
The University of Bradford Institutional 
Repository 

https://doi.org/10.22055/JACM.2017.22435.1130

https://creativecommons.org/licenses/by-

nc/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/153515906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.22055/JACM.2017.22435.1130
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


J. Appl. Comput. Mech., 4(2) (2018) 87-94 
DOI: 10.22055/JACM.2017.22435.1130 

ISSN: 2383-4536 
jacm.scu.ac.ir 

  

Published Online: January 05 2018   

 

 

Thermal Analysis of Convective-Radiative Fin with 
Temperature-Dependent Thermal Conductivity Using Chebychev 

Spectral Collocation Method 

George Oguntala, Raed Abd-Alhameed 
 

Faculty of Engineering and Information, School of Electrical Engineering and Computer Science, University of Bradford 
Richmond Road, Bradford, BD7 1DP, West Yorkshire, United Kingdom  

 

Received June 14 2017; Revised July 30 2017; Accepted for publication August 04 2017. 
Corresponding author: George Oguntala, g.a.oguntala@bradford.ac.uk 
Copyright © 2018 Shahid Chamran University of Ahvaz. All rights reserved. 

Abstract. In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of 
convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer 
model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, 
investigate the effects of thermo-geometric parameters and thermal conductivity (nonlinear) parameters on the 
thermal performance of the fin. The results of this study reveal that the rate of heat transfer from the fin increases as 
the convective, radioactive, and magnetic parameters increase. This study establishes good agreement between the 
obtained results using Chebychev spectral collocation method and the results obtained using Runge-Kutta method 
along with shooting, homotopy perturbation, and adomian decomposition methods. 

Keywords: Thermal analysis; Convective-radiative fin; Chebychev spectral collocation method; Temperature-dependent 
thermal conductivity. 

1. Introduction 

   Thermal analysis of fins in a convective and radiative environment has been a subject of research for the past few decades. 
In the quest of investigating the thermal performance of the fins, different numerical and analytical methods have been 
developed to provide solutions to the nonlinear equations which are developed using different techniques. Aziz and Enamul-
Huq [1] and Aziz [2] employed the regular perturbation expansion to study a pure convection fin with the temperature-
dependent thermal conductivity and a uniform internal heat generation in the fin. Campo and Spaulding [3] used the method of 
successive approximation to predict the thermal behaviour of uniform circumferential fins. Chiu and Chen [4] and Arslanturk 
[5] adopted the Adomian Decomposition Method (ADM) to obtain the temperature distribution in a pure convection fin with 
variable thermal conductivity. For the same problem, Ganji [6] applied the homotopy perturbation method which was 
originally proposed by He [7]. Chowdhury and Hashim [8] adopted the Adomian decomposition method to evaluate the 
temperature distribution of straight rectangular fins with the temperature-dependent surface flux for all possible types of heat 
transfer. Rajabi [9] utilized the homotopy perturbation method (HPM) to calculate the efficiency of straight fins with the 
temperature-dependent thermal conductivity. Mustapha [10] adopted the homotopy analysis method (HAM) to find the 
efficiency of straight fins with the temperature-dependent thermal conductivity. Besides, Coskun and Atay [11] utilized the 
variational iteration method (VIM) to analyse convective straight and radial fins with the temperature-dependent thermal 
conductivity while Languri et al. [12] applied both variation iteration and homotopy perturbation methods to evaluate the 
efficiency of straight fins with the temperature-dependent thermal conductivity. Sobamowo [13] applied the Galerkin’s method 



 George Oguntala and Raed Abd Alhameed, Vol. 4, No. 2, 2018  

Journal of Applied and Computational Mechanics, Vol. 4, No. 2, (2018), 87-94 

88

of weighted residual to analyse the thermal performance of longitudinal fins with temperature-dependent properties and 
internal heat generation. Atay and Coskum [14] employed variation iteration and finite element methods to carry out a 
comparative analysis of power-law-fin type problems. Domairry and Fazeli [15] used the Homotopy analysis method to 
determine the efficiency of straight fins with the temperature-dependent thermal conductivity.  Hosseini et al. [16] applied the 
homotopy analysis method to provide an approximate but accurate solution of heat transfer in the fins with the temperature-
dependent internal heat generation and thermal conductivity. Joneidi et al. [17], Moradi and Ahmadikia [18], Moradi [19], 
Mosayebidorcheh et al. [20], Ghasemi et al. [21], Sandri et al. [22], and Ganji and Dogonchi [23] presented an analytical 
solution for the fins with a temperature-dependent thermal coefficient using the differential transform method (DTM). 
   Approximate analytical methods, as applied by past researchers, solve the differential equations without linearization, 
discretization or approximation, linearization restrictive assumptions or perturbation, complexity of expansion of derivatives 
and computation of derivatives symbolically. However, the search for a particular value that will satisfy the second boundary 
condition or the determination of auxiliary parameters necessitates the use of a software and such could result in additional 
computational cost in the generation of a solution to the problem. Besides, most of the approximate methods give accurate 
predictions only when the nonlinearities are weak or the values of the fin thermo-geometric parameter are small, and they fail 
to predict accurate solutions for strong nonlinear models. Also, the methods often involved a complex mathematical analysis 
leading to the analytic expression involving a large number terms and when they are routinely implemented, they can 
sometimes lead to erroneous results [13, 24]. Moreover, in practice, approximate analytical solutions with large number of 
terms are not convenient for use by designers and engineers. Also, variational methods including Ritz and Rayleigh-Ritz 
methods sometimes provide powerful results, such as upper and lower bounds on quantities of interest, but require more 
mathematical manipulations than weighted residual method and are not applicable to all problems, and therefore, they reveal 
the lack of generality. Inevitably, simple yet accurate expressions are required for the thermal analysis of fins.  
   The Chebychev spectral collocation method (CSCM) is a relatively new numerical method with a high level of accuracy 
and it has been widely applied in computational fluid dynamics, electrodynamics and magnetohydrodynamics [25-40]. Despite 
the high accuracy and efficiency of this method, it has not been significantly applied to nonlinear flow problems, therefore, in 
this study, the Chebychev spectral collocation method is applied to analyse these kind of problems. To the best of the authors’ 
knowledge, the analysis of heat transfer in convective-radiative fins subjected to temperature-dependent properties usin the 
Chebychev spectral collocation method has not be carried out. Therefore, in the present study, the Chebychev spectral 
collocation method (CSCM) is used to develop approximate analytical solutions for heat transfer in convective-radiative fins 
with the temperature-dependent thermal conductivity.   

2. Problem Formulation  

Consider a convective-radiative straight fin with the temperature-dependent thermal conductivity ( )k T , length L and 

thickness δ, that is exposed on both faces to a convective environment at temperature aT  and with heat transfer co-efficient h 

as shown in Fig.1. Assuming that the heat flow in the fin and its temperatures remain constant over time, the temperature of the 
medium surrounding the fin along with the fin base temperature are uniform. Moreover, there is no contact resistance where 
the base of the fin joins the prime surface, and also, compared with its width and length, the fin thickness is small. Therefore, 
temperature gradients across the fin thickness and heat transfer from the edges of the fin may be neglected. The dimension x 
pertains to the length coordinate which has its origin at the tip of the fin and has a positive orientation from the fin tip to the fin 
base. Considering the model assumptions, the governing differential equation for the problem is shown in equation (1). 

 

 
 

Fig. 1. Schematic of the convective-radiative longitudinal fin  
 
Based on the assumptions, we developed the governing equation as: 
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Further simplification of Eq. (2) gives the governing differential equation for the fin as: 
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Where the boundary conditions are: 

0, 0

, b

dT
x

dx
x b T T

 

 
 (3) 

But 

2 2c c
o

J J
B u




  (4) 

By substituting Eq. (4) into Eq. (2), and taking the magnetic term as a linear function of temperature, we arrived at: 
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The supposed case in this study is a situation of small temperature difference existing within the material during the heat 
flow. This difference necessitated the use of temperature-invariant physical and thermal properties of the fin. Besides, it is 
established that under such a scenario, the term T4can be expressed as a linear function of temperature. Therefore, we have: 

4 3 44 3T T T T    (6) 
    By substituting Eq. (6) into Eq. (7), we arrived at: 
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    By introducing the following dimensionless parameters of Eq. (8) into Eq. (9), 
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   we arrived at the dimensionless form of the governing Eq. (7) as: 
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which is the same as: 
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and the dimensionless boundary conditions are: 
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3. Solution Procedure 

The Chebyshev collocation spectral method is accomplished through, starting with Chebyshev approximation for the 
approximate solution and generating approximations for the higher-order derivatives through successive differentiation of the 
approximate solution. Looking for an approximate solution, which is a global Chebyshev polynomial of degree N defined on 
the interval [-1, 1], the interval is discretized by using collocation points to define the Chebyshev nodes in [-1, 1], namely: 
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The derivatives of the functions at the collocation points are given by: 
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where n
kjd  represents the differential matrix of order n which are given by: 
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where  n jT x  are the Chebyshev polynomial and coefficients j  and lc  are defined as: 
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As described above, the Chebyshev polynomials are defined on the finite interval [-1, 1]. Therefore, to apply the Chebyshev 
spectral method to Eq. (11), a suitable linear transformation of the physical domain [-1, 1] to the Chebyshev computational 
domain [-1,1] is made. We sample the unknown function w at the Chebyshev points to obtain the data vector 

       1 2, , ,...
T

o Nw w x w x w x w x    . The next step is to find a Chebyshev polynomial P of degree N that interpolates the 

data (i.e., ( ) , 0,1,... )j jP x w j N   and obtains the spectral derivative vector w by differentiating P and evaluating at the 

grid points '(i.e., '( ) , 0,1,... )j j jw P x w j N   . The result is transformation of the nonlinear differential equation into 

system nonlinear algebraic equations, which are solved by the Newton’s iterative method starting with an initial guess. A 
suitable transformation to map the physical domain [0, 1] to a computational domain [-1, 1] is made to facilitate the 
computations. 
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 where the boundary conditions are: 

   ' 1 0, 1 1      (20) 

    After applying CSCM and using Eq. (19), the governing equation and boundary conditions are transformed into a system 
of nonlinear algebraic equation as: 
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where the boundary conditions are: 
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The above-mentioned system of the nonlinear algebraic equation is solved using Newton’s method to determine the 
temperature distribution in the fin. In order to verify the solution by the Chebyshev collocation spectral method, Eq. (11) with 
the boundary conditions is solved using Runge-Kutta method with shooting method and ode45 in MATLAB. 

4. Result and Discussion 

Figs. 2 and 3 depict the effect of the thermogeometric parameter on the fin. According to the figures, as the 
thermogeometric parameter increases, the rate of heat transfer through the fin increases while the temperature in the fin drops 
faster. It can be inferred from the results that the ratio of convective heat transfer to conductive heat transfer has much effect on 
the temperature distribution, the rate of heat transfer at the base of the fin, and the efficiency of the fin. As h increases (or kb 
decreases), the ratio of h/kb increases at the base of the fin and consequently, the temperature along the fin, especially at the tip 
of the fin, decreases; i.e. the tip end temperature decrease as M increases. This shows that the thermal performance or 
efficiency of the fin is favoured at low values of the thermos-geometric parameter [13]. 
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Fig. 2. Effects of thermo-geometric parameter M on the temperature distribution in the fin when β=0.1, N=0  
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Fig. 3. Effects of thermo-geometric parameter M on the temperature distribution in the fin when β=0.3, N=0 

   Fig. 5 and 6 show the effects of the thermo-geometric term and the radiation number on the dimensionless temperature 
distribution or the thermal performance of the fin. In addition, the figures depict the effect of nonlinear parameter or the 
temperature-dependent thermal conductivity term on the thermal performance of the fin. It can therefore be deduced from the 
figures that the nonlinear thermal conductivity parameter, the thermo-geometric term and the radiation number have direct and 
significant effects on the rate of heat transfer at the base of the fin. Comparing Figs. 2-5 shows that the rate of heat transfer 
increases by the radiation. 
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Fig. 5. Effects of non-linear parameter β on the temperature distribution in the fin when M=0.50, N=1.25 
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Fig. 6. Effects of non-linear parameter β on the temperature distribution in the fin when M=1.50, N=1.75. 

Table 1 shows the comparison of previous results in literature using other methods with obtained results of the present 
study using variation of parameter methods. The table indicates that the variation of parameter methods agrees excellently with 
both the numerical method (NM) results using Runge-Kutta with shooting method and the results of the Adomian 
decomposition method (ADM) and the homotopy perturbation method (HPM). 
    Fig. 7 shows the effects of the radiative parameter Nr on the dimensionless fin efficiency η at different values of the 
thermal conductivity parameter for the fin. According to the figure, it is established that the numerical values of the fin 
efficiency decreases with increasing the radiative parameter while the numerical values of the efficiency increases as the non-
linear thermal conductivity parameter increases.  
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Fig. 7. Effects of radiative parameter Nr on the temperature distribution in the fin. 

Table 1. Comparison between different methods and the results of current study 

X NM ADM [5] HPM [9] CSCM 
0.0 0.648054 0.648054 0.648054 0.648054 
0.1 0.651297 0.651297 0.651297 0.651297 
0.2 0.661059 0.661059 0.661059 0.661057 
0.3 0.677436 0.677436 0.677436 0.677436 
0.4 0.700594 0.700594 0.700594 0.700594 
0.5 0.730763 0.730763 0.730763 0.730763 
0.6 0.768246 0.768246 0.768246 0.768246 
0.7 0.813418 0.813418 0.813418 0.813418 
0.8 0.866731 0.866731 0.866731 0.866731 
0.9 0.928718 0.928718 0.928718 0.928718 
1.0 1.000000 1.000000 1.000000 1.000000 

5. Conclusion 

In this study, heat transfer in a convective-radiative straight fin with the temperature-dependent thermal conductivity has 
been investigated using the Chebychev spectral collocation method. The developed heat transfer model was used to analyse the 
thermal performance, establish optimum thermal design parameters, and also, investigate the effects of thermo-geometric and 
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thermal conductivity (non-linear) parameters on the thermal performance of the fin.  Good agreements were established 
between the results of Chebychev spectral collocation method and the results obtained using Runge-Kutta method along with 
shooting method, homotopy perturbation and Adomian decomposition methods. 

 
Nomenclature 

ar Aspect ratio M Dimensionless thermo-geometric fin parameter 
b Length of the fin m2 Thermo-geometric fin parameter 

Ac Cross sectional area of the fins Nr Radiative parameter 
Ap Profile area of the fins P Perimeter of the fin 
Bi Biot number T Temperature 
h Heat transfer coefficient T∞ Ambient temperature 
k Thermal conductivity of the fin material Tb Temperature at the base of the fin 
ka Thermal conductivity of the fin material at ambient temperature X Dimensionless length of the fin 
kb Thermal conductivity of the fin material q Rate of heat transfer 
K Dimensionless thermal conductivity of the fin material Qf Dimensionless heat transfer 

 
Greek Symbols 

β Thermal conductivity parameter or non-linear parameter θb Dimensionless temperature at the base of the fin 
δ Thickness of the fin, m η Efficiency of the fin 
θ Dimensionless temperature ε Effectiveness of the fin 
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