
Eleventh International Workshop on Algebraic and Combinatorial Coding Theory
June 16-22, 2008, Pamporovo, Bulgaria pp. 151-154

Semiovals in projective planes of small order
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Abstract. Semiovals in PG(2, q) for q ≤ 13 are investigated. New examples are
constructed, some characterization theorems and non-existence results of semiovals
with extra properties are proved.

1 Introduction

Let Π be a projective plane of order q. A semioval in Π is a non-empty pointset
S with the property that for every point in S there exists a unique line tP such
that S ∩ tP = {P}. This line is called the tangent to S at P . The classical
examples of semiovals arise from polarities (ovals and unitals), and from the
theory of blocking sets (the vertexless triangle). The semiovals are interesting
objects in their own right, but the study of semiovals is also motivated by
their applications to cryptography. Batten [1] constructed an effective message
sending scenario which use determining sets. She proved that determining sets
in projective planes correspond to blocking semiovals. A blocking semioval is
a semioval S such that every line of Π contains at least one point of S and at
least one point which is not in S. A blocking semioval that can be constructed
in every projective plane of order q > 2 is the vertexless triangle.

It is known that q + 1 ≤ |S| ≤ q
√

q + 1 and both bounds are sharp [10],
[6], the extremes occur when S is an oval or a unital. In Section 2 we give the
complete spectrum of the sizes of semiovals for q ≤ 9. Besides, we determine the
number of distinct semiovals up to collineations for q ≤ 7. We also present the
classification of small size semiovals for q = 8, 9 and new examples for q = 11
and 13. These semiovals were found by computer search.

Blocking semiovals in PG(2, 7) were classified by Ranson and Dover [9].
The plane of order 7 contains several interesting semiovals. In Section 3 some
characterization theorems for these semiovals are given.
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2 On the spectrum of size for q ≤ 13

For planes of order q ≤ 5 the complete spectrum of the sizes and the number
of projectively non-isomorphic semiovals has been known.
Case q = 2. Because of the bounds of the size, each semioval consists of three
points, and these points are not collinear, hence semiovals are ovals.
Case q = 3. If a semioval S is not an oval, then there is a line ` which contains
three points of S, say A,B and C. There are four lines through each of these
points, one of them is the tangent, but the others must meet S. Hence S contains
at least two points not on `. Let D, E ∈ S \ `. If F is the fourth point of the
line `, then tD ∩ ` = tE ∩ ` = F, thus DE ∩ ` 6= F. Without loss of generality we
may assume, that DE ∩ ` = A. This implies that S must contain a sixth point
G, otherwise there would be two tangents through A. But 6 is an upper bound
of the cardinality of S because b3√3 + 1c = 6. If G = BD ∩ CE, then it is
easy to check that the set {A,B, C,D, E, G} is a semioval. These points form
the vertices of a complete quadrilateral. Hence there is only one projectively
non-isomorphic class of semiovals of order six in PG(2, 3).
Case q = 4. The possible sizes of S are 5, 6, 7, 8 and 9. If |S| = 5, then S is an
oval. If |S| > 5, then S contains three collinear points. Semiovals with large
secants were investigated by Dover [4]. He proved that if S is a semioval in a
projective plane of order q > 3, then S does not contain q collinear points, and
if |S| = 2q−1, then S has no (q−1)-secant. In our case S has 3 = q−1 collinear
points, hence |S| 6= 7 = 2q− 1. The cases |S| = 2q− 2 = 6 and |S| = 9 = 3q− 3
are also characterized by Dover [4], these are a triangle with its vertices and
all points on one side removed, and the vertexless triangle, respectively. Let us
remark that in PG(2, 4) each unital is a vertexless triangle and vice versa. If
|S| = 8, then an exhaustive computer search shows that the only semiovals of
this size are vertexless triangles with one point deleted.

For q > 4 the situation becomes more and more complicated. Semiovals of
size 2(q− 1)+k for all 0 ≤ k ≤ q− 1 and k 6= 1 can be constructed easily. If we
delete any set of q−1−k points from one side of a vertexless triangle, then the
remaining points form a semioval S and |S| = 2(q−1)+k. Hence the spectrum
of sizes always contains 2q − 2 and all integers in the interval [2q, 3q − 3]. For
q ≤ 9, by exhaustive computer search, we found the following sizes.

Theorem 2.1 The spectrum of the sizes of semiovals in PG(2, q) is the follow-
ing:

• If q = 2 then |S| = 3.

• If q = 3 then |S| ∈ {4, 6}.
• If q = 4 then |S| ∈ {5, 6, 8, 9}.
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• If q = 5 then |S| ∈ {6, 8, 9, 10, 11, 12}.
• If q = 7 then |S| ∈ {8, 9, 12, 13, 14, 15, 16, 17, 18, 19}.
• If q = 8 then |S| ∈ {9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}
• If q = 9 then

|S| ∈ {10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}.
For q ≤ 7 we have determined the number of non-equivalent semiovals up to
collineations. For q ≤ 4 there is only one class for each size, as follows from the
previous description. For q = 5, 7 the results are summarized in Table 1.
For q = 8, 9 we have classified the examples of minimum order which are not
ovals. In both cases the minimum order is twelve and there are, respectively,
four and one classes. Besides, for q = 8, we have proven that there are only two
classes of semiovals of size 13.

PG(2,5) size of S 6 8 9 10 11 12
# of distinct classes 1 1 2 3 2 1

PG(2,7) size of S 8 9 12 13 14 15 16 17 18 19
# of distinct classes 1 1 10 21 69 118 82 21 7 1

Table 1

We have also found examples of the following sizes:

Theorem 2.2

• In PG(2, 11) there are semiovals of size 12, 15, 20, 22− 34.

• In PG(2, 13) there are semiovals of size 14, 18, 24, 26− 40.

3 The exceptional semiovals in PG(2, 7)

There are some interesting semiovals in PG(2, 7). The first one has only q + 2
points. If q = 7, then q+2 = 3(q−1)/2, and the semioval belongs to an infinite
class of semiovals which was described by Kiss and Ruff [8]. The following
classification theorem is a consequence of a result of Blokhuis [3].

Theorem 3.1 If |S| = q + 2, q odd, then q = 7. S is projectively equivalent
to the set of points {(0, 1, s), (s, 0, 1), (1, s, 0) : s is a square inGF(7)}, hence it is
contained in a vertexless triangle. ¤

PG(2, 7) contains a semioval of size 13 = 2 ·7−1. There is no known infinite
class of semiovals of size 2q − 1. There are only three known semiovals of this
size, they exist on the planes of order 5, 7 and 9. The following theorem of
Faina, Kiss, Marcugini and Pambianco [5] characterizes the case q = 7.
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Theorem 3.2 If |S| = 2q − 1 and S has a (q − 2)-secant, then q = 7 and S
has exactly two (q − 2)-secants. ¤

Batten and Dover [2] found a cyclic semioval in PG(2, 7). It follows from
our computer search, that this semioval is projectively unique. Hence we have
the following theorem.

Theorem 3.3 If S is a semioval in PG(2, 7) then |S| ≤ 19. If |S| = 19, then
S is cyclic. ¤

Cyclic semiovals are rare objects. There are only two known examples. The
other one can be found in PG(2, 81), it has 511 points, see [5]. The following
nonexistence result was proved by Faina, Kiss, Marcugini and Pambianco [5].

Theorem 3.4 There is no cyclic semioval in PG(2, q) if q ≡ 2 (mod 3). ¤
They also prowed by exhaustive computer search, that PG(2, 3r) does not con-
tain a cyclic semioval if r ≤ 11 and r 6= 4.
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