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Aspergillus sclerotiorum (AS) is a well-known producer of ochratoxin A (OTA) while Aspergillus pseu-
doglaucus (AP) produces a wide range of extrolites with poorly investigated toxicity. These species are
frequently co-occur in grain mill aeromycota. The aim of this study was to determine OTA levels in spore
extracts using HPLC and immunoaffinity columns, and to examine the cytotoxicity of pure OTA, OTA-
positive (AS-OTA(þ)) and OTA-negative (AS-OTA(–)) spore extracts, as well as of AP spore extract, on
human lung adenocarcinoma cells A549, individually and in combination, using a colorimetric MTT test
(540 nm). To establish which type of cell death predominated after treatments, a quantitative fluorescent
assay with ethidium bromide and acridine orange was used, and the level of primary DNA damage in
A549 cells was evaluated using the alkaline comet assay. OTA was detected in spore extracts (0.3–
28 mg/mL) of 3/6 of the AS strains, while none of the tested AP strains were able to produce OTA. Taking
into account the maximum detected concentration of OTA in the spores, the daily intake of OTA by
inhalation was calculated to be 1 ng/kg body weight (b.w.), which is below the tolerable daily intake for
OTA (17 ng/kg b.w.). Using the MTT test, the following IC50 values were obtained: single OTA (53 μg/mL);
AS-OTA(þ) (mass concentration 934 μg/mL corresponds to 10.5 μg/mL of OTA in spore extract); and
2126 μg/mL for AP. The highest applied concentration of AS-OTA(–) spore extract (4940 μg/mL) de-
creased cell viability by 30% and IC50 for the extract could not be determined. Single OTA and AS-OTA(þ)
and combinations (APþAS-OTA(þ) and APþAS-OTA(–)) in subtoxic concentrations provoked significant
primary DNA damage, apoptosis, and to a lesser extent, necrosis in A549 cells. Mixture of APþAS-OTA
(þ) and APþAS-OTA(–) in subtoxic concentrations showed dominant additive interactions. Despite the
low calculated daily intake of OTA by inhalation, our results suggest that chronic exposure to high levels
of OTA-producing airborne fungi in combination with other more or less toxic moulds pose a significant
threat to human health due to their possible additive and/or synergistic interactions.

& 2015 Elsevier Inc. All rights reserved.
1. Introduction

Indoor air quality is one of the most important health issues in
general; we spend about 80% of our time indoors and breath be-
tween 11 and 15 m3 of air per day (Dacarro et al., 2003; Kelman
et al., 2004). Apart from chemical air pollution and tobacco smoke,
microorganisms as well as airborne fungal fragments may have a
role in the initiation of both acute and chronic respiratory diseases
larić).
in exposed occupants (Gorny, 2004). These respiratory problems
may vary from allergic inflammatory reactions mediated by IgE,
systemic reactions and release of lung cytokines to non-specific
inflammation provoked by cytotoxicity (Pieckova, 2012). Re-
lationship between exposure to indoor airborne fungi and devel-
opment of chronic respiratory diseases is not fully clarified but it is
generally accepted that such exposure may cause allergies such as
fungal rhinitis, hypersensitivity pneumonia, and/or asthma (re-
viewed in Cabral, 2010; Pieckova, 2012). Inhaled mycotoxins in
fungal spores have also been linked to adverse health effects after
chronic exposure in non-agricultural indoor environments (Kel-
man et al., 2004). However, epidemiologic studies and dose-
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response data concerning inhaled mycotoxins are lacking (Kelman
et al., 2004). Some exposure estimations of mycotoxins inhaled
through fungal spores have shown that the risk of developing
respiratory toxicity is insignificant (Kelman et al., 2004).

On the other hand, agricultural facilities can be highly con-
taminated with fungal spores and small fragments containing
mycotoxins, which might represent a serious threat to those in
contact with such facilities (Hintikka and Nikulin, 1998; Adhikari
et al., 2004). Several reports support that hypothesis mainly con-
sidering inhalatory exposure to aflatoxins. The link between in-
halation of aflatoxin in the industrial setting and cancer incidence
and mortality in oil-press workers has been suggested by Hayes
et al. (1984). Dvorackova and Pichiova (1986) reported on the role
of aflatoxin B1 (AFB1) in pulmonary interstitial fibrosis in agri-
cultural and textile workers. According to McLaughlin et al. (1987),
AFB1 exposure contributed to the onset of primary liver cancer in
grain mill workers. In one of the more recent studies (Viegas et al.,
2012), the inhalation of aflatoxins in poultry farms was confirmed
as a significant occupational risk factor that could contribute to the
development of primary liver cancer. About 60% of the exposed
workers had detectable levels of AFB1 in serum, while AFB1 was
not detected in control subjects. Ochratoxin A (OTA) is a well-
known nephrotoxic, immunotoxic and carcinogenic mycotoxin
mainly considered a health hazard due to OTA-contaminated food
consumption (Reddy and Bhoola, 2010). However, inhalatory ex-
posure to OTA could also be a serious threat to health. According to
Hooper et al. (2009), elevated concentrations of OTA have been
detected in the urine of occupants in water-damaged buildings,
while OTA was below the detection limit in non-exposed subjects.
Hope and Hope (2012) reviewed two cases of focal segmental
glomerulosclerosis attributed to OTA inhalation in damp dwell-
ings. In both cases, the urine samples contained elevated levels of
OTA while the aflatoxin and trichothecene mycotoxin test was
negative. The most severe case that has been linked to inhalation
of OTA is acute renal failure described in workers exposed to As-
pergillus-producers of OTA in a granary (Dipaolo et al., 1994). In
agricultural facilities, workers are exposed to a mixture of airborne
fungi and their toxic metabolites which might interact synergis-
tically. A recent year-round study conducted in 2012 in a grain
mill, apartments, and basements (Zagreb, Croatia) showed that the
calculated average concentration of airborne fungi in the grain mill
was about 160 times higher (up to 250,000 cfu/m3) than in other
locations (up to 1500 cfu/m3) (Jakšić Despot and Šegvić Klarić,
2014). Among the dominant airborne fungi (Aspergillus and Peni-
cillium), Aspergilli from sections Circumdati and Aspergillus (for-
merly Eurotium) (McNeill et al., 2012) were constantly present in
the grain mill samples. Aspergilli belonging to section Circumdati
are well-known producers of OTA (Frisvad et al., 2004), while
Aspergilli formerly known as Eurotium spp. produce a wide range
of metabolites with poorly investigated toxicity (Nielsen, 2002;
Slack et al., 2009). Since these Aspergilli were frequent in the
mixture of airborne fungi in grain mill (Jakšić Despot and Šegvić
Klarić, 2014), it was justified to explore the cytotoxic and geno-
toxic potential of single and combined spore extracts of dominant
species using human lung adenocarcinoma A549 cells as an ex-
perimental model.
2. Materials and methods

2.1. Chemicals

Malt Extract Agar (MEA) and Malt Extract were obtained from
Oxoid (Basingstoke, UK), Bacto Peptone was purchased from Difco
(Franklin Lakes, NJ, USA) and Masterpure™ yeast DNA purification
kit was from Epicentre Biotechnologies (Madison, WI, USA).
Methanol (HPLC grade) was obtained from Merck (Darmstadt,
Germany). RPMI 1640, foetal bovine serum (FBS), trypsin-EDTA,
phosphate buffered saline (PBS; Ca2þ and Mg2þ free), penicillin
and streptomycin were purchased from Gibco-Invitrogen (Paisley,
UK). OTA standard, MTT reagent [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide], ethidium bromide, acridine orange,
agarose normal melting point (NMP), agarose low melting point
(LMP), Triton X-100, Tris buffer, and dimethyl sulfoxide (DMSO),
were purchased from Sigma-Aldrich (Deisenhofen, Germany). All
other chemicals including MgCl2, HCl, acetic acid, isopropanol,
NaCl, Na2EDTA, and NaOH were from Kemika (Zagreb, Croatia).

2.2. Isolation of airborne fungi

In a recently published year-round study of airborne fungi in a
grain mill near Zagreb, Croatia (Jakšić Despot and Šegvić Klarić,
2014) from samples taken in November 2012 (N¼20), Aspergilli
were reisolated on Czapek Yeast Agar (CYA, Pitt and Hocking,
2009) and Malt Extract Agar (MEA) and incubated at 25 °C in the
dark for seven days. Morphological identification was carried out
according to Pitt and Hocking (2009). The strains of Aspergillus
spp. from sections Circumdati and Aspergillus that dominated in
the samples were subjected to sequence-based identification as
described below.

2.3. Species identification

The cultures used for sequence analysis were grown on Malt
Peptone (MP) broth using 1% (w/v) of Malt Extract and 0.1% (w/v)
Bacto Peptone. The cultures were incubated at 25 °C for 3 days.
DNA was extracted from the cells using the Masterpure™ yeast
DNA purification kit according to the instructions of the manu-
facturer. Part of the calmodulin gene was amplified and sequenced
as described previously (Hong et al., 2005, Varga et al., 2007, Vi-
sagie et al., 2014). Briefly, part of the calmodulin gene was am-
plified using primers cmd5 (5ʹ-CCGAGTACAAGGARGCCTTC) and
cmd6 (5ʹ-CCGATRGAGGTCATRACGTGG-3Pʹ) using 35 PCR cycles
with an annealing temperature of 56 °C. Sequencing reactions
were performed with the Big Dye Terminator Cycle Sequencing
Ready Reaction Kit and carried out for both strands. All the se-
quencing reactions were purified by gel filtration through Sepha-
dex G-50 (Amersham Pharmacia Biotech, Piscataway, NJ) equili-
brated in double-distilled water and analysed on the ABI PRISM
310 Genetic Analyzer (Applied Biosystems). The complementary
sequences were corrected with the MT Navigator software (Ap-
plied Biosystems). Sequence homology analyses were performed
by nucleotide–nucleotide BLAST similarity search at the website of
the National Center for Biotechnology Information (http://www.
ncbi.nlm.nih.gov/BLAST), and sequences were also compared with
our own sequence database. Species identification was carried out
from the lowest expect value of the BLAST output (Altschul et al.,
1990).

2.4. Preparation of spore extracts

Each strain of A. sclerotiorum (AS, N¼6) and A. pseudoglaucus
(AP, N¼6) as well as A. westerdijkiae NRRL 3174 (OTA producing
strain as positive control) were grown on 5 Dichloran 18% Glycerol
agar plates (DG18, Pitt and Hocking, 2009) for 15 days at 25 °C.
Spores were harvested from the surface of each plate with 5 mL of
methanol/water (1:1) (HPLC grade) and transferred into weighed
polystyrene centrifuge tubes. Harvested spores were counted un-
der the microscope (magnification 400� ) using a haemocyt-
ometer. Afterwards, spore extracts were prepared by sonication (3
times) at 15 kHz for 90 s, centrifuged 20 min at 6000 rpm and the
extracts were evaporated to dryness under a current of nitrogen.
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Prior to HPLC analysis, extracts were weighed and dissolved in
methanol (HPLC grade). To collect the necessary OTA concentra-
tions in spore extracts so that experiments on A549 cells could be
performed, A. sclerotiorum strain that produced highest con-
centration of OTA was grown on 20 DG18 agar plates. Spores were
harvested as described above and evaporated spore extracts of
OTA-producing A. sclerotiorum were pooled and dissolved in 10 mL
prior to HPLC analysis. The final concentration of OTA in the
pooled extract was 366 mg/mL. The extract was evaporated and dry
extract was weighed (400 mg) and dissolved in 1 mL DMSO. This
extract (400 mg/mL) was used as stock solution for cytotoxicity
and genotoxicity testing on A549 cells in which the OTA con-
centration was calculated to be 3660 mg/mL. Dry extracts of OTA-
non-producing Aspergilli (60 mg) were dissolved in 150 mL of
DMSO and the final concentration 400 mg/mL was used in cyto-
toxicity and genotoxicity testing.
2.5. HPLC analysis

OTA was separated from samples using an immunoaffinity
column (IAC, Ochratest, Vicam, Watertown, MA, USA). One milli
litre of sample was applied onto an IAC column. The column was
washed with 10 mL solution of MgCl2 and HCl (1:1, v/v) (0.05 M
HCl and 0.05 M MgCl2) and 10 mL HPLC-grade water. OTA was
eluted from IAC column using 1.5 mL of methanol. Eluate was
evaporated to dryness under a steam of nitrogen and dissolved in
200 mL of mobile phase. The HPLC apparatus consisted of an iso-
cratic pump, autosampler and fluorescent detector (Shimadzu
Corp., Kyoto, Japan). The separation was performed as described
previously (Flajs et al., 2009) using an analytical column
(125.0�4.0 mm2) coupled with guard column (4.0�4.0 mm2)
LiChrospher RP-18 (Merck, Darmstadt, Germany) with 5 mm par-
ticles. Chromatographic results were collected and processed
using the LC Solution software (Shimadzu Corp., Kyoto, Japan). The
mobile phase consisted of methanol, water, and acetic acid
(70:30:2) with a flow rate of 0.5 ml/min. Detector wavelengths
were set at λex 336 nm and λem 464 nm. The limit of detection was
0.05 ng/mL.

Estimation of daily inhaled dose of OTA
Using the data obtained by HPLC analysis of OTA in spore ex-

tracts, we calculated the daily inhaled dose of OTA applying the
equation (Kelman et al., 2004):

D
COTA x N x BR x FR x BA

WT
=

where D is the daily dose of OTA (μg/kg), C is the concentration of
OTA (μg) per spore, N is the concentration of spores (cfu/m3), BR is
the breathing rate with default value for adult male (15.2 m3/day),
FR is the fraction of retained spores and BA is OTA bioavailability
both assumed to be 100% (or 1), WT is the default value of body
weight of adult male (78.1 kg).
2.6. Cell culture and treatment

Human lung cancer cells A549 (European Collection of Cell
Cultures, United Kingdom) were grown in 75 cm2

flasks in RPMI
supplemented with 2 mM glutamine, 10% heat-inactivated FBS,
penicillin (100 IU/mL; 1 IUE 67.7 μg/mL) and streptomycin
(100 μg/mL) at 37 °C in 5% CO2. A stock solution of OTA
(2.5 mg/mL) was prepared in absolute ethanol, while spore ex-
tracts were dissolved in 100% DMSO. The final concentrations of
OTA and spore extracts as well as vehicles (ethanol or DMSO) were
obtained by dilution with the culture medium.
2.7. MTT proliferation assay

MTT proliferation test was used to test cell viability of A549
cells upon 24 h of treatment with either of OTA, spore extracts of
OTA-producing AS (AS-OTA(þ)), OTA-nonproducing AS (AS-OTA
(–)), AP or combinations of AS and AP spore extracts (APþAS-OTA
(þ) and APþAS-OTA(–)). A549 cells were plated in a 96-well flat-
bottomed microplate (104 cells per well). Following 36-h incuba-
tion, growth medium was replaced by the medium without FBS
and cells were incubated for the 12 h. To determine the con-
centration that inhibits growth in 50% of cells (IC50), A549 cells
were treated for 24 h with OTA (from 0.2 to 80 mg/mL) and AS or
AP spore extracts (92 to 4940 μg/mL). Concentrations of OTA in
AS-OTA(þ) spore extract dilutions (92–4940 μg/mL) were calcu-
lated to be 1–56 μg/mL. Cells in control were treated with up to
1.5% of absolute ethanol or 1.5% of DMSO, which did not alter cell
viability. Following the treatment, the medium was removed and
100 μl of MTT reagent diluted in growth medium without FBS
(0.5 mg/ml) was added in each well. Viable cells have active mi-
tochondrial dehydrogenase enzymes that metabolize MTT-tetra-
zolium salt into purple formazan. After 3.5 h of incubation, the
MTT reagent was replaced with 150 μl of DMSO to dissolve for-
mazan, and cells were incubated at room temperature on a rotary
shaker for 15 min. The absorbance was measured on a microplate
reader (Labsystem iEMS, type 1404) at a wavelength of 540 nm. All
tests were performed in six replicates and results are expressed as
percentage of control.

Once the IC50 values were determined, the subcytotoxic con-
centrations of spore extracts (92 and 280 mg/ml of AS-OTA(þ) or
AS-OTA(–) and 280 mg/ml of AP) were selected for testing their
combined cytotoxicity using the described MTT test procedure.

2.8. Quantitative fluorescent assay for identification of apoptotic and
necrotic cells

Cells were seeded in 6-well plates (3�105 cells/mL) and trea-
ted for 24 h with subcytotoxic concentrations of OTA (1 and 3 mg/
ml) and single or combined spore extracts (92 and 280 mg/ml of
AS-OTA(þ) or AS-OTA(–) and 92 mg/ml of AP), which did not re-
duce cell viability more than 30%. Prior to OTA and spore extracts
addition, cells were incubated in serum-free media for 12 h.
Control cells were exposed to 0.1% of absolute ethanol or to 0.2%
DMSO for 24 h. After the treatment, the medium was removed.
Using a cell scraper, the cells were gently scraped off the bottom of
the microplates, resuspended in PBS, transferred into an Eppen-
dorf tube and centrifuged at 1200 rpm for 2 min. Aliquots of cell
suspension (V¼10 μL) were pipetted, put on microscope slides
and mixed (1:1; v/v) with ethidium bromide (100 mg/ml) and ac-
ridine orange (100 mg/ml). The preparation was covered with a
coverslip and immediately examined under a fluorescence mi-
croscope (Olympus BX 51; 400� magnification; Olympus, Tokyo,
Japan). Quantitative assessments were made by determination of
the percentage of viable, apoptotic and necrotic cells. According to
the dye exclusion method (Duke and Cohen, 1992), viable cells
with intact plasma membrane excluded ethidium bromide and the
appearance of their nuclei with an intact structure was bright
green. Non-viable necrotic cells had orange to red coloured chro-
matin with organized structure, while apoptotic cells were bright
green with highly condensed or fragmented nuclei. Three tests
with aliquots of the same sample were performed and a total of
300 cells per sample were counted.

2.9. Alkaline comet assay

Cells were treated as described in the previous section. The
comet assay was carried out according to Singh et al. (1988) with
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minor modifications. After 24 h of treatment, the cells were wa-
shed with 1 mL cold phosphate buffer saline (PBS, pH 7.4), scraped
with rubber, and resuspended in 300 μL of PBS. Aliquots of 20 μL
of this suspension were mixed with 100 μL 0.5% low melting point
agarose-LMP (in Ca- and Mg-free PBS), and 100 μL of agarose-cell
suspension was spread onto a fully frosted slide pre-coated with
1% normal melting point agarose-NMP (in sterile destiled water).
The slides were allowed to solidify on ice for 10 min. After 1 h of
lysis at 4 °C in a mixture of 2.5 M NaCl, 100 mM Na2EDTA, 10 mM
Tris (pH 10) supplemented with 1% Triton-X, the slides were
placed in denaturation and electrophoresis buffer (10 mM NaOH,
200 mM Na2EDTA, pH 13), incubated for 20 min, and electro-
phoresed for 20 min at 25 V and 300 mA. DNA was neutralized
with a neutralization solution (0.4 M Tris/ HCl, pH 7.5) three times
5 min each. The slides were kept in a humid atmosphere in a dark
box at 4 °C until further analysis. For image analysis, DNA was
stained with 100–250 μL ethidium bromide solution (20 μg/mL)
per slide for 10 min. Slides were scored using an image analysis
system (Comet assay IV, Perceptive instruments Ltd., UK) con-
nected to a fluorescence microscope (Zeiss, Germany). All experi-
ments were performed in duplicate, and in each experiment
images of 200 randomly selected cells (100 cells from each of the
two replicate slides) were measured. Only comets with a defined
head were scored. As a reliable measure of genotoxicity, we used
the percentage of DNA in the comet tail (or tail intensity), which is
the most suitable indicator of DNA damage (Olive, 1999; Collins,
2004).

2.10. Statistics

The results of the MTT test were statistically analysed by one-
way analysis of variance (ANOVA) followed by a multiple com-
parison procedure (Tukey's test). To obtain IC50 from results of
MTT assay linear regression analysis was applied. Comparisons
between values obtained for the cytotoxicity (apoptosis and ne-
crosis) in the treated and control samples were made by Pearson's
χ2 test for two-by-two contingency tables. The Kolmogorov–
Smirnov test was used to verify whether the results of comet
parameters were normally distributed. Kruskal–Wallis followed by
Dunn's multiple comparison test was used for statistical analysis of
tail intensity. The level of Po0.05 was considered statistically
significant for all statistical calculations. We also compared our
measured values with the expected values that were calculated as
mean and SEM values obtained after exposure to combined spore
extracts; e.g. mean (expected for AS-OTA(þ)þAP)¼mean (AS-OTA
(þ))þmean (AP)-mean (control); SEM (expected for AS-OTA(þ)þ
AP)¼[(SEM for AS-OTA(þ))2 þ(SEM for AP)2]1/2 (Weber et al.,
2005).

The significance of difference between the expected and
Table 1
Occurrence of two OTA-producing and OTA-non-producing Aspergillus species in sampl

Aspergillus species Occurrence in the samples
(%)a

Concentration of Asp

Min Max

Aspergillus spp.(section
Aspergillus)

100 100 5500

Aspergillus spp.(section
Circumdati)

35 60 400

n – number of OTA positive strains;
N – number of analysed strains
; n.d. – not detected

a 20 samples we re collected in the grain mill.
b Based on traditional identification.
c Calmodulin gene sequencing.
measured values was calculated for cell viability, comet tail in-
tensity, apoptosis and necrosis using an unpaired t-test. The results
were interpreted as follows: (1) an additive effect was recorded if
the measured values were not significantly above or below the
expected values in all tests; (2) in the MTT assay, synergism was
recorded if the measured values were significantly below the ex-
pected values, while in comet assay the synergism was recorded if
the measured values were significantly above the expected values;
(3) in the MTT assay, an antagonistic effect was recorded if the
measured values were significantly above the expected values,
while in the comet assay antagonism was recorded if the mea-
sured values were significantly below the expected values.
3. Results

3.1. OTA in spore extracts of airborne Aspergilli: estimation of daily
inhaled OTA

Aspergilli from the sections Aspergillus and Circumdati were
were found in 100% and 35% of samples, respectively and were
among the dominant airborne fungi detected in the grain mill in
November. Based on the sequenced calmodulin gene region, the
Aspergilli of interest were A. pseudoglaucus and A. sclerotiorum
(Table 1). Three of the six isolated A. scleorotiorum strains pro-
duced OTA (up to 28 μg/mL) in the spores, while none of the A.
pseudoglaucus were able to produce OTA. The OTA-positive A.
westerdijkiae NRRL 3174, which served as positive control, pro-
duced OTA in a concentration of 0.38 μg/mL of spore extract. Using
the data obtained in this study, we calculated the daily inhaled
dose of OTA (D). To calculate D, we used the maximum con-
centration of OTA detected in the spore extracts of A. sclerotiorum
(28 μg/mL), average spore count per one mL of methanol/water
extract (2�106 spore/mL) and maximum concentration of air-
borne Aspergilli (Circumdati) detected in grain mill in November.
Applying these values to the equation, the daily inhaled dose of
OTA was calculated to be 1 ng/kg of b.w.:

D
COTA x N x BR x FR x BA

WT

x cfu m x m day x x

kg

ng kg

400 / 3 15.2 3/ 1 1

78.1

1 /

g mL
x spore mL

28 /
2 106 /

=

=

=

μ

3.2. Cytotoxicity of OTA and Aspergillus spore extracts

Figs. 1 and 2 show the viability of A549 cells upon 24 h-treat-
ment with OTA and Aspergilli spore extracts, respectively. OTA
es of airborne fungi taken in November in a grain mill (Zagreb, Croatia)

ergilli (cfu/m3)b Determined Aspergilli (n/
N¼6)c

OTA in spore extracts
(μg/mL)

Median

1155 A. pseudoglaucus (0/6) n.d.

95 A. sclerotiorum (3/6) 0.3; 6.5; and 28
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Fig. 1. Cytotoxicity of OTA in A549 cells after 24 h of exposure to concentrations
ranging from 0.2 to 80 mg/mL. Data are expressed as means7SEM% of control cells
viability of six independent experiments. Regression coefficient was 0.78. Control
cells were exposed to ethanol (1.5%) only, and value was taken as 100%.

Fig. 2. Cytotoxicity of OTA-producing (AS-OTA(þ)) and OTA-non-producing (AS-
OTA(–)) A. sclerotiorum, and A. pseudoglaucus (AP) spore extracts in A549 cells after
24 h of exposure to mass concentrations ranging from 92 to 4940 mg/mL. Con-
centration of OTA in AS-OTA(þ) spore extract is calculated to be 1, 3, 7, 14, 28 and
56 mg/mL. Data are expressed as means7SEM % of control cells viability of six
independent experiments. Control cells were exposed to DMSO (1.5%) only, and
value was taken as 100%. Significantly different values (Po0.05) are marked as
follows: * as compared to the control value; a- AS-OTA(þ) and AP vs AS-OTA(–); b-
AS-OTA(þ) vs AP.

Table 2
Cytotoxicity of OTA and A. sclerotiorum and A. pseudoglaucus spore extracts re-
presented as rate of apoptotic and necrotic A549 cells.

Experimental groups % of damaged cells (Mean7SEM)

∑ Apoptosis Necrosis

Control 10.370.9 7.071.0 3.370.3
OTA 1 mg/mL 27.771.9* 16.771.2* 11.071.7*

OTA 3 mg/mL 33.773.4* 24.772.3*,a 9.071.7*

AP 92 mg/mL 20.072.1* 11.771.2 8.370.9*,b

AS-OTA(þ) 92 mg/mL 25.070.6* 20.370.7*,b 4.770.3
AS-OTA(–) 92 mg/mL 27.372.2*,b 21.372.2*,b 6.070.0
AS-OTA(þ) 280 mg/mL 28.071.7* 21.371.2* 6.771.5
AS-OTA(–) 280 mg/mL 30.071.5* 25.073.2* 5.071.7
AS-OTA(þ) 92 mg/mLþAP
92 mg/mL

29.774.5*,b 26.073.1*,b 3.771.5

AS-OTA(–) 92 mg/mLþAP
92 mg/mL

25.372.7* 20.073.2*,b 5.371.5

AS-OTA(þ) 280 mg/mLþAP
92 mg/mL

37.775.4*,b,c,d 30.374.5*,b,c,d 7.370.9*

AS-OTA(–) 280 mg/mLþAP
92 mg/mL

25.770.7* 19.770.9*,b 6.071.0

Significantly different values (Po0.05) are marked as follows:
* as compared to control.
a OTA 1 mg/mL vs OTA 3 mg/mL.
b AP 92 mg/mL vs AS-OTA(þ) 92 mg/mL, AS-OTA(–) 92 mg/mL, mixtures of

ASþAP (92þ92 mg/mL) and AS-OTA(–)þAP (280þ92 mg/mL).
c AS-OTA(þ)þAP (280þ92 mg/mL) vs AS-OTA(–)þAP (280þ92 mg/mL).
d AS-OTA(þ) 280 mg/mL vs AS-OTA(þ)þAP (280þ92 mg/mL)
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decreased cell survival in a concentration-dependant manner and
viability significantly dropped (to 80%) after treatment with
0.4 μg/mL. The IC50 for OTA obtained by MTT was 53 μg/mL. Spore
extracts of both OTA-producing and OTA-non-producing Aspergilli
Fig. 3. Viability (A) and apoptosis (B) of A549 cells after combined treatment with
AS-OTA(þ) and AP as well as AS-OTA(–) and AP. * Represents significant synergistic
effect and ** represents significant antagonistic effect (Po0.05).
applied in the same range of concentrations (92–4940 μg/mL) also
reduced cell viability in a concentration-dependant manner
(Fig. 2). The IC50 of AS-OTA(þ) was 934 μg/mL and the calculated
OTA concentration in the extract that corresponds to IC50 of AS-
OTA(þ) was 10.5 μg OTA/mL. Taking into account only the OTA
concentration (10.5 μg/mL) in the extract, AS-OTA(þ) was 5 times
more toxic than pure OTA. Also, AS-OTA(þ) was twice as toxic
than AP (IC50¼2126 μg/mL). The highest applied concentration of
AS-OTA(-) spore extract (4940 μg/mL) decreased cell viability by
30% and the IC50 for the extract could not be determined. Mixture
of AS-OTA(þ)þAP and AS-OTA(–)þAP applied in subtoxic con-
centrations showed dominant additive interactions (Fig. 3). Also, a
synergistic effect was obtained for combination of AP and AS-OTA
(þ) both applied in the same mass concentration (280 μg/mL).

3.3. Apoptosis and necrosis induced by OTA and Aspergillus spore
extracts

Results of the quantitative fluorescent assay for simultaneous
identification of apoptotic and necrotic cells are reported in
Table 2.

The fluorescent microscopic findings suggest that the cytotoxic
effects of pure OTA as well as AS and AP spore extracts have been
predominantly mediated by apoptosis. Single OTA, both AS ex-
tracts and ASþAP combinations significantly increased apoptosis
frequency as compared to control. Also, both concentrations of
pure OTA significantly increased the frequency of necrotic cells.
The single AP spore extract increased apoptosis insignificantly and
simultaneously evoked significantly higher cell necrosis as com-
pared to control, AS extracts (92 mg/mL) and ASþAP combinations
(92þ92 μg/mL, AS-OTA(–) 280 μg/mLþAP 92 μg/mL). Mixtures of
APþAS-OTA(þ) showed a concentration-dependant cytotoxicity
affected by the increased frequency of both apoptotic and necrotic
cells. Also, the mixture of AP and OTA positive AS (92þ280 mg/mL)
exerted the highest apoptotic potential as compared to single ex-
tracts and other APþAS combinations.

The comparison between the measured and expected percent



Fig. 4. Photomicrographs of A549 cells observed after simultaneous staining with fluorescence dyes acridine orange and ethidium bromide. (a) Control cells; (b) and
(c) apoptotic cells; and (d) necrotic cell. Microscopic analysis was performed using fluorescence microscope Olympus BX, under magnification 400x.

Fig. 5. Genotoxicity of subtoxic concentrations of OTA as well as single and com-
bined spore extracts of A. sclerotiorum (AS-OTA(þ), AS-OTA(–)) and A. pseu-
doglaucus in A549 cells determined by alkaline comet assay. Significantly different
values (Po0.05) are marked as follows: * – as compared to the control; a – AS-OTA
(þ) 280 mg/mL vs AS-OTA(–) 280 mg/mL; b – AP vs all mixtures of ASþAP
(92þ92 mg/mL and 280þ92 mg/mL); c – AS-OTA(þ) 280 mg/mL vs AS-OTA(þ)þAP
(280þ92 mg/mL); d – AS-OTA(–) 92 mg/mL vs AS-OTA(–)þAP (92þ92 mg/mL); and
e – AS-OTA(–) 280 mg/mL vs AS-OTA(–)þAP (280þ92 mg/mL).
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of apoptosis showed additive interactions of ASþAP except in AS-
OTA(–)þAP (280þ92 mg/mL) where an antagonism was recorded
(Fig. 4).

The rapid viability assay with fluorescence dyes acridine orange
and ethidium bromide applied in this study allowed for counting
fractions of viable, apoptotic and necrotic cells based on cell
morphology, nuclear and chromatin disintegration. While control
cells showed intact morphology and a bright green colour of
chromatins (Fig. 5a), we observed fragmentation of nuclei and
formation of apoptotic bodies in apoptotic cells treated with AP
and AS-OTA(þ) (92þ280 mg/mL) (Fig. 5b,c). In necrotic cells
treated with AP, the massive destruction of chromatin morphology
was observed, together with vacuole formation in the cytoplasm.
These cells accumulated ethidium bromide and their chromatin
was thus stained bright red (Fig. 5d).

3.4. Genotoxicity of OTA and Aspergillus spore extracts

Genotoxicity obtained by comet assay is represented as tail
intensity because proportion (%) of DNA in the tail is the most
suitable indicator of DNA damage (Olive, 1999; Collins, 2004). Data
show that single OTA as well as subtoxic concentrations of spore
extracts significantly induced DNA damage in A549 cells as com-
pared to the control (Fig. 6). Single extracts of AS-OTA(þ) in-
creased tail intensity more than both AS-OTA(–) and AP, but this
genotoxic effect was not statistically significant. Extract of AS-OTA
(þ) exerted significantly stronger genotoxicity than the AS-OTA(–)



Fig. 6. Genotoxicity of combinations AS-OTA(þ)þAP and AS-OTA(–)þAP re-
presented as measured and expected tail intensity. * Represent significant antag-
onistic effect (Po0.05).
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only when it was applied at 280 mg/mL. When mixtures of extracts
were used, significantly higher tail intensity was obtained in cells
treated with AS-OTA(–)þAP (92þ92 and 280þ92 mg/mL) and AS-
OTA(þ)þAP (280þ92 mg/mL) in respect to DNA damage in cells
treated with single extracts. Considering the expected and mea-
sured values of tail intensity, extract combinations exert dominant
additive interactions, except for the combination of AS-OTA(þ)þ
AP (92þ92 mg/mL) which exhibited antagonism (Fig. 6).
4. Discussion

The concentration of airborne fungal particles in occupational
environments such as grain mills, rice mills, agricultural facilities
or sawmills, may be up to a hundred thousand times higher than
outdoors (Lugauskas et al., 2004; Desai and Ghosh, 2003; Hameed
and Khodr, 2001; Šegvić Klarić et al., 2012). Our one-year study
conducted in a grain mill in 2012 is in agreement whit these
findings. The study showed that maximum levels of airborne fungi
were 25 times higher than the concentration considered as an
arbitrary occupational health hazard (104 cfu/m3) (Jakšić Despot
and Šegvić Klarić, 2014; Opplinger et al., 2005). Aspergilli from
sections Aspergillus, Flavi and Circumdati dominated the aero-
mycota in grain mill which is not surprising because these xer-
ophilic species are common contaminants of stored grains and are
able to produce vast numbers of airborne spores and small my-
celial fragments (Klich, 2009). In November, the species from
sections Aspergillus and Circumdati were found in 100% and 35% of
samples, respectively, and constituted 36% and 2.6% of the max-
imum concentration of total airborne fungi counted in that sam-
pling period. Sequence analysis of calmodulin gene region showed
that isolated Aspergilli were A. pseudoglaucus and A. sclerotiorum
and we can assume that A. pseudoglaucus and A. sclerotiorum were
not present only in November but throughout the whole year.

A. sclerotiorum is a well-known producer of OTA from section
Circumdati, also known as the Aspergillus ochraceus group (Frisvad
et al., 2004; Varga et al., 1996). In our study among six isolated
strains of A. sclerotiorum three produced OTA (up to 28 mg/mL) in
the spores. Using the equation provided by Kelman et al. (2004)
the daily inhaled dose of OTA was calculated to be 1 ng/kg b.w.,
which is 5% of tolerable daily oral intake-TDI for OTA (17 ng/kg b.
w.) established by EFSA (2006). Such comparison was made be-
cause no occupational exposure limit for OTA inhalation exists so
far. However, several uncertainties related to estimation of in-
halatory exposure to OTA should be taken into account:
(i) cultivation of viable OTA-producers but not dead spores; (ii)
presence of OTA in mycelial fragments; (iii) short sampling time
that might exclude other OTA-producers that constitute grain mill
aeromycota. Straumfors Halstensen et al. (2004) estimated that
Norwegian farmers might inhale up to 13% of OTA TDI during
handling of stored grain. OTA has been detected in dust and
aerosol samples (0.2–70 mg/kg) in Norwegian cowsheds (Skaug
et al., 2001) and a poultry house (8.53 ng/m3) in China (Wang
et al., 2008). Wang et al. (2008) calculated that the workers daily
inhaled about an amount of OTA of 68.2 ng, which is a consider-
able health hazard. Taking into account these calculations, occu-
pants might be at high health risk since mycotoxin inhalation may
be at least 10 times more toxic than oral intake (Creasia et al., 1987,
1990). Also, rapid systemic appearance of OTA with 98% of bioa-
vailability has been documented in rats upon intratracheal ad-
ministration (Breitholtz-Emanuelsson et al., 1995). However, this
does not mean that all inhaled particles containing mycotoxins
will reach the alveoli. Large particles could be deposited in the
traheobronchiolar region and then transported upward by ciliary
movement toward pharynx and been swallowed. Therefore, if the
mycotoxin is not absorbed by lung tissue, it could be absorbed
from the gastrointestinal tract (Breitholtz-Emanuelsson et al.,
1995).

Besides OTA, A. sclerotiorum is able to produce other polyke-
tides including penicillic acid and xanthomegnins (Samson et al.,
2004) which might interact synergistically with OTA. This could be
the reason why the IC50 of OTA in the spore extract of A. scler-
otiorum was approximately five times lower than IC50 of pure OTA
applied on A549 cells. Synergism between OTA and penicillic acid
has been documented in kidneys of chickens, mice and pigs after
oral administration (reviewed in Šegvić Klarić et al., 2013), while
xanthomegnins exerted hepatotoxicity and genotoxicity (Carlton
et al., 1976; Mori et al., 1983) but interactions with OTA are still
unknown. Contrary to synergistic interactions of OTA and peni-
cillic acid in vivo, penicillic acid in human peripheral blood
mononuclear cells (PBM) increased while OTA decreased meta-
bolic activity as measured by MTT test, whereas their mixture did
not produce any kind of synergism (Stoev et al., 2009). Opposite to
AS-OTA(þ) spore extract, OTA-non-producing AS spore extract
applied in the highest mass concentration did not produced cy-
totoxic effect. These results suggest that mainly OTA is responsible
for the cytotoxicity of A. sclerotiorum spore extract but interactions
with some other extrolites, which we did not analyse in this ex-
periment, might also be involved in cytotoxicity. A contrary to
OTA-producing AS, A. pseudoglaucus spore extract was twice less
toxic to A549 cells but more toxic than AS-OTA(–). The production
of various extrolites including neoechinulin A and neoechinulin B,
echinulin, epiheveadride, flavoglaucin, auroglaucin, iso-
tetrahydroauroglaucin and cladosporin have been reported in As-
pergilli from section Aspergillus (formerly Eurotium) (Butinar et al.,
2005; Slack et al., 2009) and some might contribute to the cyto-
toxicity of AP spore extract. Toxic effects of these extrolites are
poorly investigated. Earlier studies revealed that echinulin evoked
severe damage of alveolar organization and thickening of alveolar
walls and liver damage in female mixed-breed rabbits upon in-
traperitoneal injection (Ali et al., 1989) and it was cytotoxic to
HeLa cells at 100 mg/mL (Umeda et al., 1974). A recent study on
mouse lungs in vivo and primary cultures of mouse alveolar
macrophages showed that neuechinulin A and B and cladosporin
had significant roles in the immunomodulation of toxin-induced
pro-inflammatory lung responses (Miller et al., 2010). Mixture of
AS-OTA(þ)þAP and AS-OTA(–)þAP showed a dominant additive
cytotoxic effect on A549 cells but cytotoxicity was more pro-
nounced when cells were exposed to AS-OTA(þ)þAP suggesting
possible interactions of OTA and AP extrolites.

Our fluorescent microscopic findings showed that the adverse
effects of OTA alone as well as of AS-OTA(þ) and AS-OTA(–) spore
extracts have been predominantly mediated by apoptosis. Con-
sidering previously known facts on OTA we assume that apoptosis
in this experiment was triggered by oxidative stress (reviewed in
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Sorrenti et al., 2013). An A549 cell possesses cytochrome P450-
depending monooxygenases (Castell et al., 2005) that could
transform OTA into the quinone metabolite, which is known to
generate oxidative stress and can also act as direct mutagen (Ak-
man et al., 2012; Pfohl-Leszkowicz and Manderville, 2012). A re-
cent review on OTA implications in nephrotoxicity and carcino-
genicity pointed out that OTA inhibits the nuclear factor, erythroid
2-like 2 (Nrf2) oxidative stress response pathway which in turn
diminishes glutathione synthesis, recycling of oxidized glu-
tathione, and oxidoreductase activity of (Limonciel and Jennings,
2014). Apart from single OTA, both AS-OTA(þ) and AS-OTA(–)
applied alone showed similar apoptotic potential suggesting that
spore extracts possess some other toxic metabolites that may in-
duce apoptosis irrespective of OTA presence. This is supported by
Schulz et al. (2004), who reported on the cytotoxic synergism of
spore extract fractions taken from mycotoxin non-producing air-
borne fungi. The same study revealed that fungal cell wall com-
ponents have no or only low toxic potential (Schulz et al., 2004)
suggesting that cytotoxicity could be attributed to fungal meta-
bolites. The highest percentage of necrotic cells was found in the
sample incubated with single AP. This finding suggests the ability
of AP spore extracts to induce inflammation responses which
could be attributed to neuechinulin A, B and cladosporin, as was
recently reported by Miller et al. (2010). However, when combi-
nations of ASþAP were applied to A549 cells, apoptosis domi-
nated over necrosis and this effect was more pronounced upon
exposure to AS-OTA(þ)þAP (280þ92 mg/mL) suggesting that
apoptosis was enhanced by OTA. Combined spore extracts showed
additive interactions except AS-OTA(–)þAP (92þ280 mg/mL)
where antagonismwas recorded. Taken together, we can speculate
that airborne fungal particles in sub-toxic concentration could
trigger apoptosis and/or necrosis depending on metabolite mix-
tures and their interactions. Presence of mycotoxins such as OTA
significantly contributes to the cytotoxicity of these mixtures.

All of the three spore extracts and OTA alone applied in sub-
toxic concentrations provoked DNA damage in A549 cells, but
contrary to apoptotic effects, genotoxicity was more pronounced
when AS-OTA(þ) was applied as a single extract or in mixture
with AP. For years, the mechanisms of OTA genotoxicity have been
under debate. Direct genotoxic action (DNA adduct formation),
indirect oxidative DNA damage, and a network of interacting
epigenetic mechanisms (inhibition of protein synthesis, oxidative
stress, activation of specific signalling pathways) have been pro-
posed (Vettorazzi et al., 2013). Akman et al. (2012) showed that the
OTA transformed into hydroquinone metabolite (OTHQ) acts as a
direct genotoxic mutagen in human kidney cells (Ad293). Both
OTA and OTHQ can generate covalent DNA adducts in human
bronchial epithelial W126 cells and human kidney HK2 cells
(Hadjeba-Medjdoub et al., 2012) which speaks in favour of OTA
genotoxicity. Other extrolites that might be present in spores of A.
sclerotiorum including penicillic acid and xanthomegnins also
possess some genotoxic properties but the mechanism of their
genotoxicity is poorly investigated. Penicillic acid induces DNA-
strand breaks in HeLa cells (Umeda et al., 1972), while xantho-
megnin exerts genotoxic potential in the hepatocyte primary cul-
ture (HPC)/DNA repair test (Mori et al., 1983). Opposite to ex-
trolites of A. sclerotiorum, the echinulin and flavoglaucin that
might be present in A. pseudoglaucus spore extract did not exhibit
genotoxic action in the hepatocyte primary culture (HPC)/DNA
repair test (Mori et al., 1984). Since genotoxic properties of A.
pseudoglaucus extrolites are poorly investigated or unknown, we
can only speculate that such metabolites might interact synergis-
tically in spore extracts and provoke DNA damage in A549 cells.
These extrolites may also enhance OTA genotoxicity, which results
in more pronounced genotoxicity of the AS-OTA(þ)þAP mixture.
Which mechanisms and interactions are the most relevant for the
genotoxicity of studied spore extracts remains to be examined in
future studies.

In conclusion, possible limitations of this study that might
underestimate the inhalatory exposure of grain mill occupants to
OTA should be considered including the short sampling time,
cultivation of viable fungi but not dead spores that might also
contain OTA as well as the OTA presence in both spores and my-
celial fragments. However, despite the low calculated daily intake
of OTA by inhalation, chronic exposure to elevated levels of OTA-
producing airborne fungi in combination with other more or less
toxic moulds poses a significant threat to human health due to
possible additive and/or synergistic cytotoxic and genotoxic
interactions.
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