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Abstract

Investigation of the neuronalconnectionshave been conducted over a long span 
of time. Debate between researchers about contiguity or continuity of the nerve 
elements resulted in a new era in the research of neuronal pathways. The issue has 
been resolved when synaptic connections were discovered by the electron microscope. 
This made it possible to use two types of tract tracing methods. First non-trans-
synaptic and later trans-synaptic tracers were applied. The formerone is suitable to 
demonstrate direct neuronal connections; the latterare able to describe multisynaptic 
neuronal circuits.Development of trans-synaptic neurotropic viruses expressing reporter 
molecules was a great step in this research. GFP, a natural fluorescent protein was 
discovered in jellyfishmore than 50 years ago by Shimomura. Later it was found 
that GFP fluorescence wasstable, species-independent and could be monitored non-
invasively using the techniques of fluorescence microscopy and flow cytometry. Later it 
was recognized thata gene expression cassette encoding the membrane-bound GFP 
could be insertedin the neurotropic virus genome and could be used successfully for 
tracing techniques.

ABBREVIATIONS 
ABC: Avidin-Biotin-Peroxidase Complex; Bac: Bacterial Artifi-

cial Chromosome; BDA: Biotinylated Dextran Amine; BNST: Bed 
Nucleus of Stria Terminalis; C. elegans: Caenorhabditis elegans; 
CMV: Human Cytomegalo Virus; DAB: Diaminobenzidine-Tet-
rahydrochloride; DiI: 1, 1’-Dioctadecyl-3,3,3’,3’ Tetramethylindo-
carbocyanine; DIO: Benzoxazolium, 3-octadecyl-2-[3-(3-octade-
cyl-2(3H)-benzoxazolylidene)-1-propenyl]-perchlorate 34215-
57-1; Ds RED: Discosoma Red Protein; DY: Diamidino Yellow; 
FB: Fast Blue; FG: Fluoro Gold; FITC: Fluorescent Isotiocyanate; 
FR: Dextran Fluoro-Ruby; FRET: Fluorescence Resonance Energy 
Transfer; GFP: Green Fluorescent Protein; HSV: Herpes Simplex 
Virus; lacZ gene: Gene of β-galactosidase; m Cherry: Monomeric 
Mutant of Ds Red; MEMRI: Manganese-Enhanced MRI; MRI: Mag-
netic Resonance Imaging; PHA-L: Phaseolus Vulgaris-Leucoag-

glutinin; PRV: Pseudorabies Virus; PRV-Ba: Attenuated Strain of 
PRV; PRV-Ba Dup Lac: Recombinant PRV Strain; RSGFP4: Red-
Shifted  GFP; TagRFP: Tag Red Fluorescent Protein; tdTomato: 
Monomeric Mutant of DsRed; UV: Ultraviolet Light

INTRODUCTION
Investigations of the neuronal connections have been 

conducted over a long span of time. More than hundred years 
ago researchers, Apáthy [1] and Bethe [2,3], hypothesizedthat 
nerve impulses propagate along neurofibrils connected in a 
continuous network throughout all nerve cells. The neurofibrils 
form delicate threads running in every direction through 
the  cytoplasm  of  the  nerve  cells  extending  into  the  axon  and 
dendrites and to the next neuron. On the contrary Ramón y Cajal 
[4], another leading neuroscientist realized that the neurofibrils 
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are linear bundles constituting dynamic internal skeleton of the 
nerve cell and do not enter the next neuron; however, the neurons 
arein a close connection with each other.He said that each nerve 
cell is an independent entity and nerve synapses transfer nerve 
impulses from one cell to another. His observations confirm 
the hypothesis that the nerve elements possessreciprocal 
relationships in contiguity but not in continuity [5]. Discovery 
of synapses between the neurons opened a new era [6,7]. The 
morphology of synapses was described after invention of the 
electron microscope [8].

The next milestone in the research of neuronal pathways 
was the introduction of tract tracing techniques. With the use 
of tracer molecules that were transported ante- and retrograde 
directions by the axons of the neurons, the researchers could 
reveal unexplored connections between neurons. The majority 
of the tracers can not pass through the synapses.Boldogkői and 
his co-workers [9] as well asNassi and his co-workers [10] listed 
the tracers used for neuroanatomical investigations. One of the 
earliesttracer techniques was the use of radioactively tagged 
amino acids such as 3H-leucine and 3H-proline.They were taken 
up by cell bodies, incorporated into proteins and transported 
anterogradely to axon terminals where they could be visualized 
with autoradiography [11-13]. This method induced development 
in neuroanatomy. The first method that exploited retrograde 
transportation with great successwashorseradish peroxidase 
[14]. Later cholera [15], tetanus toxin [16], biocytin [17] and 
neurobiotin [18] were used with success to demonstrate direct 
one-neuronal connections. Phaseolus vulgaris-leucoagglutinin 
(PHA-L) [19] and biotinylated dextran amine (high molecular 
weight) (BDA) [20] were used as anterograde tracers with long 
survival time of the animalsafter administration. But there is 
evidence that so called anterograde tracers such as BDA are also 
transported in retrograde manner [21-23]. To visualize the above 
mentioned tracers, several methods were used. For example, 
BDA can be visualized by ABC immunoperoxidase method and 
nickel intensification of diaminobenzidine-tetrahydrochloride 
(DAB). To enhance the intensity of the labeling goat anti-biotin 
antiserum was used. Then biotinylated anti-goat antiserum and 
ABC were applied and the sections were placed into nickel–DAB 
chromogen [24].

Another methodological advance was the use of fluorescent 
tracers. Inorganic fluorescent molecules Fast Blue (FB), Diamidino 
yellow (DY) or Fluoro-gold (FG) [25-27] were used as retrograd 
tracers while dextran Fluoro-Ruby (FR) and carbocyanine dyes, 
DiI and DiO,were used as ante-retrograde tracers [28,29].

Tjӓlve and his collaborators [30] were the first to demonstrate 
in fish and later in rats that radioactive Mn2+could be transported 
to the brain via the olfactory receptor neurons to the olfactory 
bulb where the ion traversed synapses and reached the olfactory 
cortex. Mn2+ can access neurons through voltage-gated calcium 
channels. Based upon this fundamental principle, Mn2+has long 
been used in biomedical research as an indicator of Ca2+ influx 
in conjunction with fluorescence microscopy. A modern method, 
the manganese-enhanced MRI (MEMRI) utilizes a combination of 
these properties of Mn2+to trace neuronal pathways in an MRI-
detectable manner [31]. 

HISTORY OF NEUROTROPIC VIRUS TRACT 
TRACING TECHNIQUES

In the 1990s many papers were published about the 
suitability of neurotropic viruses to trace neuronal pathways. 
Some of the neurotropic viruses are a threat to human health. 
Simple modifications allow them to be used in controlled 
experimental circumstances, thus enabling neuroanatomists to 
trace multi-synaptic connections within and across brain regions 
in experimental animals. The pseudorabies virus (PRV)-Bartha 
is an attenuated strain developed as a vaccine [32].Several 
experiments using rodent models showed that PRV invasion 
of the central nervous system occurs in an ordered fashion in 
which the virus passes through synaptically linked neurons, 
damages cells then replicates in the cell body[33,34]. First an 
antibody against the virus protein was used to identify the 
presence of the virus in the nervous system. Mettenleiter and 
Rauh [35] described a method to obtain high level expression 
of the bacterial β-galactosidase enzyme by PRV virus. The gX-β-
galactosidase fusion gene was produced and inserted in the PRV 
genome replacing non-essential PRV genomic regions, such as 
the thymidine kinase gene and the glycoprotein gI-gene, resulting 
in inactivation of the target genes. The fusion gene remains stably 
integrated in the viral genome. It therefore appeared ideal as an 
insertional and easily identifiable marker and greatly facilitates 
isolation and purification of PRV mutants. After the construction 
of mutants expressing functional β-galactosidase, PRV was widely 
used to study neuronal pathways. The presence of the virus was 
visualized by β-galactosidase antibody [36,37]. Ba-DupLac, a 
recombinant PRV strain was used for tracing studies since this 
virus exhibits more restricted transportation kinetics than the 
kinetics of PRV-Ba [38]. In fact, utilization of Ba-DupLac allowed 
reduction of the problem to an all-or-none labeling paradigm.Ho 
and Mocarski [39] inserted a modified Escherichia coli lacZ gene, 
placed under the control of herpes simplex virus (HSV) alpha 4 
or beta 8 regulatory signals, into the HSV-1 genome disrupting 
the viral thymidine kinase gene. The detection of β-galactosidase 
expression in neuronal cells indicates that thymidine kinase-
deficient viruses are capable of invading mouse neuronal cells 
and expressing up to the β class of gene product [10]. It was an 
important observation that the removal of gE and gI membrane 
glycoprotein genes, which encode the PRV virulence-enhancing 
factors [40], eliminates the anterograde spreading of the virus 
[41]. 

DISCOVERY OF GFP AND OTHER FLUORESCENT 
PROTEINS IN NATURE

Osamu Shimomura, who received a Nobel Prize in 2008 [42] 
for his pioneer research, isolated a bioluminescent protein from 
a glowing jellyfish (Aequorea victoria) that gave offblue light 
[43]. Further studies revealed that the protein’s blue light was 
absorbed by a second jellyfish protein, which in turn re-emitted 
green light, later called green fluorescent protein (GFP) [44]. 
Chalfie [45] realized that expression of GFP could be used to map 
proteins in the transparent nematode worm, Caenorhabditis 
elegans (C. elegans). Later, the GFP gene was expressed in 
Escherichia coli. The bacteria glowed green in ultraviolet (UV) 
light without the addition of any other factors [46]. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mocarski ES%5BAuthor%5D&cauthor=true&cauthor_uid=2847416
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GFP has become a versatile reporter for monitoring gene 
expression and  protein  localization in a variety of cells and 
organisms. GFP emits bright  green  light or blue light when 
excited with UV light. The chromophore in GFP is intrinsic to 
the primary structure of the  protein, and  fluorescence  does 
not require additional  gene  products, substrates or other 
factors. GFP  fluorescence  is stable, species-independent 
and can be monitored noninvasively using the techniques 
of  fluorescencemicroscopy [47,48]. The  proteinappears to 
undergo an autocatalytic reaction to create the fluorophore 
[49] in a process involving cyclization of a Tyr 66 amino 
acid residue. Recently a combinatorial mutagenic strategy 
was targeted at amino acid 64 through 69, which spans the 
chromophore ofjellyfish GFP, yielding a number of different 
mutants with red-shifted  fluorescence  excitation spectra [50].  
One of these, RSGFP4, retains the characteristic  greenemission 
spectrum, but has a single excitation peak.It was demonstrated 
by fluorescence microscopy that selective excitation of GFP and 
RSGFP4 allows for spectral separation of each fluorescent signal, 
and provides the means to image these signals independently 
in a mixed population of bacteria or mammalian cells.Tsien and 
collaborators [51] modified the structure of GFP to produce new 
variants that shine more strongly and produce different colors, 
such as cyan, blue and yellow.GFP, along with its mutants and 
homologs,is widely used as in vivo fluorescent marker facilitating 
biomedical studies [52]. Tramier and his co-workers [53] paired 
the GFP with mCherry protein. mCherry has been successfully 
fused to many other proteins and used for quantitative imaging 
techniques including fluorescence resonance energy transfer 
(FRET).   FRET is a mechanism describing energy transfer 
between two chromophores (light-sensitive molecules) [54]. The 
GFP/mCherry pair is more resistant against photobleaching. As 
mCherry, tdTomato and mStrawberry arealso Fruit Fluorescent 
Proteins, which were developed in Tsien’s laboratory? Their 
pairing to bright monomeric orange and red fluorescent proteins 
improved photostability [55].

Other naturally fluorescent proteins were later found by Matz 
and his co-workers [56]. They discovered six GFP-like proteins 
in fluorescent corals (Discosoma sp). These proteins exhibited 
an unexpected color diversity including a red protein called 
Discosoma Red (DsRED). Tsien [57,58]created stable variants of 
DsRED that glowed in shades of red, orange and pink – complex 
biological networks can now be labeled using all the colors of 
the rainbow.Merzlyak and her co-workers [59] reported a Tag 
red fluorescent protein (TagRFP), which was characterized by 
high brightness, complete chromophore maturation, prolonged 
fluorescence lifetime and high pH-stability.

GFP LABELING IN TRACING OF NEURONAL 
PATHWAYS

Specifically labeledPRV mutants have been used successfully 
as transsynaptic circuit tracers for definition of central command 
neurons in the brain [60]. Availability of these recombinant 
tracers allows the study of even more complex interactions using 
differentially labeled PRV mutants, and provides means to monitor 
viral replication and spread without destruction of the cell. Jöns 
and  Mettenleiter [61] improved the method. They isolated and 
characterized a PRV mutant  expressing  anengineered  GFP 

optimized for expression in cells. The GFP DNA was inserted 
in the non-essential glycoprotein G (gG) gene of the attenuated 
PRV strain Bartha. The coding sequence was cloned in frame 
behind the first seven codons of the gG  gene  under control 
of the strong gG promotor. On excitation with blue light, live 
cells infected with the recombinant PRV B80eGFP exhibited 
bright fluorescence when examined microscopically using filters 
for fluorescent isotiocyanate (FITC). In fixed samples detection 
sensitivity was increased by immunofluorescence using an anti-
GFP antibody.

In the last 20 years many results were born in exploring 
neuronal circuits using GFP and other fluorescent protein 
expressing viruses.It was also an interesting step to engineer 
PRV viruses which were not toxic even at late stages of infection 
and these viruses are suitable to give information not only about 
the early, but about a late phase of infection. These viruses are 
called timer PRVs [62]. Two retrograde viruses express two 
different proteins (GFP and DsRED2) with different kinetics 
and intracellular distribution. Membrane-targeted green 
fluorescence appeares at the early stage of infection (primary 
fluorescent protein) while the soluble red reporter is detectable 
several hours later (secondary fluorescent protein).

Very exciting discovery was the creation of transgenic mice 
that can express GFP in specific neurohormone expressing 
systems.GFP can be introduced into animals or other species 
through transgenic techniques, and maintained in their genome 
and that of their offspring. Van den PolandGhosh [63] generated 
GFP transgenic mice in which only one type of neuronswere 
strongly labeled with a fluorescent molecule. Theneurons 
synthesized these molecules internally, allowing the cells, 
their dendritesand axons to be identified in both living and 
fixed central nervous system, in slices and culture. The same 
neuronsexhibited GFP beginning early in development, from 
one generation to the next, allowing cellular and physiological 
studies of axonal and dendritic growth, anatomical connections, 
and synapse formation in identified neurons.

CRFp3.0CreGFP transgenic mice expressing GFP in the 
corticotropic releasing hormone (CRF) synthesizing cells were 
used by Dabrowska and her co-workers [64] to demonstrate 
the CRF projections of oval nucleus of bed nucleus of stria 
terminalis (BNST) are using an anterograde tracer rAAV5/EF1a-
DIO-mCherry. Nowadays many transgenic mice are available. 
At the Rockefeller University in the frame of GENSAT Project 
Tg (Vip-EGFP) JN37Gsat, an enhanced GFP (EGFP) reporter 
gene, followed by a polyadenylation sequence, was inserted into 
bacterial artificial chromosome (BAC) clone, RP23-25A8, at the 
initiating ATG codon of the first coding exon of the Vip gene so 
that EGFP expression is driven by the regulatory sequences of 
the BAC gene. The resulting modified BAC (BX1866) was used to 
generate transgenic mice expressing GFP by their VIP neurons.
Prönneke and her co-workers [65] characterized the GABA 
neurons in the cerebral cortex using VIPcre/tdTomato mice and 
they revealed layer-specific differences.Chi-Sung Chiu and his co-
workers [66] constructed a strain of knock-in micethat expressed 
the mGAT1–GFP fusion in place of the wild type of GAT1 gene. 
The pattern of fluorescence in brain slices agreed with previous 
immunocytochemical observations.

https://en.wikipedia.org/wiki/Chromophore
https://www.ncbi.nlm.nih.gov/pubmed/?term=J%C3%B6ns A%5BAuthor%5D&cauthor=true&cauthor_uid=9255739
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mettenleiter TC%5BAuthor%5D&cauthor=true&cauthor_uid=9255739
https://en.wikipedia.org/wiki/Genetic_engineering
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APPLICATIONS OF GFP LABELED VIRUS IN OUR 
EXPERIMENTS

The hypothalamic paraventricular and perifornical and 
brainstem gigantocellular neurons function as sympathetic as 
wellas parasympathetic premotor neurons. Ample evidence 
indicates that the descending autonomic pathways from 
the hypothalamus and the brainstem originate from the 
paraventricular nucleus (PVN), the perifornical area (Pf), the 
rostral ventrolateral medulla (rVLM), the locus ceruleus (LC) 
and the gigantocellular reticular neurons (Gig).GFP labeled 
retrograde spreading virus MemGreenPRV-Rwasused to clarify 
the hypothalamic and brainstem premotor neurons having a 
double sympathetic-parasympathetic nature involved in the 
innervation of the lower gingiva and lip. We published two years 
ago [67] that in intact rats the injectionof MemGreenPRV-R 
resulted in the labeling of postganglionic sympathetic neuronsof 
the three cervical ganglia, the preganglionic neurons in the 
intermediolateral cell column (IML) of the upper thoracic spinal 
cord on the ipsilateral side.Labeling was further observed in 
premotor neurons of the rVLM, the LC, the Gig, the PVN and the 
Pf. In sympathectomized rats the labeling disappeared from the 
cervical ganglia, the IML, therVLM and the LC; however,it persisted 
in the PVN, the Pf and the Gig indicating that these structures are 
involved in both sympathetic and parasympathetic responses of 
the autonomic regulation. Some hypothalamic premotor neurons 
synthesizing oxytocin innervate the preganglionic neurons in 
the spinal cord with the use of MemGreenPRV-R labeling and 
neurotransmitter and neuropeptide immunohistochemistrywe 
demonstrated thata subpopulation of the PVN neurons 
synthesizing oxytocin is involved in the autonomic regulation of 
the mammary gland of lactating rats [68] and of the lower gingiva 
and lip [69].

NEWLY DISCOVERED CENTRIFUGAL VISUAL 
SYSTEM: PINEALORETINAL PATHWAY

Recently we have published a pinealoretinal connection in 
adult hamsters, but not in adult rats [70,71]. MemGreenPRV-R 
was injected into the vitreous body of the right eye of of intact or 
bilaterally sympathectomized male rats.In intact rats the green 
fluorescent labeling appeared in the trigeminal and the superior 
cervical ganglia, the IML, the rVLM, the LC, the PVN and the Pf, but 
was not observed in the pineal body (PB).In sympathectomized 
rats the labeling was missing in the cervical ganglion, IML, rVLM 
and LC. In the PB labeling was not seen in either group. When the 
eye of intact golden hamsters was injected with memGreenPRV-R 
virus labeled neurons appeared in the PB. Injection of an 
anterograde spreading virus (Ka-VHS-mCherry-A-RV) into the 
PB of golden hamsters resulted in labeling of the retina on both 
sides. The above-mentioned data indicate that the pinealoretinal 
neuronal chain (a centrifugal visual pathway) in golden hamsters 
is present but in adult rats it does not exist.
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