objective is to minimize the penalized log like-
lihood for a given value of the tuning parameter �, that is:

`�(�) = `(�,�)� �

pX

j=1

|�j |.

In a more general setting �|�j | = p�(|�j |), where p�(·) is a function of the
penalization term. In the next subsection we propose a new criterion to
select the value of the tuning parameter.

3.2.2 The proposed criterion

We suggest to select � as the maximizer of average signal to noise ratio
(ASNR)

ASNR(�) =

Pp
j=1|�̂j�|/d�

�̂
1/2
�

,

where d� is the model degrees of freedom, namely the cardinality of the
active set and �̂

1/2
� is the square root of the estimated dispersion parame-

ter.
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3.2.3 Consistency

A penalty term is said to be selection consistent if the probability that
the fitted regression model includes only the truly informative variables
tends to one as N tends to infinity, and � is replaced by �N to emphasize
its dependence on N in quantifying the asymptotic behaviors. In par-
ticular, Zhao and Yu, (2006) showed that the lasso regression is selection
consistent under the irrepresentable condition when

p
N�N ! 1 and

�N ! 0. Although the asymptotic order of �N = O(N�1/2) is known to
guarantee selection consistency, it remains unclear how to select �N in fi-
nite sample. Several tuning parameter selection criteria can be employed.

Definition 1 (Candidate model). We define S� candidate model, i.e., a subset
of the full model S = {1, . . . , p}. We denote the size of the model S�, i.e., the
number of nonzero parameters in S�, by d� and the corresponding parameter
estimate by �̂�. Moreover, we denote the collection of all candidate models by A.

We assume that the set of candidate models contains the unique true
model, and that the number of parameters in the full model is finite. Un-
der this assumption, we are able to study the asymptotic consistency of
ASNR.

Definition 2 (Underfitted and Overfitted Models). We assume that there
is a unique true model S0 in A, whose corresponding coefficients are nonzero.
Therefore, any candidate model S� 6� S0 is referred to an underfitted model,
while any S� � S0 other than S0 itself is referred to as an overfitted model.

Based on the above definitions, we partition the tuning parameter in-
terval [�min,�max] into the underfitted, true and overfitted subset, respec-
tively, so that:

⇤� = {� : S� 6� S0} ) � 2 [�min,�0),

⇤0 = {� : S� = S0} ) � = �0,

⇤+ = {� : S� � S0, and S� 6= S0} ) � 2 (�0,�max].

This partition allows us to assess the performance of regularization pa-
rameter selections.

To investigate the asymptotic properties of the regularization param-
eter selectors, the two linear sparsity conditions are needed (Wainwright,
2009a; Wainwright, 2009b; Reeves and Gastpar, 2013; Su, Bogdan, and
Candes, 2015). The first, concerns the effect sizes d0, that is the degree of
sparsity. The second concerns the effect sizes of all coefficients of the true
model S0. In particular:
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A. suppose that the ration N/p ! � > 0, then d0 < N/(2 log p);

B. the beta-min condition, | �
0 |min= minj2S0 | �

0
j |� c · �

p
2 log p,

where c is an unkown numerical constant (which would have to
exceed one).

We show that, for any � which can not identify the true model, the
resulting ASNR(�0) is consistently larger than ASNR(�). To this end we
consider two cases, underfitting and overfitting.

Conjecture 1. Suppose all regularity and technical conditions hold. We have
to prove that, if 9 �0 2 ⇤0 which identify the true model S0, then:

(1) if � 2 ⇤� ) P{inf�2⇤� ASNR(�0) > ASNR(�)} ! 1;

(2) if � 2 ⇤+ ) P{inf�2⇤+ ASNR(�0) > ASNR(�)} ! 1.

Conjecture 1 provides guidance on the choice of the regularization
parameter. Conjecture 1(A) and 1(B) imply that the ASNR selector, if all
conditions are fulfilled, identify the true model consistently.

Remark 1. Only the simulations evidence suggest the validity of Conjecture 1.

3.3 Numerical Studies

In this section, we present a simulation study which incorporates a vari-
ety of scenarios. All scenarios consider a setting in which the true model
is in the set of candidate models with different noise levels, both in low
and high dimensionality.

We consider a linear regression model yi = xT
i � + ✏i, where xi are

identically and independently distributed multivariate normal random
variables. The sample sizes are N = 50, 100, 200, the ratios p/N = 0.5, 1.2, 2
and ✏i are identically and independently distributed N (0,�2) with � =
1, 3. The entire simulation is repeated under all combinations of N , p/N ,
and �, and two different scenarios: in the first, covariates are not corre-
lated with each other, while in the second, the Toepliz matrix is used to
define the correlation between xi and xj is 0.5|i�j| with i, j = 1, . . . , p and
i 6= j.

To investigate the performance of the proposed method we fix the
parameter structure �0 = (3,�3.1, 4, 3.5,�5, 0, . . . , 0)T . In both scenarios
when � = 1 the conditions (1) and (2) are fulfilled, whilst they are not
when � = 3.
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We simulate 500 data sets, keeping fixed the model matrix X , and �

is chosen by ASNR, AIC, BIC, EBIC, GCV, GICand 5-fold CV. Their formu-
lations are given as follows,

AIC = log(�̂) + 2d�N
�1

BIC = log(�̂) + log(n)d�N
�1

EBIC = log(�̂) + (log(N) + 2� log(p))d�N
�1

GCV = �̂/
�
(1� d�N

�1)2
�

GIC = log(�̂) + cN log(p)d�N
�1

CV =
5X

s=1

X

(yk,Xk)2T�s

✓
yk �XT

k �̂
(s)(�)

◆2

where �̂ is the estimated dispersion parameter, � is a non negative pa-
rameter and cN is a parameter which depends on N . In 5-fold CV, T s

and T
�s are the training and validation sets, and �̂(s)(�) is the estimated

vector of regression coefficients using the training set T
s and the tun-

ing parameter �. In our simulation both parameters are fixed to 0.5 and
log(log(N)), respectively.

The performance of AIC and GCV was very similar and results are not
reported. Also, only the EBIC (and not the simple BIC) is reported. We
report the average number of non-zero coefficients and the true and false
positive rates (TPR and FPR) as in Su, Bogdan, and Candes, (2015).

Let be V and T the number of lasso false and true discoveries, respec-
tively. We denote with d0 = |{j : �j 6= 0}| the number of true non-
zero coefficients, with V (�) = |{j : �̂j(�) 6= 0 and �j = 0}| and with
T (�) = |{j : �̂j(�) 6= 0 and �j 6= 0}|. Finally, we define

FPR(�) =
V (�)

|{j : �̂j(�) 6= 0}| _ 1
, TPR(�) =

T (�)

d0 _ 1
,

where a _ b = max{a, b}. Moreover, we could be interested in the false
discovery and false negative retes. The FPR is a natural measure of type
I error while 1-TPR (namely the false negative rate, FNR) is the fraction of
missed coefficients, that is a natural notion of type II error.

Table 3.1 shows a comparison between our proposal and the three
main competitor, EBIC, GIC and 5-fold CV, in selecting the tuning param-
eter in a scenario in which no correlation structure is considered between
the covariates and in which the beta-min condition is fulfilled (� = 1) and
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not fulfilled (� = 3). In this scenario all criteria are able to identify all the
non-zero coefficients, i.e., the TPR is about 1. When all regularity condi-
tions are fulfilled our proposal shows excellent results. It correctly selects
the true active set already with very low sample size, i.e., N = 50. Fur-
thermore, when at least one regularity condition is missing, our method
requires large sample size to reach a good performance. Indeed, when
the sample size is very low our criterion tends to select more parameters
than the other criteria do. In general, our proposal ASNR shows good
results in this setting committing a negligible type I error and a null type
II error also in a diverging scenario, selecting the correct number of non-
zero coefficients already with N = 50.

Table 3.2 shows a comparison between our proposal and the three
main competitor, EBIC, GIC and 5-fold CV, in selecting the tuning param-
eter in a scenario in which a Toeplitz correlation structure is considered
between the covariates and in which once again the beta-min condition
is fulfilled (� = 1) and not fulfilled (� = 3). In this scenario, when the
regularity conditions are fulfilled, the same considerations hold for all
criteria. However, when the magnitude of the betas is lower than the
noise level with correlated covariates some difficulties arise in identify-
ing the true non-zero parameters. Only the CV criterion is able to include
the true active set in a larger set of non-null coefficients, at the expense
of a large number of degrees of freedom. The other criteria, especially
when N = 50, 100, have difficulties in identifying all the non-zero coeffi-
cients committing a large FNR, that is a large type II error. Our proposal
seems more conservative in selecting parameters than the others, indeed
the other criteria tends to select overparametrized model. Finally, when
N = 200, our proposal reaches good performance also in a hard setting.

Concluding, the increment in the noise level given by � in small sam-
ple size, shows difficulties in the identification of the true non-zero co-
efficients and in keeping under control the type I and II error measures.
However, as the sample size increases our criterion provides excellent re-
sults in terms of both measures FPR and FNR, and also in number of non-
zero coefficients identified. All the results in both scenarios, with and
without correlation between the covariates, are satisfactory. We remark
that, if a correlation structure is present, our criterion fails to identify
the true non-zero coefficients. Instead, a high power to identify the zero
coefficients is maintained. In terms of model specification our method
tends to be more parsimonious than the competitors, which tends to cre-
ate overparametrized models..



3.3. Numerical Studies 29

TABLE 3.1: Tuning parameter selection comparison between different
criteria, ASNR, EBIC, GIC and 5-fold CV. In this simulation for each N

and p/N ratio the averages of false positive ratio (FPR), the true posi-
tive ratio (TPR) and the number of non-zero coefficients (d�) measures
are reported. We also reported in the two block columns the same mea-
sures for two � values, in a scenario in which no correlation structure
between covariates is considered.

N p
� = 1 � = 3

ASNR EBIC GIC CV ASNR EBIC GIC CV

50 25 FPR 0.124 0.201 0.299 0.463 0.209 0.189 0.296 0.581
TPR 1.000 1.000 1.000 1.000 0.990 0.993 0.999 1.000
d� 5.86 6.49 7.53 10.37 6.76 6.34 7.50 12.89

40 FPR 0.054 0.169 0.246 0.524 0.255 0.167 0.244 0.651
TPR 1.000 1.000 1.000 1.000 0.998 0.993 1.000 1.000
d� 5.34 6.20 6.98 12.02 9.30 6.15 6.97 16.56

100 FPR 0.111 0.169 0.243 0.607 0.413 0.161 0.239 0.719
TPR 1.000 1.000 1.000 1.000 1.000 0.984 0.999 1.000
d� 5.78 6.23 6.98 14.36 16.75 6.07 6.94 20.32

100 50 FPR 0.036 0.195 0.260 0.667 0.096 0.196 0.257 0.673
TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d� 5.23 6.46 7.16 16.95 5.64 6.46 7.12 17.30

120 FPR 0.108 0.241 0.287 0.749 0.178 0.239 0.291 0.755
TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d� 5.71 6.84 7.39 22.94 6.32 6.83 7.43 23.80

200 FPR 0.068 0.219 0.267 0.806 0.182 0.216 0.259 0.812
TPR 1.000 1.000 1.000 1.000 0.999 0.999 1.000 1.000
d� 5.45 6.68 7.20 29.16 6.57 6.66 7.11 30.77

200 100 FPR 0.003 0.116 0.153 0.701 0.010 0.113 0.149 0.700
TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d� 5.02 5.79 6.10 19.61 5.06 5.77 6.07 19.55

240 FPR 0.005 0.105 0.126 0.755 0.016 0.108 0.130 0.755
TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d� 5.03 5.72 5.88 25.74 5.10 5.74 5.91 25.89

400 FPR 0.003 0.092 0.106 0.769 0.010 0.093 0.107 0.771
TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d� 5.02 5.60 5.71 28.76 5.06 5.61 5.71 29.09
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TABLE 3.2: It is identical to Table 3.1, but there is a non-zero correlation
structure between covariates

N p
� = 1 � = 3

ASNR EBIC GIC CV ASNR EBIC GIC CV

50 25 FPR 0.239 0.300 0.398 0.575 0.451 0.267 0.392 0.601
TPR 1.000 1.000 1.000 1.000 0.999 0.928 0.997 1.000
d� 6.95 7.48 8.85 12.59 11.03 6.79 8.75 13.38

40 FPR 0.352 0.370 0.445 0.691 0.579 0.123 0.269 0.745
TPR 1.000 1.000 1.000 1.000 0.895 0.615 0.780 1.000
d� 8.50 8.35 9.69 17.36 22.33 3.83 6.23 21.42

100 FPR 0.286 0.307 0.370 0.663 0.618 0.231 0.344 0.733
TPR 1.000 1.000 1.000 1.000 0.987 0.856 0.956 1.000
d� 7.53 7.57 8.42 16.36 24.55 6.04 7.86 20.85

100 50 FPR 0.213 0.353 0.425 0.743 0.154 0.238 0.369 0.743
TPR 1.000 1.000 1.000 1.000 0.734 0.853 0.946 1.000
d� 6.60 8.16 9.25 20.81 5.07 6.16 8.28 20.81

120 FPR 0.302 0.406 0.460 0.830 0.073 0.113 0.158 0.817
TPR 1.000 1.000 1.000 1.000 0.797 0.800 0.805 0.985
d� 7.58 8.88 9.89 31.45 4.81 4.65 5.01 30.85

200 FPR 0.193 0.315 0.362 0.823 0.172 0.198 0.267 0.826
TPR 1.000 1.000 1.000 1.000 0.794 0.840 0.892 1.000
d� 6.43 7.65 8.28 30.97 7.25 5.66 6.64 32.10

200 100 FPR 0.031 0.227 0.297 0.785 0.087 0.226 0.303 0.785
TPR 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000
d� 5.19 6.77 7.53 25.78 5.56 6.76 7.59 25.81

240 FPR 0.036 0.233 0.271 0.839 0.072 0.232 0.269 0.838
TPR 1.000 1.000 1.000 1.000 0.959 0.998 0.999 1.000
d� 5.23 6.79 7.23 35.16 5.27 6.79 7.21 35.24

400 FPR 0.075 0.300 0.329 0.874 0.118 0.288 0.322 0.874
TPR 1.000 1.000 1.000 1.000 0.934 0.992 0.996 1.000
d� 5.50 7.49 7.88 44.74 5.52 7.36 7.79 44.79
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3.4 Real Data Studies

3.4.1 Riboflavin data set

The first real example is the Riboflavin data by Bacillus subtilis (Bühlmann,
Kalisch, and Meier, 2014). Riboflavin is an essential micronutrient in the
human diet. The data set contains N = 71 observations and p = 4088 co-
variates (logarithm of the gene expression level) and a one-dimensional
response, which is log-transformed riboflavin production rate (q_RIBFLV).

To assess the performance of all regularization parameter selectors we
decided to split the data set in a training set (ts) and a validation set (vs).
The training set, containing Nts = 53, that is 75% of the units, is used
to estimate the coefficients. The validation set, containing the remaining
units (Nvs = 18) is not used in estimating the coefficients, and is used
to calculate the mean prediction error (P̄E = (yvs � xT

vs�̂ts)2/Nvs). This
measure is obtained using a linear model in which only the intercept and
the selected covariates are included.

Table 3.3 reports the number of nonzero coefficients, the tuning pa-
rameter selected and the mean prediction error for each criteria.

TABLE 3.3: Tuning parameter selection of the riboflavin data set. Dif-
ferent criteria are used ASNR, EBIC, GIC and 5-fold CV. The number of
nonzero coefficients, the tuning parameter selected (�) and the mean
prediction error are reported.

# of Nonzero Coefficients � Prediction Error

ASNR 44 0.0131 0.1719
EBIC 1 0.4917 1.3714
GIC 1 0.4917 1.3714
CV 30 0.0579 0.2217

3.4.2 Prostate Cancer data set

The second real example is the well-known Prostate Cancer data from
a study of Stamey et al. 1989 on prostate cancer, measuring the correla-
tion between the level of a prostate-specific antigen and some covariates.
The covariates are x1 = lcavol (log-cancer volume), x2 = lweight (log-
prostate weight), x3 = age (age of patient), x4 = lbhp (log-amount of
benign hyperplasia), x5 = svi (seminal vesicle invasion), x6 = lcp (log-
capsular penetration), x7 = gleason (Gleason Score), x8 = pgg45 (percent
of Gleason scores 4 or 5) and response variable y = lpsa (log-psa). The



32 Chapter 3. Selecting tuning parameter in lasso regression

data set consists of N = 97 observations and p = 8 covariates. To as-
sess the performance of all regularization parameter selectors, the same
procedure as for the riboflavin data set is applied (Nts = 73, Nvs = 24).

Table 3.4 reports the number of nonzero coefficients, the tuning pa-
rameter selected and the mean prediction error measure for each crite-
rion. It is possible to see that ASNR and EBIC selected the same tuning
parameter identifying, as already known in literature, the three non-zero
covariates lcavol, lweight and svi.

TABLE 3.4: Tuning parameter selection of the Prostate Cancer data set.
Different criteria are used ASNR, EBIC, GIC and 5-fold CV. The number
of nonzero coefficients, the tuning parameter selected (�) and the mean
prediction error are reported. An intercept is added to the model.

# of Nonzero Coefficients � Prediction Error

ASNR 3 0.1096 0.4765
EBIC 3 0.1096 0.4765
GIC 6 0.0171 0.5468
CV 8 0.0032 0.5367

3.5 Discussion

In the context of variable selection, we propose a new information crite-
rion to choose regularization parameter. Furthermore, we study the theo-
retical properties of ASNR. If we believe that the true model is contained
in a set of candidate models with the generalized linear model structure,
then our selector identifies the true model consistently, while the other
criteria tend to overfit. Simulation studies and empirical examples sup-
port the performance of the selection criteria.

Even if the theoretical property of ASNR is not yet formally proven,
the empirical results suggest the potential of it. Moreover, our proposal
can be extended to generalized linear models, e.g., Poisson and logistic
regression. Application in very high-dimensional settings (N ⌧ p) that
are today one of the most challenging concerns, represents a noteworthy
application to be investigated.
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Chapter 4

Penalized Quantile Regression
Coefficients Modeling

4.1 Introduction

Conditional quantiles fully describe the conditional distribution of a re-
sponse variable given covariates. Quantile regression (QR; Koenker and
Bassett Jr, 1978) and its generalizations (e.g., Chaudhuri, 1991) are useful
tools in modeling quantiles. The conditional quantile function is usually
assumed to have a linear specification of the form

Q(p | x) = xT�(p), (4.1)

where x is a q-dimensional vector of covariates, and �(p) is a vector of un-
known coefficients describing the relationship between x and p-th quan-
tile of the response variable, p 2 (0, 1).

Standard quantile regression estimates different quantiles one at the
time. When a grid of quantiles is estimated, e.g., p = 0.01, 0.02, . . . , 0.99,
results can be summarized graphically. The estimated coefficients are
generally non-smooth functions of p and may suffer from high volatility,
which can make their interpretation not simple.

Recently, Frumento and Bottai, (2016) suggested modeling the quan-
tile regression coefficient functions, �(p), as parametric functions of the
order of the quantile:

Q(p | x,✓) = xT�(p | ✓), (4.2)

where ✓ is a vector of model parameters. This approach is referred to as
quantile regression coefficients modeling (QRCM) and permits modeling the
entire quantile function, while keeping the quantile regression structure
expressed by equation (4.1). This modeling approach facilitates estima-
tion, inference, and interpretation of the results, and is generally more
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efficient than standard quantile regression. Sometimes, it may be use-
ful to assume flexible, high-dimensional models. Consider, for example,
describing �(p | ✓) by k-th degree polynomial functions:

�j(p | ✓) = ✓j0 + ✓j1p+ . . .+ ✓jkp
k
, j = 1, . . . , q.

Each covariate has (k + 1) associated parameters, for a total of q ⇥ (k +
1) model coefficients. When q and k are large, estimation may become
difficult and sampling variability large. The model can be simplified by
restricting some of the parameters to be equal to zero. For instance, some
of the �j(p | ✓) may be assumed to be linear functions of p, or not to
depend on p at all; and some covariates may be assumed conditionally
independent of the response given the remaining covariates by imposing
the constraint �j(p | ✓) = 0.

Numerous papers (e.g., Belloni and Chernozhukov, 2011; Wang, Wu,
and Li, 2012; Wu and Liu, 2009; Zheng, Gallagher, and Kulasekera, 2013)
have investigated the estimation of penalized quantile regression models
in high-dimensional setting. The penalization is usually given by the L1-
norm of the coefficients, denoted by L1-QR (Belloni and Chernozhukov,
2011; Li and Zhu, 2008). These approaches, however, focus on model
selection when estimating one quantile at a time. Generally, this is inef-
ficient and makes it difficult to interpret the results. The main advantage
of adopting the QRCM framework is that of performing model selection
directly on the parameters of the conditional quantile function.

We propose applying the L1-penalty to the integrated loss function
described by Frumento and Bottai, (2016), which is minimized to estimate
the unknown parameter ✓ in model (4.2). We refer to this procedure as
penalized quantile regression coefficients modeling (QRCMPEN).

4.2 Motivating example

The motivation for this methods comes from a study on the association
between pulmonary inspiratory capacity, a measure of lung’s volume,
and the following nine predictors: age, height, body mass index (BMI), a
binary indicator of smoking, and indicators for sex, occupation exposure,
cough, wheezing and asthma. Extreme quantiles of inspiratory capacity,
and in particular very low quantiles, can be used to identify health prob-
lems and implement therapy.

We first estimated thirteen percentiles (0.01, 0.05, 0.10, . . . , 0.95, 0.99)
with standard penalized quantile regression, as implemented in the R
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package rqPen. Each variable was standardized to have zero mean and
unit standard deviation. Results are summarized in Table 4.1.

The coefficients associated with strong predictors, like age, height and
bmi, were consistently and significantly positive or negative at nearly
all quantiles. Other coefficients, however, were only significant at some
quantiles, making it difficult to interpret the results. All coefficients showed
volatility, for example, the coefficient of smoking was not significant at
p = 0.5 and p = 0.7, but significantly greater than zero at p = 0.6 and
p = 0.8. The observed volatility is probably accounted for by random
variation and data sparsity, which represents a main source of sampling
error in the tails of the distribution.

The idea behind QRCM is to use a more parsimonious representation
of �(p). Consider, for example, Figure 4.1, showing the estimated regres-
sion coefficients associated with age. The underlying trend appears to be
adequately described by a linear function, �age(p | ✓) = ✓0 + ✓1p.

0.0 0.2 0.4 0.6 0.8 1.0

−0.
020

−0.
015

−0.
010

−0.
005

p

age

FIGURE 4.1: Estimated quantile regression coefficients associated with
age and 95% pointwise confidence intervals (shaded area). The dashed
line indicates the linear trend.

Writing �(p) = �(p | ✓) and directly estimating ✓ permit estimating
the entire conditional quantile function. It also enables performing model
selection using information on all quantiles simultaneously. As shown
later, this has important consequences on the performance of penalized
regression methods.
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4.3 The estimator

Throughout, we assume that model (4.2) hold, and adopt the following
parametrization:

�(p | ✓) = ✓b(p),

where b(p) = [b1(p), . . . , bk(p)]
T is a set of k known functions of p, and ✓ is

a q⇥k matrix with entries ✓jh such that �j(p | ✓) = ✓j1b1(p)+. . .+✓jkbk(p),
j = 1, . . . , q. The conditional quantile function is

Q(p | x,✓) = xT✓b(p).

As shown by Frumento and Bottai, (2016), estimation is carried out by
minimizing

L(✓) =

Z 1

0
L(�(p | ✓))dp, (4.3)

where L(�(p)) is the loss function of standard quantile regression given
by

L =
nX

i=1

(p� I(yi  xT
i �(p)))(yi � xT

i �(p)).

This estimation procedure is referred to as integrated loss minimization
(ILM), and implemented in the qrcm package in R. The model is deter-
mined by the choice of b(p). When the model is not known, an intuitive
approach is to define b(p) as a sufficiently large collection of functions,
e.g., b(p) =

⇥
1, p, p2, p3,

p
p, log(p), log(1� p), . . .

⇤T . This modeling ap-
proach is very flexible, and usually provides a good fit of the data. How-
ever, it tends to generate large models, causing overparametrization and
loss of efficiency.

To implement an automatic procedure for model selection, we pro-
pose to modify the loss function (4.3) by introducing a L1-norm penaliz-
ing factor:

L
(�)
PEN(✓) =

Z 1

0
L(�(p | ✓)) + �

X
|✓|dp. (4.4)

We refer to this estimation approach as penalized integrated loss minimiza-
tion (PILM). To minimize L

(�)
PEN(✓) with respect to ✓, we use a pathwise co-

ordinate descent algorithm (Friedman, Hastie, and Tibshirani, 2010). The
described PILM estimator has been implemented in the qrcmNP package
in R.
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4.4 Tuning parameter selection

With a given set of data, the true model is not known. Having adequate
criteria for model selection is therefore crucial. In penalized regression,
the tuning parameter � balances the trade-off between goodness of fit
and efficiency.

We denote by ✓̂(�) the estimator of ✓ obtained by minimizing (4.4) at a
given value of �. AIC-type and BIC-type selectors are grid-search criteria
that minimize

Dev(�) + cn · df(�),

where Dev(�) is the explained deviance of the model (a measure of goodness-
of-fit defined below) corresponding to ✓̂(�), cn is a constant that could
depend on the sample size n, and df(�) reflects the number of nonzero
elements of ✓̂(�).

Considering that each of the �j(p | ✓) has up to k associated parame-
ters, where k is the dimension of b(p), we suggest defining

df(�) =
qX

j=1

df(�)j ,

where

df(�)j = k
�1

kX

h=1

I(✓̂(�)
jh 6= 0), j = 1, . . . , q.

Note that {✓j1, . . . , ✓jk} is the subset of model parameters that contribute
to �j(p | ✓). In particular, df(�)j = 1 when all elements of b(p) are used
to build �j(p | ✓); and df(�)j = 0 when all parameters associated with
�j(p | ✓) are shrunk to zero. By using this definition, we attribute one
degree of freedom to each quantile regression coefficient �j(p | ✓), for a
total of q (and not q ⇥ k) degrees of freedom.

To improve efficiency and computation, we propose standardizing
both x and b(p). In our simulation study and data analysis, we followed
Lee, Noh, and Park, (2014) and defined

Dev(�) = logL
(�)
PEN(✓̂

(�)),
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the logarithm of the minimized loss function given by (4.4). The AIC and
BIC criteria are given by

AIC(�) = logL
(�)
PEN(✓̂

(�)) +N
�1df(�),

BIC(�) = logL
(�)
PEN(✓̂

(�)) + (2N)�1 log(N)df(�)CN .

where Cn is some positive constant, that diverges to infinity as n increase.
If Cn = 1 it corresponds to the ordinary BIC. Unfortunately, the new
criterion ASNR, as discussed in Chapter 3, has not been investigated here.

4.5 Simulations

To evaluate empirically the finite-sample properties of the proposed es-
timator, we considered three different simulation scenarios in which the
quantile function was:

Q(p | x,✓) = �0(p | ✓) + �1(p | ✓)x1 + · · ·+ �q(p | ✓)xq,

where x1, x2, . . . , xq were independent U(0, 5) variables. The three simu-
lation scenarios are described below.

Simulation 1. We used q = 3 covariates and defined

Q(p | x,✓) = (1 + log (p)� .5 log (1� p)) + x1 + (1 + 1.5p)x2 + x3,

b(p) = [1, log (p), log (1� p), p, p2, p3]T .

Simulation 2. We used q = 15 covariates and defined

Q(p | x,✓) = (1+log (p)� .5 log (1� p))+(1+
p
p)x1+(1+1.5p+p

2)x2+x3,

b(p) = [1, log (p), log (1� p), p, p2, p3,
p
p]T .

Simulation 3. We used q = 15 covariates and defined

Q(p | x,✓) = (1+log (p)� .5 log (1� p))+(1+1.5
p
p+ 3

p
p)x1+(1+

p
p)x2+(1+2 4

p
p)x3,

b(p) = [1, log (p), log (1� p),P3(p)]
T
,

where Pk(p) denotes k-th degree shifted Legendre polynomials (e.g.,
Abramowitz and Stegun, 1964), an orthogonal polynomial in (0, 1) that is
used as flexible model for �(p | ✓).
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In all simulations, we modeled the intercept using log (p) and log (1� p),
that define the asymmetric Logistic distribution, while the maximal model
for �1(p | ✓), . . . ,�q(p | ✓) included all the other entries of b(p). In simula-
tion 3, the specification of b(p) did not correspond to the true model. This
allowed assessing the performance of the described estimator when the
true data-generating process is not known and a flexible parametrization
is used to approximate �(p | ✓). For each scenario we generated B = 500
simulated quantile functions, keeping fixed the model matrix x. We ap-
plied the described PILM estimator and selected the model according to
AIC and BIC, separately. We also applied the unpenalized ILM estimator,
fitting the true model.

We measured bias as follows. Let b✓b indicate the parameters’ esti-
mates in the b-th simulated dataset, b = 1, . . . , B, and define

✓̄ = B
�1

BX

b=1

b✓b.

This quantity estimates the expected value of b✓. For a given value xi of
the covariates, we defined the following measures of bias:

biasFxi
= sup

p2(0,1)
|F (Q(p | xi,✓) | xi, ✓̄)� p|, (4.5)

biasQxi
= sup

p2(0,1)
|Q(p | xi,✓)�Q(p | xi, ✓̄)| (4.6)

where F (·) denotes the cumulative distribution function that corresponds
to the inverse of Q(·). Expression (4.5) returns a value in (0, 1) and repre-
sents a bias on the scale of F (·), while expression (4.6) is on the same scale
as Q(·). Aggregated measures of bias are obtained by averaging over the
distribution of xi. Letting the covariates’ values be the same across all
simulated datasets, this corresponds to calculating the following quanti-
ties:

biasF = N
�1

NX

i=1

biasFxi
, (4.7)

biasQ = N
�1

NX

i=1

biasQxi
. (4.8)

The results of the simulations are summarized in Table 4.2. In scenario
1, where the model was relatively simple, both AIC and BIC selected the
correct model. In scenario 2, with more covariates, both criteria appeared
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to overestimate the number of nonzero parameters. However, the bias
was found to be negligible. In scenario 3, the true model was not known
and an orthogonal polynomial was used to form a basis. A small bias
was found with both AIC and BIC.

TABLE 4.2: Results of simulations 1-3. For each scenario, we report the
measures of bias described in (4.7) and (4.8), the degrees of freedom
df(�) as in Section 4.4, and the median number of nonzero model pa-
rameters as a fraction of the parameters of the maximal model, using
the PILM estimator with AIC and BIC criteria. In the table, ILM denotes
the unpenalized estimator in which the model is correctly specified and
only the nonzero parameters are computed.

biasF biasQ df(�) n. of parameters

Sim 1
ILM 0.001 0.021 2.000 7
AIC 0.007 0.084 2.336 ' 8/15
BIC 0.012 0.156 2.082 ' 7/15

Sim 2
ILM 0.039 0.002 2.200 9
AIC 0.014 0.389 5.832 ' 27/78
BIC 0.028 0.692 3.525 ' 16/78

Sim 3
ILM 0.002 0.054 - 10
AIC 0.016 0.893 8.093 ' 31/60
BIC 0.038 1.247 4.231 ' 13/60

4.6 Computation

The described PILM estimator has been implemented in the qrcmNP (pe-
nalized quantile regression coefficients modeling) package in R. Although
computation is easy, there are important issues:

• for a correct application of the penalization described by (4.4), co-
variates x, response variable y and basis b(p) need to be standard-
ized;

• as shown by Frumento and Bottai, (2016), computing L(�(p | ✓))
requires a numerical evaluation of b(p), its derivative b0(p), and its
integral B(p);
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• the initial parameters’ values must be selected to ensure that the
conditional quantile function is well-defined. Starting points are
computed based on a preliminary estimate of the conditional dis-
tribution, obtained using a flexible parametric model implemented
by the package pch.

• the sequence of � is obtained according to the penalized integrated
gradient fixing the intercept parameters to their current estimates
✓̂(t)
1⇥k and all the other parameters to 0(q�1)⇥k. Defining

✓̃(t) = (✓̂(t)
1⇥k;0(q�1)⇥k), the initial value of � is given by max | cn |,

where cn = r✓L
(�)
PEN(✓̃

(t)).

• standard errors for the nonzero parameters are estimated using stan-
dard asymptotic theory of M-estimators as in Frumento and Bottai,
(2016).

The qrcmNP package contains a main function that implements model
fitting using pathwise coordinate descent and quasi Newton-Raphson
algorithms (Bottai, Orsini, and Geraci, 2015) to minimize L

(�)
PEN at the se-

lected values of the tuning parameter �. A variety of summary measures,
variable selection procedures, predictions, and graphical tools are avail-
able.

4.7 Variables selection for inspiratory capacity

We applied the QRCMPEN estimator to a subset (n = 2045) of the data an-
alyzed in Bottai et al., (2011). The data arose in to a study carried out in
1988-1991 in Northern Italy, and included 1053 males and 992 females.
The study aimed to estimate percentiles of inspiratory capacity (IC), a
measure of lungs function. The following nine predictors were available:
age, height, body mass index (BMI), sex, and indicators for current smok-
ing, occupational exposure, cough, wheezing, and asthma.

We used b(p) = [1, log(p), log(1� p)]T to model the intercept, while
the coefficients associated with the covariates were described by a shifted
Legendre polynomial up to fifth degree, inclusive of an intercept. The
maximal model had 3 + 6 ⇥ 9 = 57 parameters. We used AIC and BIC
to assess model fit. Figure 4.2 illustrates the results of our analysis and
some graphical diagnostic tools.
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(upper panels); coefficients versus objective function plot and l1-norm
plot (mid panels), AIC and BIC curves versus log (�) (bottom panels),
for the inspiratory capacity data.
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All criteria indicated that the best model included all the considered
covariates. However, several model parameters were shrunk to zero. Re-
sults are reported in Table 4.3.

TABLE 4.3: Model selection based on different criteria. Degrees of free-
dom (as defined in Section 4.4), number of parameters (as a fraction
of that of the maximal model), minimized loss function, and p-value
of a Kolmogorov-Smirnov goodness-of-fit test (Frumento and Bottai,
2016) of the model selected by AIC and BIC. The maximal model had
57 parameters. AIC and BIC criteria selected 6.83 and 4.33 degrees of
freedom, respectively, corresponding to 37 and 23 nonzero parameters.
The model selected by AIC is summarized in Table 4.4 and represented
graphically in Figure 4.3.

Criterion df(�) n. of parameter Loss P-value KS

AIC 6.83 37/57 275.19 .43
BIC 4.33 23/57 275.49 .33

We used the model selected by AIC and estimated it again using un-
penalized QRCM. The model is summarized in Table 4.4, and represented
graphically in Figure 4.3. Because we were mostly interested in the low
quantiles of IC, in Table 4.5 we only report the estimated quantile regres-
sion coefficients, b�(p) = �(p | b✓), at p = 0.01, p = 0.05, and p = 0.50.

Age, height, BMI and sex were statistically significant. Figure 4.3
shows the regression coefficient functions for all covariates over the inter-
val p 2 (0, 1). Age had a negative effect at all quantiles, and the associated
coefficient function showed an increasing linear trend. As age increased
by one year, IC decreased by about 0.01 liters. Height had a positive ef-
fect, and its regression coefficient function showed a J-shape. As height
increased by one centimeter, IC increased by about 0.03 liters. BMI had a
positive effect with a reverse J-shape. As BMI increased by one unit, IC in-
creased by 0.03 at the first percentile, 0.04 at the fifth percentile and 0.06 at
the median. The coefficient function associated with male was negative
and decreasing. This indicated that, after including all the other covari-
ates, the distribution of IC in males was shifted towards lower values and
had larger variability than in females.

4.8 Discussion

We described a penalized approach that can be applied to the QRCM
framework introduced by Frumento and Bottai, (2016). Modeling the
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FIGURE 4.3: ILM estimates of �(p) under the model selected by AIC
(see Table 4.4). Confidence bands are displayed as shaded areas. The
broken lines connect the coefficients of ordinary quantile regression es-
timated at a grid of quantiles. The dashed line indicates the zero.
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TABLE 4.5: Estimated quantile regression coefficients at p = 0.01, p =
0.05 and p = 0.50, obtained from the model selected by AIC. Estimated
standard errors in brackets. The asterisk (⇤) denotes significance less
than 0.05.

p = 0.01 p = 0.05 p = 0.50

Intercept 1.885 (.174)⇤ 2.454 (.110)⇤ 3.415 (.069)⇤
Age -0.013 (.001)⇤ -0.013 (.001)⇤ -0.011 (.001)⇤
Height 0.033 (.003)⇤ 0.030 (.002)⇤ 0.029 (.002)⇤
BMI 0.032 (.006)⇤ 0.037 (.005)⇤ 0.057 (.004)⇤
Male -0.177 (.061)⇤ -0.229 (.050)⇤ -0.448 (.034)⇤
Smoker -0.028 (.049) -0.033 (.037) 0.027 (.025)
Non-exposure 0.024 (.050) 0.008 (.037) 0.020 (.023)
Cough 0.013 (.066) -0.010 (.049) -0.062 (.039)
Wheezing -0.049 (.058) -0.084 (.045) -0.010 (.037)
Asthma 0.045 (.106) -0.051 (.074) 0.051 (.051)

conditional quantile function parametrically can be more efficient than
estimating quantiles one at a time, as in ordinary quantile regression.
Moreover, it permits performing model selection directly on the param-
eters that describe conditional quantiles, instead of proceeding quantile-
by-quantile, as the penalized methods for quantile regression proposed
so far do. By working with QRCM, it is easy to formulate highly parametrized
models, as each covariate has multiple associated parameters.

The QRCMPEN estimator demonstrated to select the correct model
with a high probability. A computationally efficient algorithm has been
implemented in the qrcmNP package in R.
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Appendix A

Clusters of effects curves in
quantile regression models

A.1 Introduction

General statistical techniques aim to reduce dimensionality aiming to de-
tect the most relevant information for a better interpretation of observed
data. In particular, various methods, combining cluster analysis and the
search for a lower-dimension representation, have been proposed in a
finite-dimensional setting by Vichi and Saporta, (2009). More recently,
the use of clustering is considered as a preliminary step for exploring
data represented by curves, with additional difficulty associated to the
infinite space dimension of data (Jacques and Preda, 2014).

In this Appendix, we focus on a new method to find similarities of
curves in a quantile regression coefficient modeling framework, possi-
bly multivariate, in which the effect of covariates on a response variable
is represented by curves in the space of percentiles. The proposed ap-
proach is very flexible and, as shown, can be also generalized to different
contexts, such as clustering of waveform curves (i.e. seismic events or
signals).

Simple t-tests following the ANOVA theory are usually considered to
compare coefficients effects for pooled data, that is, accounting also for
some grouping variable. Extended procedures used to compare regres-
sion coefficients across models (both linear and generalized linear mod-
els) are proposed in Clogg, Petkova, and Haritou, (1995).

The general issue of curve clustering could be very complex for many
reasons, which can be due, for instance, to subjective choices related to
the transformation of the observed data. The variability across curves
can be distinguished into two components: phase variability (removed
after the alignment of the curves) and amplitude variability (Sangalli et
al., 2009). The complex problem of curves clustering is strictly related
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to the idea of curves alignment, that is studied in different fields: this
is referred to as “curve registration” in statistics Silverman, (1995) and
Ramsay and Li, (1998), “time warping” in engineering Wang and Gasser,
(1997) and “structural averaging” in the context of computing an average
curve Kneip and Gasser, (1992).

Silverman, (1995) proposed a more general approach, in which a tar-
get curve is defined to which each other curve must be registered based
on some meaningful criterion, such as a local feature of the curve, or the
minimization of a distance measure.

Ramsay and Li, (1998) used a Procrustes fitting procedure (Gower,
1975) to provide maximal alignment to the target function, subject to the
suitable smoothness of the transformations. Adelfio et al., (2012) intro-
duced a simple procedure to identify clusters of multivariate waveforms
based on a simultaneous assignation and alignment procedure. James,
(2007) introduced a method for finding similarities among functions by
equating the moments between all curves. This problem can be crucial
in several contexts. A new approach based on the trimmed k-means
Robust Curve Clustering proposed by Garcia-Escudero and Gordaliza,
(2005) is introduced in Adelfio et al., (2011), considering a functional
principal component rotation of data (Ramsay, 2006). This approach has
been extended in Adelfio, Di Salvo, and Chiodi, (2016), where the au-
thors focused on finding clusters of multidimensional curves with spatio-
temporal structure.

All the aforementioned methods have been defined in a slightly dif-
ferent context with respect to the one we consider here; indeed, none
of the above approaches can be suitable for clustering curves of effects
in quantile regression. These curves have typically variable trends and
polynomial shapes. Therefore, our aim is to find effects (i.e. curves) that
are not significantly different and then, to identify clusters of similar co-
variates, according to a variable selection perspective.

This Appendix is organized as follows: in Section A.2 we report the
usual notation of quantile regression, together with some recent devel-
opments that permit describing coefficient functions parametrically. In
Section A.3 we introduce the new method for curves clustering, together
with the algorithm details. In Section A.4 simulated results are reported
both for effects curves in quantile regression coefficient modeling and in
general waveform context. Example of applications on real data are re-
ported in Section A.5. Section A.6 is didicated to conclusive remarks.
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A.2 Quantile regression and recent extensions

Dealing with non-normal distributions and outliers, the use of quantile
regression (QR; Koenker and Bassett Jr, 1978; Koenker, 2005) to investi-
gate the influence of some covariates on a response is suggested. Indeed,
the ordinary least squares (OLS) regression does not take into account the
whole shape of distribution of the outcome variable. Conversely, QR pro-
vides information on the entire distribution, including for example the
tails, and not just its mean. Additionally, quantile regression estimators
are generally more robust to outliers than ordinary least squares. Unlike
the ordinary linear regression, the QR parameter measures the change in
a specified quantile of the response variable produced by one unit change
in the predictor variable. This allows to compare how some percentiles
of the variable of interest may be more affected by certain subject charac-
teristics than other percentiles.

Frumento and Bottai, (2016), suggest adopting a parametric model
for the coefficient function of a quantile regression. They refer to this es-
timation approach as quantile regression coefficients modeling (QRCM)
and implemented it in the qrcm R package (Frumento, 2017). Standard
quantile regression suffers from the following limitations: (i) quantiles
are estimated one at the time, (ii) the estimated coefficients are generally
unsmoothed functions of the percentiles (p) and may suffer from a high
volatility that hinders their interpretability. The QRCM framework over-
comes the aforementioned limitations: (i) the entire quantile function is
estimated at once; (ii) this modeling approach facilitates estimation, in-
ference, and interpretation of the results, and generally yields a gain in
terms of efficiency. More in details, given a response variable y and a
model matrix x of dimension N ⇥ q, assume that for any p 2 (0, 1) there
exists a q-dimensional vector �(p) such that Q(p | x) = x�(p), where
�(p) is a function of p that depends linearly on a finite dimensional pa-
rameter ✓, that is �(p | ✓) = ✓b(p). Moreover, b(p) = [b1(p), . . . , bk(p)]T

is a set of k known functions of p and ✓ is a q ⇥ k matrix with entries ✓jh

associated to the j-th covariate and the h-th function, j = 1, . . . , q and
h = 1, . . . , k. The authors suggest estimating ✓ as the minimizer of the
integrated objective function

LN (✓) =

Z 1

0
N

�1
NX

i=1

(p� !p,i)(yi � xT
i �(p | ✓))dp,

where !p,i = I(yi  xT
i �(p | ✓)) and I(·) is the indicator function. With

this approach, �(p | ✓) is treated as a finite-dimensional parameter.
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In this framework, our proposal tries to answer two different ques-
tions:

1. in the univariate case, applying the QRCM on y, we estimate the
regression coefficients functions �1(p | ✓), . . . ,�q(p | ✓), namely
effects curves. The aim is to assess if these q curves, that describe
the effects of each covariate on the response, can be clustered based
on similarities of effects, as a variable selection procedure;

2. in the multivariate case, let y = [y1, . . . , yt, . . . , ym] be a set of m

response variables, each of length N ; applying the QRCM on each yt,
we estimate the m ⇥ q effects curves �11(p | ✓), . . . ,�mq(p | ✓). The
aim is to assess if there are similar responses given covariates, as
a preliminary step to describe clustered outcomes most influenced
by a given covariate.

A.3 The proposed clustering method

The proposed clustering approach based on a new measure of dissimilar-
ity that used both the shape of a curve and the distance with respect to
other curves:

• the shape of a curve is evaluated using its second deravative. More-
over, two different curves are similar in shape if for a fixed point
the signs of the second derivatives are concordant;

• the distance between two curves is evaluated as their a new mea-
sure of dissimilarity that used both the shape of a curve and the
distance with respect to other curves. Two curves are said close if
their distance at any given point is lower than a fixed value.

Let i and i
0 be two different curves, p 2 (0, 1) the vector of percentiles.

d
ii0
shape(p) = I(sign(�00

i (p | ✓))⇥ sign(�00
i0(p | ✓)) = 1)

d
ii0
distance(p) = I(|�i(p | ✓)� �i0(p | ✓)|  f(↵,dist(p))),

where f(·, ·) is a cut-off function, that depends on a probability value ↵,
and on dist(p), the vector of the distances between two curves across all
percentiles. The probability value ↵ has a central role for finding homo-
geneous clusters and its choice depends on the analysis aim and, there-
fore, has to be fixed by the researcher. Fixing an ↵-level too small or too
big could provide inhomogeneous clusters. The cut-off function f(·, ·)
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selects the ↵-th percentile vector of dist(p). In our opinion, the median
(↵ = 0.50) is strongly suggested in case of waveforms clustering, while
the first quantile (↵ = 0.25) is preferable in the clustering of curves of
effects.

Finally, the proposed dissimilarity measure between two curves is de-
fined as

d(i, i0) = 1�
Z 1

0

h
d
ii0
shape(p) · d

ii0
distance(p)

i
dp. (A.1)

In (A.1), the product of the two measures is computed, to account for
their concordance at each point. The value in (A.1) defines a metric, as it
satisfies the following properties:

1. Nonnegativity: d(i, i0) � 0;

2. Reflexivity: d(i, i0) = 0 if and only if i = i
0;

3. Symmetry: d(i, i0) = d(i0, i);

4. Triangle Inequality: d(i, i0) + d(i0, i00) � d(i, i00).

In the proposed approach, defining a dissimilarity matrix is useful for
the application of any hierarchical clustering method. We implemented
the proposed procedure in the clustEff package in R, that includes
several very flexible functions.

A.3.1 Choice of the number of clusters

The choice of the number of clusters is crucial for most clustering algo-
rithms. We discuss this issue with the goal of offering a classification tool
that is sufficiently flexible and, at the same time, can be used in different
contexts.

In the case of clustering of effects curves of a QRCM, the optimal num-
ber of clusters (say k

⇤) is obtained with a criterion based on the confi-
dence bands of curves. Starting from each partition of curves in k clus-
ters and their estimated confidence bands, we build the average lower
and upper bands within cluster (LBj(p) and UBj(p), j 2 {1, k}). Then,
we compute the proportion of curves that are outside the average bands.
For each k = 1, ...,K  q, let us define

⇡
k
out = k

kX

j=1

q
�1
j

qjX

i=1

⇢Z 1

0
I

✓
LBj(p)  �

j
i (p | ✓)  UBj(p)

◆
dp

�
,
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where qj is the number of curves in the j-th cluster and I(·) is the indi-
cator function. The value of k⇤ is identified by that partition for which
⇡
k
out � ⇡

k+1
out is minimized.

The proposed measure, as defined by (A.1), could be also an useful
tool for clustering time-dependent signals, usually analyzed in functional
data analysis (FDA). The nature of these curves is generally different from
that of quantile regression coefficient functions. In FDA, signals are often
zero mean, and with high time-dependent variance. Therefore, the crite-
rion for the choice of the optimal k⇤ can not be the same. In particular, in
waveform clustering, we look for the relative distances between curves
belonging to the same cluster and their centroid (�j

, j 2 {1, k}). For each
k = 1, ...,K  q, let us define

distkrel = k sup
j2{1,...,k}

⇢
q
�1
j

qjX

i=1

Z 1

0
|�j

(p)� �
j
qj (p | ✓)| dp

�
.

Then, k⇤ is identified by that partition for which distkrel � distk+1
rel is mini-

mized.

A.3.2 Steps of the Algorithm

The main steps of the algorithm are summarized as following:

1. fix the ↵-level and calculate all the possible distances between the
pairs of curves for each percentile (i.e., dist(p)); then, the cut-off
function selects the percentile of the distribution of dist(p) used in
d
ii0
distance(p);

2. after computing d
ii0
shape(p) and d

ii0
distance(p), the dissimilarity matrix

is calculated as in (A.1);

3. apply a hierarchical clustering algorithm in order to obtain the den-
drogram;

4. select the optimal number of clusters as in Section A.3.1, unless k is
known in advance;

5. after selecting the number of clusters calculate the mean curves
within each cluster. Provide goodness-of-fit measures..

The clustEff package includes the main function that implements the
described algorithm, along with a summary function and graphical tools.
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Based on numerous applications and simulation results, that are only
partially summarized in the rest of this section, the algorithm seems to be
stable and computationally efficient.

A.4 Simulation study

In this section, we report simulated results to prove the validity of the
proposed approach for cluster of curves, both referring to effects curves
in a quantile regression coefficients modeling and to general curves of
waveforms. Moreover, the proposed clustering is compared with two
different algorithms: the model-based clustering algorithm proposed by
Bouveyron and Brunet-Saumard, (2014) (funFEM) and the functional prin-
cipal component analysis algorithm proposed by Adelfio et al., (2011)
(FPCA).

The funFEM method is based on a functional mixture model that al-
lows the clustering of the data in a discriminative functional subspace.
This model clusters observed curves into K homogeneus groups and as-
suming that there exists an unobserved random variable Z = (Z1, . . . , Zk) 2
{0, 1}K indicating the group membership of each curve. However, be-
cause the group memeberships of the curves are unknown, the direct
maximization of the likelihood associated with the model proposed by
Bouveyron and Brunet-Saumard, (2014) is intractable. The EM algorithm
is applied to perform optimization.

The FPCA method combines the aim of finding clusters from a set of
observed curves with the functional nature of data. It applies a variant
of k-means algorithm based on the principal component rotation of data.
The main idea behind this clustering approach is to find a linear approx-
imation of each curve by a finite-dimensional vector of coefficients de-
fined by the FPCA scores. This method assigns curves to a cluster if the
distances between them are less than a fixed threshold in the space of the
PCA scores.

In both simulations we generate 100 replicates and in each of them
the optimal number of clusters k

⇤ is automatically provided. We report
and compare the following statistics:

• the average area between each curve and the mean curve of each
cluster, calculated as

Area(k⇤) = k
⇤�1

k⇤X

j=1

⇢
q
�1
j

qjX

i=1

Z 1

0

✓
| �j

(p)� �
j
i (p | ✓)|

◆
dp,
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where qj is the number of curves in the j-th cluster with j 2 {1, k⇤}
and �

j
(·) is the mean effect curve of cluster j;

• the average distance based on the correlation among all the curves
in each cluster, calculated as

⇢dist(k
⇤) = k

⇤�1
k⇤X

j=1

⇢
1�


2

✓
qj(qj � 1)

◆�1 qj�1X

i=1

qjX

z>i

⇢iz

�2�
,

where qj is the number of curves in the j-th cluster with j 2 {1, k⇤}
and ⇢iz is the correlation between i-th and z-th curve;

• the average number of clusters.

A.4.1 Clusters of effects

We considered a multivariate scenario in which the general quantile func-
tion was simulated as

Q(p | x,✓) = �0(p | ✓) + �1(p | ✓)x

where x ⇠ U(0, 5) and p 2 (0, 1). In the first simulation scenario, the
intercept was modeled as the quantile function of a standard normal dis-
tribution (�). Other choices, as suggested in the original paper of Fru-
mento and Bottai, (2016), could be considered. We defined three groups
of quantile functions

Q1(p | x,✓1) = (1 + �(p)) + (.5 + .5p+ p
2 + 2p3)x

Q2(p | x,✓2) = (1 + �(p)) + (�3 + .5p+ p
2 + .5p3)x

Q3(p | x,✓3) = (1 + �(p)) + (.3� .5p� p
2 + 2p3)x

where ✓1 = (.5, .5, 1, 2),✓2 = (�.3, .5, 1, .5),✓3 = (.3, .5,�1, 2). For each
quantile function (Q1, Q2, Q3) ten response variables were generated ac-
cording to the parameters ✓i + ✏i, i = 1, 2, 3, where ✏i ⇠ N (0, 2).

In each replicate we obtained 30 responses y1, . . . , y30. Applying the
QRCM method to these response variables, we could evaluate the effect
of the covariate x on each of them. The lower and upper bounds are
easily estimated and used within the clustEff algorithm to select the
optimal number of clusters. Figure A.1 shows the dendrogram, the 30
effect curves clustered and the boxplot of the average dissimilarity within
each cluster after applying the clustEff algorithm for one replicate.
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FIGURE A.1: Output of the proposed algorithm for one replicate. Left
panel shows the dendrogram; mid panel shows the 30 curves clustered
in 3 groups; right panel shows the boxplot of the average dissimilarity
within each cluster.

In Table A.1 results are summarized and compared with the true num-
ber of clusters and the true partition of curves, used as benchmark mea-
sures. Since the average of the area between each curve and the mean
curve decreases as the number of clusters increases, in our opinion this
is a reasonable statistics for comparing different clustering methods only
being equal the number of clusters. Therefore, operatively, we first iden-
tified the best approach in terms of the selected number of clusters; then,
we assessed the goodness of the partition by looking at the average area
and at the average correlation.

TABLE A.1: Average area, average distance based on correlation (⇢dist)
and average of the optimal number of discovered clusters (k⇤) are com-
pared with the three algorithm (clustEff, funFEM and FPCA) using as
benchmark measure the true partition of curves in the 100 runs. Stan-
dard deviations in brackets.

True clustEff funFEM FPCA

k
⇤ 3.00(0.00) 3.51(1.63) 5.06(0.98) 3.35(0.63)

Area 0.216(0.091) 0.205(0.091) 0.178(0.079) 0.206(0.090)
⇢dist 0.010(0.015) 0.010(0.015) 0.008(0.008) 0.010(0.015)

As shown in the Table A.1, the clustEff and the FPCA methods are
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both, on average, more precise than the funFEM in terms of number of
clusters. Both algorithms choose, on average, the true number of clus-
ters, even if the clustEff has the largest standard error. The funFEM
algorithm overestimates the number of cluster, which makes it difficult
to compare results in terms of area and correlation. Moreover, in terms
of the distance based on the correlation, the three methods have the same
performance. In our opinion, in this framework, the clustEff approach
could be preferable, both for its user-friendly nature and since it intro-
duces a new perspective of curves clustering, comparing also the shape
of curves. This point is relevant for a clustering method that aims at clus-
tering effects curves. Indeed, the similarity of effects in a quantile regres-
sion model can not be based just on the closeness of curves, since also
the shape represents an important information, suggesting for instance
trends or direction, functions of the percentiles.

A.4.2 Waveform clustering

For the waveform clustering context, we simulate 30 harmonic functions
evaluated on a grid of size 1000 in t 2 [0, 1], such that 10 are generated
from the function f(t) = sin(3⇡t), 13 from the function g(t) = cos(3⇡t), 5
from the function h(t) = sin(3⇡t) cos(⇡t), and 2 from the function l(t) = 0,
as outlier curves.

To each curve a random error ✏t ⇠ N (0,�t) is added, where �t is the
square root of the variance function defined by a segmented relation with
multiple change-points, such as

�t = 4max(t� 0.2, 0)� 8max(t� 0.5, 0) + 4max(t� 0.8, 0)

Figure A.2 shows the 30 curves clustered, the dendrogram and the
boxplot of the average dissimilarity within each cluster applying the
clustEff algorithm to one replicate.
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FIGURE A.2: Output of the proposed algorithm for one replicate. Up-
per panels show the 4 clusters; bottom-left panel shows the dendro-
gram; bottom-right panel shows the boxplot of the average dissimilar-
ity within each cluster.

The three algorithms, clustEff, funFEM and FPCA, are compared
using the same summary statistics used in the simulation Section A.4.1,
i.e., the average area between each curve and the mean curve in each
cluster, the average correlation betwen curves in each cluster, and the
average value of the selected number of clusters (k⇤). The true number
of clusters and the true partition of curves are considered as benchmark
measures. As in the previous section, the same considerations about the
statistics hold. Results are reported in Table A.2.

In this example, basing on the three summary statistics defined in Sec-
tion A.4, it is not possible to assess which is the outperforming method.
The clustEff and the FPCA methods perform similarly in terms of the
chosen k

⇤, but the clustEff is the best one in terms of the average area
and the correlation distance, the best one. The funFEM algorithm, in-
stead, underestimates the number of clusters.

In clustering of waveforms, where the curves typically have zero-
mean with high time-dependent variance, the comparison of shapes, which
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TABLE A.2: Average area, average distance based on correlation (⇢dist)
and average of the optimal number of discovered clusters (k⇤) are com-
pared across the three algorithm (clustEff, funFEM and FPCA) using as
benchmark measure the true partition of curves in the 100 runs. Stan-
dard deviations in brackets.

True clustEff funFEM FPCA

k
⇤ 4.00(0.00) 4.23(0.95) 3.44(1.05) 3.83(0.38)

Area 0.133(0.102) 0.130(0.099) 0.177(0.146) 0.142(0.116)
⇢dist 0.441(0.177) 0.426(0.175) 0.436(0.203) 0.437(0.171)

is one of the two components of the proposed measure in (A.1), should
weigh less than the closeness assessment. Nevertheless, these results still
confirm the efficiency of the clustEff approach, also in a FDA context.

A.5 Examples of application of the clusteEff algo-
rithm on real datasets

In this section, we apply the proposed clustering algorithm to three dif-
ferent real datasets, in order to show its flexibility and wide spectrum
of application. Results are compared with funFEM and FPCA methods
using the same summary statistics as in Section A.4.

A.5.1 Dataset 1

The first analyzed dataset consists of 2372 earthquakes located in Italy
by the INGV (Istituto Nazionale di Geofisica e Vulcanologia) seismic net-
work from 2012 to 2016, with local magnitude greater than 2.5. The se-
lected time interval, as well as the minimum magnitude, have been cho-
sen in order to have a catalogue as homogeneous as possible. Each seis-
mic event is uniquely identified with a sequential numeric (ID). For each
event Latitude (lat), Longitude (lon) and Hypocentral Depth (depth),
uniquely define the hypocenter position in space.

The precision and accuracy of their estimates is strongly influenced by
the quality of the data and the geometry of the stations that recorded the
event. In this application, the following variables are further considered:

• Magnitude (mag): measure of the magnitude of the earthquake;

• Magnitude uncertainty (errM): uncertainty about the magnitude of
the earthquake;
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• Hypocentral uncertainty (errZ): uncertainty about the depth hypocen-
ter;

• Epicentral uncertainty (errH): uncertainty about the depth epicen-
tre;

• Gap azimuth (gap): a synthetic parameter of the geometry of the
stations in relation to the epicentre; it expresses the maximum an-
gle between two consecutive stations placing the epicentre to the
vertex of the angle. High values of the azimuthal gap, severely af-
fect the quality of the hypocenter location. For values higher than
180�, i.e. external seismic event from the monitoring network, the
localization errors can be very high or the event can not be alloca-
ble;

• Distance from the nearest station (mDst): the minimum distance
between the epicentre and stations. In particular for shallow earth-
quakes, this distance should be sufficiently small. If there is not at
least one station close enough to the epicentre, the determination of
depth hypocenter can be extremely difficult or even impossible;

• Root Mean Square (rms): the standard deviation between the ar-
rival times of seismic waves estimated automatically or manually
(experimental) and theoretical ones determined on the basis of a
velocity model of wave propagation. This variable is therefore a
measure of the quality of the location;

• Number of stations that recorded the event (nSt): it is the number
of stations used in the localization process. This number is heavily
influenced by the magnitude of the event and strongly influences
the accuracy of the location.

Starting from all these variables, we could identify a set of seven depen-
dent variables (mag, errM, depth, lon, lat, errZ, errH) and a set of four
independent variables (gap, mDst, rms, nSt).

In this example, the main purpose is to describe some kind of rela-
tionship among the set of dependent variables and the set of independent
variables. In particular, we look for clusters of dependent variables after
estimating multiple quantile regressions, one for each response. Cluster-
ing of effects on different responses could reflect existing relationships
between the responses.

In Table A.3, we report the correlation matrix between pairs of vari-
ables. As expected, some well known positive correlations (errH-gap,
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errZ-mDst, errH-rms, errZ-rms, errM-nSt) and negative correlations (errH-
nSt, errZ-nSt, gap-nSt) are shown. Since gap and mDst are higlhy cor-
related, we decided to exclude from the next analysis the independent
variable mDst.

TABLE A.3: Correlation matrix between dependent and indepen-
dent variables. The independent variables are: mag=magnitude,
errM=magnitude error, depth, lon=longitude, lat=latitude,
errZ=hypocentral uncertainty, errH=epicentral uncertainty. The
dependent variables are: gap=gap azimut, mDst=distance of the
epicentre from the nearest station, rms, nSt=number of stations that
recorded the earthquake.

mag errM depth lon lat errZ errH gap mDst rms

errM 0.03
depth 0.13 -0.00
lon 0.01 -0.08 0.33
lat -0.01 0.09 -0.38 -0.79
errZ 0.03 -0.05 0.38 0.19 -0.36
errH 0.04 -0.12 0.63 0.28 -0.41 0.52
gap -0.00 -0.10 0.18 0.20 -0.33 0.32 0.59
mDst 0.15 -0.10 0.31 0.21 -0.38 0.40 0.56 0.61
rms 0.03 0.01 -0.01 0.03 -0.09 0.15 0.28 0.08 0.11
nSt 0.52 0.19 0.02 -0.14 0.24 -0.13 -0.21 -0.30 -0.09 0.06

Using the QRCM approach, we model the intercept, �0(p), using the
quantile function of a standard Normal distribution, and the coefficients
associated to the covariates by a shifted Legendre polynomial (Abramowitz
and Stegun, 1964) up to the third degree, an orthogonal polynomial in
(0, 1) that can be used to define flexible models for �(p). We obtain 21
effects curves, from seven models and three covariates. In Figure A.3
we report the 21 curves clustered in 9 groups of size (3, 2, 7, 1, 2, 2, 1, 2, 1)
after applying the clustEff algorithm.
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FIGURE A.3: Clusters of the 21 curves from the seven models with the
three covariates (gap, rms, nSt). Solid line represents the mean curve.
The dotted lines are the mean lower and upper bands; grey solid lines
are the effects curves

In details:

• in cluster 1 there are the effects curves of Gap azimuth on the re-
sponses magnitude and hypocentral uncertainty, and of RMS on
the response hypocentral uncertainty; these effects are positive for
percentiles greater than .08 (Figure A.3, first row on the left);

• in cluster 2, there are the effects curves of Gap azimuth on the re-
sponse magnitude error, and of RMS on the response latitude; these
effects are positive for percentiles greater than .30 (Figure A.3, first
row in the middle);

• cluster 3 consists of the effects curves of Gap azimuth on the response
depth, of RMS on the responses magnitude, magnitude error and
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depth, and of Number of stations on the responses depth, hypocen-
tral uncertainty and epicentral uncertainty; these effect are almost
all negative for percentiles greater than .15 (Figure A.3, first row on
the right);

• cluster 4 contains the only curve representing the effect of Gap az-
imuth on the response latitude; it is positive for percentiles greater
than .22 (Figure A.3, second row on the left);

• in cluster 5, there are the effects curves of Gap azimuth and RMS on
the response longitude; these curves are negative for percentiles up
to .70 (Figure A.3, second row in the middle);

• cluster 6 includes the effects curves of Gap azimuth and RMS on
the response epicentral uncertainty, with positive values for all the
percentiles (Figure A.3, second row on the right);

• cluster 7 contains the only effect curve of Number of stations on the
response magnitude; it is positive for percentiles greater than .04
(Figure A.3, third row on the left);

• in cluster 8, the effects of Number of stations on the responses magni-
tude error and longitude are positive for all the percentiles (Figure
A.3, third row in the middle);

• cluster 9 contains the only effect curve of Number of stations on the
response latitude; it is negative for percentiles up to .97 (Figure A.3,
third row on the right).

In this application, we show an interesting usage of the proposed clus-
tering method, identifying clusters of curves in a multivariate context.
Though the difficulty in interpreting the results, this approach could rep-
resent an useful tool to describe the relationship between variables ac-
cording to a dependence model. We observe that some covariates are
more relevant for some outcomes than for others, and in addition, there
are covariates that have the same behavior with respect to a given re-
sponse variable, as for instance cluster 3, where Gap azimuth, RMS, Num-
ber of stations have the same effect on the response depth. These results
could be useful for addressing some operative choices for the seismic net-
work definition of a given region. The three clustering methods are com-
pared in Table A.4, which has the same format as in Section A.4. The
three methods find different value for k⇤, which does not permit a direct
comparison of the area, which is a decreasing function of k⇤. However, in
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terms of the average distance based on the average correlation our pro-
posal slightly outperforms the others.

TABLE A.4: Average area, average distance based on correlation (⇢dist)
and average value of the optimal number of discovered clusters (k⇤)
are compared across the three algorithm (clustEff, funFEM and FPCA).

clustEff funFEM FPCA

k
⇤ 9 5 3

Area 0.023 0.052 0.077
⇢dist 0.352 0.368 0.700

A.5.2 Dataset 2

The second dataset refers to a study carried out in 1988-1991 in the North
of Italy, including 1053 males and 992 females. The study aims to assess
determinants of the inspiration capability (IC), a measure of lung’s func-
tion, using the following nine predictors:: age, height, body mass index
(bmi), sex, and indicators for current smoking, occupational exposure,
cough, wheezing, and asthma.

We adopt the QRCM framework and model the intercept as a linear
combination of log (p) and log (1� p), that together define the quantile
function of the asymmetric Logistic distribution, which is a very flexible
model that can be used to describe possibly skewed random varaibles
with heavy tails. The coefficients associated with the covariates are mod-
eled by a fifth-degreen shifted Legendre polynomial. The effects curves
of the fitted model (�age, . . . ,�asthma) are represented in Figure A.4. To
discover similarity of effects of covariates, we applied the clustEff algo-
rithm and identified five clusters. Results are summarized in Figure A.5.
The clusters can be summarized as follows:

• in cluster 1, age has a negative effect on IC at all percentiles;

• in cluster 2, height has a positive effect on IC at all the percentiles;

• in cluster 3, bmi has a positive effect on IC at all the percentiles;

• in cluster 4, sex has a negative effect on IC at all the percentiles;

• in cluster 5, current smoking, occupational exposure, cough, wheez-
ing and asthma have a positive effect on IC at percentiles greater
than .45. However, the mean effect of these cluster is almost zero
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and is not statistically significant, since the mean lower and upper
bound contain the zero (the dotted line in Figure A.5).
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FIGURE A.4: QRCM estimates of �(p | ✓). Confidence bands are dis-
played as dashed lines
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FIGURE A.5: The five clusters obtained applying the clustEff algorithm
on the estimated quantile regression coefficients of inspiration capabil-
ity dataset. Red line is the mean curve; the shaded areas are identified
by the mean lower and upper bands within each cluster. The dotted
line indicates the zero.
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In this application, we focus on a new perspective of variables se-
lection, applied in a quantile regression context. We propose the use of
the clustEff method for finding the main determinants of a quantita-
tive response, assuming that we are interested in looking for dependence
structures. These results could be even more relevant in presence of sev-
eral regressors. We could observe that the last group is associated with
the variables that are not related to the subject characteristics (the “clini-
cal variables”); these variables are not statistically significant. Therefore,
in describing the effect of covariates on the response, we interpret the
average effect of each cluster, as a proxy for an average “characteristic
effect” that is associated to the covariates in that cluster.

In Table A.5 the three methods are compared. Our proposal finds
more clusters than the others, which prevents a direct comparison in
terms of area.. However, in terms of the average distance based on the
correlation our method identified clusters with more similar effects curves.

TABLE A.5: Average area, average correlation (⇢dist) and average of the
optimal number of discovered clusters (k⇤) are compared across the
three algorithm (clustEff, funFEM and FPCA).

clustEff funFEM FPCA

k
⇤ 5 3 3

Area 0.004 0.039 0.039
⇢dist 0.197 0.710 0.710

A.5.3 Dataset 3

The last dataset concerns waveform clustering, in a functional data analy-
sis context, where curves are waves characterized by high concentrations
around zero. The outcome of this dataset is the concentration of one pol-
lutant (PM10) recorded during 2011 at different monitoring stations dis-
located along the California state. It consists of 59 monitoring stations
(curves) per 365 days observations (Adelfio, Di Salvo, and Chiodi, 2016).
Applying our cluster algorithm, the time t 2 [1, 365] in days is scaled in
t 2 [0, 1]. Moreover, the 59 curves (�1, . . . ,�59) are clustered in six groups
of size 20, 7, 7, 8, 7, 10, respectively. The identified clusters, boxplot of the
average cluster dissimilarity, and the dendrogram are reported in Fig-
ure A.6.
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FIGURE A.6: The identified 6 clusters of dataset 3 (on the top): red
lines are the mean curves. Boxplot of the average dissimilarity measure
within each cluster (on the bottom-left). Dendrogram of the clustering
algorithm and height level used to cut the tree (on the bottom-right)

In Table A.6 the three methods are compared. As in the previous
datasets, the three methods select a different value for k

⇤, making the
average area statistics not properly comparable. However, in terms of
the average distance based on the correlation, although the clustEff
performs slightly worse than the funFEM, it selects almost half of the
clusters.

TABLE A.6: Average area, average distance based on correlation (⇢dist)
and average of the optimal number of discovered clusters (k⇤) are com-
pared across the three algorithm (clustEff, funFEM and FPCA).

clustEff funFEM FPCA

k
⇤ 6 11 4

Area 0.286 0.187 0.406
⇢dist 0.362 0.227 0.539
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A.6 Conclusion

The proposed clustEff approach is not an ‘usual’ method for curves
clustering, that is an important issue in many areas of science. Indeed,
the clustEff approach is based on a new dissimilarity measure, that ac-
counts both for the shape of curves and the distance between them; more-
over, the new approach looks for similar effects in a quantile regression
context, n which curves represent the effect of covariates on quantiles of
one or multiple response variables. This method can be used to look for
similarity of effects in a variable selection perspective. Simulation results
confirm the advantages of the proposed method. Finally, we apply the
clustEff algorithm to three different real datasets, among which also
an application for generic waveforms, in order to show the wide spec-
trum of application for curves clustering. This approach, developed also
in the clustEff R package, is very flexible and computationally fast.
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Appendix B

R packages

B.1 asnr

This package is inspired by the methodology presented in Chapter 3 and
in part by the mixed strategy presented in Chapter 2. It implements a
procedure based on the maximization of the average signal-to-noise ra-
tio able to select efficiently the tuning parameter � in a LASSO regression.
The main function of the package asnr is a function implemented in R
which takes as input the model matrix X of dimension N ⇥ p, the re-
sponse vector y of length N , the family to model the error distribution,
and returns in output an object with S3 class "asnr". This object is a list
containing the optimal � value, the regression coefficients (only for the
selected variables), the degrees of freedom and many other informations.

The main function allows the user to choose which criteria should
be used to select the best model, i.e. type = "asnr" is the default.
Other available options are "aic", "bic", "ebic", "gcv, "cv",
"gic", "stabs". The general sintax is displayed below:

asnr(x, y, obj = NULL, family = gaussian(),
intercept = TRUE, standardize = TRUE,
opt = c("max", "min"), dispersion = NULL,
method = c("deviance", "pearson"),
type = c("asnr", "aic", "bic", "ebic",

"gcv", "cv", "gic", "stabs"),
cn = c("log(log(n))", "1"), gamma = 0.5,
nlambda = 100, plot.it = TRUE, set.seed,
sample = 100, subsample = 0.5, pi = 0.5,
num.select, ...).

This function takes in input, as alternative to the model matrix and the
response variable, a fitted model (obj) of class glmnet; intercept and
standardize if the intercept has to be inserted in the model and if the
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model matrix has to be standardized; opt, used only if type="asnr",
allows to choose if the best value of � has to be select as maximizer of
ASNR or minimizer of ASNR�1; dispersion has to be a number and if
fixed, it is used as dispersion parameter; method allows to choose which
estimation method for the dispersion parameter has to be used; cn and
gamma are constant for the gic and ebic criteria, respectively; nlamdba
is the maximum length of the sequence of �; plot.it allows to display
the curve to optimize; set.seed, sample, subsample and pi are op-
tions only for the stability selection criterion, see Section 2.2.2; finally,
num.select allows, in the stability selection criterion, to bypass the op-
tion pi, selecting as many variables as indicated by num.select.

A summary, predict and plot S3 functions are also implemented
for this class object.

This package is available from the author.

B.2 qrcmNP

This package is inspired mainly by the methodology presented in Chap-
ter 4. It implements a nonlinear Frumento and Bottai, 2016 method for
quantile regression coefficient modeling (QRCM), in which quantile re-
gression coefficients are described by (flexible) parametric functions of
the order of the quantile. In the classical qrcm framework the linearity
in b(p) and/or in ✓ could be relaxed at a cost of more complicated ex-
pressions for the ojective and the gradient functions. Here, we propose
an efficiently algorithm to use more flexible structures for the regression
coefficients. With respect to the most famous function nlrq (quantreg
package) our main function niqr implements the integrated quantile re-
gression idea for nonlinear functions. As already known, this practice
allows to estimate quantiles all at one time and not one at a time.

The main function in nonlinear QRCM is

niqr(fun, fun2, x0, X, y, control = list()).

It takes in input fun that is a linear or nonlinear function describing the
�(p | ✓) = g(p,✓); fun2 that is a linear or nonlinear function describing
the Q(p | �) = h(x,�); X and y that are the model matrix and the re-
sponse variable; control that is a list of control parameters.

This package also implements a penalized Frumento and Bottai, 2016
method for the qrcm, as proposed in this thesis. This package fits LASSO
qrcm using pathwise coordinate descent algorithm. With respect to some
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other packages which implements the L1-quantile regression (e.g. rqPen,
quantreg) estimating quantiles one at a time our proposal allows to es-
timate the conditional quantile function parametrically estimating quan-
tiles all at one and to do variable selction in the meanwhile. Here, two
proposal to select the tuning parameter (�) are implemented. In partic-
ular, the function gof.piqr allows to select the best tuning parameter
minimizing several criteria (e.g. AIC, BIC).

The main function in penalized QRCM is

piqr(formula, formula.p = ~slp(p, 1), weights, data, s,
nl = 70, display = TRUE, tol = 1e-06, maxit = 100).

It takes in input formula a two-sided formula of the form y x1 +
x2 + ..., that is a symbolic description of the quantile regression model;
formula.p a one-sided formula of the form b1(p, ...) + b2(p,
...) + ..., describing how quantile regression coefficients depend
on p; weigths, data and s that are optionals arguments, i.e. vector of
weights, data frame and 0/1 matrix that permits excluding some model
coefficients, respectively; nl that is the maximum length of the sequence
of �; display allows to print some informations during each iteration;
tol and maxit that are the tolerance for the convergence criterion and
the maximum number of iterations, respectively.

A summary, predict and plot S3 functions are also implemented
in this package for both the class objects niqr and piqr.

The package qrcmNP is available under the general public license
(GPL � 2) from the Comprehensive R Archive Network at http://CRAN.R-
project.org/package=qrcmNP. Mantainer: Gianluca Sottile.

B.3 clustEff

This package is inspired by the methodology presented in Appendix A. It
implements a general algorithm to cluster coefficient functions (i.e. clus-
ters of effects) obtained from a quantile regression coefficient modeling
(QRCM; Frumento and Bottai, 2016). This algorithm is also used for clus-
tering curves observed in time, as in functional data analysis. The objec-
tives of this algorithm vary with the scenario in which it is used. In the
univariate case, the goal is to perform variable selection. In the multi-
variate case, the algorithm can be used to describe relationships between
outcomes and covariates. In the case of a functional data analysis the
main objective is to cluster waves or any other function of time or space.

The main function is

http://CRAN.R-project.org/package=qrcmNP#category.http://CRAN.R-project.org/package=qrcmNP
http://CRAN.R-project.org/package=qrcmNP#category.http://CRAN.R-project.org/package=qrcmNP
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clustEff(Beta, p, alpha, k, ask = FALSE, k.min = 1,
k.max = min(10, (ncol(Beta) - 1)),
cluster.effects = TRUE, Beta.lower = NULL,
Beta.upper = NULL, step = c("both", "shape",

"distance"),
plot = TRUE, approx.spline = FALSE,
nbasis = 50, method = "ward.D2").

This function takes in input Beta that is a matrix of dimension N ⇥
q, where q represents the number of curves to cluster and N is either
the length of percentiles used in the quantile regression or the length
of the time vector; p that is the percentiles or the time vector; alpha
that is the probability value used for computing the dissimilarity matrix;
k.min and k.max that are the minimum and maximum number of clus-
ters in which to look for the best; cluster.effects allows to select
the framework in which to apply the clustering algorithm; Beta.lower
and Beta.upper, used only if cluster.effects=TRUE, allows to se-
lect the best number of clusters using the lower and upper bands of
each curve; step allows to select which measure has to be used to com-
pute the dissimilarity matrix; plot allows to display information graph-
ically.; approx.spline and nbasis allow to approximate curves using
smooth splines with a specific number of basis, before computing the
clustering alogrithm; finally, method allows to choose the agglomeration
method to be used.

A summary and plot S3 functions are also available for this class
object.

The package clustEff is available under the general public license
(GPL � 2) from the Comprehensive R Archive Network at http://CRAN.R-
project.org/package=clustEff. Mantainer: Gianluca Sottile.

B.4 islasso

This package is the result of a collaboration with Prof. Vito Muggeo and
Dr. Giovanna Cilluffo. islasso is an R package that implements the meth-
ods proposed in Cilluffo et al., 2016 and in Cilluffo et al., 2017, that fo-
cuses on hypothesis testing and confidence interval estimation in lasso
regression. This method, called IS-lasso, is based on the recent idea of
induced smoothing that allows to obtain appropriate covariance matrix.
the core of islasso package consist of a main algorithm implemented in

http://CRAN.R-project.org/package=clustEff#category.http://CRAN.R-project.org/package=clustEff
http://CRAN.R-project.org/package=clustEff#category.http://CRAN.R-project.org/package=clustEff
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C++ to efficiently compute the Newthon-Raphson algorithm. The pack-
age allows to compute easily p-values and confidence intervals estima-
tion in lasso regression. Gaussian, Binomial, Poisson and Gamma fami-
lies with several links have already been implemented in this version of
the package.

The main function of the package islasso is a wrapper function im-
plemented to handle the formula interface usually used in R to create
the N⇥p-dimensional design matrix X and the N -dimensional response
vector y

islasso(formula, family = gaussian(), lambda, data,
weights, subset, offset, unpenalized, control = list()).

The arguments family, lambda, weights, offset, unpenalized
and control, are then passed to the function islasso.fit(), the R
function that performs the optimization steps of the algorithm

islasso.fit(X, y, family = gaussian, lambda,
intercept = FALSE, weights = NULL, offset = NULL,
unpenalized = NULL, control = list()).

The output of the function is an object of S3 class "islasso". It is pre-
sented in a way that is easy to interpret for people familiar with standard
lm() or glm() output. The main R functions are:

islasso(), islasso.fit(), print.islasso(),
summary.islasso(), predict.islasso(), plot.islasso(),
coef.islasso(), residuals.islasso(), fitted.islasso(),
deviance.islasso(), logLik.islasso(), AIC.islasso(),
confint.islasso(), model.matrix.islasso(), best.islasso().

The package is available from the author.
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