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Abstract 

Excess of plasma free fatty acids (FFA) are highly associated with insulin resistance and 

are a major risk factor for the development of type 2 diabetes mellitus. This thesis 

investigates the effect of rosemary extract and rosemary extract polyphenols carnosic acid 

(CA), rosmarinic acid (RA) and carnosol (COH) on recovering/blunting FFA-induced 

insulin resistance in skeletal muscle cells and the mechanism(s) involved. Exposure of L6 

myotubes with the FFA palmitate significantly reduced the insulin-stimulated glucose 

uptake. Most importantly, the insulin-stimulated glucose uptake was restored in the 

presence of RE and its polyphenols CA, RA and COH. Furthermore, treatment with 

palmitate increased serine phosphorylation of IRS-1 and significantly decreased the 

insulin-stimulated phosphorylation of Akt. These effects were completely abolished in 

the presence of rosemary extract. Additionally, we investigated the effect of palmitate 

and rosemary extract on the phosphorylation and of JNK, mTOR, P70S6K and AMPK 

kinases. Our results indicate that palmitate treatment increased the phosphorylation of 

JNK, mTOR, p70S6K whereas rosemary extract completely abolished this effect. 

Additionally, rosemary extract increased the phosphorylation of AMPK even in the 

presence of palmitate. The expression levels of these proteins were not affected by any of 

the treatments. These results indicate that treatment with rosemary extract attenuated the 

palmitate-induced phosphorylation of the serine residues of IRS-1, mTOR, p70 S6K and 

JNK while increasing the phosphorylation of AMPK. Additionally, treatment with RE 

restored the insulin-stimulated glucose uptake in palmitate-induced insulin resistant cells.  
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CHAPTER1: BACKGROUND INFORMATION 

1.1 Insulin and insulin signaling cascade  

 

1.1.1 Insulin 

 

Insulin is a pleiotropic protein hormone mainly involved in maintaining glucose 

homeostasis and lowering postprandial glucose elevations by endorsing fat and skeletal 

muscle tissue glucose uptake from the circulation in addition to inhibiting endogenous 

glucose production (EGP) by the liver (1) (Figure 1). It was first discovered by Banting 

and Best in 1922 at the University of Toronto, Canada (2). Insulin is produced by the 

pancreatic β-cells in the islets of Langerhans. The half-life of insulin is around 5 minutes 

and is cleared by receptor-mediated endocytosis and degraded by lysosomal insulinase. 

After insulin is secreted and delivered to its target tissues, it binds its receptors located in 

the plasma membrane leading to activation of signaling cascades that result in the 

hormone’s effect.  

1.1.2 Role of insulin in glucose homeostasis 

 

Insulin plays a critical role in maintaining blood glucose homeostasis (Figure 1). 

After meal ingestion, there is a rise in blood glucose. This increase in blood glucose is 

sensed by the β cells of the islets of Langerhans in the pancreas and leads to insulin 

secretion into the blood circulation. Circulating insulin then binds to its receptors located 

on the plasma membrane of insulin target tissues such as skeletal muscle, adipose and 

hepatic tissue restoring physiologically normal levels of blood glucose (euglycemia). In 

skeletal muscle and adipose tissue, insulin promotes transport and utilization of glucose 

as well as storage in the form of glycogen and triglycerides respectively (3,4). On the 
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other hand, in the liver, insulin inhibits endogenous glucose production by inhibiting 

gluconeogenesis and glycogenolysis (Figure 1). The end result of the insulin actions is to 

maintain and restore plasma glucose levels within a physiological range of 4-7 millimolar 

(mM). 

 

Figure 1: The effect of insulin on its target tissues to regulate blood glucose 

homeostasis  

1.1.3 Insulin signaling cascade 

 

Insulin action is initiated by insulin binding to its receptor leading to an increase 

in the receptor’s tyrosine kinase activity towards intracellular substrates. When insulin 

binds to the  subunit of the receptor, it causes a conformational change allowing for 

autophosphorylation of the  subunit leading to an increase in the intrinsic tyrosine kinase 

activity domain of the receptor. The activation of the insulin receptor leads to 

phosphorylation of numerous intracellular substrates on tyrosine residues which includes 
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members of the insulin receptor substrate family (IRS) (Figure 2). Furthermore, the p85 

regulatory subunit of phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K) binds to 

tyrosine phosphorylated residues of IRS resulting in increased activity of its catalytic 

subunit p110. Activation of PI3K leads to generation of lipid phosphatidylinositol 3,4,5-

triphosphate (PIP3) from phosphatidylinositol 4,5-diphosphate (PIP2). Increased levels of 

PIP3 bind to phosphatidylinositol-3,4,5-phosphate-dependent kinase-1 (PDK-1) and 

protein kinase B (PKB/Akt) (5). PKB/Akt and PDK-1 proximate to the cell plasma 

membrane allowing phosphorylation of PKB/Akt on threonine308 by PDK-1 (5). 

Glucose uptake, glycolysis, glycogen/ protein synthesis and other insulin actions are 

mediated by PKB/Akt (6,7). The established substrates of PKB/Akt include a) glycogen 

synthase kinase-3; b) the Rab GTPase activating protein AS160/TBC1D4 involved in 

glucose transport and glucose transporters (GLUT) translocation to the cell membrane. c) 

Rheb GTPase activating tumor suppressor complex (1/2) (TSC1/2) involved in protein 

synthesis and a regulator of mammalian target of rapamycin (mTOR); d) Transcription 

factors Forkhead box protein (FoxO) mainly involved in the regulation of gluconeogenic 

genes (8,9). Insulin-stimulated phosphorylation of Akt leads to downstream 

phosphorylation of its substrate AS160 which causes inhibition of its Rab-GTPase 

activating protein (Rab-GAP) activity and has been established as a key component 

necessary for the GLUT4 translocation from an intracellular compartment to the plasma 

membrane (9,10) (Figure 2). Therefore, exposure of muscle and adipocytes to insulin 

leads to dramatic increase in GLUT4 translocation from the intracellular vesicles to the 

cell membrane via exocytosis and reducing GLUT4 internalization. The end result of this 

process is GLUT4 translocation to the cell membrane providing a route for glucose entry 
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down the concentration gradient via facilitated diffusion. Once transported inside the cell, 

glucose is converted to glucose-6-phosphate by the action of hexokinase following 

isomerization of glucose-6-phosphate to glucose-1-phosphate and activation to uridine-5-

diphosphate glucose which is later turned into glycogen by glycogen synthase. Insulin 

mediates glycogen deposition by synchronized transport of glucose and glycogen 

synthesis. Insulin leads to glycogen synthase activation in liver by dephosphorylation 

through inhibition of kinases including protein kinase A (PKA) and glycogen synthase 

kinase 3 (GSK3) and activation of protein phosphatase 1 (PP1) (11).  

 

Figure 2: Insulin signaling pathway leading to translocation of GLUT4 to the 

plasma membrane in skeletal muscle 
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1.1.4 Insulin receptor 

 

 The binding of insulin to its receptor leads to activation of multiple intracellular 

molecules/ proteins that communicate the signaling downstream within the cell and lead 

to an induction of insulin-stimulated response. The insulin receptor has an intrinsic 

tyrosine kinase activity belonging to a large family of cell surface receptors called 

tyrosine kinases which also includes the insulin-like growth factor receptors (IGFR) (12). 

The structure of insulin receptor comprises of two extracellular subunits which contain 

the insulin binding domain and two transmembrane  subunits each including: an 

extracellular, a transmembrane and a cytosolic domain (13) (Figure 2). The cytosolic 

domain contains an ATP binding consensus sequence along with three clusters of 

tyrosine residues that may be phosphorylated as a result of insulin signalling (13). The 

tyrosine residue clusters are found a) proximal to the cell surface in the juxtamembrane 

domain, b) in the catalytic region which is located in the centre of the subunit and c) in 

the COOH-tail region (12). Insulin binding to the subunit of the receptor causes a 

conformational change of the receptor, resulting in autophosphorylation of the subunit 

tyrosine residues, leading to increases in the tyrosine kinase activity (12). A total of 13 

tyrosine residues have been identified in the  subunit with Y953, Y960, and Y972 being 

the key residues in the juxtamembrane region, Y1146, Y1151, and Y1152 in the catalytic 

domain, and Y1316, and Y1322 in the COOH-terminal domain. The catalytic domain 

corresponds to approximately 50% of the receptor’s autophosphorylation activity, 30-

35% of the activity corresponds to the COOH-terminal domain and 15% corresponds to 

the juxtamembrane domain (13). Studies have indicated that upon point mutation of 
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substitution of the tyrosine residues, located in different domains, with phenylalanine the 

insulin stimulated action is inhibited (13,14). Additionally, removal of the tyrosine 

residues (1146, 1151 and 1152) that lie on the catalytic subunit resulted in complete 

abolishment of the insulin-stimulated effects (13). 

1.1.5 Insulin receptor substrate  

 

The insulin receptor substrate (IRS) is a family of proteins consisting of at least 

four isoforms (IRS-1 to -4) (15). The expression of IRS-1 (180kDa) is mostly in adipose 

and skeletal muscle tissue and is involved in regulation of metabolic processes such as 

protein synthesis and glucose transport. IRS-2 (185 kDa) is mainly expressed in the liver, 

skeletal muscle and adipose tissue. IRS-3 is expressed in adipose and IRS-4 in 

neuroendocrine tissue and is suggested to be predominantly exerting negative regulation 

of the IRS-1 and IRS-2 (15). Appropriate IRS-1 signaling is crucial for insulin action and 

any disturbances in the IRS-1 expression could severely impair the insulin effects in its 

target tissues. Overexpression of IRS-1 in L6 skeletal rat muscle cells significantly 

increase basal and insulin-induced glucose uptake and increase the GLUT4 trafficking to 

the cellular membrane indicating that IRS-1 plays a major part in the insulin signaling 

pathway (16). Additionally, insulin-induced PI3K activity associated with IRS-1 was 

increased in these cells compared to control. On the other hand, silencing the IRS-1 gene 

using small interfering RNA (siRNA) showed significant reduction in insulin-stimulated 

glucose uptake and GLUT4 translocation in L6 muscle cells (16). In addition, knockdown 

of the IRS-1/2 gene in mice has led to the development of insulin resistance and T2DM 

indicating that IRS plays a crucial role in the insulin signaling in vivo (17,18). In primary 

skeletal muscle cells isolated from prediabetic patients (patients with an impaired insulin 
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tolerance) the insulin-stimulated glucose uptake was reduced by 30-50% compared to the 

healthy control and this reduction was associated with lower phosphorylation of IRS-2, 

reduced downstream signaling and activation of PI3K in response to insulin (19). In 

another study, skeletal muscle biopsies obtained from T2DM patients showed no 

reduction in protein expression levels of the IRS-1 or p85 subunit of PI3K, however they 

displayed significant reduction in the insulin-induced tyrosine phosphorylation of IRS-1 

and its downstream effector PI3K (20). Furthermore, significant reduction of insulin-

stimulated IRS-1 phosphorylation and PI3K activity along with a decrease of 2-

deoxyglucose uptake (53% compared to control) was seen in intact muscle strips from 

obese patients (21). Another study found that in skeletal muscle from lean type 2 diabetic 

subjects the insulin-stimulated IRS-1 phosphorylation and PI3K activation was 

significantly reduced in comparison to healthy individuals (22). It is important to note 

that the total IRS-1 protein levels were not reduced and were similar between all the 

groups (22). In normoglycemic subjects having a family history of type 2 diabetes, 

examination of skeletal muscle revealed insulin resistance that was associated with lower 

insulin-stimulated IRS-1 tyrosine phosphorylation and reduced IRS-1 associated PI3K 

activity (23). The current evidence indicate that significantly lower IRS tyrosine 

phosphorylation and IRS associated PI3K activity, resulting in decreased insulin-

stimulated glucose uptake in skeletal muscle. 

1.1.6 Importance of Phosphatidylinositiol-3-kinase in Insulin Signaling 

 

Phosphatidylinositol-3-kinase (PI3K) consists of a p110 catalytic subunit and a 

p85 regulatory subunit that has two SH2 domains which interact with specific 

phosphotyrosine-containing motifs, pYMXM and pYXXM, in the IRS proteins (5,6). The 
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PI3K family entails 14 members that are divided into four classes. Class I, II, and III 

belong to the lipid kinases group and class IV are related protein kinases (5). It should be 

noted that only class I family of heterodimeric p85/p110 PI3K are responsive to insulin 

(3). There are a few isoforms of p85 regulatory subunit such as p85α, p55α, p85β, and 

p55γ. Treatment of 3T3-L1 adipocytes with LY294002 (inhibitor of PI3K) completely 

inhibited GLUT4 translocation to the plasma membrane and blocked insulin-induced 

glucose uptake (24). Another study investigated the effect of wortmannin, another 

inhibitor of PI3K, and found that it completely abolished insulin-stimulated PI3K 

activation and glucose uptake in rat adipocytes (25). Inhibition of PI3K activity either by 

LY294002 or wortmannin blocks insulin-stimulated glucose uptake in skeletal muscle 

cells indicating that PI3K plays a crucial role in the action of insulin (26). Overexpressing 

of p110α led to 1.4 fold increase of basal glucose transport in comparison to the control 

group and increased translocation of GLUT4 in 3T3-L1 adipocytes (27). These studies 

clearly indicate that the PI3K and particularly p110 catalytic subunit is critical for 

GLUT4 translocation in vitro. A study investigating mice with heterozygous loss of 

p110α +/- p110β+/- showed 40% reduction in insulin-induced IRS-1 associated PI3K 

activity along with 50% decrease in PI3K activity and showed hyperinsulinemia and mild 

glucose intolerance compared to control (28). Furthermore, mice lacking p85α and p85β 

regulatory subunits of PI3K showed impaired PI3K signaling in muscle, insulin 

resistance and glucose intolerance (29). On the other hand, skeletal muscle cells obtained 

from T2DM subjects showed decreased IRS-1 tyrosine phosphorylation, decreased 

association of PI3K with IRS-1 and PI3K activity in response to insulin in comparison to 

skeletal muscle cells obtained from healthy individuals (30). The above mentioned in 
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vitro and in vivo studies provide evidence of the importance of PI3K in basal and insulin-

stimulated glucose uptake. 

1.1.7 Importance of Protein Kinase B (Akt /PKB) in Insulin Signaling  

 

Protein Kinase B (PKB/Akt) is a serine/threonine kinase which includes the three 

mammalian isoforms Akt1, Akt2, and Akt3. Akt1 is universally expressed in mammalian 

tissues while Akt2 is widely expressed in insulin target tissues including skeletal muscle, 

adipose and liver tissue. Akt3 is expressed in low levels in mammalian tissue excluding 

testes and brain. In order for Akt to be activated, phosphorylation of the threonine 

(Thr308) and serine residue (Ser473) is required (5). Inactivated Akt is mostly located in 

the cytoplasm however upon PI3K activation, Akt translocate to the cell membrane where 

it is phosphorylated by PDK resulting in its activation. In the absence of insulin, 

constitutively active Akt stimulated glucose uptake and GLUT4 translocation in 3T3-L1 

adipocytes (31). Similarly, constitutively active Akt1 increased glucose uptake in 3T3-L1 

GLUT4 overexpressing adipocytes and Chinese hamster ovary cells (32). Additionally, 

the study showed that inhibition of Akt using small interference RNA (siRNA) 

significantly lowered insulin-induced glucose uptake (32). In another study performed in 

Akt2-null adipocytes derived from immortalized mouse embryo fibroblasts (MEFs) the 

insulin-induced glucose uptake along with GLUT4 translocation were markedly 

decreased (33). Additionally, when Akt2 action was restored via re-expression the effect 

was reversed (33). Other studies found similar effect in muscle cells indicating 

abolishment of insulin-induced glucose uptake as a result to impaired Akt action 

(34,6,35). Mice that underwent homozygous deletion of Akt2 showed fasting 

hyperglycemia and impairment in the insulin-induced glucose uptake in muscle tissue in 
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vitro (36). Similarly, impaired insulin action in addition to hyperglycemia was observed 

in Akt2-null mice (37). Furthermore, decrease in insulin-induced glucose uptake (60%) 

and phosphorylation and activation of Akt was observed in adipocytes that were isolated 

from T2DM in comparison to adipocytes from healthy controls (38). Therefore, from the 

above mentioned studies it can be noted that Akt plays a critical role in insulin-stimulated 

GLUT4 trafficking to the cell membrane and loss of Akt function leads to insulin 

resistance and T2DM. From the in vitro and in vivo studies present in the literature it is 

already established that IRS, PI3K and Akt are important proteins involved in the action 

of insulin and glucose homeostasis and altering the levels of these protein in different 

experimental models has a serious impact on the insulin-induced glucose uptake. 

1.1.8 Importance of AS160 in Insulin Signaling 

 

The Akt substrate of 160kDa originally known as TBC1 domain family member 4 

(TBC1D4) is a protein containing a Rab-GAP (GTPase-activating protein) domain 

located at the COOH terminus and two phosphotyrosine-binding (PTB) domains located 

at the NH2 terminus (39). The presence of a Rab-GAP domain formed a hypothesis that 

Akt-mediated phosphorylation of AS160 may be involved in the regulation of GLUT4 

trafficking to the plasma membrane through the GAP activity towards Rab proteins. 

Therefore, it was suggested that Rab-GAP activity of AS160 endorses hydrolysis of GTP 

to GDP of Rab located on the GLUT4 storage vesicle (GSV) and that the GSV-bound 

Rabs in their inactive GDP-bound form are unable to undergo GLUT4 translocation. 

Upon AS160 phosphorylation by insulin, there is inactivation of the Rab-GTPase activity 

therefore the GSV-associated Rabs would become loaded with GTP which promotes the 

GLUT4 release and translocation to the plasma membrane (10). This hypothesis has been 
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tested in 3T3-L1 adipocytes where the phosphorylation sites of AS160 (Ser318, Ser588, 

Thr642, Ser751) were mutated to alanine (AS160-4P) and were coexpressed with 

GLUT4. The AS160-4P significantly reduced the insulin-stimulated GLUT4 

translocation to the cell membrane by 80% in comparison to the control (wild type) (40). 

This may suggest that the GAP activity in AS160-4P is unrestrained and cannot be 

attenuated by insulin-stimulated phosphorylation which would keep the GLUT4 vesicle 

Rab in its inactive GDP form thus preventing GLUT4 translocation to the cell membrane. 

In addition, the AS160-4P-induced effect is dependent on an intact Rab-GAP domain. 

Mutation of the putative GAP domain in AS160-4P (arginine 973 residue to lysine) 

abolished the inhibitory effect on GLUT4 translocation (40). Similarly, the insulin 

stimulated translocation of GLUT4 was inhibited by expression of the AS160-4P mutant 

in L6 muscle cells (41). A study found that insulin stimulation leads to AS160 

phosphorylation in isolated rat epitrochlearis skeletal muscle in a PI3K-sensitive manner 

(42). Moreover, other stimuli that were previously found to induce GLUT4 translocation 

including contraction and AICAR, stimulated AS160 phosphorylation (42) which 

indicates that AS160 is not a substrate for Akt alone but also for other kinases such as 

AMP-activated protein kinase (AMPK). Furthermore, in tibialis anterior muscle from 

mice overexpressing AS160-4P mutant, the insulin-stimulated glucose uptake was 

reduced by 30% compared to the vector expression control. Additionally, the contraction-

induced glucose uptake was reduced by 40%. This inhibitory effect of the AS160-4P was 

abolished in response to insulin and contraction when Arg973 was replaced with Lys in 

muscle (41). Taken together these studies provide evidence of the importance of the 

downstream substrate of Akt (AS160) in the insulin-stimulated glucose uptake. 
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1.2 Insulin Resistance  

 

Insulin resistance is a state in which there is a diminished responsiveness to 

normal circulating levels of insulin in the major insulin target tissues such as skeletal 

muscle, adipose and hepatic. Normal circulating levels of insulin in human plasma 

between meals range from 57–79 pmol/L (43). Alternatively, it can be defined as a failure 

of insulin target tissues to appropriately respond to normal physiological levels of insulin 

present in the blood. The state of insulin resistance is associated with elevated circulating 

free-fatty acids, obesity, inactive (sedentary) lifestyle, aging and genetic predisposition 

(5). Studies showed that the earliest metabolic defect in T2DM is impaired glycogen 

synthesis in muscle tissue as a consequence to reduced glycogen synthase activity 

(44,45). In an insulin resistant state, insulin-induced glucose uptake, utilization and 

storage of glucose as muscle glycogen is compromised (5,6). In adipose tissue insulin 

action to promote glucose uptake and storage as triglycerides as well as inhibiting 

hormone sensitive lipase (HSL) in order to supress lipolysis is compromised (46). 

Additionally, inhibition of liver gluconeogenesis and glycogenolysis in insulin resistant 

state is also compromised (46). As a consequence to skeletal muscle, adipose and liver 

tissue insulin resistance there is a chronic elevation of blood plasma glucose levels 

resulting in hyperglycemia. The side effect of chronically elevated glucose in the blood 

(hyperglycemia) may lead to short-term effects such as diabetic ketoacidosis, a metabolic 

state caused by breakdown of fatty acids in order to create energy thereby creating ketone 

bodies that significantly impair the blood buffering system or long-term effects such as 

cardiovascular damage that could lead to the development of cardiovascular disease, 

macrovascular/microvascular damage, nephropathy, neuropathy and retinopathy and 
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severe complications including infections and amputations (35,47). The pathophysiology 

of the above-mentioned conditions is complex and the exact etiology is often difficult to 

identify. However, people affected by diabetes are frequently affected by high levels of 

inflammation, oxidative stress and dyslipidemia that can result in cellular damage, 

atherosclerosis, high blood pressure and other conditions that lead to damaging the 

vasculature and other vital organs (35,47). Additionally, it should be noted that chronic 

hyperglycemia aggravates target tissue insulin resistance and it is a major contributor to 

pancreatic β cell exhaustion and loss of function.  

1.2.1 Muscle Insulin Resistance 

 

Skeletal muscle accounts for 75% to 80% of postprandial glucose uptake and is 

quantitatively the most important tissue involved in maintaining glucose homeostasis (3). 

As a result, skeletal muscle insulin resistance is a major contributor to imbalances in the 

blood glucose levels which will lead to hyperglycemia, decreased glucose tolerance and 

T2DM. Studies have confirmed that individuals suffering from T2DM are severely 

insulin resistant compared to weight-, age- and sex-matched controls (48). Additionally, 

as result to muscle insulin resistance there is an impairment in 85-90% of the total body 

glucose disposal (48). Evidence has shown that skeletal muscle insulin resistance 

precedes hepatic insulin resistance and insulin deficiency from dysfunctional pancreatic 

-islet cells by decades. 75-80% of insulin-induced glucose clearance is converted to 

glycogen in the muscle cells and the rest 25-20% is converted to carbon dioxide and 

water (49). In the case of muscle insulin resistance, recent evidence has indicated that 

impairment in the insulin-induced glucose transport is the main contributor to decreased 
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glycogen content and decrease in the phosphorylation activity contributes in much 

smaller extent (50). 

There are several mechanisms in which insulin-stimulated glucose uptake may be 

decreased including reduced expression of the insulin receptor, decreased tyrosine 

phosphorylation of the insulin receptor or IRS-1 as a result to reduced tyrosine kinase 

activity of the receptor, diminished downstream activation/phosphorylation of Akt and 

GLUT4 translocation to the cell membrane (51). Studies have shown, that serine 

phosphorylation of IRS-1 leads to impairment in the insulin signaling pathway which in 

turns leads to significant decrease in insulin-stimulated glucose uptake (52–54). Insulin 

resistance is strongly associated with obesity which is a major risk factor for the 

development of type 2 diabetes, cardiovascular disease and metabolic syndrome (51). 

Insulin-stimulated glucose uptake in muscle has shown to be significantly reduced in 

obese individuals and patients with type 2 diabetes (51). Additionally, reduced expression 

and tyrosine phosphorylation levels of IRS-1 were found in 30% of high risk subjects for 

type 2 diabetes including obese subjects and first-degree relatives of type 2 diabetic 

individuals (55). Signaling molecules such as mTOR (56,57), p70 S6K (58,59), GSK3 

(60), c-Jun N-terminal kinase (JNK) (61) and PKC's (62) have been implicated to be 

involved in the serine phosphorylation of IRS-1 protein which leads to reduction in the 

insulin-stimulated glucose uptake in skeletal muscle and adipose tissue (51) (Figure 3). 

Multiple studies have found that elevated saturated free fatty acids (FFA) levels lead to 

insulin resistance by affecting the above mentioned molecules (56,59,61–64). The 

following section describes in detail the signaling molecules involved in insulin 

resistance.  
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Figure 3: Proposed mechanism of FFA-induced insulin resistance in skeletal muscle 
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1.3 Mechanisms Underlying Insulin Resistance 

 

1.3.1 Serine phosphorylation of IRS-I and insulin resistance 

 

The involvement of the serine phosphorylation of IRS-1 in insulin resistance was 

first demonstrated a few decades ago when 17 okadaic acid was used in skeletal muscle 

cells and 3T3-L1 adipocytes. Okadaic acid significantly reduced insulin-stimulated 

GLUT4 translocation and glucose uptake by inhibiting tyrosine phosphorylation of IRS-1 

and its downstream effectors such as PI3K (64,65) (Table 1). The exact mechanism of the 

inhibition was not known at the time however it was later discovered that okadaic acid 

increases the Ser307 phosphorylation of IRS-1 (65,55). Moreover, prolonged exposure to 

insulin (hyperinsulinemia) has shown to increase serine phosphorylation of IRS-1 in 

skeletal muscle and adipocytes indicating that negative feedback mechanism may be 

involved in the uncoupling of IRS-1 protein from its upstream/downstream members and 

prevents normal functioning of the insulin signaling (66). 

The mechanism behind the serine phosphorylation of IRS-1 was also investigated 

in L6 muscle cells. Although these cells exhibit high basal serine phosphorylation of IRS-

1 in comparison to healthy human skeletal muscle (67), they are extensively used due to 

being the most feasible in vitro skeletal muscle model and having the ability to respond to 

insulin. The increased serine phosphorylation of IRS-1 is clearly correlated to reduced 

tyrosine phosphorylation leading to decreased glucose uptake (68). Numerous cytokines 

and protein kinases lead to an increased levels of serine phosphorylation of IRS-1 and at 

the same time diminish the insulin-stimulated phosphorylation of IRS-1 on its tyrosine 

residues. Hyperphosphorylation of the serine residues of IRS-1 makes a poor substrate for 
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the insulin receptor leading to inhibition of its downstream effects. For instance, 

diabetogenic agents may cause serine/threonine protein kinase activation or they may 

lead to inactivation of serine/threonine phosphatases which would lead to an increase of 

serine phosphorylation of IRS-1 and diminished insulin action (53) (Table 1). In different 

rodent models of obesity including rats and mice inhibiting seine phosphorylation of IRS-

1 led to improved tyrosine phosphorylation and insulin sensitivity. 

Phosphorylation of different serine residues located on IRS-1 has been correlated 

to decreased downstream effector activation such as PI3K association and Akt 

phosphorylation/activity and ultimately glucose uptake. The end of phospho The insulin 

resistance phenomenon remains complex tyrosine binding (PTB) domain contains Ser307 

which moderates the interaction of IRS-1 with the insulin receptor (69). The 

proinflammatory cytokine TNF-has been implicated in the development of insulin 

resistance therefore several studies have investigated the effect of TNF-on IRS-1 

phosphorylation. Increase in TNF-s linked to increase of Ser307 phosphorylation on 

IRS-1 in adipose, liver and muscle tissue (69,70,64,71). Additionally, stimuli such as 

increased levels of FFA are also implicated in serine phosphorylation of IRS-1. Increased 

levels of Ser307 phosphorylation were observed in mice fed with high fat diet (72). 

Additionally, a study found that decreased phosphorylation of Ser612 by mitogen 

activated protein kinase (MAPK) is associated to improved insulin-induced tyrosine 

phosphorylation of IRS-1 in mice (73). Similarly, HFD fed mice lacking 4E-BPs showed 

an increase Ser636/639 phosphorylation of IRS-1 (74). Ob/ob and K/KAy mice fed with 

HFD also exhibited increased phosphorylation of Ser307 and Ser636/639 (59). 

Furthermore, there was a hyperphosphorylation of the serine residues (632/639) of IRS-1 



Inhibition of Free fatty acid-Induced Insulin Resistance by Rosemary Extract 

18 
 

in hepatocytes treated with 0.4 mM palmitate for 22 hours (56). Moreover, increase of 

Ser1101 phosphorylation on IRS-1 decreased the insulin-stimulated tyrosine 

phosphorylation of IRS-1 and downstream effector proteins such as Akt in C2C12 muscle 

cells (75). The studies above indicate that exposure to FFA leads to phosphorylation of 

Ser307, Ser636/639 as well as Ser1101 on IRS-1 which is highly correlated with reduced 

insulin action and induction of insulin resistance (Table 1). 

Table 1: Kinases involved in different serine phosphorylation sites of IRS-1 

Reference Stimuli Upstream  

kinases 

Serine 

Residue of 

IRS-1 

Tissue Effect on 

Insulin 

Signaling 

Aguire et al. 

(69) 

Gual et al. 

(55) 

Brustel. et al. 

(64) 

FFA 

Okadaic 

acid 

TNF-

 

mTOR 

p70 S6K 

JNK 

PKC

GSK3 

307 

337 

Muscle 

Adipose 

Liver 

Decreased action 

Tanaguchi et 

al.(76) 

FFA ERK 

mTOR 

612 Muscle 

Liver 

Decreased action 

Le Bo (74) 

Gual et al. 

(55) 

FFA  

 

mTOR 

p70 S6K 

636/639 Muscle 

Adipose 

Liver 

Decreased action 

Li et al. (62) 

Tremblay et. 

(75) 

FFA 

 
PKC 1101 Muscle 

Adipose 

Liver 

Decreased action 

 

1.3.2 The Glycogen synthase kinase-3 (GSK3) pathway 

 

Glycogen synthase kinase-3 (GSK3) is a 51 kDa serine/threonine protein kinase 

predominantly involved in the regulation of glycogen synthesis by inactivating glycogen 

synthase. Additionally, GSK3 is also involved in the regulation of blood glucose 

homeostasis and is correlated with the development of insulin resistance (77).  
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GSK3 and GSK3 are the 2 isoforms expressing high levels of homology in 

regards to biological function and structure (78). The GSK3 isoforms have both an 

inhibitory serine phosphorylation site (Ser21 for GSK3and Ser9 for GSK3 and a 

catalytic tyrosine activation site (Y279 for , and Y216 for ) (77). GSK3 is nearly 

always active therefore Akt or other stimuli can cause serine phosphorylation of GSK3 

leading to inhibition of its activity (77). 

Correlation between type 2 diabetes and GSK3 has been reported in patients with 

type 2 diabetes and both isoforms were significantly elevated in skeletal muscle tissues of 

these subjects (77). Furthermore, GSK3 elevation in expression and activity levels was 

found to have an inverse relationship to insulin action in type 2 diabetes patients 

undergoing hyperinsulinemic/euglycemic clamp test (79). Studies conducted in 3T3-L1 

adipocytes have demonstrated that GSK3 activation leads to serine phosphorylation of 

IRS-1 which in turns attenuates insulin-induced tyrosine phosphorylation of IRS-1 (80). 

A study suggested that phosphorylation of the Ser332 on IRS-1 by GSK3 significantly 

attenuated insulin signaling in C2C12 muscle cells (81). Additionally, in muscle obtained 

from individuals that were classified as having metabolic syndrome, activation of GSK3 

was associated with an increased phosphorylation of Ser337 on IRS-1 (82).Moreover, it 

was indicated that Ser332 is a GSK3 site of phosphorylation and Ser336 acts as a 

“priming” site required for GSK3 action (81). In summary, GSK3 is one of the key 

regulators involved in glucose homeostasis and may be one of the players involved in the 

development of insulin resistance. 
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1.3.3 Insulin Resistance and c-Jun N-terrninal Kinase (JNK)  

 

JNK is a stress activated serine/ threonine kinase and a member of the MAPK 

family (83). JNK isoforms include JNKI (46kDa), JNK2 (54kDA), and JNK3 (54kDA). 

JNK1 and JNK2 are found to be commonly expressed in majority of tissues however 

JNK3 is mostly expressed in the brain, heart and testes (83). Stimulation of JNK1 is 

assumed to be involved in the pathology involving obesity and type 2 diabetes. 

Activation of JNK leads to the formation of a dimer and translocation to the nucleus 

where it causes phosphorylation of transcription factors such as c-Jun thereby mediating 

gene transcription (84). Phosphorylation of Thr183/Tyr185 residue of JNK is considered 

a site for activation (85). 

JNK may be activated by different environmental stressors including FFA, 

radiation, growth factors, cytokines like tumor necrosis factor alpha (TNF-) or 

interleukin-(IL- (3) (54). In vitro studies performed in HEK293T hepatocytes have 

shown that JNK1 and JNK2 have similar affinity and activity in regards to Ser307 

phosphorylation of IRS-1 (84). Existing evidence indicate that JNK may be a major 

mediator involved in the development of insulin resistance. The increase in JNK 

activation was associated with Ser307 phosphorylation of IRS-1 in skeletal muscle and 

liver (83). Studies showed that TNF-leads to stimulation of JNK which in turn causes 

phosphorylation of Ser307 residues on IRS-1 in adipose and liver and muscle 

(69,70,64,71). Mutation of Ser307 to alanine abolishes IRS-1 phosphorylation by JNK 

and attenuates the inhibitory effect of TNF-on IRS-1 (69). 
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In comparison to high saturated fat diet where insulin resistance was established 

and confirmed by a hyperinsulinemic-euglycemic clamp, JNK phosphorylation was not 

increased in normal diet fed controls rats in both muscle and liver tissue (83). A study has 

shown that JNK-interacting protein 1 (JIP1) responsible for binding of JNK signaling 

pathway components is needed for JNK activation and inhibition of IRS-1 in the adipose 

tissue of obese mice (86,55). Furthermore, in JIP-1 deficient mice insulin-induced 

tyrosine phosphorylation was increased and IRS-1 (Ser 307) was decreased in epidydimal 

fat pads (86,55). 

Moreover, continuous JNK activation was observed in primary pancreatic J3 cells 

and mouse hepatocytes from HFD fed and STZ-induced insulin resistant mice (87). 

Additionally, targeted mutation of the JNK1 locus in mice abolished JNK expression and 

showed to prevent HFD-induced insulin resistance (87). In agreement with the previous 

studies Solinas et al 2006 found that phosphorylation of the Ser307 residues on IRS-1 is 

the main mechanism involving JNK-mediated induction of insulin resistance in this study 

(70,87). In rodent in vivo models of obesity insulin sensitivity is significantly improved 

by inhibiting serine phosphorylation of IRS-1 together with improvement in the impaired 

tyrosine phosphorylation of IRS-1 in Jnk1-/- and Jnk2-/- C57BL/6J mice (61). 

Studies have also investigated the differences between the JNK1 and JNK2 

involvement in high-fat diet induced insulin resistance and obesity in vivo. Mice lacking 

JNK1 have significantly improved insulin sensitivity and exhibited protective effect 

against high fat-induced insulin resistance in liver. Mice lacking JNK2 on the other hand, 

did not have any effect on the insulin sensitivity. As a result, JNK2 was ruled out as a key 

mediator of establishing insulin resistance, type 2 diabetes and obesity (84). It is very 
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interesting to note that JNK2 and not JNK1 deficient mice exhibited protective effects 

against type 1 diabetes and atherosclerosis. As a result, it can be concluded that both 

isoforms may play a role in influencing the pathology of diabetes (84). JNK activation 

has been inhibited by rosiglitazone, an antidiabetic drug belonging to the family of 

thizolidinediones, leading to normalizing blood glucose levels in insulin resistant mice 

(88). Rosiglitazone given to high fat fed obese mice with an established insulin resistance 

significantly inhibited JNK activation and reduced insulin resistance (89).  

1.3.4 Protein Kinase C (PKC) and Insulin Resistance in Skeletal Muscle 

  

PKC is a large class of serine/threonine protein kinases consisting of 

approximately 10 different isoforms. PKC’s are involved in variety of cellular processes 

including cellular growth differentiation and cell signaling pathways (90,91). The PKC 

family is classified in 3 major subgroups including conventional PKC’s ( cPKC) referring 

to calcium and diacylglycerol-dependent PKC’s (PKC , I-II, and novel calcium-

independent PKC’s (nPKC) which includes PKCand and atypical PKC’s 

(aPKC) including PKC and.  

The insulin resistance phenomenon remains complex and there is evidence for 

PKC’s involvement. A study found that PKCwas involved in the Ser1101 

phosphorylation of IRS-1 in 3T3-L1 adipocytes and C2C12 skeletal muscle cells thus 

preventing the downstream effect of insulin and glucose uptake (62). Additionally, 

phosphorylation Ser1101 on IRS-1 was also increased though nutrient (amino acids 

infusion) and hormonal (insulin) stimulation of p706SK in obese mice (75). 
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Increase in muscle PKC activity in skeletal muscle seen in rats that underwent 

lipid infusion resulting in high circulating levels of FFA resulted in 50% decrease in IRS-

1 associated PI3K activity and insulin-stimulated IRS-1 tyrosine phosphorylation as well 

as increased muscle ser307 on IRS-1 (93). Additionally, PKC can activate IKK which in 

turn leads to Ser307 phosphorylation of IRS-1 (93). Moreover, lipid infusion in Wistar 

rats caused increase in PKCθ activity as a result to DAG accumulation (94). A study 

indicated that overexpression of dominant negative PKC in skeletal muscles leads to 

obesity and impairment of the IR/IRS-1/PI3K signaling cascade and its downstream 

effectors such as Akt which is implicated in insulin resistance (95). A serial muscle 

biopsies of lean, obese and obese-diabetic human subjects before and during lipid 

infusion showed that the total and cytosolic DAG accumulation was associated with 

PKCθ activation and impairment in insulin signaling (96). Similarly, a study by ltani et 

al. reported a three-fold increase in DAG accumulation that resulted in changes in 

PKCand PKC in lipid-induced insulin resistant human muscle (97) Furthermore, 

administration of lipid infusions in rats and humans stimulated activation of PKC and 

PKCleading to impairment of insulin-stimulated glucose uptake in skeletal muscle 

(98,99). Additionally, high levels of saturated free-fatty acid (palmitate) led to 5-fold 

increase in PKCn L6 skeletal muscle cells, while the PKC inhibitor Ro 31.8220 

attenuated the palmitate induced insulin resistance (100). An in-depth study on PKC in 

mice reported that muscle PKCincreased with age and its deletion improved insulin 

sensitivity (101). The above studies indicate the potential involvement of the PKC family 

of signaling molecules in the development of type 2 diabetes.  
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1.3.5 IKK-NFkB Pathway and Insulin Resistance in Skeletal Muscle 

 

The family of transcription factors NFkB are involved in the regulation of 

multitude of genes including the regulation of pro-inflammatory genes. The proteins of 

NFkB consist of five members including p50, p65, RelB and c-Rel. In order to initiate 

transcriptional modification in the cell, two protein members of NFkB are necessary to be 

dimerized and bind to DNA. The predominant activating dimer of NFkB in skeletal 

muscle is the p50-p65 heterodimer (63). Furthermore, NFkB is generally localized in the 

cytoplasm where it is associated with the inhibitory protein inhibitor of kappa B 

(IkBStimuli such as ROS, cytokines, hyperglycemia and FFA are found to activate IkB 

kinase (IKK), which is an upstream regulator of IkB. When, IKK becomes activated it 

leads to rapid IkB phosphorylation and dissociation from NFkB. This further leads to 

degradation of IkB by the proteasomes in the cytoplasm (63). The degradation of IkB 

allows NFkB to be liberated from its inhibitory activity, enters the nucleus and causes 

induction of transcription of genes.  

Exposure of L6 myotubes to palmitate significantly reduced insulin-stimulated 

glucose uptake and PI3K/Akt signaling while stimulated IkB degradation and NFkB 

translocation to the nucleus (52). Furthermore, the IKK inhibitors acetylsalicylate and 

parthenolide, abolished the palmitate-induced reduction in insulin-stimulated glucose 

uptake. Additionally, the decrease in insulin-stimulated glucose uptake seen with 

palmitate was attenuated in the presence of SN50, an inhibitor of NFkB translocation 

(52). Taken together these data indicate that the FFA-induced insulin resistance is 

prevented by inhibition of nuclear translocation of NFkB in L6 muscle cells (52). Muscle 

samples of vastus lateralis collected from T2DM patients indicated that there was a 60% 
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decrease in the IkB protein, an indication of elevated IKK/NFkB activity, which was 

correlated with muscle insulin resistance assessed with hyperinsulinemic-euglycemic 

clamp (63). Moreover, when T2DM subjects were exposed to aerobic exercise for 8 

weeks, the IkB protein levels and glucose uptake were increased by 50% and 37% 

respectively and the TNF- levels were decreased by 40% (63). Increase in TNF 

expression was linked to increase in IKK phosphorylation (63).  

A study reported that administration of salicylate (aspirin) in T2DM patients 

significantly decreased the plasma glucose levels (102). Salicylates are also reported to 

inhibit IKK activity and translocation of NFkB (103,104,102), suggesting that IKK may 

be a key player involved in the development of insulin resistance. Additionally, inhibition 

of IkBby salicylates prevented fat-induced pancreatic beta cell dysfuntion both in vitro 

and in rodents (in vivo). Overall, these findings indicate that the NFkB signaling pathway 

may be involved in the development of insulin resistance.  

1.3.6 mTOR and p70 S6K Pathway and Insulin Resistance in Skeletal Muscle 

 

The mammalian target of rapamycin (mTOR) is a 289 kDa serine/threonine 

kinase that is activated by hormonal factors such as insulin and nutritional factors such as 

amino acids (105,106). mTOR plays a major role in cellular growth and maintaining 

nutritional homeostasis. However, mTOR is often implicated in tumors where its activity 

is frequently increased (107). mTOR consists of two different complexes: a rapamycin-

sensitive complex which includes the regulatory-associated protein of mTOR known as 

raptor (TORC1) and rapamycin-resistant complex known as rictor (TORC2) (105,106). 

Akt and mTOR signaling comprises the tuberous sclerosis complex (TSC) consisting of 

TSC1, TSC2, and a member of Ras family Rheb-GTPase (105). Rheb possesses intrinsic 
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GTPase activity and has the ability to bind to both GDP and GTP. The activity of mTOR 

is increased when Rheb is bound to GTP (108). Following phosphorylation of Akt, TSC2 

gets phosphorylated and inhibited which drives the intrinsic GTPase activity of Rheb 

towards the GTP-bound /(active) form (108). Contrarywise, mTOR activity is supressed 

when Rheb is bound to GDP (105,108).  

Phosphorylation of mTOR may be on different serine residues in order for its 

activity to be increased. For instance, PI3K-Akt phosphorylation of mTOR is on the 

Ser448 residue leading to increased mTOR activity (107). In order for mTOR to be 

activated different subunits of TORC1 for instance proline-rich Akt substrate 40 

(PRAS40) are required for complete activation (108). A study has shown that PRAS40 is 

also required for activation of mTOR via Akt (109). and it is also reliant on the 

interaction of PRAS40 with mTOR on its kinase domain (109). Phosphorylation of the 

Ser2448 was reported to be an Akt phosphorylation site because it is sensitive to PI3K 

inhibition which leads to a decrease in the Akt activity (107,110). Phosphorylation of the 

Ser2448 residue of mTOR is widely accepted as an indicator of activation (107,110).  

One of the downstream effectors of mTOR is the serine/threonine kinase, mitogen 

activated p70 S6K at 70 kDa which regulates the translation of a class of mRNA 

transcripts containing an oligopyrimidine tract at the start of their transcriptional 

sequence (111). Several of the mechanisms involved in protein synthesis are encoded by 

this class of mRNA transcripts which are responsible for approximately 20% of the 

cellular mRNA (111). The above process is accomplished by activation/phosphorylation 

of p70 S6K and further phosphorylation of 40S ribosomal subunit protein S6 which leads 

to promotion in the mRNAs translation (111). The regulation of p70 S6K may be 
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dependent on mTOR activation. The TORC1 complex stimulates phosphorylation of p70 

S6K, therefore phosphorylation of the Thr229 in the catalytic domain and Thr389 in the 

linker domain are crucial for the action of p70 S6K (111). Moreover, phosphorylation of 

Thr389 mostly correlates with increased p70 S6K activity in vivo (112). 

A study has shown that mTOR and p70 S6K can be activated by increasing amino 

acid levels which leads to serine phosphorylation of IRS-1 which in turn leads to decrease 

in insulin action in 3T3-L1 adipocytes and L6 muscle cells (113). The activity of mTOR 

and p70S6K was also highly elevated in hepatic and skeletal muscle tissue of rats fed 

with high fat diet which indicates that both kinases may play in the development of 

insulin resistance in vivo (74). This effect was completely abolished when the mTOR 

inhibitor rapamycin was used. The inhibition of mTOR as a result to rapamycin stems 

from the ability of rapamycin to interfere with the FKBP-rapamycin binding pocket of 

TOR (107). Another study performed on insulin resistant 3T3-L1 adipocytes that were 

pretreated with rapamycin showed an increase in glucose uptake indicating that mTOR 

may be downregulating insulin signaling (114). Additionally, treatment with rapamycin 

reduced serine phosphorylation of IRS-1 while prolonging insulin-induced PI3K activity 

in mouse skeletal muscle cells (75). Another study found that the phosphorylation of 

mTOR was significantly increased in FFA palmitate treated hepatocytes (56).  

In addition to mTOR, its downstream effector p70 S6K is found to be implicated 

in the impairment of normal insulin signaling in both skeletal and adipose tissue (115). In 

vitro studies have demonstrated that treatment with small interference RNA against p70 

S6K markedly increased insulin-induced Akt phosphorylation and improved insulin 

sensitivity in MEF mouse embryonic fibroblast cells (116). Mice that underwent p70 S6K 
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gene deletion had lower Ser307 and Ser636/639 phosphorylation of IRS-1 and improved 

insulin sensitivity when fed with high fat diet in comparison to their controls (74). In 

addition, a study has found that p70 S6K-deficient mice are protected from obesity when 

treated with high fat diet (59). On the other hand, increased levels of p70 S6K has been 

associated with a reduced Akt activity in insulin-resistant obese rodents (59). Both mTOR 

and p70 S6K regulate glucose homeostasis by negative feedback mechanism. When 

glucose homeostasis is achieved, Ser307 and Ser636/639 phosphorylation of IRS-1 is 

activated in order to inhibit the insulin-induced glucose uptake and maintain homeostasis. 

However, chronic hyperstimulation of mTOR and p70 S6K may lead to insulin resistance 

in skeletal muscle, adipose tissue and liver. 

1.3.7 Free Fatty Acids (FFA)-Induced Skeletal Muscle Insulin Resistance  

Free Fatty acids (FFA) are non-esterified fatty acids (NEFA) that play a pivotal 

role in establishing insulin resistance and type 2 diabetes mellitus (64). Studies that used 

nuclear magnetic resonance (NMR) spectroscopy showed a strong association between an 

intramyocellular triglyceride accumulation with skeletal muscle insulin resistance 

(117,118). An explanation for this phenomenon may be obtained from the Randle 

hypothesis in which the free fatty acids compete with glucose for substrate oxidation 

(119). Philip Randle proposed the theory in which elevated FFA leads to increase of 

mitochondrial acetyl-CoA/CoA and NADH+/NAD+ ratios which ultimately lead to 

inhibition of the pyruvate dehydrogenase activity and increase in citrate levels which in 

turn hinders phosphofructokinase activity leading to decrease in glucose uptake (119). 

Moreover, studies found that skeletal muscle exposure to elevated FFA attenuates 

downstream insulin-induced Akt phosphorylation. Additionally, Akt inhibition has also 
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been associated with elevated ceramide concentration which is released as a result to 

acyl-CoA metabolism (64,120). Studies showed that exposure of rodent myotubes to 

palmitate increases the accumulation of ceramide which leads to insulin resistance 

(121,122). Pharmacological inhibition of ceramide synthesis using myriocin or triacsin-C 

prevented insulin resistance and restored glycemic control in prediabetic obese rats (123). 

An increase in ceramides in turn can often lead to activation phosphatases including 

phosphatase 2A and an increase in PKC activity that leads to dephosphorylation and 

inhibition of Akt thereby diminishing the insulin-induced glucose uptake in skeletal 

muscle (124,125).  

L6 skeletal muscle cells treated with 0.75mM for 16 hours of palmitate had 

markedly decreased GLUT4 translocation to the cell membrane associated with a 

decrease in glucose uptake (126). In addition, in vivo studies performed in Sprague-

Dawley rats infused with intralipid, showed a reduction in insulin sensitivity and a two 

fold increase in Ser307 phosphorylation of IRS-1 in muscle (127). Therefore, an increase 

in intramuscular and circulating FFA in overweight and obese individual may explain the 

reason for the increased risk of insulin resistance and type 2 diabetes development (51). 

Intramyocellular lipids do not seem to cause insulin resistance because they are localized 

in discreet lipid droplets mostly as TGs however, accumulation of intramyocellular lipids 

are markers for other lipid intermediates including ceramides, fatty acyl-CoA or 

diacylglycerols which in turn may directly impact the insulin signaling pathway through 

activation of signaling cascades that will inhibit the insulin stimulated glucose uptake 

such as serine phosphorylation of IRS-1 through upstream kinases such as PKCs, mTOR, 

p70 S6K and IKK/NFkB (117,51,49,55,128,129). 
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1.4 AMP-activated Protein Kinase Pathway (AMPK) 

 

AMPK is a 62 kDa serine/threonine kinase energy sensor that plays a crucial role 

in regulating energy balance within the cell. AMPK is a heterotrimer which is composed 

of catalytic  subunit and regulatory andsubunits (130). Homologues subunits of 

each AMPK have been found in every eukaryotic species including worms, fruit flies, 

yeast, fish and mammals (131). Different isoforms of AMPK subunits have been found in 

mammals including as well as

The N-terminal section of the  subunit of AMPK contains the serine/threonine 

kinase catalytic domain and the Thr172 residue which is phosphorylated and required for 

the activation of AMPK. The C-terminal segment of the catalytic subunit is essential 

for association of the and  subunits (133). Furthermore, the physiological function of 

both and  subunits of AMPK have not been extensively studied nevertheless, it has 

been found that  subunit acts as a scaffold to link the and  subunits together. Studies 

conducted in transgenic Hampshire pigs expressing the dominant Rendement Napole 

phenotype achieved by a single missense mutation (R225Q) of the  subunit of AMPK 

resulted in 70% decrease in glycogen content in muscle and higher oxidative capacity 

(134). Glycogen synthesis was significantly decreased after exercise in mice that 

underwent gene knockout of the subunit (135). Additionally, well established 

activators of AMPK failed to increase muscle glucose uptake and to protect against HFD-

induced accumulation of triglycerides in AMPK γ3 knock-out mice (135). These studies 

provide substantial evidence that the  subunit is involved in glucose metabolism and fat 

oxidation.  
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AMPK is activated as a result to an elevation in AMP/ATP ratio. Reduced ATP 

levels lead to an increase in AMPK activation as a result of increased muscle activity 

which leads to phosphorylation and inhibition of acetyl-CoA carboxylase (ACC). This 

inhibition causes reduction of malonyl-CoA levels which is a well-known inhibitor of 

carnitine palmitoyltransferase 1 (CPT 1) (136). Loss of CPT1 reduction causes promotion 

of fatty acid oxidation in muscle mitochondria which in turn leads to replenishment of 

ATP (132).  

AMPK may be activated and regulated by its upstream kinases including liver 

kinase B1, calcium/calmodulin-dependent protein kinase (CaMKK), transforming growth 

factor TGF) activated kinase (TAK1) as well as by sirtuin 1 (SIRT1) (131). 

Activation of AMPK by AICAR, antimycin A, and sodium azide was completely 

abolished in human fibroblasts lacking LKB1 expression (137,138). Additionally, AMPK 

activation by stimulation with small molecule PT1 is prevented by STO-609, an inhibitor 

of CaMKK, in L6 muscle cells (139). AICAR (5-amino 4-imidazolecarboximide 

riboside), muscle contraction, metformin and polyphenols such as resveratrol are 

established activators of AMPK. AICAR or metformin, had no effect on AMPK 

phosphorylation in mice embryos that underwent TAK1 knockout (140). Additionally, 

resveratrol-induced activation of AMPK was inhibited in the presence of splitomicin, an 

inhibitor of SIRT1 in hepatocytes (141). 

AMPK activation has a noteworthy impact in skeletal muscle and its activation 

triggers stimulation of glucose uptake, GLUT4 translocation, FA oxidation and 

mitochondrial biogenesis while reducing the rates of protein synthesis and glycogen 

storage (142). In recent years, AMPK activators have been recognized as promising 



Inhibition of Free fatty acid-Induced Insulin Resistance by Rosemary Extract 

32 
 

pharmacological interventions for the prevention and treatment of T2DM (143–149). 

Many reports indicate that in skeletal muscle both AICAR and contraction increase 

glucose uptake and insulin sensitivity through activation of AMPK resulting in GLUT4 

translocation to cell membrane (150–152). Additionally, wortmannin, an inhibitor of 

PI3K, did not have any effect on the AICAR- and contraction-stimulated glucose uptake 

indicating that the signaling mechanism is insulin-independent (150–152). Metformin, is 

a biguanide drug that is currently the first line of treatment for T2DM. Metformin 

activates AMPK indirectly through inhibiting complex 1 of the mitochondrial respiratory 

chain and promoting a switch to anaerobic glycolysis thus increasing the AMP/ATP ratio 

leading to AMPK activation (153). Metformin treatment induces AMPK activation 

leading to GLUT4 translocation and therefore increase the glucose uptake in L6 and 

C2C12 muscle cells (154,155), rodent muscle (155,156) and human muscle extracted 

from diabetic patients (155,157). Moreover, metformin delays the onset of T2DM and 

increases overall body insulin sensitivity by approximately 30% in T2DM subjects 

(155,158). Activation of AMPK, inhibition of hepatic glucose production and increased 

GLUT4 translocation to the plasma membrane in adipose tissue and skeletal muscle may 

in part be attributed to the mechanism of action of metformin in attenuating insulin 

resistance (155,158). Other compounds such as polyphenols are also found to activate 

AMPK. Studies have indicated that 5μg/ml of rosemary extract (RE), 2 μM carnosic acid 

(CA) and 5 μM rosmarinic acid (RA), major polyphenol found in RE, increased glucose 

uptake to levels comparable to insulin and metformin and activated AMPK in L6 muscle 

cells (160–162). In addition compound C (CC), an inhibitor of AMPK, significantly 
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inhibited the RE- and CA-stimulated glucose uptake indicating that activation of AMPK 

may be the mechanism in which these polyphenols increase glucose uptake (160,161).  

Recent evidence showed that AMPK activation may inhibit the NFkB signaling 

pathway mainly by deacetylation of the p65 protein of the NFkB complex (163). The 

NFkB subunits are not a direct target of AMPK however the inhibition of NFkB signaling 

is shown to be mediated by other AMPK targets such as SIRT1, peroxisome proliferator-

activated receptor-gamma coactivator-1 (PGC-1) and p53 (163). Chemical activation of 

AMPK by AICAR significantly inhibited NFkB activation and translocation to the 

nucleus in endothelial cells (164). Additionally, stimuli such as salicylate (aspirin) that 

activate AMPK inhibit IKK and therefore NFkB translocation to the nucleus 

(103,104,102).Taken together, the studies above indicate that AMPK plays a pivotal role 

in energy metabolism and glucose uptake in skeletal muscle and its activation may be 

critical in combating insulin resistance and glucose homeostasis.  

1.5 Rosemary and its phenolic compounds  

 

Rosemary (Rosmarinus officinalis) is a plant belonging to the labiate family 

(Lamiaceae). It is an aromatic evergreen shrub indigenous to the Mediterranean region 

and South America (165). The fresh and dried leaves are frequently used as a food 

preservative and in traditional Mediterranean cuisine as a flavoring agent. Historically 

rosemary has been used medicinally to treat renal colic, dysmenorrhea, to stimulate hair 

growth and relieve symptoms caused by respiratory disorders (165,166). Today, rosemary 

extracts (RE) are often used in aromatherapy, cosmetics, to treat anxiety-related 

conditions and increase alertness (166). RE contains different classes of polyphenols 
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including phenolic acids, flavonoids and phenolic terpenes (167–171) (Table 1). Phenolic 

acids include a) the hydroxycinnamic acids: rosmarinic acid, chlorogenic acid, coumaric 

acid, coumaroylqunic acid, ferulic acid, m-hydroxybenzoic acid and p-coumaric acid b) 

the hydroxybenzoic acids: caffeic acid, dicaffeoylquinic acid, gallic acid, protocatechuic 

acid, syringic acid, vanillic acid and c) the hydroxyphenylacetic acids: homovanillic acid 

and p-hydroxybenzoic acid. Flavonoids include a) the flavones: apigenin, apigenin-7-O-

glucoside, cirsimartin, genkwanin, homoplantaginin, ladanein, linaroside, luteolin, 

nepitrin, pectolinarigenin, scutellarein, salvigenin, tectochrysin, 4’5,7,8-

tetrahydroxyflavone b) the flavonols: kaempferol, kaempferol-3-O-rutinoside, quercetin, 

rutin, and c) flavanones: hesperetin, hesperidin and naringenin-C-hexoside. Phenolic 

terpenes found in rosemary include a) diterpenes such as carnosol, carnosic acid, 

epirosmanol, epiisorosmanol, isorosmanol, militirone, methyl carnosate, rosmadial, 

rosmanol, rosmaridiphenol, 7-α-methoxyroamanol, 7-β-methoxyroamanol and b) 

triterpenes: betulin, betulinic acid, oleanolic acid, urosolic acid, α-amyrin, β-amyrin and 

23-hydroxybetulinic acid (168,170–181). 

The polyphenols found in highest quantity in RE are carnosic acid (CA), carnosol 

(COH) and rosmarinic acid (RA) (171,182). The production of these polyphenols is 

influenced by growth conditions such as sunlight exposure, soil quality, and water 

availability (183). Furthermore, anatomical regions of this herbal plant have varying 

levels of total phenolic content whereby the leaves contain the highest concentration of 

polyphenols in comparison to stem, branch and flower regions (184). RE has been shown 

to have antioxidant, anti-inflammatory, anti-microbial, anti-tumorigenic, and anti-

hyperglycemic properties (185,186). These biological effects are highly correlated with 

http://phenol-explorer.eu/classifications/compounds/16/16
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the polyphenolic content and CA, COH and RA are suggested to be responsible 

(185,186).  

1.5.1 Evidence of Anti-Diabetic Effects of Rosemary Extract: In Vitro Studies 

 

In vitro studies have shown that RE has an insulin-like effect to inhibit the 

production of glucose by hepatocytes. RE was shown to significantly suppress 

gluconeogenesis in HepG2 hepatocytes (187) (Table 2). In another study, RE was shown 

to significantly increase hepatocyte glucose uptake in a dose-dependent manner (188). CA, 

a major polyphenolic constituent of RE, prevented palmitate-induced lipid accumulation 

in hepatocytes (189) indicating that CA may potentially block cellular lipid accumulation 

in the long term and help against insulin resistance and T2DM. RE’s polyphenolic 

constituents may also provide protection against chemically-induced reactive oxygen 

species production and hepatocyte death. RA exhibited significant cytoprotective effects 

against mycotoxin-induced reactive oxygen species (ROS) production and induction of 

apoptosis by blocking effects on caspase-3 activation in hepatocytes (190). 

Treatment of 3T3-L1 adipocytes with RE (50 µg/ml) increased intracellular lipid 

levels and glucose uptake relative to the control (191). These effects of RE are similar to 

the lipid storing and glucose uptake effects of insulin in adipose tissue suggesting a 

potential of using RE against insulin resistance. In addition, it was reported that only CA 

and COH from all the major RE constituents, inhibited the differentiation of 3T3-L1 

preadipocytes into mature adipocytes (192). Another study indicated that treatment with 

RE (30 µg/ml) resulted in complete inhibition of 3T3-L1 differentiation and CA (0.3-20 

µM) alone exhibit a similar effect (193). In addition to the effects of RE on hepatic glucose 

production and adipocyte glucose uptake, RE has plays a role in intestinal glucose 
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absorption as well as carbohydrate digestion. Digestive enzymes such as amylase and α-

glucosidase play an important role in carbohydrate digestion and absorption by converting 

complex carbohydrates to simple sugars such as glucose and fructose. Intestinal α-

glucosidase allow glucose to be absorbed by the small intestine thereby increasing blood 

glucose levels. Inhibitors of α-glucosidase (acarbose, miglitol, voglibose) are used in the 

management of hyperglycemia present in T2DM. RE was found to have a significant α-

glucosidase inhibitory activity (194) which was the most potent among the other extracts 

of herbs and spices tested. Moreover, RE was demonstrated to significantly inhibit porcine 

pancreatic amylase activity (PPAM) in vitro (195). PPAM hydrolases dietary 

polysaccharides into less complex saccharides allowing further digestion. Additionally, 

RA, a major polyphenolic constituent of RE also significantly inhibited PPAM (196). 

Other effects of RE that may contribute to regulation of glucose homeostasis may be 

due to its effects on lipid/fat metabolism. Lipids are stored in our cells particularly 

adipocytes in the form of triglycerides (TG). The breakdown of TG is controlled by 

enzymes called lipases. Excessive activation of hormone sensitive lipase leads to increases 

in plasma lipid levels such as free fatty acids (FFA) contributing to insulin resistance and 

T2DM. The effects of RE were assessed on hormone sensitive lipase (HSL) and pancreatic 

lipase (PL), a key enzyme involved in fat digestion and was shown to significantly inhibit 

both enzymes in a dose-dependent manner in rat epididymal adipocytes (197). Pure RA 

was shown to inhibit PL and HSL in a dose dependent manner. Moreover, the extract had 

greater inhibitory activity compared to purified compounds suggesting that the extract 

contains a variety of constituents that may contribute synergistically in the inhibition of 

these enzymes (197). Additionally, in vitro analysis indicated that CA rich RE inhibited 
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PL activity by 70% (198). These studies clearly indicate that RE and its constituents CA 

and RA have in antilipolytic activity in vitro.  

Skeletal muscle tissue is important target of insulin and accounts for approximately 

80% of insulin mediated glucose uptake in the postprandial state. As a consequence, it 

plays a predominant role in glucose homeostasis. Treatment of L6 myotubes with RE 

increased glucose uptake in a dose- and time-dependent manner (160). Maximum 

stimulation of glucose uptake was seen with 5 µg/ml of RE was comparable to the 

maximum stimulation of glucose uptake by insulin or metformin (Table 2) (160). In 

addition, treatment of L6 myotubes with CA (20 µg/ml for 6 hours) resulted in significant 

increase in glucose uptake (199). Additionally, treatment with of L6 myotubes with CA 

(5µM for 4 hours) increased glucose uptake to levels comparable to insulin and metformin 

(161). Additionally, treatment with RA (5 M for 4 hours) significantly increased glucose 

uptake that was comparable to insulin and metformin (162). All of the above in vitro studies 

indicate that RE has the potential to affect key insulin target tissues (liver, fat, muscle) and 

directly induce anti-diabetic effects. 
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Table 2: Anti-diabetic effects of RE and its main polyphenolic constituents: in vitro 

studies 

 

Study Cell/Model Treatment Effects 

Yun et 

al.(187) 

HepG2 hepatocytes RE 100 µg/ml ↓ gluconeogenesis. 

Tu et al.(188) HepG2 hepatocytes RE 0.4, 2, 10, 50 

µg/ml  

↑ glucose uptake 

Wang et 

al.(189) 

HepG2 hepatocytes CA 10-20 µM  ↓palmitate-induced 

lipid accumulation 

Cui et 

al.(200) 

HepG2 hepatocytes COH 20-40 µM ↓de novo formation of 

intracellular TG  

Renzulli et 

al.(190) 

HepG2 hepatocytes RA 25-50 µM  ↓apoptosis 

↓ROS production 

Babish et 

al.(191) 

3T3-L1 adipocytes RE 50 µM/ml  ↑intracellular lipid  

↑glucose uptake 

Takahashi et 

al.(192) 

3T3-L1 adipocytes CA 3 µM, COH 3 

µM 

↓ differentiation  

↑intracellular GSH 

Gaya et 

al.(193) 

3T3-L1 adipocytes RE 10-30 μg/ml 

CA 0.3-20 Μm 

↓ differentiation.  

Koga et 

al.(194) 

Rat intestinal α-glucosidase 

(AGc) 

RE (IC50 683-711 

µg/ml) 

↓AGc  

Ingrid et 

al.(195) 

Porcine Pancreatic α-amylase 

(PPAM) 

RE 10-100 µg/ml ↓ PPAM activity 

(60%) 

McCue et 

al.(196) 

Porcine pancreatic α-amylase 

(PPAM) 
RA 3.2 g/ml ↓ amylase activity by 

85% 

Bustanji et 

al.(197) 

Rat epididymal adipocytes 

Porcine pancreatic lipase (PL); 

Hormone sensitive lipase (HSL) 

RE 6.3-200 µg/ml 

& its constituent 

RA 

↓ PL  

↓ HSL 

Ibbara et 

al.(198) 

Human PL  RE 100 µg/ml 

rich in CA 

↓PL by 70%  

Naimi et 

al.(160) 

L6 rat muscle cells RE 5 µg/mL for 4 

h 

↑ glucose uptake 

Lipina et 

al.(199) 

L6 rat muscle cells CA 20 µg/mL for 

6 h 

↑ glucose uptake 

Naimi et 

al.(161) 

L6 rat muscle cells CA 5 μM for 4 h ↑ glucose uptake 

Vlavcheski et 

al. (162) 

L6 rat muscle cells RA 5 μM for 4 h ↑ glucose uptake 
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1.5.2 Evidence of Anti-Diabetic Effects of Rosemary Extract: In Vivo Studies  

  

Several studies have been carried out in diabetic animal models to investigate the 

anti-hyperglycemic effects of RE (Table 3). In streptozotocin-(STZ) induced diabetic 

rats, administration of an aqueous RE resulted in significant decrease in fasting plasma 

glucose (FPG) level (201). In another study, administration of 50% ethanol extract of 

rosemary in STZ rats significantly decreased plasma glucose levels due to inhibition of 

glucosidase enzyme activity (194). In a more recent study, daily administration of 

aqueous RE (200 mg/kg) for three weeks caused significant reductions in blood glucose 

levels of both normal and STZ-induced diabetic rats (202). Similar effects were seen on 

blood glucose levels in STZ-induced diabetic rats given aqueous RE (4g/kg/day) for 4 

weeks (203). In addition, the extract significantly reduced plasma, FPG, TG, total 

cholesterol (TC) and low density lipoprotein (LDL) while increasing plasma high density 

lipoprotein (HDL) and erythrocytes levels. In agreement with the above studies, blood 

glucose levels as well as TC and TG levels were significantly reduced in STZ-induced 

diabetic rats given aqueous RE (200 mg/kg/day) 2 weeks before and 2 weeks after STZ 

injection (204,205). Furthermore, administration of aqueous extract of rosemary prior to 

streptozotocin injection in rats significantly protected against STZ-induced elevations in 

blood glucose levels which was correlated with a significant protection against pancreatic 

β-cell loss (206). Administration of dried rosemary leaves for approximately 6 weeks in 

STZ-induced diabetic and healthy Sprague Dawley rats decreased the FPG, glycated 

hemoglobin (HbA1c), TC and TG and LDL levels in STZ-induced rats without effecting 

the plasma glucose levels or the lipid profile in the control group (207). 
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In addition to the STZ-induced diabetic model, the alloxan-induced diabetes animal 

model is also used extensively. Alloxan causes diabetes by rapid depletion of pancreatic 

β-cells leading to inflammation and sustained hyperglycemia secondary to a reduction in 

insulin release into circulation. In alloxan-induced diabetic rabbits, ethanol RE (200 

mg/kg) lead to a significant reduction in FPG (208). In contrast, another study indicated 

that intramuscular administration of volatile oil of RE leaves inhibited insulin release and 

increased blood glucose levels leading to hyperglycemia in normal and alloxan-induced 

diabetic rabbits (209). In another study, oral administration of powdered RE added as 

20% of diet or 20% aqueous RE to alloxan induced diabetic rats significantly decreased 

the fasting plasma glucose levels compared to control and the treatment demonstrated to 

reduce alloxan-induced hepatocyte vacuolar degeneration, necrosis, small hemorrhages 

and dilatation of hepatic sinusoids indicating hepatoprotective effects (210). Moreover, 

administration of RA (100-200 mg/kg) to alloxan-induced rats for eight weeks 

significantly inhibited glomerular hypertrophy, glomerular number loss and 

glomerulosclerosis compared with diabetic control indicating RA’s renoprotective 

properties (211). Administration of 250 and 500 mg/kg/day of RE mixed with water 

(70%) for 63 days in male rats did not affect serum blood glucose, TG, TC levels or body 

weight but testosterone levels, spermatogenesis, sperm density and motility were 

significantly decreased (212). In addition, alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST), enzymes released due to liver damage, were also decreased. 

Oral administration of CA (approximately 17mg/kg/day) to obese leptin receptor 

deficient mice for five weeks resulted in significant protection against fat-induced fasting 

and non-fasting hyperglycemia, improved glucose tolerance as well as decreased serum 
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insulin levels (213). CA also significantly inhibited weight gain, decreased regional areas 

of visceral fat, and prevented against fat accumulation in white adipose tissue as well as 

liver. Moreover, animals supplemented with CA exhibited decreased serum levels of 

triglycerides, cholesterol, and ALT as well as significantly decreasing hepatic lipid storage 

(213). 

Apart from animal models of genetic and chemically-induced obesity and T2DM, 

the effects of RE have been examined in dietary animal models of obesity and T2DM. 

Daily, dietary supplementation of RE (500 mg/kg) standardized to contain 20% CA for 16 

weeks in mice that were started on a high-fat diet (HFD) as juveniles significantly protected 

against HFD-induced elevations in plasma glucose and TC levels compared with HFD 

control mice (198). Notably, fasting insulinemia remained low during the length of the 

study and no significant differences were observed between the groups. Correlating with 

the observed reductions in total cholesterol levels, HFD mice supplemented with RE 

displayed significant decreases in fat mass and one to twofold increase in total fecal lipid 

content compared to HFD-fed control mice (198). Additionally, another study indicated 

that administration CA (20 mg/kg) in 5-20 mg/kg olive oil loaded mice, significantly 

repressed the elevation of TG levels, prevented epididymal fat gain and inhibited pancreatic 

lipase activity (214). Administration of 200 mg/kg of RE for 50 days in mice fed high fat 

diet, resulted in reduced b.w and fat mass and increase of fecal lipid excretion, while 

hepatic triglyceride content was decreased (215). Similarly, daily administration of 

aqueous RE (100 mg/kg b.w) to high-cholesterol fed mice for 36 days resulted in 

significant decline in plasma TG, TC, LDL levels, while HDL levels were increased 

compared to control mice (216). Furthermore, administration of aqueous RE (70-140 
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mg/kg b.w) and non-esterified phenolic RE (7 to 14 mg/kg b.w) for four weeks resulting 

in significant reduction in TC and non-HDL levels compared to control (217). High-

fructose fed (HFR) mice given daily dose of RA (100 mg/kg b.w) for 60 days decreased 

fasting plasma glucose levels, improved glucose tolerance and reduced plasma insulin and 

glycated HbA1c levels (218). In contrast, obese mice and their lean counterparts fed 0.5% 

ethanol extract of rosemary enriched with CA (40%) incorporated in their standard chow 

for 64 days did not show significant differences in their glucose levels compared to control 

rats, although circulating insulin levels were found to be significantly decreased only in the 

lean rats (219). Noteworthy, the plasma glucose levels in all animals were within normal 

physiological range with a non-significant, slight increase in obese counterparts. The study 

also demonstrated a significant inhibition of gastric lipase (GL) in the stomach and 

pancreatic lipase (PL) in small intestine of rats consuming the RE(219) Furthermore, there 

was a significant attenuation of circulating plasma TNF-α, IL-1β, leptin and elevation of 

adiponectin levels (Table 3) (220). 
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Table 3: Anti-diabetic effects of RE and its main polyphenolic constituents: in vivo 

studies  

Reference Animal Model  Dose Glucose Other Measures 

Erenmemisoglu 

et al.(201) 

STZ-induced 

diabetic Swiss 

albino mice 

Ad libitum (10 

g leaves of 

rosemary in 1 

L boiling 

water) for 3 

months 

↓FPG in 

healthy & 

diabetic 

animals 

↔ creatinine, urea, 

bilirubin, total 

albumin, alkaline 

phosphatase  

Koga et al.(194) STZ-induced 

diabetic male  

ddY mice 

RE aqueous & 

ethanol 20 

mg/kg/day  

↓ plasma 

glucose 

levels  

↓α-glucosidase (AGc) 

Khalil et al.(202) STZ-induced 

diabetic male 

albino rats 

RE aqueous, 

200 mg/kg/day 

for 3 weeks 

↓ FPG ↑vitamin C 

 

Al-jamal.(203)  STZ-induced 

diabetic male 

albino rats 

RE aqueous 

4g/kg/day for 4 

weeks 

↓ FPG (20%) ↓TC, TG, LDL  

↑HDL 

Alnahdi.(204) STZ-induced 

diabetic male 

albino rats  

RE aqueous, 

200 mg/kg/day 

2 weeks prior 

and 3 weeks 

after STZ 

↓FPG 

(36.9%)  

 

↓TC, TG, LDL ↑HDL 

↑hemoglobin levels 

Emam.(205) STZ-induced 

diabetic male 

albino rats 

RE aqueous, 

200 mg/kg/day 

for 21 days 

↓FPG ↓TC 

↓TG 

↑TAC 

Ramadan et 

al.(206) 

STZ-induced 

diabetic male 

albino rats 

RE aqueous, 

200 mg/kg/day 

2 weeks prior 

and 3 weeks 

after STZ  

↓FPG in both 

groups 

↑serum 

insulin  

↑C-peptide  

↓β-cell loss 

↑total albumin 

Soliman.(207) STZ-induced 

diabetic male 

Dawley rats 

Dried rosemary 

leaves powder 

5g/100g of diet 

↓FPG 

(53.97%), 

↓HbA1c 

(24.56 %) 

↓TG (45.43%) 

↓TC (39.31%) 

↓LDL (33.89 %) 

Bakirel et 

al.(208) 

Alloxan-induced 

diabetic rabbits 

RE ethanol, 

200 mg/kg for 

6 hours (acute); 

for 1 week 

(subacute) 

↓FPG in 

healthy and 

diabetic 

rabbits  

↑plasma 

insulin levels 

↓MDA (33.3%) 

↑SOD (24%) 

↑CAT (35%) 

Alhader et 

al.(209) 

Alloxan–induced 

male diabetic 

rabbits 

RE volatile, 25 

mg/kg 

intramuscular 

injection for 

↑serum 

glucose 

levels  

↓ serum 

insulin  
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30, 60 and 120 

min 

Kensara et 

al.(210) 

Alloxan-induced 

Sprague-Dawley 

male albino rats  

20% RE 

aqueous and 

20% RE 

powdered food  

for 45 days 

↓FPG ↓hepatocyte necrosis  

↓small hemorrhages  

↓hepatocyte 

degradation 

Tavafi et 

al.(211) 

Alloxan-induced 

Sprague-Dawley 

uninephrectomized 

rats 

RA 100-200 

mg/kg/day for 

8 weeks 

 ↓glomerulosclerosis 

↓creatinine and urea 

↓glomerular number  

↓serum MDA,  

Nusier et 

al.(212) 

Male adult 

Sprague-Dawley 

rats 

70% RE 

aqueous, 

250 and 500 

mg/kg/day for 

63 days. 

↔ serum 

glucose 

↔ body weight TG, 

TC 

↓alanine 

aminotransferase 

(ALT)  

↓Aspartate 

Aminotransferase 

(AST) 
↓spermatogenesis 

↓testosterone  

↓sperm motility 

Wang et al.(213) Male ob/ob mice CA 

17mg/kg/day  

for 5 weeks  

↓FPG (18%) 

↓OGTT 

glucose 

levels 

↓serum 

insulin (47%) 

↓TC (24%)  

↓TG (60%) 

↓plasma FFA (13%) 

↓hepatic lipids 

↓ALT (64%) 

Ibarra et al.(198) HFD-treated male 

C57BL/6J mice 

RE aqueous, 

containing 

20% CA 

500 mg/kg/day 

for 16 weeks  

↓FPG (72%) 

↔ insulin 

↓body weight 

↑fecal total lipid 

content (1-2 fold) 

↓fat mass 

↓TC (68%) 

↔ TG 

Ninomiya et 

al.(214) 

HFD-(olive oil) 

treated male ddY 

mice 

CA 20 mg/kg 

for 14 days 

COH 200 

mg/kg for 14 

days 

 ↓body weight (7%)  

↑epidydimal fat  

↓pancreatic lipase 

(IC50 12 and 4.4 

μg/ml for CA and 

COH respecively) 

Harach et 

al.(215) 

HFD-treated male 

C57BL/6J mice 

RE 20 or 200 

mg/kg/day for 

50 days 

↔ FPG,  

↔ glucose 

tolerance  

↔ insulin 

 

↓body weight and fat 

mass (64% and 57%) 

↓Hepatic TG (39 %) 

↔ serum TG and TC 

↑fecal lipid excretion  

Al Sheyab et 

al.(216) 

Diet-induced HC 

female BALB/c 

mice 

RE aqueous, 

100 mg/kg/day 

for 36 days 

 ↓TC, TG, LDL 

↑HD 

Afonso et 

al.(217) 

Diet-induced HC 

Wistar rats  

RE aqueous,  

70-140 
mg/kg/day 

 ↓TC (39.8%) 

↓non-HDL (44.4%) 
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RE non-

esterified 

phenolic 7-14 

mg/kg/day of 

for 4 weeks 

Vanithadevi and 

Anuradha(218) 

Fructose-fed (FF) 

Swiss albino mice  

RA 100 

mg/kg/day for 

60 days 

↓FPG levels 

↓HbA1c 

↓OGTT 

glucose 

levels 

↓plasma 

insulin levels 

↑diaphragm glucose 

utilization 

 

Vaquero et 

al.(219) 

Female Zucker lean 

(fa/+) and obese 

(fa/fa) rats  

RE ethanol, 

enriched with 

40% CA for 64 

days  

↔ plasma 

glucose 

levels 

↓insulin 

levels in lean 

animals 

↓TC, TG, LDL 

↑HDL 

↓leptin, TNF-α, IL-1β 

(lean rats) 

↓gastric lipase activity  

 

1.5.3 Evidence of Anti-Hyperglycemic Effects of Rosemary: Human studies 

 

In addition to numerous in vitro cellular studies and in vivo animal studies, RE 

has been recently investigated in humans. Healthy participants were randomly selected 

into 3 groups and treated with 2, 5 or 10g/day of dried rosemary leaf powder for 8 weeks 

(221) (Table 4). Blood samples were taken from participants before and after the study. 

FPG was decreased by 18.25, 15.74 and 11.2% in the 10, 5 and 2g/day group 

respectively. TC levels were significantly decreased by 34.48% in the 10g/day group and 

17.97% and 11.48% in the 5g/day and 2g/day respectively. LDL cholesterol in this group 

was also significantly lowered by 32.28% in the 10g/day treated group and 28.46% and 

15.58 % in the 5g/day and 2g/day respectively. Additionally, HDL cholesterol was 

increased by 22.91% in the 10g/day group and 15.21% and 4.54% in the 5g/day and 

2g/day respectively. Furthermore, triglyceride levels were also decreased by 29.06% in 

the 10g/day group and 21.3% and 14.97% in the 5g/day and 2g/day treated group 

respectively. In addition to the improvement in the overall lipid profile rosemary powder 
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seems to exhibit high antioxidant prosperities by decreasing malonaldehyde (MDA) by 

36.21%, 12.43% and 13.6% in the 10g/day, 5g/day and 2g/day treated groups 

respectively. Glutathione reductase (GR) was decreased by 15.36%, 6.73%, and 0.95% in 

the 10g/day, 5g/day and 2g/day treated groups respectively. Additionally, there have been 

a few studies indirectly examining the effects of rosemary supplements with non-

conclusive results. An observational, prospective, monocenter study examined the effect 

of 21 days of oral supplementation of aqueous RE (containing 77.7 mg RE with 0.97 mg 

COH, 8.60 mg CA, and 10.30 mg RA) in twelve healthy young volunteers found a 

significant decrease in plasminogen activator-inhibitor-1 (PAI-1) levels suggesting that 

RE may have anti-inflammatory and anti-blood clotting activity in vivo (222). Another 

observational study demonstrated that administration of RE and oleanolic acid, (440 mg 

thrice a day for 4 weeks and additional 880 mg twice a day for 4 weeks) in patients with 

osteoarthritis, fibromyalgia, and rheumatoid arthritis, was protective against 

inflammatory rheumatic diseases particularly in those with initial serum c-reactive 

protein (CRP) levels >7.0 mg/L (223).  
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Table 4: Anti-diabetic and antioxidant properties of RE: Human studies 

Reference  Study methodology Treatment  Effect 

Labban et 

al.(221) 

48 healthy individuals Dry rosemary powder  

2, 5 or 10 g/day, for 8 

weeks 

↓FPG 

↓TC ↓LDL, 

↓TG, ↑HDL, 

↓MDA, ↓GR,  

↑vitamin C,  

↑-carotene) 

Sinkovic et 

al.(222) 

12 healthy, young volunteers RE 77.7 mg  

COH 0.97 mg 

CA 8.6 mg 

RA 10.30 mg for 21 

days 

↓ PAI-1 levels 

Lukaczer et 

al.(223) 

 

 

72 patients with rheumatic disease 

including osteoarthritis (OA), 

rheumatoid arthritis (RA) and 

fibromyalgia (FM). 

Meta050 compound 

(RE, oleanolic acid and 

reduced iso-alpha-

acids) 

440 mg/day for 4 

weeks 3 times per day 

880 mg/day for 4 

weeks 2 times per day. 

↓CRP  

↓ arthritis pain 

scores  

↔ 

fibromyalgia 

scores 

 

1.6 Rationale 

 

 Skeletal muscle is quantitatively the most significant target tissue of insulin and 

therefore plays an important role in glucose homeostasis. Impairments in insulin 

signaling in skeletal muscle leads to insulin resistance and T2DM. Increased plasma 

FFAs such as palmitate have been linked to insulin resistance in vitro and in vivo (52). 

Elevated free fatty acids (FFAs) in the blood, as seen in obesity, impair insulin action in 

muscle leading to insulin resistance and Type 2 diabetes mellitus. Serine phosphorylation 

of the insulin receptor and insulin receptor substrates (IRS) reduces insulin-stimulated 

tyrosine phosphorylation and insulin action. Protein kinases including GSK3 (40), JNK 

(41, 42), PKC’s (66), mTOR (45), p70 S6K (47) have been found to be implicated in 
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FFA-induced insulin resistance both in vitro and in vivo. Several studies that used L6 and 

C2C12 skeletal muscle cells have indicated that palmitate elevates ceramide production, 

increases phosphorylation of Ser307 and Ser636/639 of IRS-1 leading to impairment in 

the insulin signaling (52,100). The above mentioned protein kinases can lead to 

phosphorylation of Ser307 and Ser636/639 residues of the IRS-1 which in turns impairs 

the downstream insulin signaling cascade thus significantly reducing the insulin 

stimulated glucose uptake (51). Additionally, studies have found that obese individuals 

with an increased FFA plasma levels have shown a significant reduction in the insulin-

induced glucose uptake (51,224). 

The biological effects of the polyphenols ignited an interest from the scientific 

community to be used as nutraceuticals to counteract different diseases. Rosemary extract 

and rosemary polyphenols have been shown to increase glucose uptake in skeletal muscle 

cells (160,161) and prevented high fat diet-induced insulin resistance in mice (198,213). 

However, the effects of RE and RE polyphenols have never been examined in FFA-

induced insulin resistance in L6 muscle cells. Therefore, the exact mechanism of RE 

action needs to be elucidated by further investigating the key signaling molecules that 

may exhibit antidiabetic properties. Understanding the mechanism is required in order to 

enhance the potential of RE to be used as a preventative/therapeutic treatment strategy for 

insulin resistance type 2 diabetes mellitus. 
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1.7 Hypothesis 
 

In the current thesis we hypothesize that: 

1) Rosemary extract and its polyphenols CA, RA and COH prevent the palmitate-induced 

skeletal muscle insulin resistance.  

2) Rosemary extract ameliorates the palmitate-induced IRS-l Ser307 & Ser636/639 

phosphorylation 

3) Rosemary extract ameliorates the palmitate-induced decrease in insulin-stimulated Akt 

phosphorylation. 

4) Rosemary extract attenuates the FFA-induced increase in JNK, mTOR and p70 S6K. 

5) Rosemary extract increases AMPK activation and AMPK may play a role in the RE 

and RE polyphenol-mediated effects. 

1.8 Significance:  

 Currently there is no cure for diabetes mellitus however the treatment strategy 

usually includes managing and alleviation of the underlying pathological processes with 

life style changes such as regular exercise and healthy diet together with pharmacological 

interventions. Oral medication for the treatment of T2DM include sulfonylureas and 

meglitinides that stimulate insulin release from the β-cells, α-glucosidase inhibitors that 

inhibit intestinal glucose absorption, biuanides and thiazolidinediones that increase 

peripheral glucose transport and inhibit the hepatic glucose output via gluconeogenesis. 

However, despite the different treatment strategies available there is lack of drug efficacy 

which is accompanied by many unwanted side-effects. For instance, metformin, a 
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biguanide drug that is prescribed as a first line of treatment for T2DM is highly 

associated with acidosis and gastrointestinal issues such as diarrhea, nausea, vomiting and 

cramps (225). Overall, there is a continued interest for more effective treatment with less 

side-effects despite the medications available for the management of T2DM. Around 

50% of the affected individuals with T2DM are living in poverty stricken area in Asia 

and Africa. As a result, there is pressing need for a more effective and less expensive 

treatment. The study of novel agents that can exhibit an insulin-like effect, improve 

insulin sensitivity and efficacy of treatment with less adverse effects that will broaden the 

spectrum of preventative and treatment options for T2DM is highly desired. The use of 

plants for healing purposes forms the origin of modern medicine. Moreover, the use of 

phytotherapy has been on the rise in the developed world considering that many 

conventional drugs such as aspirin (from willow tree bark) and morphine (opium poppy) 

as well as metformin (French lilac) have been extracted from plants. Together with the 

limited studies performed in humans, all the available information up to now provide 

evidence of antidiabetic, antioxidant and anti-inflammatory activities of RE in 

streptozotocin-induced diabetic mice (226), rats (205,206,227), alloxan-induced diabetic 

rabbits (228), genetic (229), and dietary (227,230,231) animal models of obesity and 

insulin resistance. The promising findings from in vitro and in vivo models suggest that 

RE and its polyphenols may be used as an agent for the management of diabetes. 

Investigating the effects of RE and RE polyphenols in vitro is needed in order to delineate 

their effects in different cells and tissue types thereby providing more evidence about its 

mechanism of action. On the other hand, clinical trials conducted on humans may be 

required to elucidate their therapeutic potential against insulin resistance.  
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CHAPTER 2: METHODOLOGY  

 

2.1 Materials 

 

Fetal Bovine Serum (FBS), rosmarinic acid, dimethyl sulfoxide (DMSO), o-

phenylenediamine dihydrochloride (OPD) and cytochalasin B, were purchased from 

Sigma Life Sciences (St. Louis, MO). Materials for cell culture were purchased from 

GIBCO Life Technologies (Burlington ON). Anti-c-myc antibodies and Peroxidase-

conjugated Goat anti-rabbit IgG were purchased from Sigma Life Sciences and Jackson 

ImmunoResearch Labs, (West Grove, PA. St. Louis, MO. Mississauga, ON respectively). 

Phospho- and total AMPK, Akt and HRP-conjugated anti-rabbit antibodies were 

purchased from New England BioLabs (NEB) (Missisauga, ON). Insulin (Humulin R) 

was from Eli Lilly (Indianapolis, IN). Compound C and wortmannin were purchased 

from Calbiochem (Gibbstown, NJ, USA). Luminol Enhancer reagents, polyvinylidene 

difluoride (PVDF) membrane, reagents for electrophoresis and Bradford protein assay 

were purchased from BioRad (Hercules, CA). BioRad. [3H]-2-deoxy-D-glucose was 

purchased from PerkinElmer (Boston, MA).  

2.2 Cells  

 

The L6 skeletal muscle cells are an immortalized myogenic cell line obtained 

from rat hindlimb. The cells undertake the process of proliferation when grown in α-

minimum essential media (α-MEM) containing 10% fetal bovine serum (FBS) and 

undergo spontaneous differentiation into multinucleated myotubes by placing them into 

α-MEM containing 2% FBS. L6 skeletal cells can grow in monolayers which makes them 

accessible to biologically active compounds/chemicals rendering them a good model for 
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investigating their effects. Additionally, they express both insulin receptor and insulin-

like growth factor receptor (IGF-1) along with facilitated glucose transporters (GLUTs) 

such as GLUT1, GLUT3 and GLUT4 (241). Throughout the differentiation stage from 

myoblasts to myotubes, the expression of the insulin receptor as well as GLUTs 

transporters increases which results in insulin responsiveness (232,233). After insulin 

treatment, all three GLUTs expressed in the cell undergoing translocation to the cell 

membrane however GLUT4 is the transporter that is greatly affected by the insulin action 

(242). In agreement with the changes in GLUTs expression observed between the 

myoblast and myotube stage, the transport of glucose is also different as the cell 

differentiates. The basal glucose transport is highest in myoblast whereas insulin-induced 

glucose uptake is detected only after cell alignment and further increases as the cells 

differentiate to a myotube phase (243).  

Cells in culture has been extensively used in order to investigate different 

hormonal and metabolic processes. There are several advantages in regards to using cells 

in culture. For instance, the cells in culture are a homogeneous population with small 

intracellular spaces unlike intact tissue preparation in addition to tightly controlled 

external environment and with absence of external factors found in vivo that could 

possibly interfere with the actual effect of the treatment. Furthermore, in vitro models are 

well-recognized when examining numerous acute and chronic treatments. Specifically, in 

this study L6 muscle cells were chosen considering that the palmitate-induced insulin 

resistant model was previously established in our lab. Isolation of human skeletal muscle 

strips are only possible during surgical procedures thus their availability is quite limited. 

In addition, there is a great risk of damaging the membrane integrity after harvesting the 
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muscle tissue (234). In primary cell culture stimulation with physiological concentration 

of insulin was not demonstrated to be effective. Moreover, establishing primary culture 

can be difficult and arduous process. Primary cell culture is not generally used taking into 

consideration that it is extremely sensitive and requires additional nutrients which need to 

be specifically customized for each cell type thereby increasing the cost. 

Other than the L6 muscle cells, C2C12 are also insulin responsive and contain 

GLUT1 and GLUT4 transporters (234). However, the insulin responsiveness and the 

GLUTs content is much lower in comparison to L6 and C2C12 are usually implicated in 

studies that utilize contraction as a form of stimulation (235,236). 

Although L6 muscle cells exhibit similar characteristics to skeletal muscle it is 

important to note that they are not identical. For instance, the actin network of L6 

myotubes does not form the contractile sarcomeres found in skeletal muscle and the fully 

differentiated cells do not replicate the physiological interactions between the cells as 

seen in vivo. Additionally, the insulin-stimulated glucose uptake in L6 is lower compared 

to skeletal muscle (2 fold increase vs 4-5 fold respectively) (237).  

Despite these differences L6 muscle cells exhibit many similarities to skeletal 

muscle (as mentioned above). Therefore, they provide a good model for investigating the 

mechanism of insulin action and different compounds that may affect glucose uptake and 

metabolism.  

2.3 Cell Culture Technique  

L6 muscle cells were grown in a 250 cm3 flasks containing -MEM media (pH 

7.4) supplemented with 10% FBS (v/v), 1% antibiotic-antimycotic cocktail solution (100 
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U/ml penicillin, 100 g/ml streptomycin and 250 ng/ml amphotericin B) and 5mM 

glucose until 60-70% confluency was reached. The myoblasts were then trypsinized, 

counted with a hemocytometer and 100 000-120 000 cells/ml (cells/well) were seeded in 

12 or 6 well tissue culture plates in -MEM containing 10% FBS (v/v) and 1% antibiotic-

antimycotic cocktail solution. The 12 well plate contained 1 ml of cells with media and 

was used for glucose uptake measurements and the 6 well plate contained 2 ml of cells 

with media and was used for western blotting analysis. After the cells reached 100% 

confluency the cells were exposed to a 2% FBS (v/v) and 1% antibiotic-antimycotic 

cocktail containing media solution to allow the myoblasts to differentiate into myotubes. 

Fresh media was introduced every 48 hours and the cells were maintained for 5-6 days 

until becoming fully confluent differentiated myotubes. 

Serum deprivation for 18 hours was performed in all experiments. The rate of the 

basal glucose transport is decreased by serum deprivation (238) thus the cells are not at 

their maximum transport capacity prior to stimulation. As a result, the increase in glucose 

uptake in response to treatment is more detectable.  

After the treatment was completed, the cells were rinsed with HBS followed by 

glucose transport assay or cell lysis for western blotting. Stock solutions of RE and its 

polyphenols such as CA, RA were made by dissolving the powder in sterile DMSO. The 

cells were never exposed to more than 0.1% DMSO. Therefore, in parallel to the 

treatment group, a vehicle-treated group (0.0051% of DMSO) was used as a control. 

Insulin stock solution was prepared in -MEM containing 2% FBS (v/v). Palmitate 

solution was conjugated with fatty acid-free bovine serum albumin (BSA) (Sigma, St. 

Louis, MO)  
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2.4 Preparation of Palmitate Stock 

  

500 mL of distilled water was placed to boil in a 1000 mL size beaker and a water 

bath was pre-warmed at 45 degrees Celsius. 41 mg of palmitic acid was weighed out and 

transferred into a scintillation vial. Cut out Styrofoam was used to allow the vial to float 

on top of the boiling water. In a separate 50 mL vial 1.94g of BSA was dissolved in 20 

mL of distilled water to make up 9.7% BSA solution. The solution was then vortexed and 

placed into a 45-50 degrees Celsius water bath followed by placing the scintillation vial 

containing the palmitic acid into the boiling water. Once the palmitic acid vial is in the 

boiling water 15mL vial containing 0.1 N NaOH was added to the hot water until the 

NaOH solution started to bubble. Once the palmitic acid was melted, 1.6 mL of 0.1 N 

NaOH was transferred into palmitic acid vial and allowed to dissolve. The solution was 

then transferred to a pre-warmed up water bath and allowed to equilibrate. Once the 

solution is in the water bath 18.4 mL of the pre-warmed BSA was quickly added to the 

vial to give a final stock of 8mM of palmitate solution. The final molar ration of free 

palmitate vs BSA was 6:1.  

2.5 Preparation of Rosemary Extract (RE)  

 

Following previously established protocols by the National Cancer Institute of the 

US (223, 226 from Madina) whole dried Rosemary leaves (Rosmarinus officinalis L.) 

(Compliments, Sobey’s Missisauga, ON, Canada) were grounded and passed through a 

mesh sieve. 5 grams of ground leaves were steeped for 16 hours in dichloromethane-

methanol (1:1) (30 mL). Under a slight vacuum the filtrate was collected followed by 

methanol (30 mL) extraction for 30 min. The solvent was removed using rotary 
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evaporator. Aliquots of the extract dissolved in dimethyl sulfoxide (DMSO) were 

prepared (100 g/ml) and were stored at -20˚C (226).  

2.6 Cell Treatment  

L6 myotubes were serum deprived for 18 hours in the absence and presence of 5 

g/ml RE, 2 CA, 5 M RA and 25 M COH for 2 hours followed by treatment with 

0.2 mM of palmitate for 16 hours. Cells were exposed to 100 nM insulin for 0.5 hours. A 

vehicle-treated control (0.0051% of DMSO) was used in parallel with the treated groups.  

2.7 Glucose Uptake Assay  

 

The glucose uptake assay is a radiometric assay measuring the specific GLUT 

transporter-mediated glucose uptake using [3H]-2-deoxy-D-glucose, a non metabolizable 

glucose analog. After the incubation the cells were washed 3 times with HEPES-buffered 

saline solution (HBS) containing 20 mM HEPES, 5mM KCl, 2.5mM MgSO4, 1mM 

CaCl2 and 14mM NaCl, pH 7.4. Following the washing, 2-deoxy-D-glucose uptake 

measurements were performed by exposing the cells to 250µl of HBS containing 10µM 

[3H]-2-deoxy-D-glucose for precisely 10 minutes. Measurements of nonspecific uptake 

of 2-deoxyD-glucose were achieved by exposing the cells to 10µM cytochalasin B 

(GLUT inhibitor). The specific uptake was obtained by subtracting the nonspecific from 

the total uptake (in the absence of cytochalasin B). The glucose uptake was terminated by 

placing the cells on ice followed by washing the cells 3 times with 1 mL of ice cold 0.9% 

NaCl solution and finally lysed with a 1 mL of 0.05N NaOH solution. The cell lysates 

were placed into scintillation vials followed by addition of 10 mL of scintillation fluid. 

The experiments were always performed in triplicates and as many times as indicated in 
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each figure. Radioactivity was measured using a ScintiCount (PerkinElmer) Scintillation 

Counter. The results are shown as percentage of control for each individual experiment.  

2.8 Preparation of Cell Lysates for Western Blotting 

 

L6 muscle cells grown in 6-well plates until differentiated into myotubes. After 

treatment, the cells were rinsed 2 times with PBS and placed on ice. PBS was aspirated 

and followed by addition of 100µl of cell lysis buffer (20mM Tris (pH 7.5), l50 mM 

NaCI, 1 mM EDTA, 1mM EGTA, 1% Triton X-100, 2.5mM sodium pyrophosphate, 1 

mM p-glycerolphosphate, 1 mM Na3V04, 1 g/ml leupeptin, add 1 mM PMSF before 

use and chill on ice) to each well. The cell lysates were collected into 1.5 mL eppendorf 

tube, protein assay was performed along with addition of equal amount of sodium 

dodecyl sulfate (SDS) buffer (62.5 mM Tris-HCI (pH 6.8), 2% w/v SDS, 10% glycerol, 

0.01 % bromophenol blue, add 0.05% p-mercaptoethanol before use). The lysates were 

then boiled for 5 minutes and stored in -20 °C.  

2.9 Protein Assay  

 

Protein assay dye was purchased from BioRad and used to determine protein 

concentration on cell lystes. BSA protein standards were used in order to create a 

standard protein curve including 0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0 mg/ml. Measurements 

were performed in triplicates where 10µl of each protein standard and lysed sample were 

pipetted into separate wells of a 96 well plate following by addition of 200µl of protein 

assay dye in each well. The plate was incubated at room temperature for 5 minutes which 

was followed by absorbance measurements in a microplate reader at 595nm. The final 
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concentration of the protein samples was calculated using Microsoft Excel and was used 

to determine the loading the same amount of protein during western blot analysis. 

2.10 Western Blot Analysis  

 

After treatment, the cells were washed three times with HBS and lysed with lysis 

buffer containing 150mM NaCI, 20mM Tris (pH 7.5), 1mM EDTA, 1% Triton X-100, 

1mM EGTA 2.5mM NA407P2, 1mM Na3V04 1Mm, β-glycerolphosphate, 1mM PMSF, 

1µg/ml leupeptin. The cells were scraped off and solubilized in electrophoresis (running) 

buffer which was followed by separation by sodium dodecyl sulfate (SDS) 

polyacrylamide gel (10%) electrophoresis. Each sample loaded contained 15 g/ml of 

protein. The samples were then transferred electrophoretically to PVDF membranes. The 

membranes were placed in 5% (w/v) nonfat dry milk in Tris-buffered saline blocking 

followed by overnight incubation with primary antibody at 4°C. The total and 

phosphorylated forms of the proteins were detected by immunoblotting on separate 

PVDF membranes. The primary antibody were detected by HRP-conjugated antirabbit 

secondary antibody (1:2000). LumiGLOW reagent purchased from New England Biolabs 

and Alpha Innotech FluorChem (quantitative imaging system for fluorescent and 

chemiluminescent blots (Johannesburg, S.A) were used to develop the blots. The 

densitometry of the bands, expressed in arbitrary units, was calculated using image J. The 

results are shown as percentage of control for each individual experiment. 

2.11 Statistical Analysis 

  

Statistical analysis was completed using GraphPad Prism software 5.3. The data 

from several experiments were pooled and presented as mean ± standard error (SE). The 
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means of all the groups were obtained and compared to the control group using one-way 

analysis of variance (ANOVA) which was followed by Tukey’s post hoc test for multiple 

comparison. 

CHAPTER 3: RESULTS 

 

3.1 Rosemary extract restores the insulin-stimulated glucose uptake in palmitate 

treated muscle cells 

 

 The effects of the free-fatty acid palmitate on insulin-stimulated glucose uptake in 

L6 myotubes was examined. Acute insulin stimulation (100 nM, 30 min) of the myotubes 

significantly increased the [3H]-2-deoxy-D-glucose uptake (201±1.21% of control, 

P<0.001, Figure 4). Exposure of the cells to palmitate (0.2 mM, 16 hours) resulted in 

significant reduction of insulin-stimulated glucose uptake (117±15.6% of control) which 

indicates insulin resistance. Exposure of the cells to RE (5 g/ml) alone resulted in 

significant increase in [3H]-2-deoxy-D-glucose uptake (208±15.6% of control, P<0.001). 

Most importantly in palmitate-treated cells, exposure to RE resulted in significant 

restoration of insulin stimulated glucose uptake (179±10.5% of control, P<0.001, Figure 

4). These data clearly indicate that the negative effect imposed by palmitate treatment is 

significantly ameliorated in the presence of RE. In addition, treatment with palmitate 

alone did not have any effect on the basal glucose uptake in comparison to the control 

group (103±2.7% of control) (Figure 4).  
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Figure 4: Rosemary extract restores insulin-stimulated glucose uptake in palmitate 

treated muscle cells. Fully differentiated myotubes were treated without (control, C) or 

with 5 g/ml rosemary extract (RE) for 2 hours followed by treatment without or with 0.2 

mM of palmitate (P) for 16 hours and stimulation without or with 100 nM insulin (I) for 

30 min. [3H]-2-deoxy-D-glucose uptake measurements were performed as indicated in 

the method section. The results are the mean of 4-7 independent experiments, each 

performed in triplicate and expressed as percent of control (*** P<0.001 vs. control, ### 

P<0.001 vs. insulin alone).  

3.2 Rosemary extract prevents the palmitate-induced Ser307 and Ser636/639 

phosphorylation of IRS-1. 

 

After we established insulin resistance at the glucose uptake level, we investigated 

the effects of palmitate and RE downstream of the insulin receptor therefore the 

phosphorylation and expression of the IRS-1 was examined. Previous in vitro studies 

conducted in L6 muscle cells and rat muscle in vivo have indicated that increased 

phosphorylation levels of Ser307 and Ser636/639 of IRS-1 leads to impairment in the 
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insulin signaling leading to insulin resistance (64,94). We investigated the 

phosphorylation of the IRS-1 protein on Ser307 and Ser636/639 residues using specific 

antibodies. Exposure of L6 myotubes to 0.2 mM palmitate resulted in significant increase 

in Ser307 and Ser636/639 phosphorylation of IRS-1 (199.4±24.98%, 162±6.74% of 

control, P<0.001, P<0.01 respectively) (Figure 5). Treatment with 5 g/ml RE did not 

have any effect on the basal Ser307 or Ser636/639 phosphorylation (118±11.24%, 

105±3.51% of control respectively) but completely abolished the palmitate-induced 

increase in Ser307 and Ser636/639 phosphorylation of IRS-1 (108±16.91% of control and 

107±7.32% of control). The total levels of IRS-1 were not impacted by the treatments (P: 

103.3±8.63, RE: 98.82±13.21, RE+P: 108±9.33) (Figure 5). These data indicate that 

exposure to palmitate significantly increased serine phosphorylation of IRS-1 and 

treatment with RE completely abolished this effect. 
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Figure 5: Effects of palmitate and RE on IRS-l expression and Ser307, Ser636/639 

phosphorylation. Fully differentiated myotubes were treated without (control, C) or with 

5 g/ml RE for 2 hours followed by treatment without or with 0.2 mM of palmitate (P) 

for 16 hours and stimulation without or with 100 nM insulin (I) for 15 min. After 

treatment, the cells were lysed and SDS-PAGE was performed, followed by 

immunoblotting with specific antibodies that recognize phosphorylated (Ser307, 

Ser636/639) or total IRS-1. A representative immunoblot is shown. The densitometry of 

the bands, expressed in arbitrary units, was calculated using image J. The values are the 

mean ± SE of three separate experiments (*** P<0.001, ** P<0.01 vs. control, ### 

P<0.001 vs. palmitate alone). 

3.3 Rosemary extract restores the insulin-stimulated Akt phosphorylation in 

palmitate treated myotubes 

 

Next we investigated the effect of palmitate on insulin stimulated Akt 

phosphorylation and expression in the absence or presence of RE. Treatment of L6 

myotubes with insulin resulted in a significant increase in Akt Ser473 and Thr308 

phosphorylation (I: 312±19.21 and 289±23.12% of control respectively, p<0.001) as 

established by our group and others (162,161,239,234). Treatment of the cells with 

palmitate significantly attenuated the insulin-stimulated Akt phosphorylation on Ser473 

and Thr308 residues (P+I: 121.9±31.30 and 131±35.90% of control respectively, 

p<0.001) (Figure 6) which is in accordance with other studies (100). Palmitate and RE 

alone did not have any effect on the basal Ser473 or Thr308 Akt phosphorylation (P: 

98.2±3.02, 95±6.20, RE: 103±4.10, 105±6.2%, RE+P: 109.1±9.06, 111±5.92% of 

control, respectively). However, in the presence of RE, the decline in the insulin-
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stimulated Akt phosphorylation on Ser473 and Thr308 with palmitate was completely 

prevented (RE+P+I: 346.7±66 and 312±30.31% of control respectively, P<0.001 (Figure 

6). The total levels of Akt were not significantly affected by any of the treatments (I: 

108±8.4, P: 99 ± 5.9, P+I: 101±11.6, RE: 94±5.72, RE+P: 93.6±7.2, RE+P+I: 93±15.23% 

of control) (Figure 6). 
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Figure 6: Effects of palmitate and RE on Akt expression and Ser473 and Thr308 

phosphorylation. Fully differentiated myotubes were treated without (control, C) or with 

5 g/ml rosemary extract (RE) for 2 hours followed by treatment without or with 0.2 mM 

of palmitate (P) for 16 hours and stimulation without or with 100 nM insulin (I) for 15 

min. After exposure to treatment, the cells were lysed and SDS-PAGE was performed, 

followed by immunoblotting with specific antibodies that recognize phosphorylated 

Ser473, Thr308 or total Akt. A representative immunoblot is shown. The densitometry of 

the bands, expressed in arbitrary units, was calculated using image J. The values are the 

mean ± SE of three separate experiments (*** P<0.001 vs. control, ### P<0.001 vs. 

insulin alone). 

3.4 Rosemary extract prevents the palmitate-induced phosphorylation of JNK in L6 

myotubes 

 

Following the establishment that chronic exposure to palmitate increases the 

phosphorylation of Ser307 and Ser636/639 of IRS-1, we examined the signaling 

molecules that may be involved in the process. JNK is a serine/threonine kinase shown to 

increase serine phosphorylation of IRS-1 and involved in insulin resistance (83,87). We 

hypothesized that the levels of JNK phosphorylation and/or expression would be 

increased by palmitate. Indeed, exposure of the cells to palmitate (0.2 mM) significantly 

increased JNK phosphorylation (250±9.77% of control, P<0.001) and prior treatment 

with RE completely abolished the palmitate-induced phosphorylation of JNK 

(114±12.90% of control, P<0.001) (Figure 7). RE alone did not have any impact on the 

phosphorylation of JNK (98±7.44% of control). Moreover, the total levels of JNK were 
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not significantly changed by any treatment: P: 107 ±7.21, RE: 104±7.53 and RE+P: 

105±8.76% of control (Figure 7). 
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Figure 7: Effects of palmitate and RE on JNK expression and phosphorylation. 

Fully differentiated myotubes were treated without (control, C) or with 5 g/ml RE 

followed by treatment without or with 0.2 mM of palmitate (P) for 16 hours. After 

exposure to treatment, the cells were lysed and SDS-PAGE was performed, followed by 

immunoblotting with specific antibodies that recognize phosphorylated Thr183/Tyr185 or 

total JNK. A representative immunoblot is shown. The densitometry of the bands, 

expressed in arbitrary units, was calculated using image J. The values are the mean ± SE 

of three separate experiments (*** P<0.001 vs. control, ### P<0.001 vs. palmitate alone). 

3.5 Rosemary extract prevents the palmitate-induced phosphorylation of mTOR in 

L6 myotubes 

 

Another kinase implicated in serine phosphorylation of IRS-1 is mTOR. 

Therefore, we examined the effects of palmitate on mTOR Exposure to palmitate 0.2 mM 

significantly increased mTOR phosphorylation (403±85.60% of control, P< 0.001) 

(Figure 8). RE completely abolished the palmitate-induced phosphorylation of mTOR 

(60±20.53% of control, P<0.001). RE alone did not have any impact on the 

phosphorylation of mTOR (104±13.71% of control). The total levels of mTOR were not 

significantly changed by the treatments: P: 104±3.01, RE: 93±2.44, and RE+P: 

88±3.85% of control (Figure 8). 
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Figure 8: Effects of palmitate and RE on mTOR expression and phosphorylation. Fully 

differentiated myotubes were treated without (control, C) or with 5 g/ml RE for 2 hours 

followed by treatment without or with 0.2 mM of palmitate (P) for 16 hours. After 

exposure to treatment, the cells were lysed and SDS-PAGE was performed, followed by 

immunoblotting with specific antibodies that recognize phosphorylated Ser2448 or total 

mTOR. A representative immunoblot is shown. The densitometry of the bands, expressed 

in arbitrary units, was calculated using image J. The values are the mean ± SE of three 

separate experiments (*** P<0.001 vs. control, ### P<0.001 vs. palmitate alone). 

3.6 Rosemary extract prevents the palmitate-induced phosphorylation of p70 S6K in 

L6 myotubes 

 

We further investigated the effect of palmitate on p70 6SK phosphorylation and 

expression a downstream effector of mTOR, implicated in serine phosphorylation of IRS-

1 and insulin resistance. Myotubes exposed to 0.2 mM palmitate significantly increased 

p70 S6K phosphorylation levels (200±42.55% of control, P<0.001) (Figure 9). Treatment 

with RE prevented the palmitate-induced phosphorylation of p70 S6K (90±7.11% of 

control, p<0.001). RE alone did not have any effect on the phosphorylation of p70 6SK 

(82.12±6.04% of control). The total levels of p70 S6K were not affected by any of the 

treatments (P: 105±5.83, RE: 97 ± 2.21, and RE+P: 92.22 ± 4.23% of control (Figure 9). 
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Figure 9: Effects of palmitate and RE on p70 S6K expression and phosphorylation. 

Fully differentiated myotubes were treated without (control, C) or with 5 g/ml RE for 2 

hours followed by treatment without or with 0.2 mM of palmitate (P) for 16 hours. After 

exposure to treatment, the cells were lysed and SDS-PAGE was performed, followed by 

immunoblotting with specific antibodies that recognize phosphorylated Thr389 or total 

p70 S6K. A representative immunoblot is shown. The densitometry of the bands, 

expressed in arbitrary units, was calculated using image J. The values are the mean ± SE 

of three separate experiments (*** P<0.001 vs. control, ### P<0.001 vs. palmitate alone). 

3.7 Rosemary extract stimulates the phosphorylation of AMPK in the presence of 

palmitate 

 

Previous studies by our group showed that rosemary extract and its polyphenols 

CA and RA increase glucose uptake and this effect may be mediated through AMPK 

(160–162). We investigated the chronic effect of RE on the phosphorylation of AMPK. 

Our results indicate that chronic treatment with RE with 5 g/ml significantly increased 

phosphorylation of AMPK (295±26.94% of control, P<0.001) (Figure 10). Most 

importantly, RE increases phosphorylation of AMPK even in the presence of 0.2 mM of 

palmitate (270±22.54% of control, P<0.001). Treatment with palmitate alone did not have 

any have a significant effect on the phosphorylation of AMPK (150±14.32% of control). 

Furthermore, the total levels of AMPK were not affected by any of the treatments (P: 

103±8.63, RE: 99±13.21, and RE+P: 108±9.33% of control) (Figure 10). 
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Figure 10: Effects of palmitate and RE on AMPK expression and phosphorylation. 

Fully differentiated myotubes were treated without (control, C) or with 5 g/ml RE for 2 

hours followed by treatment without or with 0.2 mM of palmitate (P) for 16 hours. After 

exposure to treatment, the cells were lysed and SDS-PAGE was performed, followed by 

immunoblotting with specific antibodies that recognize phosphorylated Thr172 or total 

AMPK. A representative immunoblot is shown. The densitometry of the bands, expressed 

in arbitrary units, was calculated using image J. The values are the mean ± SE of three 

separate experiments (*** P<0.001 vs. control). 

3.8 Carnosic acid, a polyphenol in rosemary extract, restores the insulin-stimulated 

glucose uptake in palmitate treated muscle cells 

 

 The effects of carnosic acid on insulin-stimulated glucose uptake in palmitate 

treated L6 myotubes were examined. Stimulation with insulin (100 nM, 30 min) resulted 

in two-fold increase in [3H]-2-deoxy-D-glucose uptake (203±2.3% of control, P<0.001) 

(Figure 11). Exposure to palmitate (0.2 mM) alone did not affect the basal glucose uptake 

(105±3.0 of control). The acute insulin response was significantly decreased in the 

palmitate-treated cells (118±4.9% of control) (Figure 11). Exposure to carnosic acid (CA) 

(2 M) alone significantly increased glucose uptake (212±21.1% of control, P<0.001). 

Most importantly, the presence of CA significantly restored the insulin-stimulated 

glucose uptake (185±7.8% of control, P<0.001) in palmitate treated cells (Figure 11). 

These data indicate that the negative effects of palmitate were prevented in the presence 

of carnosic acid. 
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Figure 11: Carnosic acid, a polyphenol in rosemary extract, restores insulin-

stimulated glucose uptake in palmitate treated muscle cells. Fully differentiated 

myotubes were treated without (control, C) or with 2 M CA for 2 hours followed by 

treatment without or with 0.2 mM of palmitate (P) for 16 hours and stimulation without 

or with 100 nM insulin (I) for 30 min. [3H]-2-deoxy-D-glucose uptake measurements 

were performed as indicated in the method section. The results are the mean of 4-7 

independent experiments, each performed in triplicate and expressed as percent of control 

(***P<0.001 vs. control). 

3.9 Rosmarinic acid, a polyphenol found in rosemary extract restores the insulin-

stimulated glucose uptake in palmitate treated muscle cells 

 

The effects of rosmarinic acid on insulin-stimulated glucose uptake in palmitate 

treated L6 myotubes were examined. Stimulation with insulin (100 nM, 30 min) resulted 

in two-fold increase in [3H]-2-deoxy-D-glucose uptake (198±3.0% of control, P<0.001) 

(Figure 12). Exposure to palmitate (0.2 mM) alone did not affect the basal glucose uptake 

(103±2.0 of control). The acute insulin response was significantly decreased in the 
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palmitate-treated cells (116±5.0% of control). Exposure to rosmarinic acid (RA) (5 M) 

alone significantly increased glucose uptake (177±6.8% of control, P<0.001). Most 

importantly, the presence of RA significantly restored the insulin-stimulated glucose 

uptake (181±14.5% of control, P<0.001) in palmitate treated cells (Figure 12). These data 

indicate that the negative effects of palmitate were abolished in the presence of 

rosmarinic acid. 

 

Figure 12: Rosmarinic acid, a polyphenol in rosemary extract, restores insulin-

stimulated glucose uptake in palmitate treated muscle cells. Fully differentiated 

myotubes were treated without (control, C) or with 5 M RA for 2 hours followed by 

treatment without or with 0.2 mM of palmitate (P) for 16 hours and stimulation without 

or with 100 nM insulin (I) for 30 min. [3H]-2-deoxy-D-glucose uptake measurements 

were performed as indicated in the method section. The results are the mean of 4-7 
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independent experiments, each performed in triplicate and expressed as percent of control 

(***P<0.01). 

3.10 Carnosol, a polyphenol found in rosemary extract restores the insulin-

stimulated glucose uptake in palmitate treated muscle cells 

 

The effects of carnosol (COH) on insulin-stimulated glucose uptake in palmitate 

treated L6 myotubes were examined. Stimulation with insulin (100 nM, 30 min) resulted 

in two-fold increase in the [3H]-2-deoxy-D-glucose uptake (202±3.0% of control, 

P<0.001) (Figure 13). Exposure to palmitate (0.2 mM) alone did not affect the basal 

glucose uptake (103±2.0 of control). The acute insulin response was significantly 

decreased in the palmitate-treated cells (117±4.9% of control). Exposure to COH (25 

M) alone significantly increased glucose uptake (209±18.2% of control, P<0.001). Most 

importantly, the presence of COH significantly restored the insulin-stimulated glucose 

uptake (208±23.0% of control, P<0.001) in palmitate treated cells (Figure 13). These data 

indicate that the negative effects of palmitate were abolished in the presence of carnosol. 

 



Inhibition of Free fatty acid-Induced Insulin Resistance by Rosemary Extract 

79 
 

Figure 13: Carnosol, a polyphenol in rosemary extract, restores insulin-stimulated 

glucose uptake in palmitate treated muscle cells. Fully differentiated myotubes were 

treated without (control, C) or with 25 M COH for 2 hours followed by treatment 

without or with 0.2 mM of palmitate (P) for 16 hours and stimulation without or with 100 

nM insulin (I) for 30 min. [3H]-2-deoxy-D-glucose uptake measurements were performed 

as indicated in the method section. The results are the mean of 4-7 independent 

experiments, each performed in triplicate and expressed as percent of control 

(***P<0.001). 

CHAPTER 4: DISCUSSION 
 

4.1 Rosemary extract ameliorates palmitate-induced insulin resistance 

 

Obesity and elevated FFAs are highly correlated with insulin resistance and are 

major risk factors for the development of type 2 diabetes mellitus (51). Therefore, the 

development of therapeutic agents to combat FFA-induced insulin resistance would be 

beneficial. Previous studies have shown that the FFA palmitate induces insulin resistance 

in skeletal muscle cells (52,240,126,127). Exposure of L6 myotubes to 0.2 mM palmitate 

significantly decreased the insulin-stimulated glucose uptake. Similarly, studies have 

shown that exposure of L6 to 0.2 mM for 18 hours decreased the insulin-stimulated 

glucose uptake indicating insulin resistance (52,240). The palmitate concentration used in 

the present study was 0.2 mM and our data are in agreement with other studies where 

similar palmitate concentrations induced insulin resistance (52,126) (Figure 4, 11-13).  

Most importantly, in the presence of rosemary extract (RE), carnosic acid (CA), 

rosmarinic acid (RA) and carnosol (COH) the palmitate-induced insulin resistance was 
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prevented and the insulin-stimulated glucose uptake was restored to levels comparable to 

the response seen with insulin alone (Figure 4, 11-13).  

Considering the fact that 80% of postprandial glucose uptake is attributed to 

skeletal muscle, new, more affordable interventions that may improve glucose transport 

in this tissue is highly desirable. Recent studies have shown that rosemary extract (RE) 

and rosemary extract polyphenols, increase glucose uptake in vitro (160–162,188,199). 

The effect of RE and its polyphenols were previously examined in healthy muscle cells 

(160–162). However, their effect on palmitate-induced insulin resistant L6 muscle cells 

were never investigated. Our study is the first to show that RE and RE polyphenols 

prevented palmitate-induced insulin resistance in L6 muscle cells.  

4.2 Investigating the Mechanism of Action of RE and its Polyphenols in Insulin 

Resistant Myotubes  

 

In the present study we found that exposure of L6 cells to 0.2 mM palmitate for 

16 hours increased Ser307 and Ser636/639 phosphorylation of IRS-1 (Figure 5). These 

data are in agreement with other studies (61,59,55,74,241). Exposure of L6 muscle cells 

to 0.75 mM palmitate for 16 hours resulted in significant increase of Ser307 and 

Ser636/639 phosphorylation on IRS-1 (126). Similarly, exposure of L6 to 0.5 mM 

palmitate for 16 hours significantly increased Ser307 of IRS-1 (241). Exposure of C2C12 

myotubes to 0.75 mM palmitate for 16 hours also increased Ser307 phosphorylation of 

IRS-1 (242). Apart from these in vitro studies, in vivo animal studies have shown 

increased serine phosphorylation of IRS-1 by elevated fatty acids that correlate with 

insulin resistance. Administration of high-fat/high-carbohydrate diet ad libitum in mice 

resulted in increase of Ser307 phosphorylation of IRS-1 in muscle tissue (61). 

Additionally, administration of HFD for 16 weeks in mice resulted in increase in 
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Ser636/639 phosphorylation of IRS-1 in muscle and adipose tissue (74). Similarly, in 

mice fed with high fat diet for 10 weeks the phosphorylation of Ser307 and Ser636/639 

was markedly increased in muscle and adipose tissue (59). These serine residues on 

IRS-1 have been associated with a reduced function of insulin stimulated IRS-1 and 

more specifically by a decreased association between IRS-1 and PI3K, downstream 

activation of the insulin signaling cascade and glucose uptake (55). The serine residues 

are located towards the end of the phosphotyrosine binding domain of IRS-1 and 

moderate the interaction of IRS-1 with the insulin receptor (55,69). The association of 

the insulin receptor and IRS-1 is significantly lowered once IRS-1 becomes 

phosphorylated on its serine residues. Exposure to RE completely restored the insulin-

stimulated glucose uptake in palmitate-induced insulin resistant muscle cells. These 

findings are the first to show that exposure of the cells to RE and its polyphenols are 

associated with a prevention of the palmitate-induced insulin resistance and restoration 

of the insulin response in L6 muscle cells. These data are in agreement with other 

studies where metformin, the first line of treatment for T2DM, decreased the 

palmitate-induced Ser307 phosphorylation of IRS-1 in L6 muscle cells (154). 

Furthermore, our data showed that exposure of the cells to 0.2 mM palmitate 

for 16 hours significantly attenuated the insulin-stimulated phosphorylation of Akt 

(Figure 6). Our data is in agreement with other studies (100,243–247). Exposure of 

3T3-L1 adipocytes to 0.75 mM palmitate for 16 hours significantly attenuated the 

insulin-stimulated phosphorylation of Akt (243). Exposure of L6 myotubes to 0.75 mM 

palmitate resulted in abolishment of insulin-stimulated phosphorylation of Akt (100). 

Similarly, exposure of C2C12 cells to 0.5 mM palmitate for 16 hours resulted in a 
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significant decrease in insulin-stimulated phosphorylation of Akt (245). The above 

mentioned in vitro studies are also in agreement with in vivo studies. Namely, 

administration of high fat diet in C57BL/6 mice for 8 weeks significantly decreased the 

insulin-stimulated phosphorylation of Akt in liver tissue (246). Similarly, administration 

of high fat diet in mice significantly attenuated the insulin-induced phosphorylation of 

Akt in isolated soleus muscle (247). Exposure of the cells to RE restored the palmitate-

induced attenuation of the insulin response (Figure 6). These findings are the first to 

show that treatment with RE is associated with a complete restoration of the insulin 

action in palmitate-induced insulin resistance L6 muscle cells. These data are in 

agreement with other studies where treatment with metformin abolished the palmitate-

induced attenuation of Akt in L6 muscle cells (244). 

Exposure of L6 muscle cells to 0.2 mM for 16 hours palmitate significantly 

increased the phosphorylation of JNK (Figure 7). Our data is in agreement with the 

previous studies (83,87,248,249,249,250). Treatment of L6 muscle cells with 0.75 mM 

palmitate significantly increased the phosphorylation of JNK (248). Similarly, in C2C12 

muscle cells, treatment with 0.5 mM palmitate for 12, 24 and 36 hours significantly 

increased the phosphorylation of JNK (250). Additionally, in primary human myotubes, 

treatment with 0.4 mM palmitate for 12 hours significantly increased the phosphorylation 

of JNK. Exposure of 3T3-L1 adipocytes to 0.5 mM palmitate for 12 hours significantly 

increased the phosphorylation of JNK (249). In rats fed with high lipid containing 

western diet for 10-30 days the phosphorylation of JNK was significantly increased in 

hepatic, adipose and muscle tissue (83). Additionally, in C57BL/6J mice lipid infusion 

significantly increased the phosphorylation of JNK in muscle tissue (251). Furthermore, 
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in Swiss mice fed with fat-rich diet for 8 weeks, the phosphorylation of JNK was 

markedly increased (252). On the other hand, in mice that underwent targeted mutation of 

the JNK locus in order to abolish JNK expression, high fat diet-induced insulin resistance 

was completely prevented (87). All these findings are in agreement with our study and 

indicate that JNK phosphorylation by FFA is associated with insulin resistance. More 

importantly, exposure of the cells to RE significantly attenuated the palmitate-induced 

phosphorylation of JNK (Figure 7). These findings are the first to show that exposure 

of the cells to RE are associated with a decrease in the palmitate-induced 

phosphorylation of JNK in L6 muscle cells. Moreover, these data are also in agreement 

with other studies where quercetin, a polyphenol from the flavonoid group, 

significantly attenuated the palmitate-induced phosphorylation of JNK in L6 muscle 

cells and in muscles obtained from an ob/ob mice (248). 

Furthermore, exposure of L6 cells to 0.2mM palmitate significantly increased the 

phosphorylation of mTOR and its downstream effector p70 6SK (Figure 8 and 9). Our 

data is in agreement with previous studies (253–256,249). Exposure of L6 myotubes to 

0.4 mM palmitate for 4 hours increased the phosphorylation of mTOR and its 

downstream effector p70S6K (253). Similarly, exposure of C2C12 myotubes to 0.75 mM 

palmitate for 18 hours significantly increased the phosphorylation of mTOR and p70 S6K 

(254). Exposure of 3T3-L1 adipocytes to 0.5 mM palmitate for 12 hours significantly 

increased the phosphorylation of mTOR and its downstream effector p70 S6K (249). 

Chronic consumption of high fat diet in Sprague-Dawley rats for 8 weeks resulted in a 

significant increase in phosphorylation of mTOR in skeletal muscle (253). Similarly, in 

C57BL/6 mice administration of high fat diet for 8 weeks resulted in a significant 
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increase in mTOR and p70 S6K phosphorylation in skeletal muscle (255). The studies 

above are in agreement with our study indicating increased mTOR and p70 S6K 

phosphorylation by FFA that is associated with insulin resistance. More importantly, 

exposure of the cells to RE significantly attenuated the palmitate-induced 

phosphorylation of mTOR and p70 S6K (Figure 8 and 9). These findings are the first to 

show that RE is associated with a decrease in palmitate-induced phosphorylation of 

mTOR and p70 S6K in L6 muscle cells. Furthermore, these data are in agreement with 

other studies where treatment with metformin reversed the palmitate-induced increase in 

mTOR and p70 S6K in C2C12 muscle cells (256). 

Furthermore, we investigated the total and phosphorylated levels of AMPK. 

Previously, we found that treatment of L6 myotubes with RE, CA and RA significantly 

increased the phosphorylation of AMPK (160–162). In the present study, we found that 

0.2 mM palmitate for 16 hours did not significantly increase the levels of AMPK (Figure 

10). These findings are in agreement with previous studies (256,257). Therefore, we 

proceeded to examine the effects of RE in the presence of palmitate in muscle cells. 

Exposure of the cells to RE significantly increased the phosphorylation of AMPK even in 

the presence of palmitate (Figure 10). These effects of RE are similar to the effects of 

metformin. Metformin significantly increased the phosphorylation of AMPK in the 

presence of palmitate in C2C12 and L6 muscle cells (244,256). Another study in L6 

found that metformin ameliorates palmitate-induced insulin resistance through AMPK 

activation and suppression of sterol regulatory element-binding protein-1c (SREBP-1c), a 

transcription factor involved in fatty acids synthesis (244). AMPK is a known inhibitor of 

SREBP (258) therefore RE as an activator of AMPK may also supress the promoter 
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activity of SREBP and ameliorate FFA-induced insulin resistance. Furthermore, studies 

have indicated that activation of AMPK significantly lowers the activity of mTOR and its 

downstream effector p70 S6K (259,260). AMPK may directly affect mTOR by 

phosphorylation of the TSC2 and raptor leading to inhibition in its kinase activity 

(110,261). This process is attained by the increase in TSC activity via AMPK 

phosphorylation which in turn drives the intrinsic GTPase activity of Rheb towards the 

GDP-bound form (110,261). Considering that treatment with RE causes phosphorylation 

of AMPK, this may be the mechanism by which RE attenuates the palmitate-induced 

phosphorylation of mTOR and p70 S6K in muscle cells. The AMPK pathway has been 

viewed as an appealing target for the treatment/prevention of insulin resistance and 

T2DM. The role that AMPK plays in mediating the effects of RE and RE polyphenols 

may need further investigations such as using inhibitor of AMPK (Compound C) or 

siRNA techniques. If indeed AMPK plays a major role in the positive effects observed in 

RE and RE polyphenols treated palmitate-induced insulin resistant cells then inhibition of 

AMPK would diminish the effects of the polyphenols, returning the L6 myotubes to their 

initial insulin resistant state. 

It should be noted that exposure to RE alone resulted in 2-fold increase in AMPK 

phosphorylation compared to control. 

Given that AMPK activation can occur by an increase in the AMP: ATP ratio as 

well as activation of its upstream kinases LKB1 and CaMKK it is important to elucidate 

whether these upstream kinases are the mechanisms by which the bioactive compounds 

of RE activate AMPK. Currently, there are no studies that investigated the effects of RE 

and its polyphenols on the mechanism of AMPK activation. RE and RE polyphenols may 
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allosterically moderate the activity of AMPK, increase the activity of its upstream kinases 

including LKB1 and CaMKK (262,263) or lead to an increase in the AMP: ATP ratios as 

a result to inhibition of the mitochondrial complex 1. Studies have demonstrated that 

metformin significantly inhibits the mitochondrial complex 1 (153,157,264) thereby 

activating AMPK. A recent study has indicated that in the absence of fructose 1,6 

biphosphate (FBP), a glycolytic intermediate, the interaction between aldolase and the 

vacuolar-ATPase on the lysosomal surface is altered which leads to creation of AXIN-

based AMPK-activation complex that causes activation of AMPK (265). If the process of 

glycolysis is inhibited by RE, the production of FBP will be decreased which would lead 

to activation of AMPK. On the other hand, if RE indeed inhibits glycolysis and possibly 

acting as a calorie restrictor thereby increasing the AMP: ATP ratios the levels of 

phosphorylated AMPK will also be increased. 

To our surprise, exposure of the cells to RE and palmitate did not have a 

significant effect on the glucose uptake indicating that in the presence of palmitate not 

only the acute insulin response was abolished but also the effect of RE is attenuated 

(Figure 4). It should be noted that RE in the presence of palmitate, resulted in a 

significant increase in AMPK phosphorylation and our data indicate that this increase 

was enough to abolish palmitate-induced phosphorylation of mTOR and p70 S6K leading 

to decrease in serine phosphorylation of IRS-1 but not sufficient to increase the glucose 

uptake in the cells (Figure 10, RE+P increased AMPK phosphorylation, Figure 4: RE+P 

no significant increase in glucose uptake). We have investigated previously the effects of 

RE, CA and RA on glucose transporters in GLUT4 and GLUT1 overexpressing cells and 

found no effect on glucose transporter translocation (160–162) and we had proposed that 
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RE, RA and CA may increase glucose uptake by affecting GLUT3 translocation or by 

affecting glucose transporter activity. The lack of a significant increase in glucose uptake 

by RE in the presence of palmitate (Figure 4: RE+P) indicates that palmitate may affect a 

signaling step downstream of AMPK such as TBC1D1 that prevents the increase in 

glucose transporter activity/glucose uptake. 

A limited number of studies have also examined the antidiabetic effects of RE 

and its polyphenols in vivo. In high fat diet-induced diabetic mice, administration of 

RE significantly decreased the fasting plasma glucose levels (72%), decreased total 

cholesterol (68%), total fat fecal excretion (1-2 fold) and body weight thereby 

improving the lipid profile of the mice (230). Another study found that RE enriched 

with CA significantly ameliorated the high fat diet induced obesity and metabolic 

syndrome in mice (266). Administration of RE enriched with CA in obese rats resulted 

in significant attenuation of TNF and interleukin 1 indicating anti-inflammatory 

effects of RE (267). Moreover, several other studies showed that dietary 

supplementation of RE enriched with CA resulted in body weight and epidydimal fat 

reduction (214), as well as suppression of hepatic steatosis (268). Additionally, in high 

fat diet-induced diabetic rats administration of RA dose-dependently ameliorated 

hyperglycemia and insulin resistance in addition to increasing GLUT4 translocation to 

the plasma membrane in muscle (227). Moreover, a recent study conducted in humans 

that were administered dried rosemary leaves powder have shown significant 

improvement in the blood lipid profile, antioxidant levels and decrease in fasting plasma 

glucose levels (221). These studies demonstrate that RE and its polyphenols exhibit 

antihyperglycemic and antidiabetic properties in vivo and are in agreement with our 
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findings. However, there are currently no studies that elucidate the mechanism involved 

in the effects of RE and its polyphenols. The present study is the first to show 

increased serine phosphorylation of IRS-1, and increased phosphorylation of mTOR, 

p70S6K and JNK by palmitate and an effect of RE treatment to inhibit them and restore 

insulin-stimulated Akt phosphorylation and insulin stimulated glucose uptake. 

It is already established that high oxidative stress is associated with the 

development of diabetes (269). Numerous physiological and biochemical processes in the 

human body produce reactive oxygen species (ROS) such as superoxide, and hydrogen 

peroxide as byproducts. Overproduction of such free radicals causes oxidative damage to 

biomolecules (membrane lipids, nucleic acids, and proteins) resulting in cellular damage 

and leading to many chronic diseases including diabetes (269) while the intake of natural 

antioxidants has been associated with reduced disease risk radical scavenging molecules, 

such as phenolic compounds, nitrogen compounds, vitamins, terpenoids, and some other 

endogenous metabolites, that have been found to be rich in antioxidant activity (183,269). 

Palmitate is a widely known inducer of ROS generation in different tissues including 

muscle (270). Exposure to 0.75 mM palmitate for 24 hours palmitate significantly 

increased the production of ROS in L6 muscle cells (271). Treatment with 0.4 palmitate 

for 6 hours significantly increased the production of ROS in rat’s hepatocytes. In primary 

human hepatocytes exposure to 0.4 mM palmitate for 12 hours also increased the 

production of ROS (272). The findings above are also in agreement with in vivo where 

administration of high fat diet in Wistar rats for 8 weeks significantly increased the ROS 

production (273). Many studies have shown that RE and RE polyphenols attenuate the 

production of ROS and decrease oxidative stress by exhibiting strong antioxidant 
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activities in vitro and in vivo in liver, adipose and skeletal muscle (228,192,205). 

Considering that oxidative stress and the production of ROS is highly linked to insulin 

resistance and T2DM (274), RE may indirectly affect glucose uptake by attenuating the 

oxidative stress and signaling pathways that may negatively impact the glucose uptake 

and induce pathological states such as insulin resistance and T2DM. Additionally, 

oxidative stress and production of ROS can significantly increase the phosphorylation of 

JNK(275–278). Given that RE and its polyphenols exhibit strong antioxidant properties 

(228,192,205) that can delay or prevent the oxidation of different substrates, it may 

prevent the phosphorylation of JNK that is induced by exposure of the cells to palmitate, 

a known generator of ROS. Therefore, the antioxidant effects of RE may be the 

mechanism by which RE attenuates the palmitate-induced phosphorylation of JNK.  

Based on the current evidence from in vivo studies the RE dosage used in vivo 

ranges from 50-200 mg/kg b.w however, how this translates to human is not addressed, 

especially the issue of bioavailability, metabolites and absorption. On that note, only 

limited number of studies investigated the bioavailability of CA and RA in vivo. This 

information is relevant to our study since RE and its polyphenols show significant 

bioavailability in vivo that can also be detected in different tissues. Oral administration of 

RE enriched with CA 80-120 mg (29-49 mg CA) in rats resulted in presence of bioactive 

concentrations of CA and carnosol in plasma (2-30 M) and tissues such as the liver (1-

15 g/g) and small and large intestines (up to several hundred g/g) (279). Intragastric 

administration of 90 mg/kg of CA in rats resulted in slow absorption with maximum time 

of absorption (Tmax) of 125.6 min and bioavailability of 65% with maximum plasma 

concentration (Cmax) of 42 mg/L (220). Moreover, CA had shorter half-life with 
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intravenous administration (68 min) in comparison to intragastric administration (961 

min) (220). Another study found that intragastric administration of 65 mg/kg CA in rats 

had bioavailability of 40%, Tmax of 137 min and Cmax of 35 mg/L (280). Additionally, 

CA was mostly found in a free form in plasma and undergoes fecal excretion rather than 

urinary in animals (280). As per the European Food Safety Authority (EFSA) regulations, 

the predicted maximal exposure to CA (used as a food additive) is a roughly 0.2 mg/kg 

b.w/day (281). Considering the average body weight, 65 % bioavailability and total 

plasma volume the plasma Cmax of CA is calculated to be approximately 3 nM (282). 

Thus, the doses reported by Vaquero et al. in rats which is the equivalent to human doses 

of 50-100 mg of RE or 20-40 mg of CA/kg b.w/day may only be achieved through 

additional consumption of supplements that are enriched with these compounds (220). 

These values are within the range of the limits specified by the EFSA considering that no 

adverse effects were observed in rats that were fed for 90 days (281).  

Oral administration of 50 mg/kg b.w of RA in rats reaches maximum plasma 

concentration of 4.63 M after 30 min and may be found free, conjugated or in 

methylated form of RA (283). The RA metabolites include ferulic, caffeic and m-

coumaric acid and it is typically excreted through the urinary tract (283). Another study 

showed that the Cmax of RA in plasma reached 1.36 M (0.5 mg/L) after 10 min in rats 

that were administered 0.1 mmol/kg (36 mg/kg/b.w) (284). Another study conducted in 

healthy men being administered a single intake of perilla extract that contained 200 mg of 

RA showed Cmax of 0.87-1.43 µM 30 min post-intake (283). However, the relative 

potency of the RA metabolites have not been investigated and remain to be determined. 

Overall the above mentioned studies indicate that administration of RE or RE 
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polyphenols in vivo results in detectable polyphenol levels in plasma (1-105 M 

(285,286) range in some studies) and tissues and strongly suggest that our in vitro 

findings have in vivo relevance.  

The exact mechanism by which CA and RA or other RE polyphenols enter the 

cells is not yet established or directly examined. Nevertheless, assumptions can be made 

considering the chemical properties of these polyphenols. CA is a lipid-soluble molecule 

(169) and it is possible that CA can penetrate through the cell membrane through simple 

diffusion and therefore accumulate in the cytosol. On the other hand, RA is a water-

soluble molecule thus it may require a protein channel or a protein carrier in order to 

enter the cell (287). Studies have indicated that RA is not affected by the enzymes 

secreted in the digestive system including lipase and amylase nor it is hydrolyzed in the 

intestines. However, it can be degraded into metabolites by the gut microflora before 

absorption such as hydroxylated phenylphropionic and m-coumeric acid (238,284). The 

metabolic derivatives of RA were shown to be absorbed and transported through the 

tissues by the monocarboxylic acid transporter (MCT) (238,284). Moreover, in human 

intestinal Caco-2 cells RA via paracellular diffusion (284). Additionally, previous data 

indicates that RE and its polyphenols have low toxicity and noteworthy bioavailability 

therefore it would be feasible to study the antihyperglycemic effects of these compounds 

in vivo. 

4.3 Summary/Conclusion 

 

The prevalence of T2DM is constantly increasing and according to the 

International Diabetes association it is expected to affect 420 million people worldwide 

by the year 2040. Additionally, insulin resistance and T2DM are highly correlated with 
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the development of other pathological states including metabolic syndrome, 

cardiovascular diseases and cancer (185). As a result, new treatment strategies to aid in 

the prevention and management of T2DM may be beneficial for our society. As 

previously indicated, increased levels of FFA and obesity are reported to mediate insulin 

resistance in muscle cells (45,118). More recently, RE and its polyphenols have been 

reported to exhibit antidiabetic properties in insulin target tissues in vitro and in vivo. The 

present study has shown that palmitate can induce insulin resistance in L6 rat skeletal 

muscle cells. Exposure of the cells to palmitate significantly decreased the insulin-

stimulated glucose uptake, Akt phosphorylation and increased the phosphorylation of 

Serine307 and Ser636/639 residues on IRS-1. Additionally, palmitate considerably 

increased the phosphorylation of JNK, mTOR and its downstream effector p70 6SK. 

Most importantly RE and RE polyphenols restored insulin-stimulated glucose uptake, 

insulin-stimulated Akt phosphorylation, increased AMPK phosphorylation and abolished 

the palmitate-induced JNK, mTOR and p70 S6K phosphorylation 

4.4 Future Directions and Limitations 

 

Further studies need to be conducted in order to more accurately investigate the 

mechanism of action of RE. With that being said, utilizing siRNA against major signaling 

molecules that are correlated with insulin resistance and were investigated above such as 

AMPK, JNK, mTOR and p70 S6K. It is expected that siRNA against the kinases that are 

associated with insulin resistance would be the same as RE and its polyphenols, to 

ameliorate the negative effects of palmitate in L6 myotubes Additionally, elucidating the 

mechanism by which AMPK is activated by RE and its polyphenols by ATP assays, 

mitochondrial function and biogenesis should further clarify the mechanism by which RE 
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and its polyphenols affect AMPK. The present study exploited a well-established model 

of palmitate-induced insulin resistance in L6 myotubes in vitro (51,100). The 

methodology of this study was focused on investigating the levels of phosphorylation and 

expression of different proteins involved in the insulin signaling including IRS-1, Akt, 

mTOR, p70 S6K, and JNK as well as AMPK. These investigations were conducted using 

immunoblotting. Additionally, the levels of tyrosine phosphorylation/expression of IRS-1 

should be examined. We hypothesize that in the presence of palmitate, the levels of 

tyrosine phosphorylation of IRS-1 is significantly decreased. As mentioned in the 

introduction, PKC and GSK3 have been implicated as strong mediators involved in the 

development of insulin resistance in skeletal muscle cells. The effect of RE and its 

polyphenols on PKC and GSK3 could also be examined. Additionally, the IKK/NFkB 

and immune response pathway has been markedly implicated in FFA-induced insulin 

resistance (288,289). RE and its polyphenols may have the ability to attenuate IKK/NFkB 

activity therefore future research could examine the effects of these polyphenols on the 

IKK/NFkB signaling pathway. Furthermore, in vivo studies need to be conducted in the 

future. For this purpose rat/mouse animal model of obesity such as HFD-induced insulin 

resistance model may be used in order to further examine the physiological effects and 

the mechanism of action of RE and its polyphenols. In addition, primary tissue culture of 

hepatic, adipose and muscle tissue could be extracted from these in vivo models in order 

to add further understanding to this particular research. 
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Appendix:  

Buffers and Solutions:  

A list for the preparation of each buffer and solution used to perform the experiments in 

the methods and results section will be presented below.  

Glucose Uptake Assay: HBS Washing Buffer: 140mM NaCI, 5mM KCI, 20mM 

HEPES, 2.5mM MgSO4, 1mM CaCl2, dilute with DD water and fill to 800mL, adjust pH 

to 7.4 and then fill to l L. Total Radioactive Buffer: HBS buffer, dilute 1:1000 hot 2-[3H] 

deoxy-D-glucose, and 1:1000 cold 2-[3H] deoxy-D-glucose in HBS.  

Non-specific radioactive buffer: Use total radioactive buffer, add 1:1000 cytochalasin 

B. 0.9% NaC1: Add 0.9g NaCI per 100ml DD water. 0.05N NaOH: Add 1ml 5N NaOH 

to 99ml DD water.  

Fatty Acid (FA) Palmitate Solutions: Palmitic acid (41mg) was dissolved in bubbling 

O.IN NaOH (1.6mL) and diluted in prewarmed (45-50°C) 9.7% (WN) BSA solution 

(18.4mL).  

Cell Lysis:  

PBS Washing Buffer: 137mM NaCI, 2.7mM KCI, l.5mM KH2PO4, 8.lmM Na2HPO4, 

0.68mM CaCl2, 0.49mM MgCl2, add water to lL and adjust pH to 7.4. SDS Sample 

Buffer: 62.5mM Tris-HCI (PH 6.8), 2% w/v SDS, 10% glycerol, 0.01 % bromophenol 

blue, add 0.05% p-mercaptoethanol before use.  
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Cell Lysis Buffer: 20mM Tris (PH 7.5), lS0mMNaCI, 1mM EDTA, 1mM EGTA, 1% 

Triton X-100, 2.5mM sodium pyrophosphate, 1mM p-glycerolphosphate, 1mM Na3VO4, 

1 J.lg/mlleupeptin, add 1 mM PMSF before use and chill on ice.  

Western Blotting:  

l.5M Tris-HCI (pH 8.8): 27.23g Tris base (18.15g/100ml), 80ml deionized water, adjust 

to pH 8.8 with 6N HCL. Bring to total volume 150ml with deionized water.  

0.5M Tris-HCI (PH 6.8): 6g Tris base, 60ml deionized water, adjust to pH 6.8 with 6N 

HCI and bring total volume to 100ml with deionized water.  

Resolving Gel Buffer: 12.3 ml DD water, 9.9 ml 30% Acrylamide/ Bis solution, 7.5ml 

1.5M Tris- Hcl, pH 8.8, 0.3ml 10% w/v SDS. Right before pouring the gel, add 150l 

10% APS (0.01g/ 100 l) made fresh daily and l5 l TEMED and swirl.  

Stacking Gel Buffer: l8.3 ml DD water, 3.9 ml 30% Acrylamide/ Bis solution, 7.5ml 

0.5M Tris-HCI, pH 6.8, 0.3 ml 10% w/v SDS. Right before pouring the gel, add l50l % 

APS (0.01g/ 100 l) made fresh daily and 30 l TEMED and swirl.  

10x TBS (Tris- buffered saline): 24.2g Tris base, 80g NaCI, adjust pH to 7.6 with HCl. 

Use at 1x TBS. Dissolve in l L of water.  

Blocking Buffer: 1x TBS, 0.1 % tween 20, 5% w/v non-fat dry milk. Dissolved in water. 

Primary Antibody Dilution Buffer: 2ml 10x TBS, 18ml water, 1.0g BSA, 20ul Tween- 

20.  

Wash Buffer:TBS/T: 1x TBS and 0.1% Tween- 20.  
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10x Electrode Running Buffer: 15.15g Tris base, 72g Glycine, 5.0g SDS. Dissolve and 

bring volume to 500ml with DD water. Do not adjust pH with acid or base. Dilute 50ml 

of 10x stock with 450ml water before use.  

Transfer Buffer: 25mM Tris base, 0.2M glycine, 20% methanol, dissolved in 800mL of 

water. 


