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Abstract Governments around the world have agreed to end hunger and food insecurity and to
improve global nutrition, largely through changes to agriculture and food systems. However, they are
faced with a lot of uncertainty when making policy decisions, since any agricultural changes will influence
social and biophysical systems, which could yield either positive or negative nutrition outcomes. We
outline a holistic probability modeling approach with Bayesian Network (BN) models for nutritional
impacts resulting from agricultural development policy. The approach includes the elicitation of expert
knowledge for impact model development, including sensitivity analysis and value of information
calculations. It aims at a generalizable methodology that can be applied in a wide range of contexts. To
showcase this approach, we develop an impact model of Vision 2040, Uganda’s development strategy,
which, among other objectives, seeks to transform the country’s agricultural landscape from traditional
systems to large-scale commercial agriculture. Model results suggest that Vision 2040 is likely to have
negative outcomes for the rural livelihoods it intends to support; it may have no appreciable influence
on household hunger but, by influencing preferences for and access to quality nutritional foods, may
increase the prevalence of micronutrient deficiency. The results highlight the trade-offs that must be
negotiated when making decisions regarding agriculture for nutrition, and the capacity of BNs to make
these trade-offs explicit. The work illustrates the value of BNs for supporting evidence-based agricultural
development decisions.

Plain language summary Governments around the world have agreed to end hunger and food
insecurity and improve global nutrition, largely through changes to agriculture and food systems. How-
ever, they are faced with a lot of uncertainty when making policy decisions, which could yield either posi-
tive or negative nutrition outcomes. We outline a holistic probability modeling approach for determining
the nutritional impacts resulting from agricultural development policy. The approach uses expert knowl-
edge for model development and analysis. It aims at a generalizable methodology that can be applied
in a wide range of contexts. To showcase this approach, we develop an impact model of Uganda’s devel-
opment strategy, which, among other objectives, seeks to transform the country’s agricultural landscape
from traditional systems to large-scale commercial agriculture. Model results suggest that the strategy is
likely to have negative outcomes for the rural livelihoods it intends to support; it may have no appreciable
influence on household hunger but, by influencing preferences for and access to quality nutritional foods,
may increase the prevalence of micronutrient deficiency. The results highlight the trade-offs that must be
negotiated when making decisions regarding agriculture for nutrition. Decision analysis tools can make
these trade-offs explicit and support evidence-based agricultural development decisions.

1. Introduction
Governments around the world have agreed to the ambitious goals of ending hunger and food insecu-

rity and to improving nutrition globally by 2030 (SDG 2; United Nations, 2015). Improved nutrition can

be achieved through many pathways, e.g., through higher nutrient contents in crops (DellaPenna, 1999;
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Nestel et al., 2006), greater nutritional diversity (Hoddinott & Yohannes, 2002) or improved awareness about
childhood nutrition (Ruel, Alderman, & Maternal, Child Nutrition Study Group, 2013). For any given context,
however, it is difficult to decide a priori, which pathway will be most effective. Some pathways may not
produce positive outcomes at all. For instance, certain foods may never reach vulnerable groups (e.g., rural
poor). The root causes of hunger and malnutrition are complex and multidimensional, making it very dif-
ficult to develop meaningful indicators (FAO & WHO, 2014; Webb et al., 2006). Consequently, agricultural
research and development aimed at improving nutrition is often unable to articulate clearly how, and to
what degree, nutrition objectives will be achieved (Leroy et al., 2009; Olney et al., 2009).

Given the complexity of agriculture and food systems, it is rarely feasible to close all knowledge gaps or to
fully capture complex system dynamics, particularly regarding impact pathways for interventions aiming
to improve nutrition (Tijhuis et al., 2012) or other agricultural outcomes (Luedeling & Shepherd, 2016). The
research that should be supporting these decisions often fails to consider the range of ecological, socioe-
conomic, cultural, and political factors that influence agricultural systems (Black et al., 2013). Consequently,
research results often fail to supply decision-makers with relevant information and support (Hardaker &
Lien, 2010; Luedeling & Shepherd, 2016).

Rational prioritization among actions promoting agriculture for nutrition requires an evaluation approach
that can accommodate complex relationships and translate agricultural activities into probable nutritional
outcomes. There is thus a need for new approaches for analyzing the impacts of agricultural interventions
on food and nutrition systems. Successful research approaches to support the improvement of nutrition
interventions must embrace the complexity of agriculture and nutrition, e.g., by recognizing political and
social aspects (Black et al., 2013) and co-benefits between agriculture and health interventions (Picchioni
et al., 2017).

Decision analysis offers such an approach. It can be used to meet the common challenges of system com-
plexity and data scarcity, inherent in development decisions (Hardaker et al., 2009), particularly regarding
agriculture (Hardaker & Lien, 2010; Rosenstock et al., 2017). The modeling methods applied in this field offer
a promising way forward, because they have been designed to support decision-making with imperfect
information and limited research budgets (Hardaker & Lien, 2010; Luedeling & Shepherd, 2016). Among
these approaches, Bayesian Network (BN) models are emerging as a leading solution (Neil et al., 1996).
They offer an intuitive and robust strategy for characterizing causal relationships in complex systems and
for evaluating the impacts of system interventions, even in the face of uncertainty about model struc-
ture or parameters (Fenton & Neil, 2012). They can supply decision-makers with actionable information
on probable impact pathways. By capturing the interactions of a complex range of factors, they can pro-
duce probabilistic projections of system outcomes for particular interventions. BN modeling approaches
are used in many applications, e.g., engineering and computer science (Korb & Nicholson, 2004), ecology
(Iqbal & MacLean, 2010; Kuhnert et al., 2010), and agriculture (Yet et al., 2016). BN models are ideally suited to
model complex systems (Cowell et al., 2006), where exact data are limited but extensive expert knowledge
is available, as is often the case in agriculture (Yet et al., 2016).

Furthermore, BN models can be generated and parameterized through the use of expert knowledge, inte-
grated into model calculations (Henderson & Burn, 2004; Yet et al., 2016). Many examples have illustrated
the use of structured elicitation techniques to gather expert knowledge for generating BN model structures
and eliciting model parameters (Bolger & Rowe, 2015; Clemen & Winkler, 1999; Kuhnert et al., 2010; Martin
et al., 2012). Expert-based model construction can be facilitated through holistic expert knowledge elici-
tation (EKE) techniques that include the holders of scientific and political as well as traditional knowledge
(Bolger & Wright, 2017). Papakosta et al. (2017) created a BN, through the integration of both EKE and lit-
erature sources, to predict expected economic losses (housing losses) from wildfires in Cyprus. Iqbal and
MacLean (2010) presented BN models for predicting defoliation risks in forests, which were produced dur-
ing repeated expert meetings and subsequently subjected to peer review by other experts. The EKE can be
based on a relatively small number of elicited values from a single (Kemp-Benedict, 2008) or multiple experts
(Kuhnert et al., 2010). Oedekoven et al. (2015), for example, used expert elicitation (from 10 experts) to cre-
ate a BN to predict the abundance and movement of endangered right whales through the mid-Atlantic in
order to avoid threats of collisions with ships and entanglement in fishing gear.
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Agricultural systems are an excellent candidate for applying BN methodologies (Rosenstock et al., 2017).
Agriculture is often highly variable and depends on complex interactions between environmental factors
(e.g., climate), public policies (e.g., subsidies), international contexts (e.g., crop prices), cultural factors (e.g.,
religion and taboo), and social factors (e.g., gender, access to education) (Waage et al., 2012). The relation-
ship between agricultural production and nutrition is particularly complex (Graham et al., 2007; Khoury
et al., 2014), and the many mediating factors, such as income, policy, sanitation and markets, make it difficult
to quantify or predict outcomes of interventions. Understanding these relationships requires approaches
that can incorporate uncertainty and complexity (Tijhuis et al., 2012).

Despite their widespread applications, BN models have not been exploited in the agriculture and nutrition
domain. Yet, BN models are highly suited for this context, since they are able to combine information from
various sources, e.g., hard data and expert knowledge, into comprehensive causal models (Nielsen & Jensen,
2009). The use of BN models in this domain could result in more accurate impact forecasts than using data
or expert knowledge alone.

Overall, the work presented here seeks to outline the use of impact modeling to identify plausible nutri-
tion outcomes of agricultural decisions. To that end, this paper outlines modeling techniques that can be
used to generate a BN for the impact of agricultural development decisions on nutrition by (1) showcasing
a set of EKE techniques for developing BNs and (2) applying decision modeling using a BN to identify plau-
sible household nutrition outcomes of agricultural policies. While we aim at a generalizable methodology
that can be applied in a wide range of contexts, we have used a case study to demonstrate the approach.
The specific case studied is the agricultural and nutrition strategy proposed in the long-term development
strategy of the Government of Uganda, “Vision 2040” (NPA, 2007).

The laws and regulations that follow Vision 2040 will have the broad aim to address poverty, food insecurity
and malnutrition in the country (NPA, 2007, 2011). However, information is lacking to provide clarity about
how this transformation will influence household nutrition. To meet this need, we developed a probabilistic
causal impact pathway model for assessing nutrition outcomes at the household level that may result from
agricultural interventions proposed by Vision 2040. We used the approach to generate a BN model, aim-
ing to describe the changes in probabilities of hunger (a.k.a. protein energy deficiency) and micronutrient
deficiency (MND) under Vision 2040. We present a step-by-step, reproducible methodology to apply the
BN approach to model impact pathways for changes based on agricultural policy and generate probabilis-
tic simulations of system effects on household nutrition. The model identifies consequences for household
nutrition of the decision to implement Vision 2040 versus maintaining smallholder homegarden systems in
Uganda.

2. Materials and Methods

2.1. Bayesian Networks

We use BN models as a decision analysis tool for probabilistic impact modeling of agricultural impacts on
nutrition. BN models are directed acyclic graphs consisting of nodes, arcs, and probability tables underlying
the nodal relationships (Nielsen & Jensen, 2009). A BN is a network of probabilistic relationships between
nodes, referred to as child and parent nodes according to their arrangement in the model (Figure 3). Condi-
tional Probability Tables (CPTs) are the core elements of BN models (Fenton & Neil, 2012). They are used to
define the probabilities for each state of each child node conditional on its parents (Papakosta et al., 2017).
Ranked-scale nodes can be used to represent most relationships, with states (e.g., very low, low, medium,
high, very high; Figure 3) representing qualitative variables as abstractions of the underlying continuous
quantities.

BN models are distinct from other forms of statistical modeling, in that they focus on determining an optimal
graphical model to describe probabilistic interrelationships among processes rather than on specific mea-
surement data. BN models are a multivariate technique, which can accommodate one or many dependent
variables. The approach can be used to investigate risk factors and causal pathways, which are important in
health-related systems (Lewis & McCormick, 2012). BN models attempt not only to identify associated vari-
ables but also to separate them into those that have a direct and those that have an indirect influence on
the outcome variables (Lewis, 2012). This gives BN models the potential to reveal key features of complex
systems (Constantinou et al., 2016; Lewis & McCormick, 2012) and may make them preferable to standard
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approaches for inferring statistical dependencies from complex observational data (Korb & Nicholson, 2004;
Lewis & McCormick, 2012). Another major advantage of BN models is that they facilitate integration of infor-
mation from various sources into a single model (Papakosta et al., 2017). For example, they can be used to
build predictive models of impact pathways that incorporate both hard data and expert judgment (Yet et al.,
2016).

2.2. BN Model Structure Development

Defining the context and finding the appropriate parameters to explore with the model is the first step in
developing a BN. To achieve this, we use decision modeling approaches (Luedeling et al., 2015), inspired
by the principles of Applied Information Economics (AIE; Hubbard, 2014). This is then complemented
with innovative group work techniques for eliciting expert knowledge to construct a logical framework to
describe system interactions and outcomes (i.e., an impact pathway). Expert knowledge is thereby used
to generate BN model structures (Bolger & Rowe, 2015; Kuhnert et al., 2010; Papakosta et al., 2017) and
integrated into model calculations (Yet et al., 2016).

Experts can be consulted in workshops to build BN models of expected agricultural policy impacts on
nutrition. During the workshops, graphical models can be developed by individual experts and then peer
reviewed by other experts (Iqbal & MacLean, 2010). Workshop participants should represent a mix of stake-
holders, such as academic institutions (e.g., nutritionists and agronomists), government institutions, local
villages, and development organizations. The overall context for the BN model can be defined specifically in
plenary discussions. The model should have the broad aim to describe the effects of agricultural decisions
on specific nutrition outputs such as hunger (a.k.a. global energy and macronutrient deficiency) and MND.

Once the experts have been gathered and have clarified the development decision to be modeled, there
are several steps that can be taken in order to ensure accuracy in model structures and variable estimates.
The first step of the modeling procedure is calibration training, inspired by AIE from Hubbard Decision
Research (Hubbard, 2014), whereby participants learn to minimize potential biases in probability estima-
tion. The calibration training consists of several exercises aiming to reveal to the participants their personal
biases (overconfidence or underconfidence) by assessing their performance on a series of iterative tests in
the form of trivia questions. Experts are trained to assess their subjective uncertainty and express it as a
confidence interval with a predefined chance (e.g., 90%) of containing the right value. Perfectly calibrated
experts should get around 90% of answers correct and any deviation (outside a narrow band of stochas-
tic variation) from this optimal figure indicates estimation bias. The training includes several tools to help
participants to improve their ability to estimate their own state of uncertainty and thereby reduce errors of
judgment (Hubbard, 2014).

Another important set of tools for model development aims to help overcome the problems of variation
among experts (Bolger & Rowe, 2015; Bolger & Wright, 2017). It begins with breaking the decision down
into several important questions in plenary discussions. Random interchanging working groups of experts
are led through three stages of collaborative thinking (think on own, share with immediate neighbor, and
share with working group) designed to help interact, brainstorm, and aim for consensus in EKE (Figure 1)
(Clemen & Winkler, 1999). Each group can then explore details of the expected impacts and disaggregate
the impact pathway into intermediate steps and influencing factors that they consider important to the
decision (i.e., draw a model of nodes and edges; Figure 3).

These EKE techniques can be repeated until all experts have worked on each question (Figure 1) and
are satisfied that all specific relationships have been identified. Resulting models can then be brought
before the whole group of experts for plenary discussion and redrawn, aiming for consensus about the
relationships in each model. The end result should be one model per question with the contributions of all
experts. Corrections and further feedback can be gathered for model verification as a final stage of model
development.

2.3. BN Model Quantification

Despite the simplified node structures, CPTs specifying the relationships between parent and child nodes
sometimes contain large numbers of conditional probabilities, especially where several parents with mul-
tiple possible states are involved. Estimating large numbers of probabilities can overwhelm experts, which
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Figure 1. Process used for eliciting graphical representations of decisions from
expert groups to be used in developing a BN.

may in turn lead to inconsistencies
(Fenton et al., 2007). This can easily
lead to unreliable models (Cain, 2001;
Marcot et al., 2006). To mitigate this
concern, we derive expert knowledge
from prior distributions for nodes, the
relative influence of the parents, and
the effects of each state of the parent
nodes, as well as the strength of the
response (Figure 2).

Past studies have shown that attempt-
ing to understand and express rela-
tionships through the use of weighted
averages and ranked nodes simplifies
the complex task of constructing and
editing BNs (Fenton et al., 2007). There-
fore, experts can be asked to pro-
vide a typical distribution of each vari-
able (prior probability) together with
the strength of the response and a

weighting factor for each state of the child node and each state of the parent nodes (Figure 2). These can
then be used to calculate the CPTs (see Luedeling & Whitney, 2017), by using the likelihood method to elicit
influence weights rather than whole tables of probabilities from experts (Kemp-Benedict et al., 2009).

For each node and edge, expert groups were asked to fill input sheets (Figure 2) or a CPT directly for smaller
tables. These were then peer reviewed, as in the model structure procedures. Procedures for producing
CPTs from these inputs (see Supporting Information S1) were implemented in the decisionSupport package
(Luedeling & Goehring, 2017) in the R programming language (R Core Team, 2017). This approach helped
us to gather expert knowledge for all model parameters. Once completed and verified with the literature
and other sources, the BN was shared with experts again for verifying its logical consistency and receiving
final feedback.

2.4. Sensitivity and Value of Information Analysis

Probabilistic sensitivity analysis and Value of Information (VoI) procedures can be used to determine
whether additional information on certain input variables in the BN model could increase confidence

Relative influence 

___:___ 

Strength of  response 

_______________ 

Node name 

Parent 1 

Node states Value 

Very low 

Low 

Medium 

High 

Very high 

Parent 2 

Node states Value 

Very low 

Low 

Medium 

High 

Very high 

Prior distribution 

Node states Value 

False 

True 

Figure 2. Example of tool for translating expert knowledge into a Conditional
Probability Table (CPT) for use in a Bayesian Network.

about the emerging decision rec-
ommendation (Constantinou et al.,
2016). Results can be used for prior-
itizing knowledge gaps that should
most urgently be narrowed in order to
improve certainty about the decision
(Constantinou et al., 2016; Whitney
et al., 2017). More follow-up mea-
surements and disaggregation of any
identified variables can help inform
the design and prioritization of future
research and provide guidance about
the best pathways for implementing
the current decision.

Probabilistic sensitivity analysis can be performed on BN models to measure the influence of small changes
in individual model input variables on the overall model outputs (Laskey, 1995). It is used to determine
how estimates might change, if different values are assigned for inputs to the BN model (Oakley & O’Hagan,
2004). The expected value of perfect information (EVPI) is a VoI tool that can help decision-makers to con-
sider both the probability of decision change and the resulting difference in payoff (Felli & Hazen, 2003).
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Table 1.
Example Table for Calculation of the Expected Value of Perfect Information (EVPI) for a Bayesian Network Model of Utility
Values for Value of Diverse Diets

Diversity of household diets

States Low Medium High Expected monetary value (EMV)

Vision 2040 implemented -4 42 60 EMV= 0.35(−4)+ 0.55(42)+ 0.1(60)= 27.7

Vision 2040 not implemented -11 31 80 EMV= 0.35(−11)+ 0.55(31)+ 0.1(80)= 21.2

Probability 0.35 0.55 0.1 Max EMV= 27.7

EV with PI 0.35(−4)+ 0.55(42)+ 0.1(80)= 29.7

EVPI 29.7–27.7= 2

Note. EMV = expected maximum value; EV with PI = expected value with perfect information.

EVPI is the difference between the expected value of a decision made with perfect information and the
expected value of the decision with current imperfect information (Hubbard, 2014). EVPI is calculated for
BN models to identify a selected subset of important model variables. To achieve this, utility nodes are used
to assign monetary value to model outputs (Constantinou et al., 2016; Yet et al., 2016).

The Expected Monetary Value (EMV) is a key part of the EVPI calculation. It is the weighted average of
the payoffs for a decision alternative, where weights are the probabilities of the different states of nature
(Table 1). EVPI is the maximum amount that one should be willing to pay for additional information
about the decision. EVPI is the expected value for the decision (payoff), if perfect information is avail-
able about the states of nature, minus the expected value for the decision, if perfect information is not
available.

Table 1 shows the hypothetical calculation of EVPI in a BN for the variable Diversity of household diets. The
main part of the table is populated with a “utility value” for diverse diets under each of the “states of nature,”
for example, the upper right value of−4 represents the utility value of low household dietary diversity in the
scenario where decision-makers decide not to implement Vision 2040. The likelihood of each of the states
of Diversity of household diets is shown in the row labeled with Probability. EMV is calculated for each state of
the Vision 2040 decision by adding the utility values after multiplying them by the probability for each state
of Diversity of household diets. The maximum EMV is the highest of these two (27.7). Expected value with
perfect information (EV with PI) is calculated for each column by selecting the highest value for each state of
Diversity of household diets (29.7). EVPI is calculated using the resulting values EVPI = EVwithPI – max (EMV).

3. Probabilistic Decision Modeling in Practice

Here we outline the BN decision modeling approach using a case study of the long-term development
agenda of Uganda’s Vision 2040 (NPA, 2007). The development outcome of interest was identified as the
expected impact of the agricultural aspects of the Vision 2040 decision on the nutritional status of house-
holds in Uganda. A BN model was designed to determine the nutritional status of Ugandan households,
comparing household-level nutrient supply per year through smallholder and homegarden production
(current systems) with the industrial agricultural systems proposed in Vision 2040. The model had the spe-
cific aim to describe the effects of the Vision 2040 decision on both household hunger and MND.

3.1. Agriculture and Nutrition in Uganda

Uganda has a population of just over 39 million people (World Bank, 2017), who experience relatively sta-
ble political conditions and economic growth, but the gross national income is still very low by interna-
tional standards (700 USD/capita/year), ranking 177th out of 195 countries (World Bank, 2017). Rates of
unemployment, underemployment, and inadequate employment are high (9.4, 8.9, and 18.5%, respec-
tively, according to UBOS, 2016). Twenty percent of the population live below the national poverty line
(World Bank, 2017), and few are able to meet minimum international standards for well-being (Levine et al.,
2012). Ugandans live with little infrastructure (World Bank, 2012) and high levels of disease (UBOS & ICF,
2017). Uganda’s high population growth rate, coupled with a young population, is likely to exacerbate
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land scarcity, poverty (UBOS & ICF, 2017), and food insecurity (IFPRI, 2016) in the future. Currently, 89%
of Ugandans live in rural areas (FAO, 2017), yet many are migrating from rural to urban areas for work
(UBOS, 2016).

Agriculture is the main economic activity in Uganda (NPA, 2007), consisting mainly of small-scale producers
engaged in producing a wide range of crops and other commodities (UBOS, 2014a). Seventy-two percent
of Ugandans are engaged in agriculture and over 40% are small-scale subsistence farmers (UBOS, 2014b;
UBOS, 2016). These small-scale farmers occupy 99% (99,018.6 km2) of Uganda’s agricultural land (UBOS,
2016) and are responsible for 75–80% of the total agricultural output (NPA, 2015).

Despite the intimate food production setting, food and nutrition insecurity are still pressing issues for devel-
opment in Uganda, where rates of hunger and MND are high (occurring in around 30% and 50% of house-
holds, respectively; FAO & IFAD, 2015) and dietary diversity is low (e.g., just 14% of children have a minimum
acceptable diet; UBOS & ICF, 2017). The country has a food deficit (284 kcal/capita/day; FAO, 2017) and 15.2
million people experience malnutrition (FAO, 2017). Around 30% of the children who are less than 5 years
of age are stunted (low height for age), 4% are wasted (low weight for height) (UBOS & ICF, 2017) and more
than 10% are underweight (low weight for age) (FAO, 2017; UBOS & ICF, 2017).

Agricultural development is being aggressively targeted by Vision 2040, which seeks to shift agriculture
from subsistence farming to commercial production (MAAIF, 2010; NPA, 2007, 2011), with specific goals to
reduce agriculture’s share of the GDP from 22.4% down to 10.4%, decrease the share of agricultural jobs
within the labor force from 65.6% to 31%, and increase annual per capita income from agriculture from
390 to 6790 USD (NPA, 2007). Vision 2040 seeks to move rural people away from agriculture (NPA, 2007;
UBOS, 2014a) by distributing labor among other sectors, raise income from agriculture by 5% annually, and
increase employment in the industry and service sectors by more than 9%. The government intends to
implement land reforms to urbanize rural populations (NPA, 2011; United Nations, 2002) and facilitate the
acquisition of land for planned urbanization, infrastructure development, and agricultural commercializa-
tion (NPA, 2007). However, high population growth, low agricultural productivity, and poor access to land
create many challenges for nutrition-related policy implementation (FAPDA, 2015). Due to the lack of sys-
tems to track and share progress, development funds earmarked for nutrition are spent on activities that
are not relevant to nutrition (Adero et al., 2015).

3.2. Vision 2040 Model Development and Calibration

Twenty-three experts were consulted in a week-long workshop in November 2016 to build a BN of the
impact of Vision 2014 on nutrition. Selected experts represented three academic institutions, four gov-
ernment institutions, four local villages, two development organizations, and one activist organization in
Uganda. A BN model was designed to determine the effects on the nutritional status of Ugandan house-
holds resulting from the implementation of the Vision 2040 strategy by comparing household-level nutrient
supply per year through smallholder and homegarden production (current systems) with the industrial agri-
cultural systems proposed in Vision 2040.

Experts identified five guiding questions that were further explored to examine Vision 2040’s impact on
household nutrition: (1) What hinders diverse diets? (2) Where will displaced people live? (3) How will diets
change (Rural & Urban)? (4) How will displaced farmers earn an income? and (5) How will crop diversity change?.
Graphical models were developed through discussions on these questions, during which nodes and edges
of causal relationships were defined.

EKE on all specific relationships was then undertaken (Figure 1) and repeated until all experts had worked on
each of the five questions. Whenever possible we also confirmed expert opinion (updated priors) with avail-
able statistics, for example, from demographic and health surveys (UBOS, 2016), economic studies (World
Bank, 2017), and agricultural databases (FAO, 2017; see Luedeling & Whitney, 2017). Resulting models were
then brought before the whole group of experts for plenary discussion and redrawn, aiming for consensus
about the relationships in each model. The end result was one model per question with the contributions
of all experts and analysts. Once it was completed, the BN model was shared with experts again for verify-
ing its logical consistency. Corrections and further feedback were gathered for model verification as a final
stage of model development.
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Figure 3. Bayesian Network (BN) for impact of Vision 2040 on household nutrition in Uganda. Probabilities are shown (boxes) for outcome variables and variables with the highest
value of information. Green bars show the probabilities for the node states for the scenario that the Vision 2040 decision is not implemented (“Vision 2040 false”), and blue bars show
probabilities for the scenario that the Vision 2040 decision is implemented (“Vision 2040 true”). Data set and AgenaRisk model available online (Luedeling & Whitney, 2017).

The resulting BN model had 29 main variables, which were found to adequately describe the impact path-
way from the decision to implement Vision 2040 to household nutrition (Figure 3). The model was devel-
oped and analyzed using the AgenaRisk software (Fenton & Neil, 2012, 2017). The decision to implement
Vision 2040 (probability of implementation= 65%) was expected to have an important influence on imple-
mentation of policies related to nutritional awareness and promotion of exports. Through various model
interactions, the decision was also expected to influence five economic variables (land tenure, location
[proxy for access to goods and services], exported production, occupation, and food access), seven social
variables (displacement of farmers, nutritional education and sensitization, traditional knowledge, nutrition
awareness, diversity of agricultural systems, food preferences, and nutritional quality), and seven variables
related to both micronutrients (production, availability, demand, consumption, and deficiency [MND]) and
macronutrients (production, availability, demand, consumption, and hunger; Luedeling & Whitney, 2017).
The relationships were converted into a BN model, which was parameterized with the estimates of experts
for each node and edge (Figure 3).

3.2.1. Graphical BN Model of Vision 2040 Development Decision

The BN indicates that implementation of Vision 2040 risks a slight increase in the probability of a household
experiencing hunger, from 26%, under the baseline scenario, to 27.7%. For MND, even greater negative
effects were projected, with the probability of a household lacking in important micronutrients increasing
from 47.7% to 56.2% (Figure 3).

However, these increases in probability of hunger and malnutrition are not the main findings from this
modeling exercise. The impact pathway indicates that the Vision 2040 decision will have a potentially
major impact on the current farming systems and may replace many, if not most, small-scale farms and
homegardens of the country. Furthermore, industrialization of agricultural systems will require the urban-
ization of rural communities, which may also negatively impact nutrition outcomes for households by
removing their easy access to diverse foods (Luedeling & Whitney, 2017). These insights come mainly
from the overall model structure (the impact pathway) and are robust to changes in the experts’ elicited
probabilities.
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Figure 4. Sensitivity analysis of a Bayesian Network for probability of household hunger within 10 years of the implementation of Vision
2040.

3.2.2. Model Sensitivity and VoI Analysis

VoI calculations were performed using utility nodes of expected annual costs of hunger, MND and the imple-
mentation of Vision 2040. We estimated that the annual costs of hunger for Uganda range between 100
and 400 million USD, based on the results of the Cost of Hunger in Africa model (World Food Programme,
United Nations Economic Commission for Africa,, & African Union Commission, 2013). For MND, we esti-
mated annual costs ranging between 100 and 200 million USD, based on a World Bank estimate stating that
Uganda loses around 145 million USD due to vitamin and mineral deficiencies annually (World Bank, 2017).

The factors with the greatest leverage in this decision model (identified by sensitivity analysis) were food
preferences and nutritional quality, as well as access to and consumption of foods (Figures 4 and 5). The
probability of a household experiencing hunger was most sensitive to variation in nutritional quality, food
preferences (diversity and sufficiency), and macronutrient consumption (Figure 4). For MND, variation in
micronutrient consumption, nutritional quality, and micronutrient demand were the most influential vari-
ables (Figure 5).

Results of the EVPI calculations indicated five diet-related variables that would be the most valuable sources
of more information (Table 2). Policy on nutritional awareness and nutritional education and sensitization
had the highest EVPI regarding both the cost of hunger (utility value range 100 to 400 million USD) and the
costs of MND (utility value range 100–200 million USD) (Table 2). Additionally, information on the macronu-
trient availability, policy promoting exports, exported production, and macronutrients on markets had a
positive EVPI value regarding the costs of hunger (Table 2).

The EVPI values given in Table 2 represent the amount that the Ugandan Government should be willing
to pay to learn more about these variables to have greater certainty about the overall model outcomes
(all relatively low). The selected variables with EVPI values could also be treated as priority variables to be
disaggregated in order to better understand the interactions within the Vision 2040 decision model.

3.2.3. Discussion of Vision 2040 Model

Experts identified the interactions and factors that affect Vision 2040’s impact on nutrition, to be included
in this decision model. A major focus of their discussions was the impact of urbanizing rural smallholder
farmers, who currently make up a significant portion of the Ugandan population (UBOS, 2014a; UBOS &
ICF, 2017). The majority of Ugandans still live in rural areas, as is the case throughout much of sub-Saharan
Africa (FAO, 2017). The model shows that rural-to-urban migration is already common in Uganda (Luedeling
& Whitney, 2017; UBOS, 2016) but it may not lead to poverty reduction (Christiaensen & Todo, 2014). Since
these rural people are mainly smallholder farmers, who grow much of the food for their households (UBOS,
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Figure 5. Sensitivity analysis of a Bayesian Network for probability of household micronutrient deficiency within 10 years of the
implementation of Vision 2040.

Table 2.
Variables with a Positive Expected Value of Perfect Information (EVPI) for the Cost of Hunger and Cost of Micronutrient
Deficiency (MND) Given the Implementation of Uganda’s Vision 2040

Utility node Uncertainty node EVPI (USD)

Cost of Hunger Policy on nutritional awareness 56,728

Nutritional education and sensitization 56,726

Macronutrient availability 22,759

Policy promoting exports 6932

Exported production 6928

Macronutrients on markets 6792

Cost of MND Nutritional education and sensitization 92,729

Policy on nutritional awareness 92,722

2016), the loss of this traditional food source is likely to negatively impact household nutrition (Luedeling
& Whitney, 2017).

Modeling the various interacting factors involved in the Vision 2040 decision indicates that the implemen-
tation will pose substantial risks that need to be considered. Some important factors may be missing from
the Vision 2040 strategy, if it is to address hunger and MND. The complex interactions between the dif-
ferent sociopolitical and biophysical aspects of the decision lead to a high level of uncertainty regarding
nutrition outcomes. Overall, the BN model outputs suggest that implementation of Vision 2040 incurs the
risk of negatively influencing nutrition (Figure 3). The variables with the highest information value should
be considered priorities to inform the design and prioritization of future research to support Vision 2040
(Table 2). BN model outputs indicate that malnutrition is strongly influenced by access to and demand for
healthy food and is less strongly dependent on total food supply. This is especially true for the probabil-
ity of MND (Table 2; Figure 5) but also for the probability of hunger (Table 2; Figure 4). Better estimates of
these influential variables may help reduce the range of plausible outcomes of the BN model. Taking such
measurements and rerunning the analysis with updated input data would enhance clarity on the results.
However, EVPI values were rather low in the present case, meaning that the initial outcomes sufficed for
making recommendations for the Vision 2040 decision.
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The focus of Vision 2040 on industrializing and commercializing agricultural systems indicates an implicit
link between food insecurity and low agricultural production, which is also reflected in the national
agricultural policy (MAAIF, 2010; NPA, 2007, 2011). The plan consequently seeks to replace subsistence
farms with large-scale commercial agriculture. However, our model results support past studies showing
that large-scale farms may not perform as well as traditional small-scale farms in supplying diverse and
nutritious diets (Kabunga et al., 2014; Whitney et al., 2017). Increasing food supply may not necessarily
result in less hunger or MND in Uganda (Whitney et al., 2017). For example, Kabunga et al. (2014) showed
that in rural smallholder households across Uganda, production of fruit and vegetables was related to more
diverse dietary intakes, greater household food security and lower levels of anemia. The work of Kennedy
et al. (2005) also shows that agricultural plant genetic diversity can be a good indicator of household
dietary consumption.

Model results show that, in contrast to the main aims of Vision 2040, the incidence of malnutrition may have
more to do with access to and demand for healthy food than with actual supply (Figures 4 and 5). This is to be
expected, since the leading causes of food insecurity around the world are related to poverty and inequality,
which limits access to food (IFPRI, 2017; Sen, 1981), as is also the case throughout sub-Saharan Africa (Nyariki
& Wiggins, 1997). Notably, this vision may risk reducing food access by eliminating the traditional small-scale
farms that are the foundation of Uganda’s current food systems.

Model outputs show that, in its current form, Vision 2040 may have negative implications on the nutri-
tional status of households. BN model outputs offer a critique of the decision to industrialize the agricultural
systems of Uganda and also provide useful insights into the important factors that are likely to affect the
future status of malnutrition in the country’s households. Our findings suggest that future occurrence of
household malnutrition will have more to do with access to and demand for healthy food than with food
supply. These results stand in stark contrast to the current development agenda. To reduce the nutrition bur-
den, the Ugandan government should consider addressing food access and food quality, which is a notable
juxtaposition to the current plan, since none of the main factors targeted in Vision 2040 (e.g., crop yields,
employment) were of major importance to the model outcomes.

4. Discussion

Here we have demonstrated the use BN models as a decision analysis tool to address the inherent uncer-
tainty in policy-related decision-making regarding linkages between agriculture and nutrition. We adapted
and applied BN procedures for developing comprehensive impact pathways for agriculture interventions
for nutrition. We have applied and adapted this technique for the analysis of agriculture for nutrition inter-
ventions in Uganda and demonstrated its ability to aid in decision-making under multiple uncertainties and
imperfect information. By convening experts in the fields of agriculture and nutrition, as well as related dis-
ciplines we demonstrate the tool’s ability to aid in constructing robust and reliable impact models. This was
accomplished through the use of expert knowledge in BN model development. We have showcased this
novel approach to using a BN for impact assessment in agricultural development decisions, by operational-
izing a model that predicts the nutrition implications of a large-scale agricultural intervention. We show the
use of a BN for a complete, vertically integrated methodology from the identification of the decision, the
design of the model, parameter estimation with calibrated participants, to model-building, and validation
of results. The results presented outline BNs as a useful tool to help predict nutritional status resulting from
policies aimed at transforming farming systems. This study directly addresses both the system complexity
and data scarcity in agriculture and nutrition by producing a tool that agricultural policy decision-makers
can use to determine the probability of malnutrition under different scenarios.

The experts designed an impact pathway model based on their intimate knowledge of the impact pathway,
but with a structure that does not reflect the complexity that is possible in a BN. More edges may have been
possible within the model, and it may have been possible to add more nodes to the model. However, more
complexity was not seen as necessary. The experts’ design was clear and based on a critical and thorough
approach, the model structure was subject to peer review throughout the stages of development and for
the final model.

Our modeling approach has several advantages. First, it allows for the comparison of the prospects of differ-
ent interventions for improving nutrition security, thus helping to identify the most promising approaches.
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Second, it allows for the consideration of risks to intervention success and identification of weak links in
the impact pathway that require particular attention by intervention planners. Third, it permits the inclu-
sion of intangible factors that are commonly omitted from models, thus creating opportunities for holistic
research. Lastly, the approach demonstrated here helps prioritize metrics that are critical to monitor dur-
ing implementation, especially those variables with both high uncertainty and large potential impact on
intervention outcomes.

We synthesize expert knowledge and other sources of information into BN models that provide credible
probabilistic projections of the impact of agricultural interventions on nutrition outcomes. The models, as
well as the participatory process from which they emerge, can also be used to define useful metrics for
monitoring progress toward nutrition outcomes. Involving a diversity of stakeholders, including govern-
ment institutions, in the model building process increases the possibility that the insights gained from the
model will influence real-world development processes, such as policies resulting from implementation of
the Vision 2040 strategy. Furthermore, by calibrating these participants and allowing them to express uncer-
tainty, we decrease some of the expert bias that is considered a weak point of BNs (Clemen & Winkler, 1999;
Kuhnert et al., 2010).

5. Conclusions

Probabilistic impact models can be important tools for understanding implications of agricultural decisions
for household nutrition. When creating BN models of agricultural systems, the structure of the models, as
well as the priors and conditional probabilities included in them, are often difficult to attain. Here we have
demonstrated an approach to elicit complex information from local communities and experts, using their
knowledge to both build and parameterize BN models. By applying these methodologies, it is possible to
create locally specific model structures, including relationships that may be difficult to capture in other
modeling approaches. This approach demonstrates a way to involve local knowledge systems in decision
analysis and an alternative to ignoring factors that are difficult to measure when considering the impact
pathways of agricultural production interventions.
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