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Global dynamics of delay recruitment models with maximized lifespan
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Abstract. We study the dynamics of the differential equation

u′(t) = −γu(t) + bf(u(t − τ)) − cf(u(t − σ))

with two delayed terms, representing a positive and a negative feedback. We prove delay-dependent and absolute global
stability results for the trivial and for the positive equilibrium. Our theorems provide new mathematical results as well as
novel insights for several biological systems, including three-stage populations, neural models with inhibitory and excitatory
loops, and the blood platelet model of Bélair and Mackey. We show that, somewhat surprisingly, the introduction of a
removal term with fixed delay in population models simplifies the dynamics of the equation.
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1. Introduction

Time delays are naturally present in many physical and biological systems. For example, the length of
the juvenile period can play an important role in the time evolution of the population of a species. Delays
are involved in most physiological processes as well, such as the time it takes for a nerve impulse to travel
along the axons and across the synapses or the required time for producing new cells in an organism and
for the cells to mature. In those processes, time delays play a paramount role from both biological and
dynamical perspectives.

There is a vast literature of comprehensive results for equations of the form

u′(t) = −γu(t) + f(u(t − τ)), (1.1)

where f(u) is a monotone function representing delayed negative [10,13] or delayed positive feedback [11],
or when f(u) is a unimodal function [1,6,14,18,24]. In contrast, much less is known about the global
dynamics of

u′(t) = −γu(t) + bf(u(t − τ)) − cf(u(t − σ)), (1.2)

where all parameters are positive and f : R → R is a smooth real function with f(0) = 0 and xf(x) > 0
for x �= 0.

Equation (1.2) can describe the dynamics of a single neuron (or the mean field equation for a population
of neurons in a network) with an excitatory and an inhibitory loop, having different delays. The pair of
a positive and a negative delayed feedback occurs on the processing of sensory information and other
processes in neuroscience (see [5,12,17,19] and references therein).

From a population dynamics perspective, with the choice b = 1, c = e−γ(σ−τ) and σ > τ , (1.2) models
the time evolution of a population when there is a natural mortality rate (γ) independent of the age of
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individuals, a recruitment term given by the function f : [0,∞) −→ [0,∞) with maturation delay τ , and
a removal from the population at the “old” adult age σ − τ > 0. Then (1.2) becomes

u′(t) = −γu(t) + f(u(t − τ)) − e−γ(σ−τ)f(u(t − σ)). (1.3)

Originally, Bélair and Mackey [2] proposed this equation to study the mammalian platelet production.
Here u(t) is the total number of platelets, τ denotes the maturation time of megakaryocyte, σ − τ stands
for the age of death of a platelet due to senescence, and γ refers to the random destruction of platelets.
Typically the real values of τ and σ − τ are 9 and 10 days, respectively. The function f reflects the
thrombopoietin feedback influencing the influx of cells into the recognizable megakaryocyte compartment,
and was chosen in [2] as f(u) = β0θnu

θn+un . We mention that Eq. (1.3) also appears in the regulation of
mammalian erythropoiesis [3].

A similar situation occurs in a population of a species with three life stages, namely juvenile, adult,
and elder. If we assume that both the juvenile and the adult stages have fixed length, τ and σ − τ ,
respectively, and that only the adults contribute to reproduction, then again we arrive at (1.3), where
u(t) denotes the total reproductive (adult) population. Recently, in the context of vector borne diseases,
and in particular malaria control, Gourley, Liu and Wu [8] used three stage populations as a subsystem to
model late-life acting insecticides for mosquitoes. In their model, τ represented the duration of the larval
stage, while σ − τ was the length of adult stage, and the insecticide had effect only on old mosquitoes
whose age exceeding σ. See [28] for additional biological models involving equations like (1.3).

Despite its relevance for applications, the literature for (1.2) is relatively scarce, given the mathematical
challenges posed by the two (positive and negative) delayed feedback terms. Note that for Eq. (1.2), even
the local stability analysis is very difficult (partial analysis was given in [9,20,21,23]), and the complete
picture of the stability chart is still unknown in the general case, nonetheless this information is fully
encoded into the characteristic equation λ = −γ + bf ′(0)e−τλ − cf ′(0)e−στ .

Our aim here is to initiate a systematic study for proving global attractivity results in (1.2). The paper
is structured as follows. In the next section, we present delay-dependent conditions of global attraction
of the trivial solution of (1.2) in C([�, 0],R) with f defined on R and � = −max{τ, σ}. Then in Sect. 3
we give sufficient criteria for the global attraction of positive equilibria for initial conditions producing
positive solutions. Section 4 is devoted to the applications of the abstract results. In Sect. 4.1, we derive
the model of Bélair and Mackey from an age-structured model and provide a precise description of the set
of biologically meaningful initial conditions. In this scenario, we give the following biological insight: the
introduction of the removal term in (1.3) does not alter the global attraction, only produces a reduction
of the population size. In fact, the removal term typically simplifies the dynamical behavior of (1.1).
Finally, in Sects. 4.3 and 4.4 we show the implications of our theorems for a three-stage population model
of Beverton–Holt and Ricker type, and for a neuron model with excitatory and inhibitory loops.

2. Delay-dependent conditions of global attraction in (1.2)

Throughout the paper, C([a, b], I) refers to the Banach space of continuous functions defined on [a, b]
taking values from I, and equipped with the supremum norm. Given an initial condition φ ∈ C([�, 0],R),
we employ the notation u(t, φ) to the solution of (1.2) with initial condition at φ. A solution of Eq. (1.2),
say u(t) ≡ u(t, φ), can be written as

u(t) = e−γt

⎛
⎝u(0) + b

t∫

0

eγsf(u(s − τ))ds − c

t∫

0

eγsf(u(s − σ))ds

⎞
⎠ .
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After doing some simple manipulations when σ > τ ≥ 0, we obtain

u(t) = e−γtΘ + e−γt (beγτ − ceγσ)

t−σ∫

−τ

eγsf(u(s))ds

+ be−γteγτ

t−τ∫

t−σ

eγsf(u(s))ds, (2.1)

where Θ = u(0) − ceγσ
−τ∫
−σ

eγsf(u(s))ds. By (2.1), whenever f is exponentially bounded, solutions are

defined on [−σ,∞).
For convenience in the next arguments, given any t∗ > 0, we write

u(t) = e−γt(B∗ + C(t)) (2.2)

with t∗ + σ < t, where

B∗ = Θ + (beγτ − ceγσ)

t∗∫

−τ

eγsf(u(s))ds,

and

C(t) = (beγτ − ceγσ)

t−σ∫

t∗

eγsf(u(s))ds + beγτ

t−τ∫

t−σ

eγsf(u(s))ds.

Now we are in a position to state the main result of this section.

Theorem 2.1. Assume that there exists k > 0 so that

|f(x)| ≤ k|x| for all x ∈ R. (2.3)

If

τ < σ and
(
|beγ(τ−σ) − c| + |b|(1 − eγ(τ−σ))

)
k < γ (2.4)

then lim
t→∞ u(t) = 0 for any solution of (1.2).

Proof. Consider a solution u(t) of (1.2). We split the proof into two steps.
Step 1: u(t) is bounded. Assume by contradiction that

lim sup
t−→∞

|u(t)| = ∞.

In such a case, there is an increasing sequence {tn}n∈N with tn −→ +∞ satisfying

lim
n→∞ |u(tn)| = ∞

and

|u(tn)| = max{|u(t)| : t ≤ tn}
for all n. This property and condition (2.3) enable us to estimate the integral terms in (2.1) in a simple
way. For instance, ∣∣∣∣∣∣

tn−σ∫

−τ

eγsf(u(s))ds

∣∣∣∣∣∣
≤ k|u(tn)|e

γ(tn−σ) − e−γτ

γ
.
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Now, by expression (2.1) together with the previous type of estimates, we get

|u(tn)| ≤ e−γtn |Θ| + e−γtn |beγτ − ceγσ|
(

eγ(tn−σ) − e−γτ

γ

)
k|u(tn)|

+ |b|e−γtneγτ

(
eγ(tn−τ) − eγ(tn−σ)

γ

)
k|u(tn)|.

Then,

|u(tn)|(1 − Bn) ≤ e−γtn |Θ| (2.5)

with

Bn = e−γtn |beγτ − ceγσ|
(

eγ(tn−σ) − e−γτ

γ

)
k + |b|e−γtneγτ

(
eγ(tn−τ) − eγ(tn−σ)

γ

)
k.

On the other hand, (2.4) yields

lim
n−→∞ Bn =

(
|beγ(τ−σ) − c| + |b|(1 − eγ(τ−σ))

) k

γ
< 1.

Therefore, by (2.5), lim
n−→∞ |u(tn)| = 0. This is a contradiction because we were assuming that

lim
n−→∞ |u(tn)| = ∞.

Step 2: lim
t−→∞ |u(t)| = 0.

Define lim sup
t−→∞

|u(t)| := S ∈ [0,∞). For any ε > 0, we find t∗ > 0 large enough so that

|u(t)| ≤ S + ε

for all t > t∗. Thus, by condition (2.3), the inequality |f(u(t))| ≤ k(S + ε) holds for all t > t∗. Using this
estimate, it follows that

lim sup
t−→∞

e−γtC(t) ≤ (S + ε)
(

1 −
(
|beγ(τ−σ) − c| + |b|(1 − eγ(τ−σ))

) k

γ

)
,

and

lim sup
t−→∞

e−γtB∗ = 0.

Now we use the expression (2.2) and the previous estimates to arrive at

lim sup
t−→∞

|u(t)| = S ≤ (S + ε)
(

1 −
(
|beγ(τ−σ) − c| + |b|(1 − eγ(τ−σ))

) k

γ

)
.

As a consequence of condition (2.4) we deduce that S = 0 and the proof is complete. �

The purpose of this theorem was to develop delay-dependent criteria of global attraction in (1.2) when
f : R −→ R is a smooth function defined on R. Our result covers the best delay-independent condition
of global attraction for (1.2), namely

(|b| + |c|)|f ′(0)| < γ,

see [9]. The case τ > σ can be treated analogously by imposing the condition
(
|b − ceγ(σ−τ)| + |c|(1 − eγ(σ−τ))

)
k < γ,

replacing b by c in the proof of the previous theorem (these parameters can have any sign).
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Fig. 1. Negative solution generated by positive initial data. The dashed curve is the solution of u′(t) = βθnu(t−τ)
θn+u(t−τ)n −γu(t),

and the solid curve is the solution of u′(t) = − βθnu(t−σ) exp(−γ(σ−τ))
θn+u(t−σ)n + βθnu(t−τ)

θn+u(t−τ)n − γu(t), where the parameters are

chosen as (γ, θ, β, n) = (1, 1, 3, 10). The delays are τ = 5, σ = 6, and the initial function is φ = (e−0.1t −1) sin(t− τ)2 +0.05
in both cases. One can calculate that φ �∈ A

3. Positive solutions and global attraction of nontrivial equilibria in (1.2)

Next we discuss some dynamical properties of (1.2) when f : [0,∞) −→ [0,∞) typically represents
a recruitment function of some population models. Throughout this section we impose the following
hypotheses (H):

• f is smooth and bounded,
• f(0) = 0 and f(x) > 0 for all x > 0,
• b > c > 0 and σ > τ > 0.
In the presence of the term −cf(u(t−σ)) in (1.2), there exist nonnegative initial conditions producing

negative solutions; see Fig. 1 for an example. To exclude this behavior, which is undesirable in population
models, we only focus on initial conditions taken from the set

A = {φ ∈ C([−σ, 0],R+) : φ(0) − ceγσ

−τ∫

−σ

eγsf(φ(s))ds ≥ 0}

when

γ ≤ ln( b
c )

σ − τ
. (3.1)

From expression (2.1), an initial condition in A clearly generates a solution remaining positive for all
time, (note that (3.1) implies that beγτ − ceγσ > 0).

As a first step we investigate the case of global extinction in (1.2). We stress that by the assumption
of f being bounded, any solution of (1.2) is bounded for all t > 0.

Theorem 3.1. Assume (H) and that (1.2) has no positive equilibria. Then the trivial solution is a global
attractor in A.

Proof. Let u(t) be a solution of (1.2) with an initial condition in A. Our aim is to prove that if M :=
lim sup
t−→+∞

u(t), then M = 0.
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Pick ε > 0 and a time t∗ large enough so that u(t) ≤ M + ε for all t ≥ t∗. Next take t0 ≥ t∗ + σ
satisfying that

max{0,M − ε} ≤ u(t0),∣∣∣∣e−γt0(beγτ − ceγσ)
eγt∗

γ

∣∣∣∣ < ε,

e−γt0B∗ < ε,

[see (2.2) for the definition of B∗]. By expression (2.2), we have that

u(t0) ≤ ε + e−γt0

⎛
⎝(beγτ − ceγσ)

t0−σ∫

t∗

eγsf(u(s))ds + beγτ

t0−τ∫

t0−σ

eγsf(u(s))ds

⎞
⎠ . (3.2)

Consequently,

M − ε ≤ u(t0) ≤ ε + e−γt0 max{f(x) : x ∈ [0,M + ε]} ·
(

(beγτ − ceγσ)
eγ(t0−σ) − eγt∗

γ

+ beγτ

(
eγ(t0−τ) − eγ(t0−σ)

γ

))
,

and, after simple computations,

M − ε ≤ u(t0) ≤ ε + max{f(x) : x ∈ [0,M + ε]}
(

(b − c)
γ

− e−γt0(beγτ − ceγσ)
eγt∗

γ

)
.

By the choice of ε and t0, we deduce that

M ≤
(

(b − c)
γ

+ ε

)
max{f(x) : x ∈ [0,M + ε]} + 2ε.

Then, by making ε −→ 0, we arrive at

M ≤ b − c

γ
max{f(x) : x ∈ [0,M ]}. (3.3)

On the other hand, as (1.2) has no positive equilibria, clearly

0 ≤ b − c

γ
f(x) < x

for all x > 0, and by using (3.3), we conclude M = 0. �

Remark 3.1. The condition on boundedness of f can be relaxed. Specifically, it is enough to impose that
all solutions are defined for all t > 0.

Next we discuss criteria of uniform persistence and global attraction of nontrivial equilibria in model
(1.2).

Theorem 3.2. Assume (H) and

f ′(0) >
γ

b − c
. (3.4)

Then lim inf
t−→∞ u(t) > 0 for any positive solution of (1.2).
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Proof. First, take l > 1 and ε > 0 so that

b − c

γ
f(x) ≥ lx (3.5)

for all x ∈ [0, ε]. Next, assume by contradiction that there is a positive solution so that lim inf
t−→∞ u(t) = 0. In

such a case we can pick a strictly increasing sequence {tn} tending to ∞ so that u(tn) = min{u(t) : t ≤ tn}
with lim

n−→∞ u(tn) = 0.

By expression (2.1) and applying mean value theorem, we deduce that there are two values α1(t) ∈
(−τ, t − σ) and α2(t) ∈ (t − σ, t − τ) so that

u(t) = e−γtΘ + e−γt(beγτ − ceγσ)
eγ(t−σ) − e−γτ

γ
f(u(α1(t)))

+ be−γteγτ eγ(t−τ) − eγ(t−σ)

γ
f(u(α2(t))). (3.6)

From this expression, if lim
n−→∞ u(tn) = 0 then lim

n−→∞ f(u(α1(tn))) = lim
n−→∞ f(u(α2(tn))) = 0. Recall that

e−γσ(beγτ − ceγσ)
γ

> 0,

b(1 − eγ(τ−σ))
γ

> 0.

As f(x) = 0 if and only if x = 0, we can find n0 > 0 large enough such that αi(tn), u(tn) ∈ [0, ε] for
all n > n0. Consequently, by (3.5) and the definition of tn,

f(u(αi(tn))) ≥ l
γ

b − c
u(αi(tn)) ≥ lγ

b − c
u(tn)

with n ≥ n0. Observe that, by incorporating the previous estimates in (3.6)

u(tn) ≥ e−γtn

⎛
⎝u(0) − ceγσ

−τ∫

−σ

eγsf(u(s))ds

⎞
⎠

+
beγτ − ceγσ

γ
(e−γσ − e−γ(tn+σ))

γl

b − c
u(tn) +

b

γ
(1 − eγ(τ−σ))

γl

b − c
u(tn).

After some manipulations, we find

u(tn) ≥ e−γtn

(
c − beγ(τ−σ)

) lu(tn)
b − c

+ lu(tn)

what implies, by dividing by u(tn), l ≤ 1, contradicting the choice of l. �

Theorem 3.3. Assume that (H) and (3.4) are satisfied. For each solution u(t) of (1.2) with initial condition
in A, there exist 0 < L ≤ M and M∗, L∗ ∈ [L,M ] such that the following statements hold:

(i)

lim inf
t−→∞ u(t) = L,

lim sup
t−→∞

u(t) = M,

and, for G(x) := b−c
a f(x),

M ≤ G(M∗), L ≥ G(L∗). (3.7)
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(ii) If x > 0 is the unique positive equilibrium of (1.2), then

M∗ < x < L∗ or L = M = x. (3.8)

In particular, when x > 0 is a global attractor in (0,+∞) of

xn+1 = G(xn),

then x is a global attractor of (1.2) in A.

Proof. The existence of L with

lim inf
t−→∞ u(t) = L > 0

is a consequence of Theorem 3.2. By the remark preceding Theorem 3.1, there is M > 0, such that

lim sup
t−→∞

u(t) = M.

By arguing exactly as in Theorem 3.1, we deduce that

M ≤ max{G(x) : x ∈ [L,M ]}.

The proof of the other inequality can be deduced reversing the inequalities in the previous part. This
argument proves (i).

Using G′(0) > 1 and the boundedness of f , we easily see that in the case of a unique equilibrium, the
function G satisfies

(G(x) − x)(x − x) < 0 (3.9)

for all x �= x. The first part of (ii) is a direct consequence of (3.7) and (3.9). Finally, we apply [7, Lemma
2.5] when G has a unique fixed point to exclude the existence of different L∗ > M∗. Thus, L = M = x. �

This result allows us to deduce a result of practical permanence according to the related literature,
see [25]. The key difference with respect to classical results on persistence is that we estimate an explicit
lower bound for the long-term of the solutions.

Corollary 3.1. Assume that (H) and (3.4) are satisfied. Then (1.2) is uniformly persistent. In particular,
lim inf
t−→∞ u(t) ≥ L for any positive solution in A, where [L,M ] is an attractive interval for the discrete
equation

xn+1 = G(xn).

4. Applications

This section is devoted to present some applications of our results in different biological contexts: Bélair–
Mackey’s model of mammalian platelet production, neural networks, and population dynamics. Equation
(1.2) was deduced from a more general age-structured model in [3]. Here we provide a direct derivation,
as this approach allows us to determine the set of biologically meaningful initial conditions in a clear
manner.
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4.1. Bélair–Mackey’s model as an age-structured model and the set of biologically meaningful initial data

Consider a biological population structured by age and let n(t, a) denote the density of individuals at
time t with respect to age a. Then the total population N(t) is given by

N(t) =

∞∫

0

n(t, a)da.

Introducing an age-dependent mortality rate μ(a), the density satisfies

n(t + h, a + h) = e− ∫ a+h
a

μ(s)dsn(t, a)

and differentiating with respect to h and letting h → 0, we find that the density is governed by the
equation (

∂

∂t
+

∂

∂a

)
n(t, a) = −μ(a)n(t, a). (4.1)

Assume now that individuals can be divided into three stages: juveniles, adults, elder, which are character-
ized by age, with a ∈ [0, τ), a ∈ [τ, σ), a ∈ [σ,∞), respectively. If we denote by u(t) the adult population
and suppose that only adults participate in reproduction according to a birth function f(u(t)), then we
get the boundary condition

n(t, 0) = f(u(t)) where u(t) =

σ∫

τ

n(t, a)da. (4.2)

The initial condition at t = 0 corresponds to the initial age distribution, say

n(0, a) = ρ(a). (4.3)

Collecting all the information, Eqs. (4.1),(4.2), and (4.3) allow us to define a Cauchy problem. By solving
this problem along the characteristic lines t − a = c and using (4.2), we find that, for a ≤ t,

n(t, a) = n(t − a, 0)e− ∫ a
0 μ(s)ds = f(u(t − a))e− ∫ a

0 μ(s)ds. (4.4)

In particular, for τ ≤ t,

n(t, τ) = f(u((t − τ))e− ∫ τ
0 μ(s)ds (4.5)

and for σ − τ ≤ t,

n(t, σ) = n(t − σ + τ, τ))e− ∫ σ
τ

μ(s)ds. (4.6)

Now we differentiate u(t) in the second equation in (4.2) and use (4.1) to obtain

u′(t) = n(t, τ) − n(t, σ) −
σ∫

τ

μ(a)n(t, a)da. (4.7)

In the special case μ(a) = 0 for a < τ and μ(a) = γ for a ∈ (τ, σ), we arrive at the delay differential
equation

u′(t) = f(u((t − τ)) − e−γ(σ−τ)f(u((t − σ)) − γu(t). (4.8)

Note that due to the term e−γ(σ−τ)f(u(t−σ)) there are non-feasible positive initial conditions producing
negative solutions, roughly speaking, when the population at 0 is too small compared to its history in
the interval [−σ,−τ ]. Motivated by this remark, we describe the biologically realistic initial conditions
for the previous age-structured model.
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An initial data of (4.8) is a continuous function φ defined on the interval [−σ, 0]. Observe that for
t ≤ τ, Eq. (4.8) is

u′(t) = f(φ((t − τ)) − e−γ(σ−τ)f(φ((t − σ)) − γu(t), (4.9)

while if τ ≤ t ≤ σ, (4.8) is written as

u′(t) = f(u((t − τ)) − e−γ(σ−τ)f(φ((t − σ)) − γu(t). (4.10)

From the PDE model, the following relations hold:

n(t, τ) = ρ(τ − t) if t ≤ τ, (4.11)

n(t, σ) = ρ(σ − t)e−γ(σ−τ) if σ − τ ≤ t ≤ σ, (4.12)
n(t, σ) = ρ(σ − t)e−γt if t ≤ σ − τ. (4.13)

Thus, to keep the DDE and the PDE consistent for all t ≥ 0, we need to require

ρ(a) = f(φ(−a)) if a ≤ τ, (4.14)

ρ(a) = f(φ(−a))e−γ(a−τ) if τ ≤ a ≤ σ. (4.15)

Since φ(0) =
∫ σ

τ
ρ(a)da, we conclude that a biologically meaningful initial condition φ satisfies

φ(0) =

σ∫

τ

f(φ(−a))e−γ(a−τ)da. (4.16)

The set A introduced in Sect. 3 contains all biologically meaningful initial conditions, which is obvious if
we recall that

A = {φ ∈ C([−σ, 0],R+) : φ(0) ≥
σ∫

τ

f(φ(−a))e−γ(a−τ)da}.

In a recent paper [27], Zhuge, Sun, and Lei showed that the ω- limit set for any positive solution of
(4.19) is contained in

H = {φ ∈ C([−σ, 0],R+) : φ(0) =

σ∫

τ

f(φ(−a))e−γ(a−τ)da}, (4.17)

which is exactly the set defined by the relation we derived in (4.16).

4.2. Bifurcation and attraction in the Bélair–Mackey model: the role of the removal term

In this subsection we analyze the biological response of the model

u′(t) = −γu(t) + f(u(t − τ)) (4.18)

with f(x) = β0θnx
θn+xn to the introduction of a mortality at age σ − τ > 0, i.e., the biological role of

e−γ(σ−τ)f(u(t − σ)) on

u′(t) = −γu(t) + f(u(t − τ)) − e−γ(σ−τ)f(u(t − σ)). (4.19)

Choosing the mortality time σ−τ as a bifurcation parameter, our results establish the following behavior.

Corollary 4.1. Consider equation (4.19) with f(x) = β0θnx
θn+xn . Then we have the following:

(i) if β0(1−e−γ(σ−τ))
γ ≤ 1 then 0 is a global attractor of (4.19);
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(ii) if β0(1−e−γ(σ−τ))
γ > 1, then (4.19) is uniformly persistent. Moreover, the equilibrium x̄ =

θ n

√
β0(1−e−γ(σ−τ))

γ − 1 is the global attractor, provided
∣∣∣∣∣∣
γ + γ(β0(1−e−γ(σ−τ))

γ − 1)(1 − n)

β0(1 − e−γ(σ−τ))

∣∣∣∣∣∣
≤ 1.

Proof. Consider

xn+1 =
(1 − e−γ(σ−τ))

γ
f(xn). (4.20)

By a simple analysis, if β0(1−e−γ(σ−τ))
γ ≤ 1 then 0 is a global attractor of (4.19). Now the first statement is

clear from Theorem 3.1. To prove the second claim, we use that (1−e−γ(σ−τ))
γ f(xn) has negative Schwarzian

derivative, see [26]. After simple computations,
∣∣∣∣∣∣
γ + γ(β0(1−e−γ(σ−τ))

γ − 1)(1 − n)

β0(1 − e−γ(σ−τ))

∣∣∣∣∣∣
≤ 1

says that the positive equilibrium of (4.20) is locally asymptotically stable. Then, by Singer [26], that
equilibrium is a global attractor for (4.20). Finally, we apply Theorem 3.3. The conclusion on persistence
is clear from Corollary 3.1. �

The introduction of a removal term in (4.18) produces, apart from the natural reduction of the
equilibrium size of the population, a stabilizing effect. It is well known that Eq. (4.18) exhibits complex
behaviors for suitable values of the parameters, typically, when the discrete equation

xn+1 = g(xn) :=
1
γ

f(xn)

displays chaotic dynamics. However, any oscillatory behavior in (4.18) can be damped by adding the
removal term, as we can see from the results for Eq. (4.19). Specifically, it is always possible to find two
thresholds ρ1 < ρ2 with the following properties:

• if ρ1 < σ − τ < ρ2 then a nontrivial equilibrium is a global attractor in (4.19);
• if 0 < σ − τ < ρ1, then there is global extinction.

The mathematical explanation is as follows. We know that the global attraction in

xn+1 = (1 − e−γ(σ−τ))g(xn)

implies global attraction in (4.19). On the other hand, by Liz [15], see also [4,16], one can deduce that
there are ρ1 < ρ2 ≤ 1 so that for all k ∈ [0, ρ1], 0 is a global attractor of

xn+1 = kg(xn)

and for all k ∈ (ρ1, ρ2), there is a positive global attractor for

xn+1 = kg(xn).

In our case, we take k = (1 − e−γ(σ−τ)). The stabilizing role of the removal term and possible transitions
between various dynamics are illustrated in the bifurcation diagram Fig. 2, whereas in Figure 3 we plotted
some sample solutions representing different behaviors. Comparisons between the dashed and solid curves
elucidate the role of the removal term.



 56 Page 12 of 15 H. A. El-Morshedy, G. Röst and A. Ruiz-Herrera ZAMP
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Fig. 2. Bifurcation diagram with respect to σ. Minima and maxima on an interval of solutions of u′(t) =

− βθnu(t−σ) exp(−γ(σ−τ))
θn+u(t−σ)n + βθnu(t−τ)

θn+u(t−τ)n − γu(t) for different initial functions are plotted after long integration where the

parameters are chosen as (γ, θ, β, n, τ) = (1, 1, 3, 10, 5). The delay σ varies between 5 and 6. The figure illustrates the variety
of possible dynamics and the transitions between them
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Fig. 3. Sample solutions showing a variety of dynamics for various σ. The dotted curves are solutions of u′(t) = βθnu(t−τ)
θn+u(t−τ)n −

γu(t), and the solid curves are solutions of u′(t) = − βθnu(t−σ) exp(−γ(σ−τ))
θn+u(t−σ)n + βθnu(t−τ)

θn+u(t−τ)n − γu(t), where the parameters

are chosen as (γ, θ, β, n, τ) = (1, 1, 3, 10, 5), with initial function φ = et in all cases. The delay σ equals to 5.3, 5.5, 5.58, 5.9,
respectively in (a–d). The solutions show extinction, convergence to positive equilibrium, convergence to periodic solution
and complicated behavior, matching the corresponding σ value in the bifurcation diagram of Fig. 2
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4.3. Neural model

In this subsection we consider (1.2) as a neural model with an excitatory and an inhibitory loop assuming
the same nonlinearity for the two delayed activation functions. A typically used activation function in
neural models is f(x) = α tanh(βx) [11], but non-monotone functions also have been proposed [22]. We
can apply the results of Sect. 2 for both cases, to derive the following.

Corollary 4.2. Consider (1.2) with

f(x) = α tanh(βx).

Then 0 is a global attractor, provided

(|be−γ(τ−σ) − c| + |b|(1 − e−γ(τ−σ)))|αβ| < γ. (4.21)

Proof. Since f(0) = 0 and |f ′(x)| = | d
dx

α tanh(βx)| = |αβsech2(βx)| ≤ |αβ|, Theorem 2.1 applies in a
direct way. �

Corollary 4.3. Consider (1.2) with the Morita activation function

f(x) =
1 − exp(−β1x)
1 + exp(−β1x)

1 + k exp(β2(|x| − h))
1 + exp(β2(|x| − h))

.

Then 0 is a global attractor, provided

(|be−γ(τ−σ) − c| + |b|(1 − e−γ(τ−σ)))(2β1(|k| + eβ2h) + β2|k − 1|) < γ. (4.22)

Proof. First note that f(x) = −f(−x). For x > 0, a straightforward calculation gives

f ′(x) =
2β1e

β1x
(
eβ2(x−h) + 1

) (
keβ2(x−h) + 1

)
+ β2(k − 1)

(
e2β1x − 1

)
eβ2(x−h)

(eβ1x + 1) 2
(
eβ2(x−h) + 1

)
2

.

For x > 0 we have |f(x)| ≤ ∫ x

0
|f ′(s)|ds ≤ x sups∈[0,x] |f ′(s)|. Simple estimations yield

|f ′(x)| ≤ 2β1(|k| + eβ2h) + β2|k − 1|,
hence the result follows from Theorem 2.1. During the calculation we used the assumption on the acti-
vation function as in [22] that all parameters are positive except k which may be negative as well. �

4.4. Three-stage populations

Motivated by Gourley et al. [8], we consider the population of a species whose lifetime can be divided
into three stages: juvenile, adult, and old. Assuming that both the juvenile and the adult stages have
fixed lengths τ and σ − τ (i.e., σ is the total length of juvenile and adult periods), and that only adults
reproduce, a general model has the form (1.3). Next we consider the dynamics for two typical birth
functions.

Corollary 4.4. For Beverton–Holt-type birth function in (1.2), i.e., f(y) = ay
1+by , we have the following.

(i) If a(1−e−γ(σ−τ))
γ ≤ 1 then 0 is a global attractor.

(ii) If a(1−e−γ(σ−τ))
γ > 1, then x̄ = a(1−e−γ(σ−τ))−1

bγ is a global attractor.

Proof. This result is a particular case of Corollary 4.1 with a = β0, b = θ−1. �

The proof in case of a Ricker-type nonlinearity is also analogous, so we omit it and only state the
result.

Corollary 4.5. Let the birth function in (1.2) be Ricker-type, i.e., f(y) = rye−y. Then,
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(i) if r(1−e−γ(σ−τ))
γ ≤ 1 , then 0 is a global attractor of (1.3);

(ii) if 1 < r(1−e−γ(σ−τ))
γ ≤ e2, then the positive equilibrium x̄ = log( r(1−e−γ(σ−τ)))

γ ) is a global attractor
of (1.3).
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