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IntroMap: a signal analysis based method
for the detection of genomic introgressions
Daniel J. Shea1, Motoki Shimizu2, Namiko Nishida3, Eigo Fukai1, Takashi Abe4, Ryo Fujimoto3

and Keiichi Okazaki1*

Abstract

Background: Breeding programs often rely on marker-assisted tests or variant calling of next generation sequence
(NGS) data to identify regions of genomic introgression arising from the hybridization of two plant species. In this
paper we present IntroMap, a bioinformatics pipeline for the screening of candidate plants through the application of
signal processing techniques to NGS data, using alignment to a reference genome sequence (annotation is not
required) that shares homology with the recurrent parental cultivar, and without the need for de novo assembly of the
read data or variant calling.

Results: We show the accurate identification of introgressed genomic regions using both in silico simulated
genomes, and a hybridized cultivar data set using our pipeline. Additionally we show, through targeted marker-based
assays, validation of the IntroMap predicted regions for the hybrid cultivar.

Conclusions: This approach can be used to automate the screening of large populations, reducing the time and
labor required, and can improve the accuracy of the detection of introgressed regions in comparison to a
marker-based approach. In contrast to other approaches that generally rely upon a variant calling step, our method
achieves accurate identification of introgressed regions without variant calling, relying solely upon alignment.

Keywords: Plant breeding, Interspecific hybridization, Introgression, Signal analysis

Background
The application of directed introgressive hybridization
allows for agronomically important crops to integrate
genes from closely related species and serves as an impor-
tant method for the introduction of beneficial traits from
one species of crop cultivar to another [1]. In agricultural
and biological research, introgressive hybridzation serves
as a useful methodology for the creation of hybridized
plant lines, enabling the researcher to examine gene func-
tion and molecular pathway interactions of a target gene
in a new genetic background [2–4]. The current method-
ology of marker-assisted selection relies upon the design
and analysis of a large number of genomic markers, and
requires that genotyping markers be designed for the iso-
lation of both orthologous and paralogous genes present
in the parental genomes to accurately discriminate the
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introgressed gene from the background genome [5, 6].
In many plants, various varieties show distinct differ-
ences between their genome and the available reference
genome, and often made marker design a difficult and
time-consuming process [7–9]. With the advent of the
application of NGS technology to marker assisted selec-
tion, this process has greatly enhanced the ability to design
markers, enabling high-density marker-based screening
through the use of restriction fragment length polymor-
phism (RFLP) and/or amplified fragment length poly-
morphism (AFLP) markers and simplifying the marker
design process [10]. However the screening of cultivars
via this method can still be a time-expensive and labori-
ous process when examining large populations, and each
generation must be screened in this manner. The ability
to rapidly screen large numbers of candidate plants would
therefore be beneficial for both commercial plant breeders
and researchers alike.
Reduced representation methods, such as restriction

association DNA sequencing (RAD-seq) and genotyp-
ing by sequencing (GBS) provide methods to genotype
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germplasm by first applying restriction enzymes to the
obtained genomic DNA, followed by library construction
and sequencing. The sequences obtained are then aligned
to a reference genome, or if no reference is available,
aligned internally and single nucleotide polymorphisms
(SNPs) are called [11]. This approach provides a method
to rapidly screen a large number of samples. In addition,
major crops now also have SNP chips available that allow
for the same method, but at a further reduced cost.
Statistical based approaches such as ABBA-BABA test-

ing employ Patterson’s D statistic to determine if a
genome-wide excess of shared derived alleles exists
between taxa, but do not reveal which loci show such an
excess [12]. Because D can be unreliable when effective
population size is low, refinements of ABBA-BABA test-
ing have been devised to better identify introgressed loci,
but still rely upon variant calling information to assess
shared alleles between taxa [13].
The current bioinformatic methods for the detection

of genomic introgression that employ NGS, utilize read
depths of 10x, or more, to discriminate SNPs [14, 15]. Both
of the parental cultivars and the progeny are sequenced,
and allelic shifts with respect to the parental genomes are
determined. However, software currently used to detect
introgressed loci relies upon manual identification of
regions of introgression within a genome [16].
Studies utilizing statistical analytical techniques con-

cerned with elucidating phylogenetic relationships
between evolutionarily divergent organisms perform tar-
geted analysis of highly conserved regions using available
reference genomes [17], or whole-genome alignment [18].
Such analysis can provide insight into genetic lineage, and
requires either variant calling analysis and the phyloge-
netic reconstruction of target regions of interest within
a genome, or the identification of introgressed regions
using variant calling information [17].
By taking advantage of low-cost genomic sequencing,

we explored how NGS can further be used to identify
the loci of cross-species genomic introgressions, possi-
bly replacing the traditional marker based assays currently
used in plant breeding. Towards that goal, we designed
IntroMap, a bioinformatic analytical pipeline for the pre-
diction of introgressed regions within a target cultivar’s
genome and we include an implementation of our algo-
rithm written in Python using Scientific Python and
iPython as a Jupyter notebook [19, 20].

Methods
Specification of the algorithm
IntroMap requires two inputs, a fasta-formatted file con-
taining the reference sequence genome, and a BAM
(Binary SAM) formatted alignment file (created by align-
ing the NGS reads to the reference using bowtie2), for the
prediction of introgressed regions within the alignment.

An illustration of the overall work-flow for the application
of IntroMap is outlined in Fig. 1.
IntroMap first determines a score for each nucleotide

position in the reference genome by parsing the MD tags
present in each alignment record of the BAM file. The
MD tag details eachmatch, mismatch, or deletion for each
nucleotide position in the aligned read. The information
contained in the MD tag regarding the alignment is rep-
resented as a binary vector �vi, where i = {1. . .n} and n =
the total number of reads supplied, describing a match
(represented by a 1) or a mismatch/indel (represented by a
0) for all base-pair positions along the aligned read (Fig. 2).
After converting each aligned read’s MD tag into a

binary vector, IntroMap then constructs a sparse matrix
Cd,l, where: D =the maximum read depth, d = {1. . .D},
Lc =the total length of the chromosome c in nucleotides,
and l = {1. . .Lc}, such that the values represented by
each �vi are contained in Cd,l at their corresponding start
coordinates with respect to the reference genome. Regions

Fig. 1 The IntroMap workflow for predicting regions of genomic
introgression. Genomic DNA is first extracted and then sequenced.
The resulting read data is then aligned to reference producing an
binary alignment map. This information is then fed into IntroMap,
along with the reference genome to predict regions of genomic
introgression with respect to the parental reference
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Fig. 2 Illustration of how an MD tag is converted to the binary vector
�vi , showing matches, mismatches, and an indel

of the genome where no reads have been aligned are
represented by a score of 0.
This is determined by first analyzing the supplied fasta

reference file, to determine the lengths of each chromo-
some Lc present in the reference genome, where c =
{1. . .the total number of chromosomes in the reference
genome}. The mean values for all columns in matrix Cd,l
are then computed, yielding a vector �sc that constitutes
the per-base calling scores for the overall alignment of
that chromosome at each nucleotide position, with coor-
dinates relative to the reference sequence.
Next, IntroMap performs a convolution between �sc and

a vector �1w, whose values are all 1 and whose length w
defines the window size of the low-pass filter. The convo-
lution acts as a low-pass filter, removing high frequency
noise via the averaging of the per-base scores at each
nucleotide position with the surrounding per-base scores
within a window of size w. The resultant vector, �s′c, whose
length is defined as ||�s′c|| = Lc−w−1, is then further pro-
cessed by a locally weighted linear regression fit function
F . The fitted signal, hc = F(�s′c), contains points along a
fitted polynomial curve, and is representative of the over-
all homology at each position in chromosome c between
the sequenced cultivar and the reference sequence.
In general, the reference chosen for alignment should

share a high degree of homology to that of the genetic par-
ent in order to recover a meaningful signal from the align-
ment. Each position in hc contains a real value between
[ 0, 1] where 0 is representative of no homology and 1
represents perfect homology. Reconstruction of hc, such
that all values were equal to 1, would therefore imply that
the aligned reads share perfect homology with the refer-
ence genome. Likewise, an hc signal such that all values
were equal to 0 would mean that no reads were aligned,
indicating no shared homology between the sequenced
cultivar and the reference genome. Application of a low-
pass filter acts to suppress the influence of SNPs between
the sequenced genome and the reference genome on the
overall values that comprise hc. However, large structural
variations in homology between the aligned sequence and
the reference remain present within the signal.

IntroMap generates a plot of hc to visualize the shared
homology between the seed-parent’s background chro-
mosome cparent and the hybridized plant’s chromosome
cchild . We therefore reasoned that regions of the signal that
show significant divergence with respect to the parental
background genome sequence are likely to be of ori-
gin from the other parent’s genome and indicative of a
genomic introgression. While any introgressed, syntenic,
orthologous gene’s exons will be relatively well-conserved,
introns and intergenic regions should show evolutionary-
derived sequence divergence. Therefore, the scores of any
alignments at these locations will tend towards 0, due to
the higher overall number of mismatches and/or dele-
tions. Furthermore, regions that have been deleted from
the background genome due to an introgression should
also have fewermapped reads to the reference, resulting in
lower overall scores than the highly homologous regions
of the background genome mapped back to the reference.
Once hc has been computed, a threshold function

T(hc, t) is applied to call predicted regions of genomic
introgression. The signal hc is scanned at each position
for regions where the score hc,l drops below the threshold
value t (hc,l < t), thus marking the beginning of a pre-
dicted introgressed region. Likewise, any subsequent rise
back above threshold t (hc,l ≥ t) is marked as the end of
the introgression. The region’s coordinates with respect
to the reference sequence are then output, along with the
graph, showing the computed hc for each chromosome c
present in the reference genome.
The example plots in Fig. 3 illustrate the effects of using

various LOWESS fit parameter values (hereafter referred
to as frac) with a thresholding function T(hc, t), and where
the value of the threshold function’s t parameter is also
varied. The first plot illustrates the effect of too large a
value for the fitting parameter frac, resulting in under-
fitting of the signal, causing a loss of information of the
aligned sequences homology with respect to reference.
While IntroMap still detects a large drop in overall homol-
ogy, it greatly over-estimates the size of the introgressed
region. The second plot shows the results of over-fitting to
the signal by using too small of a fit parameter value. Here,
IntroMap erroneously assigns meaning to local noise in
the signal. In this example, it has little effect. However,
the next plot illustrates that a poor choice in fit param-
eter, coupled with a poorly chosen threshold value, may
result in false positive introgression predictions for sev-
eral small regions. The final plot shows typical results
when applying appropriate LOWESS fit and threshold
parameters (frac, t). Therefore, it is of some importance to
tune the fit parameter and threshold values of IntroMap,
prior to conducting large-scale screening. We therefore
will next describe the effects of parameter selection and
the procedure for parameter tuning by receiver operating
characteristic (ROC) analysis.
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Fig. 3 Results of applying three different LOWESS fits to the low-pass processed signal in Fig. 4. Illustrating (1) an under-fitting, (2) over-fitting,
(3) over-fitting with a poor choice of threshold, (4) and an appropriate fit of the input signal, respectively

While NGS technologies inherently may introduce
noise due to errors in sequencing, such errors may be first
reduced/removed through quality control of the sequence
data prior to alignment. Additionally, some further noise
is introduced due to minor differences in the homology
of the reference and the parental background genome, as
in the case of SNPs and minor divergences of intronic
and non-coding/non-conserved regions. To account for
this, we first apply a low-pass filter to suppress high fre-
quency oscillations in the homology signal. Small gaps in
coverage are more likely indicative of poor coverage at
CpG islands, promoter and 5′-UTR regions of the genome
and likely to be homologous to the reference due to their
shorter lengths, not as a result of chromosomal introgres-
sion [21]. Therefore, we treat such regions as homologous
to the background genome through locally weighted lin-
ear regression. However, in the case of large unmapped
or poorly mapped regions, a lack of coverage has more
likely arisen from large-scale structural differences in the
genome due to genomic introgression. After low-pass fil-
tering and LOWESS fitting, a threshold function is then
applied. This acts as a binary classifier that distinguishes
introgressed regions by quantifying how much a sig-
nal’s homology must deviate from the reference sequence
before an introgression is called.
Note, that the resulting output signal after low-pass

filtering results in a slightly truncated number of data

points, due to edge effects from applying a convolution
that calculates mean values using a sliding window, with
respect to the overall signal (Fig. 4). The original signal is
10 kbp in length and the resulting filtered signal is 9701
bp in length in Fig. 4. The resultant signal length is the
length of the original signal minus the size of the win-
dow of the convolution, minus 1. For short alignments,
edge effects may pose an issue. However, in the case of
chromosome-scale sequences, where the average length of
a chromosome is 25Mbp in Brassica rapa, the application
of a window of size 1 kbp accounts for a reduction in over-
all signal length of the output on the order of 1×10−5 and,
as we will show, has no effect on our results. Additionally,
it should be noted that for cases of copy-number variation
(CNV) where repeated sequences may not be present in
the reference genome, one drawback of this approach is
that IntroMap can not detect such CNVs. Likewise, large
indels that exceed the size identified within an aligned
read can not be identified in this way.

Effect of parameter choices for frac
The LOWESS fitting function employed by IntroMap is
documented in detail in the Python statsmodels manual
[22]. Here, we briefly discuss the two parameters utilized
for the tuning of the software to better fit a particular
genomic data set when using IntroMap. The fit func-
tion defines its argument frac as the fraction of the data
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Fig. 4 Application of a low-pass filter to suppress high frequency noise. We then further improve upon this by applying locally weighted linear
regression fitting (LOWESS) to reduce local minor variations that arise, as in the case of the divergence of non-coding regions of the genome. Finally,
a thresholding function is applied to discriminate between the introgressed regions and the native genomic background

used when estimating each y-value, with valid values in
the range [ 0, 1]. The y-value of the plot is our scoring
metric, representing homology with respect to the ref-
erence genome. As frac approaches 1 the fitted function
is less-sharply peaked, due to its reliance on base-calling
scores of nucleotide positionsmore distant in the genomic
sequence than the nucleotide position being fitted. Like-
wise, lower values of frac result in more-sharply peaked
fits, due in part to their reliance on closer nucleotide’s
score values. Therefore, we may consider frac to represent
a window from which data is drawn from, for the purpose
of fitting a given nucleotide position’s score and whose
size is defined as the value of fracmultiplied by the length
of the reference chromosome Lc (i.e. - fitWindowSize =
frac × lc) for the hc signal being fitted.
Thus, the choice of frac is determined, in part, by the

taxa being analyzed, due to the effect of frac, and the sub-
sequent change to fitWindowSize, on the run-time of the
LOWESS fitting step of IntroMap. Attempting to apply
large values results in increases to the run-time on the
order of O(fitWindowSize × Lc). To illustrate, the mean
length of a chromosome in the B. rapa reference genome
is 25.73Mbp in length, thus choosing frac = 0.10 results in
a windowSize of 2.57 Mbp that is then examined at each
coordinate along the Lc = 25.73 Mbp long chromosome,
resulting in greatly increased run-times in comparison to
smaller values of frac.

Effect of parameter choices for threshold t
The second parameter is the threshold value, represented
by t. T(hc, t) is the final function applied to hc, and com-
prises the binary classifier responsible for predicting if a
given region constitutes a genomic introgression. When
the score in hc drops below threshold t, IntroMap pro-
ceeds to scan hc until the score rises back above threshold
t. The region between the two threshold-crossing values
is then marked as a predicted region of genomic intro-
gression. Varying the value of t has several effects. As t
is increased towards 1, the likelihood of false positives

(FP) increases, particularly if there are gaps in the cover-
age sufficient to cause local drops in the scores for that
region in hc. The threshold value also has an effect on the
size of the predicted introgressed regions, as the predicted
region’s size will increase as a function of the slopes of the
hc signal at each of the two crossing points at y = t. There-
fore, choice of t may perturb the predicted centers of the
introgressed regions if the slopes of the lines crossing the
threshold value on either side of the region are markedly
different. To account for this effect during our analyses,
we also compared the center coordinates of predicted
regions with the known-center coordinates of the intro-
gressions in our in silico simulated genomes, and recorded
when the predicted center and the actual center varied by
more than 5% of each other. We named this metric loci
accuracy, to measure what effect varying t had on the pre-
diction accuracy of an introgressed region. For example, a
loci accuracy value of 75% may be interpreted as follows,
the correct prediction of 75% of all true-positive (TP)
introgressed region’s center loci within ± 5% of the true
centers (Fig. 5).
Furthermore, the selection values of t, like frac, are also

taxa dependent. However in this case, it is not the length
of the chromosomes within the genome that are deter-
mining factors in parameter selection, but the homology
of the recurrent parent’s genome to that of the reference
genome. The upper limit on the appropriate choice of t is
determined by the genetic distance of the recurrent parent
to the reference sequence. Selection of t as t → 1 results
in an increase in the false positive rate, due to the vari-
ations present between the reference and the recurrent
parent. Therefore, the selection of t should be determined
by parameter tuning as described below.

Receiver operating characteristic (ROC) analysis for
selection of frac and t
The ROC curve represents the sensitivity of a binary
classifier as a function of 1−specificity [23]. For the pur-
poses of the prediction of genomic introgression, positive
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Fig. 5 Illustration of the definition of the loci accuracymetric. In cases where IntroMap’s predicted center of an introgressed region lie within ±5% of
the true-center nucleotide position, we record IntroMap as having accurately predicted the center of the introgressed region

predictive value (PPV) indicates the probability that in
the case of a positive call for the existence of a genomic
introgression, the genome actually contains the specified
introgressed region from the paternal genome. Likewise,
negative predictive value (NPV) indicates the probabil-
ity that in the case of a negative call, that is to say, the
absence of a genomic introgression, the genome actually
contains genomic material from the maternal genome at
the specified region. The function T(hc, t) is the binary
classification function of the IntroMap algorithm, and is
affected by the LOWESS fitting function parameter frac,
therefore when aligning to a reference genome that is
highly homologous to the recurrent parent, parameter
selection by ROC analysis for the parameters t and frac is
performed.
Using these definitions, we conducted a ROC analy-

sis of the IntroMap software for three in silico simulated
genomes to determine acceptable parameters for detect-
ing introgressions of B. oleracea derived genomic DNA
(gDNA) in a B. rapa genomic background.

In silico genome simulation for parameter selection
To determine the appropriate parameters for calculating
hc, and to establish an accurate threshold value t for the
calling of introgressed regions, we processed the align-
ments of the three simulated genomes across different val-
ues for both the threshold value t = {0.85, 0.90, 0.95}, and
the LOWESS fitting function’s value frac = {0.05, 0.01} on
a 12-core Intel Core i7-5930K CPU running at 3.50 GHz
with 64 GB of memory. The selected values of threshold
t were chosen in 5% increments centered around a 90%
overall homology between the B. rapa reference genome,
and recurrent parent B. rapa cultivar CR Kanki. Selection
of t above 95% results in an unacceptable increase of false
positives, and selection below 80% results in an unaccept-
able increase of false negatives. This is due to the shared
syntenic blocks of the parental B. rapa and B. oleracea
genomes that resulted from a whole genome triplication
(WGT) event and is present in all Brassicas [24]. Because
the choice of frac values are dependent upon the size of the
reference genome chromosome lengths being analyzed,
our value selection was determined by the computational
requirements that are incurred upon performing a locally

weighted linear regression for a hc vector whose length,
Lc, is equal to that of the entire chromosome. Therefore,
we chose two values for frac, 0.05 and 0.01, that would
provide us with six possible parameter combinations of
(frac, t) for tuning by ROC analysis, without incurring an
unacceptable run-time penalty due to the window size of
the LOWESS fitting step.
In silico simulated genomes were constructed using

the known syntenic regions between the published ref-
erence genomes for Brassica oleracea var. capitata and
Brassica rapa var. Chiifu-401. The reference genomes,
along with the known syntenic regions were downloaded
from Bolbase and BRAD, respectively [25, 26]. A program
was then developed in Python, and made available as
part of the IntroMap package, to construct three simu-
lated genomes. The simulated genomes are comprised
of a Brassica rapa genomic background, signifying the
maternal seed-parent, and Brassica oleracea, represent-
ing the paternal parent species. The recurrent parent
was selected as the reference to simulate the lineage of
the #174-12-26 line whose recurrent parent is a B. rapa
cultivar. The #174-12-26 line is described in more detail
below. The creation of 3 simulated genomes and analysis
of the reverse-cross (using B. oleracea as the recurrent
parent) is provided as Additional file 1: Table S8 through
Table S13.
To create the simulated genome files containing known

introgressed regions necessary for parameter tuning of
IntroMap, the utilitymake SimulatedHybrids was written.
The makeSimulatedHybrids program randomly replaces
segments of the supplied maternal reference genome with
segments from the supplied paternal reference genome,
according to a list of known syntenic regions that is
supplied in a third input file. The psuedo-random num-
ber generator, used to simulate random introgressions of
known syntenic regions, is made repeatable by specifying
the same seed value at run-time. The program also gener-
ates a log of the arguments given to it at run-time along
with the syntenic regions it has chosen to replace, thereby
providing a clear audit trail of the actions taken to create
any simulated genomes.
Next, to simulate NGS data, derived from our simu-

lated hybridized genomes, wgsim [27] was applied against
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the simulated sequence files, generating 50million paired-
end reads that are 75 bp in length, with end-to-end read
sizes of 500 bp. The diploid model of read generation
was employed in wgsim and the reads modeled to simu-
late sequencing errors, indels, and SNPs using the default
configuration parameters.
Read sets for 3 simulated hybridized genomes were then

aligned to the published reference sequence for Brassica
rapa var. Chiifu-401 using bowtie2 (version 2.2.6, 64-
bit) [28]. The following bowtie2 options were applied
during the alignment –no-mixed, –no-discordant, –no-
contain, –no-overlap, and –no-unal. Full descriptions of
these options are available in the bowtie2 manual. The
subsequent SAM output was then converted to BAM
format and sorted with samtools [29] by genomic coordi-
nates. After sorting, duplicates were removed by samtools
rmdup, generating the final set of BAM files supplied as
inputs to IntroMap for analysis.
We then ran IntroMap against the three simulated

genomes for varying values of frac and t, recorded the
TPR, FPR, PPV, NPV, and loci accuracy. Then, a ROC
plot was created in order to determine suitable parame-
ters for the detection of introgressions of Brassica oleracea
genomic content in a Brassica rapa genomic background.

Application of IntroMap against the #174-12-26 line
To next test the IntroMap software against actual genomic
sequencing data, we utilized a hybrid introgressed plant
line, hereafter referred to as #174-12-26. In the Brassica
genus, B. rapa, B. nigra, and B. oleracea are referred
to as the A, B and C genomes, respectively, with the
allotetraploid B. napus being derived from the inter-
specific hybridization of the A and C genomes [30].
Unlike B. napus, which contains both the A and C
genomes (AACC), the #174-12-26 line is derived from
a cross between a doubled haploid commercial cultivar
Brassica oleracea Reiho P01, and a Brassica rapa commer-
cial Chinese cabbage cultivar CR Kanki. The #174-12-26
line is a BC3F3 lineage containing introgressed genomic
regions from the B. oleracea parent in a B. rapa genomic
background and therefore only contains partial regions
of the C genome introgressed to syntenic A genomic
chromosomes (AA+C).

Plant materials and DNA extraction
Plant materials were collected from the #174-12-26 line.
Seeds from this line were germinated in pots and grown
in long-day (LD) photo-period conditions at 23°. Once
the plants had grown to 3-5 leaves in size, whole, true-
leaves were harvested and DNA extracted using the CTAB
method [31]. Visualization of extracted DNA was carried
out by agarose gel electrophoresis to confirm quality of the
materials prior to sequencing.

Next generation sequencing, alignment to B. rapa var.
Chiifu-401 reference, and IntroMap analysis
Extracted DNA was then sequenced on an Illumina
NextSeq500, generating on-average 26 million 75 bp
paired-end reads per lane. The sequence reads (fastq)
were generated from bcl2fastq2 Conversion Software
(version v2.16.0). At the same time, adapters were
removed and a quality filter was applied to keep reads
where 80 percent of the bases had a PHRED quality score
of 20 or higher (-q20 -p80). After adapter trimming and
quality filtering, the filtered reads were again examined by
FastQC (version v0.11.5) and determined to be suitable
for alignment to the reference genome and the resulting
kept-reads were aligned in the same manner as the sim-
ulated data sets to the published reference sequence for
Brassica rapa var. Chiifu-401, as described previously.
After the alignment of reads obtained from the #174-12-
26 line to the B. rapa var. Chiifu-401 reference genome,
both depth and breadth of coverage was computed using
bedtools genomecov (version v2.26.0) and then the result-
ing BAM alignment file was then analyzed via our soft-
ware, IntroMap, to compute the per-base nucleotide
calling scores for the aligned reads in relation to the sup-
plied reference genome (as described previously) and the
output examined for the detection of regions of genomic
introgression.

DNAmarker design and genotyping assays
IntroMap predicted regions were noted and seven DNA
markers designed on amplified fragment length polymor-
phisms (AFLPs), targeted to genes within the predicted
regions, to experimentally verify IntroMap’s predictions
(Additional file 2: Table S1). To assess the presence of
an introgression on chromosome A02, we first genotyped
Reiho, CR Kanki, and two plants of the #174-12-26 intro-
gressed line for Flowering Locus C (FLC2) (Additional
file 3: Figure S1). The designed marker accounted for
both paralogous and orthologous genes, producing PCR
amplicons of unique lengths for each FLC2 ortholog due
to intron-length polymorphisms. For confirmation of the
predicted A09 introgression we used AFLP markers for
the orthologs Bra039086 and Bol032218 in B. rapa and
B. oleracea, respectively (Additional file 3: Figure S2).
DNA was extracted from samples of both of the parental
species CR Kanki and Reiho along with the #174-12-
26 line, and additional PCR genotyping assays using our
other designed markers for A02 and A09 were conducted
(Additional file 3: Figures S1 and S2). All PCR reactions
were run using Takara EmeraldAMP polymerase and
dNTPsMasterMix at 1x concentration, 10 ng of extracted
gDNA and primers at 0.5 μM concentration. PCR reac-
tions were run using 98° melting for 10 s, 60° annealing for
30 s or 60 s and 72° extension for 60 s for 35 cycles. The
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amplicons were then visualized by 2.0%-agarose gel elec-
trophoresis, based upon the expected PCR amplicon sizes
and size differences.

Analysis of the effects of read coverage
To examine the effect that sequencing coverage has on
IntroMap, we generated five simulated NGS sequencing
runs of the simulated genome 20160409AC-123 using
wgsim as previously described. We simulated 75 bp
paired-end reads for 50 M, 40 M, 30 M, 20 M, and 10 M
total reads, calculated the depth and breadth of coverage
for each read-set, and then ran IntroMap using frac =
0.05 and t = 0.90, assessing TPR, FPR, and loci-accuracy
for the 5 runs. We also examined the effect of sequence
coverage on run time and memory utilization, to examine
the computational performance of the algorithm.

Results
IntroMap analysis of in silico simulated genomes
The computed genome-wide coverage depth of the
alignments for the three simulated data sets were
14.95x, 15.02x, and 14.90x for 20160409AC-1234,
20160409AC-2468, and 20160409AC-36912, respectively.
The computed breadth of coverage of the alignments
were 94.69%, 95.26%, 94.16% for 20160409AC-1234,
20160409AC-2468, and 20160409AC-36912, respectively.
The Additional file 4: Tables S2 through S7 detail the
results of running IntroMap against three in silico sim-
ulated genomes, showing the IntroMap predicted start
and end regions of introgression, the actual start and
stop coordinates of the introgressions. In the cases of an
accurate prediction by IntroMap, the loci accuracy was
computed and assessed for accuracy within ± 5% of the
true center. Table 1 summarizes the results of the analysis,
presenting the true-positive rate (TPR), false-positive
rate (FPR), positive-predictive value (PPV), negative-
predictive value (NPV), and mean loci accuracy for the
six test cases across the three simulated genomes. Based
on the results of the 18 simulated runs (6 possible [ frac, t]
parameter combinations × 3 simulated genomes), we

Table 1 Summary of testing IntroMap across varying LOWESS
fitting frac and threshold t values

frac t TPR FPR PPV NPV Mean loci accuracy

0.05 0.85 0.750 0.000 1.000 0.898 0.667

0.05 0.90 0.792 0.000 1.000 0.914 0.750

0.05 0.95 0.792 0.000 1.000 0.914 0.750

0.01 0.85 0.958 0.094 0.821 0.980 0.958

0.01 0.90 0.958 0.075 0.852 0.980 0.917

0.01 0.95 0.958 0.264 0.622 0.975 0.917

Mean loci accuracy is defined as the percentage of the time that IntroMap’s loci
accuracy was within 5% of the true center

determined acceptable parameters for the detection of
introgressed Brassica oleracea gDNA in a Brassica rapa
genomic background to be frac = 0.05 and t = 0.90.
These parameters were selected for yielding the greatest
computed TPR before the onset of false-positives as seen
in the ROC plot (Fig. 6). The run-times of the analysis of
the simulated genomes were approximately 35 min per
genome, with a peak memory utilization of 55 GB.
The tuning of the fit parameters in IntroMap is a recom-

mended procedure, and should be done prior to its use on
actual genomic data. The tuning process ensures accept-
able discrimination by the binary classifier. Ideally, future
versions of this software will incorporate this step in an
automated fashion, alleviating the burden of the parame-
ter tuning process placed upon the end-user. On the other
hand, manual tuning provides the user with the flexibility
of deciding upon an acceptable FPR rate with respect to
their intended use-case and experimental design.

Predicting introgressed genomic regions in the #174-12-26
hybridized line
The computed genome-wide coverage of the reads was
18.35x, with a breadth of coverage of 90.81% of the B.
rapa genome. IntroMap detected two regions of intro-
gression in the #174-12-26 line. The first region spanned
approximately 6 Mbp (228,453 – 6,213,700 bp) on the
short-arm of Chromosome A02 (Fig. 7), and the sec-
ond region detected spanned approximately 3.7 Mbp
(1 – 3,703,909 bp) on the short-arm of Chromosome
A09 (Fig. 8). Running IntroMap against an alignment of
the #174-12-26 reads aligned to the B. oleracea reference

Fig. 6 A ROC plot of the results from testing IntroMap across varying
LOWESS fitting frac and threshold t values. The blue solid line is the
approximated ROC curve based on the in silico simulated genomes.
The red-dashed line represents a binary classifier with detection
capabilities equal to random chance. The green circle shows the
parameters (frac = 0.05, t = 0.90) for introgression detection of
Brassica oleracea gDNA in a Brassica rapa genomic background before
the onset of false positives
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Fig. 7 Detected introgression on chromosome A02. IntroMap results
for chromosome A02 using parameters (frac = 0.05, t = 0.90) for
introgression detection of Brassica oleracea gDNA in a Brassica rapa
genomic background. The green line is the computed signal hA02 The
threshold is indicated by a purple line at y = 0.90 and labelled
accordingly. The orange box shows a detected introgression from
228,453 bp to 6,213,700 bp

genome with frac=0.01, and threshold=0.90 determined
by performing additional ROC analysis on simulated C
genomes containing syntenic A introgressions, yielded
results consistent with that of alignment to B. rapa (Addi-
tional file 3: Figure S3). However, it must be noted that in
the reverse predictions, the predicted regions are not as
clearly elucidated by IntroMap. This is possibly attributed
to the fact that the #174-12-26 line is an A genomic back-
ground line and the parental C genome plant (Reiho) is
possibly more divergent with respect to its reference than
the A parental genome (CR Kanki), resulting in lower
homology scores for the C derived genomic regions. Addi-
tionally, the majority of reads derived from #174-12-26

Fig. 8 Detected introgression on chromosome A09. IntroMap results
for chromosome A09 using parameters (frac = 0.05, t = 0.90) for
introgression detection of Brassica oleracea gDNA in a Brassica rapa
genomic background. The green line is the computed signal hA09 The
threshold is indicated by a purple line at y = 0.90 and labelled
accordingly. The orange box shows a detected introgression from 1
bp to 3,703,909 bp

sample should be of A genomic origin, and aligning them
to a C genome will yield more mismatches and gaps in
coverage due to a lower number of aligned reads, thus
lowering overall homology scores at each position. This
can be seen in the alignment rates of the #174-12-26 reads
to the B. rapa and B. oleracea reference genomes, where
alignment to the A genome results in 31.87% of 65,015,089
paired end reads mapping concordantly exactly one time,
with an overall alignment rate of 55.77%. On the other
hand, the alignment of #174-12-26 reads to the C genome
results in only 14.07% of the reads mapping concor-
dantly exactly one time, with an overall alignment rate of
37.19%. In spite of these short-comings, IntroMap align-
ment against the C genome produces a noticeably inverse
response, with respect to outputs derived from alignment
to the A genome, suggesting that the introgressed regions
are present in the #174-12-26 line at their respective loci.

Experimental verification of IntroMap’s predicted regions
via marker-based assays
The genotyping assays experimentally confirmed the
existence of the A02 and A09 predicted regions of intro-
gression showing these regions to be derived from the
Reiho genome. The A02 introgression spans approx-
imately from 200 kbp to 6.35 Mbp, using A genome
coordinates. The introgressed regions are consistent with
the known published syntenic blocks between the B. rapa
and B. oleracea genomes, also referred to as the A and C
genomes, respectively, indicating that they are chromo-
somal loci where recombination events are more likely
to occur during hybridization between the two species.
The A02 introgression is derived from the R-block, and
the A09 introgression appears to be the O-block [32] of
the C and A genomes of Brassica oleracea and Brassica
rapa, respectively. Composite figures of the 2% agarose
gels showing the genotyping and mapping results for
A02 and A09 are shown in the Additional file 3: Figures
S1 and S2. The primers used are listed in Additional
file 2: Table S1. Chromosomal alignments, depicting the
marker locations were also created using Symap [33]
from the published reference sequences and are available
in the supplied Additional file 3: Figures S1 and S2 for
C02/A02 and C09/A09, respectively. The result of our
marker assays show that the estimated size and location
of the introgressed regions are consistent with IntroMap’s
predictions for the #174-12-26 line.
The #174-12-26 line was developed to introgress the B.

oleracea homolog of A. thaliana FLOWERING LOCUS C
(BoFLC2) into B. rapa for the characterization of flower-
ing time in response to cold treatment. It should be noted
that the previous genome wide marker assays performed
during the development of the #174-12-26 line noted the
existence of an introgression at A09 in the #174 (BC2F1)
population, however the size of the introgression was
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unknown and its transmission to subsequent generations
was not monitored. Only after the subsequent sequencing
and analysis by IntroMap was the A09 locus size and its
transmission to #174-12-26 line elucidated and then vali-
dated by targeted marker assays, highlighting the utility of
the application of NGS technology to plant breeding.

Read coverage below 10x reduces run time but impairs
detection
The five simulated NGS read-sets ranged in depth of
coverage from 14.95x to 2.99x, and in breadth of cover-
age from 94.69% to 90.03%. The results of each run are
shown in Table 2. Alignment rates were consistently 51.4%
for the five data sets as shown by the number of aligned
reads. Run times and memory scaled roughly linearly with
the size of the read sets. Once coverage depth falls below
9x, the TPR of IntroMap appears to significantly affected,
as evidenced by the drop in TPR for runs L004 and L005.
Interestingly, while the TPR of run L004 fared no better
than random chance, the PPV and NPV of the algorithm
in this configuration remained at 1.0 and 0.8, respectively,
and the mean loci accuracy was unchanged (Additional
file 5: Table S14 through S18); indicating that while many
introgressed regions may be missed due to an insufficient
depth of coverage, the fidelity of the called introgres-
sions remained high. Thus, we concluded that a coverage
depth of 10x, or greater, is recommended to improve the
detection of introgressions.

Discussion
A novel method for the screening of genomes
We have provided a method for the identification
of genome-wide introgressions that employs a signal-
analysis-based approach that is capable of identifying and
reporting introgressed loci, and we verified the accuracy
of our algorithm using both in silico simulated genomes
and interspecific hybridized genomic data that was ver-
ified by marker-based assays. IntroMap does not rely
upon variant calling analysis, can readily be automated
to screen a large number of plants faster than traditional
marker-based methods, and identifies regions of intro-
gression by reporting introgressed loci across the genome
in an automated fashion using information obtained by

alignment to the reference genome of the recurrent par-
ent. Furthermore, the reference sequence need not be the
exact sequence of the parental background genome, pro-
vided that the reference sequence applied shares overall
structural homology with that of the seed parent, and
the reference used for alignment does not need to be
annotated.

Limitations of this method
Our coverage analysis shows that IntroMap is depen-
dent upon a sufficient coverage for the accurate detection
of introgressions, similar to variant calling techniques
which are reliant upon a sufficient depth of coverage [14].
Additionally, these results indicate that small or highly
homologous introgressionsmay bemissed by ourmethod,
as one particular 283 kbp syntenic region in the simu-
lated 20140609AC-1234 data set went undetected in all
test cases, highlighting a shortcoming of our algorithm
to detect small introgresions. Likewise, reliance on the
sequence and structure of the reference genome means
that CNVs and indels are also missed by our method.
However, in spite of these drawbacks, our results indicate
that the PPV and NPV of IntroMap are suitable for the
screening hybridized progeny, as the detected regions of
introgression are accurately deduced.

Conclusions
Applications for plant breeding and genetics
It is anticipated that the cost of genomic sequencing will
continue to decline in cost [34], thus software able to
identify the loci of genomic introgressions is a useful tool
for molecular breeding. To assist in the application of
molecular breeding to plant hybridization, and the con-
ferral of the favorable traits of one species to another for
the purposes of agricultural production, IntroMap may be
useful to breeders by helping to identify the loci respon-
sible for a desired agricultural trait. With the continu-
ous improvements made to next-generation sequencing,
both in technological capability and price-performance,
bioinformatic methods such as IntroMap can provide
faster, less laborious, and information-enriched methods
for plant breeding research. The application of inter-
specific hybridization for the conferral of agronomically

Table 2 Results of testing IntroMap across various NGS read coverage for the 20160409AC-1234 simulated genome
(frac = 0.05, t = 0.90)

NGS
read-set

Coverage
depth (x)

Coverage
breadth (%)

TPR FPR Mean loci
accuracy

Run time Peak
memory (GB)

Aligned read
pairs

L001 14.95 94.69 0.70 0.00 0.25 35m10s 55 25.65 M

L002 11.97 94.66 0.60 0.00 0.21 34m21s 50 20.53 M

L003 8.98 94.59 0.60 0.00 0.21 22m07s 32 15.40 M

L004 5.99 94.29 0.50 0.00 0.21 15m56s 30 10.27 M

L005 2.99 90.03 0.30 0.00 0.13 9m43s 30 5.14 M
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important traits has a long history and is an enor-
mously important aspect of agricultural research [35–37].
IntroMap provides an additional bioinformatic tool, that
employs a novel method, for further studies in this area of
research.

Additional files

Additional file 1: Tables S8 through S13. Each table in the Excel
workbook contains results of a run of IntroMap on in silico simulated data
using B. oleracea as the recurrent parent for a given frac and threshold
combination. (XLSX 28 kb)

Additional file 2: Table S1. This spreadsheet contains the primers used for
the verification of the #174-12-26 regions of introgression detected by
IntroMap analysis. (XLSX 12 kb)

Additional file 3: Supplemental figures. The powerpoint file contains
Supplemental figures S1 through S3. These figures show composite images
of agarose gel electrophoresis results from the marker-based assays,
diagrams describing the location of the markers for chromosomes A02/C02
and A09/C09, and the IntroMap plots for Chromosomes C02 and C09 that
resulted from the alignment of #174-12-26 reads to the B. oleracea reference
genome, followed by analysis of the BAM file via IntroMap. (PPTX 1802 kb)

Additional file 4: Tables S2 through S7. Each table in the Excel workbook
contains results of a run of IntroMap on in silico simulated data using B.
rapa as the recurrent parent for a given frac and threshold combination.
(XLSX 34 kb)

Additional file 5: Tables S14 through S18. Each table in the Excel
workbook contains results of a run of IntroMap, using frac = 0.05 and
t = 0.90, on the 20160409AC-1234 genome for varying NGS read
coverages. (XLSX 16 kb)
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