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Abstract: 

Background: With current treatments for Alzheimer’s disease (AD) only providing 

temporary symptomatic benefits disease modifying drugs are urgently required. This 

approach relies on improved understanding of the early pathophysiology of AD. A 

new hypothesis has emerged, in which early memory loss is considered a synapse 

failure caused by soluble amyloid-β oligomers (Aβo). These small soluble Aβo, which 

precede the formation of larger fibrillar assemblies, may be the main cause of early 

AD pathologies.  

Objective: The aim of the current study was to investigate the effect of acute 

administration of stabilised low-n amyloid-β1-42 oligomers (Aβo1-42) on cognitive, 

inflammatory, synaptic and neuronal markers in the rat. 

Methods: Female and Male Lister Hooded rats received acute 

intracerebroventricular (ICV) administration of either vehicle or 5 nmol of Aβo1-42 

(10μL). Cognition was assessed in the novel object recognition paradigm at different 

time points. Levels of inflammatory (IL-1β, IL-6, TNF-α), synaptic (PSD-95, SNAP-

25) and neuronal (n-acetylaspartate, parvalbumin-positive cells) markers were 

investigated in different brain regions (prefrontal & frontal cortex, striatum, dorsal and 

ventral hippocampus). 

Results: Acute ICV administration of Aβo1-42 induced robust and enduring NOR 

deficits. These deficits were reversed by acute administration of donepezil and 

rolipram but not risperidone. Post-mortem analysis revealed an increase in 

inflammatory markers, a decrease in synaptic markers and parvalbumin containing 

interneurons in the frontal cortex, with no evidence of widespread neuronal loss.  

Conclusion: Taken together the results suggest that acute administration of soluble 

low-n Aβo may be a useful model to study the early mechanisms involved in AD and 
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provide us with a platform for testing novel therapeutic approaches that target the 

early underlying synaptic pathology. 

 

Keywords:  

Alzheimer’s disease; amyloid-β oligomers; cognition; parvalbumin interneurons. 

 

Introduction: 

Within the Alzheimer’s disease (AD) brain, several species of soluble β-amyloid (Aβ) 

can be found, along with insoluble fibrils and plaques, and several attempts at 

identifying the toxic species of soluble oligomers have been made. It has been 

demonstrated that following intracerebroventricular injection (ICV) in mice, high 

molecular weight (HMW; ranging from ~50 to ~150 kDa),  and low molecular weight 

(LMW; dimers-tetramers) oligomers act differently, with LMW oligomers causing long 

lasting, synaptic alterations, and HMW oligomers causing  short term NMDA receptor 

associated cognitive disruption [1]. Other studies have demonstrated a role for LMW 

oligomers in synaptic loss or dysfunction [2-5]. LMW oligomers have also been 

shown to induce the collapse of the endoplasmic reticulum (ER) and destabilise 

microtubules in rat hippocampal cells [6]. ER dysfunction has also been shown in the 

APPSwe mutant mouse model and human AD brain [6,7]. 

 

The literature surrounding the use of different oligomerisations is vast. This may be 

down to the large variety of oligomer preparation methods, differences in using either 

synthetic or purified Aβ, or the tendency of Aβ to aggregate spontaneously. Whilst 

elucidating the role of each type of Aβ oligomer is important, it is also crucial to 
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understand how Aβ oligomers act when in a more physiological mixed form. 

Protocols also differ in the site, concentration and volume of administration used. 

 

In the current study we focused our research on the administration of stabilised low-n 

amyloid-β1-42 oligomers (Aβo1-42). This peptide is not only one of the main species 

found in AD, but its stabilised aggregation state facilitates the study of oligomeric 

forms, thought to have a more potent toxic effect than larger aggregates [8,9]. This 

model is furthermore supported by recent publications using the same species of 

Aβo1-42 in a similar mouse model (SynAging, France), showing cognitive and 

neuropathological changes of relevance for AD research [10–13]. 

 

In the current study rats received an acute ICV injection of stabilised LMW Aβo1-42 

composed of dimers, trimers and tetramers. Novel object recognition (NOR) was 

performed to access any cognitive changes caused by the oligomers. Long lasting 

effects on cognition, effect of gender and pharmacological interventions assessed. 

Post-mortem studies focussed on neuropathological markers (including 

inflammatory, synaptic, general neuronal and GABAergic markers), commonly 

explored in AD models in regions related to cognitive function. 

 

Materials and Methods 

Animals 

Adult female (n=100, 190 – 230 g) and male (n=20, 250 – 280 g) Lister Hooded rats 

(Charles River, UK) aged approximately 3-months old at the time of 

intracerebroventricular (ICV) administration of Aβo1-42 were used in the studies. Rats 

were housed in groups of 4-5, in individually ventilated cages with two levels 
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(GR1800 Double-Decker Cage, Techniplast, UK) on a 12-h light-dark cycle, with free 

access to food and water. Cages were kept in a controlled environment (temperature 

21±2˚C and humidity 55±5%) in the Biological Services Facility at the University of 

Manchester. Experiments were conducted during the light cycle, in the morning. All 

experiments were conducted in accordance with the UK Animals (Scientific 

Procedures) 1986 Act and University ethical guidelines. A free online power analysis 

software was used to calculate the sample size required for each group of animals. 

Calculations were based on the most restrictive test, behavioural tests usually 

requiring a larger effect size than biochemical analyses. The effect size and standard 

deviation were estimated from previous studies performed by our laboratory on 

similar studies. Power calculations were based on a Type 1 error of 5% (p=0.05). A 

power of 80% was set, the direction of the effect was two-tailed and statistical 

analysis was based on the Student’s t-test and ANOVA. Results indicated that 10 

animals were required per group in order to obtain relevant and significant results in 

the behavioural tests. The same calculations were made for the post-mortem 

analysis with effect size based on previous in house studies of similar markers. 

 

Experimental design 

Behavioural studies 

For the time-course study (Fig.1A), animals received 10 μL ICV administration of 

either vehicle (n=10 females) or Aβo1-42 5 nmol (n=10 females). The novel object 

recognition (NOR) tasks were then performed 4, 14, 35 and 70 days later. These 

time points were chosen in order to allow enough time for animals to recover from 

surgery, to allow enough time in between each test so animals would complete the 

task and to assess the of the duration of the deficits observed. 
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The NOR test is extremely useful for identification of cognitive deficits, their neural 

basis, and for testing the efficacy of novel therapeutic agents in a number of 

disorders [41]. It is a two trial cognitive paradigm that assesses recognition memory. 

Recognition memory is disturbed in a range of human disorders and NOR is widely 

used in rodents for investigating deficits in a variety of animal models of human 

conditions where cognition is impaired. In the current study the NOR task was 

chosen as it possesses several advantages over more complex tasks that involve 

lengthy training procedures and/or food or water deprivation. It is quick to administer 

and allows animals to be retested. It is non-rewarded, provides data quickly and 

most importantly, ethologically relevant as it relies on the animal's natural preference 

for novelty.  

For the gender study (Fig.1B), animals received 10 μL ICV administration of either 

vehicle (n=10 females, n=10 males) or Aβo1-42 5 nmol (n=10 females, n=10 males). 

The NOR task was then performed 4 days later. 

For the pharmacological study (Fig.1C), animals received 10 μL ICV administration 

of either vehicle (n=10 females) or Aβo1-42 5 nmol (n=20 females). The NOR tasks 

were then performed after acute intraperitoneal (IP) administration of either saline, 

donepezil (1 mg/kg), rolipram (0.01 mg/kg), or risperidone (0.1 mg/kg), respectively 

4, 8 and 14 days later. Pre-treatment times and doses used were determined from 

previous work in our laboratory in female Lister Hooded rats [42]. 

 

Post-mortem analysis of inflammatory, synaptic and neuronal markers. 

A separate cohort of animals received 10 μL ICV administration of either vehicle 

(n=15 females) or Aβo1-42 5 nmol (n=15 females). 14 days later and following NOR 

testing, n=5 in each group were culled for high-performance liquid chromatography 
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(HPLC) analysis of the general neuronal marker, n-acetylaspartate (NAA). 35 days 

following ICV administration of Aβo1-42, the remaining n=10 in each group were culled 

for ELISA analysis of inflammatory (IL-1β, IL-6 and TNF-α) and synaptic (PSD-95 

and SNAP-25) markers (Fig.1D).   

Rats from experiment 1 were culled 70 days after ICV administration of Aβo1-42, 

following NOR testing and brains were prepared for immunohistochemical staining 

for GABAergic parvalbumin-positive interneurons (Fig.1A).  

For post-mortem analysis regions of interest were defined according to the Atlas of 

Paxinos and Watson in relation to bregma. Brains were dissected on ice (or cut 

using a cryostat, immunohistochemistry) and the area of interest dissected from 1-

2mm thick slices. Approximate coordinates of the regions investigated were - Frontal 

cortex, between bregma +5.20 – +3.20; prefrontal cortex, between bregma +3.2 and 

+1.7; striatum, between bregma +1.2 and -0.2; hippocampus, dorsal: between 

bregma -2.30 and -3.80, ventral: between bregma -4.8 and -6.0 and temporal cortex, 

between bregma -2.30 and -3.80. General neuronal dysfunction (N-acetylaspartate) 

was assessed in a number of regions of relevance to cognitive function and in 

relation to regions studied in previous rodent models [43, 44]. Neuroinflammatory, 

synaptic and parvalbumin studies were carried out in the frontal cortex and 

hippocampus (and the prefrontal cortex for parvalbumin). These areas were chosen 

in relation to previous studies using the same oligomer preparation in the mouse 

model work by SynAging [11, 12].  

 

Amyloid-β1-42 oligomer administration 

Rats were randomly assigned into two groups and received 10 µL ICV administration 

of either vehicle or Aβo1-42 (5 nmol, SynAging, France) into the left hemisphere. 
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Concentration of oligomers was adapted from previous work conducted by SynAging 

in mice (10-13). Aβo1-42 preparations largely consist of tetramers, some trimers and 

residual monomers. They are completely stable when stored frozen. Every 

preparation was validated in vitro. In vivo, Aβo1-42 were used at a dose of 5 nmol 

(equivalent to the constituent monomer peptide concentration). Briefly, rats were 

anaesthetised with 4% isoflurane in O2 (maintained at 2-3% isoflurane) and placed 

into a stereotaxic frame. Animals then received a sub-cutaneous administration of 

0.1 mg/kg of buprenorphine. Following an incision in the scalp, a hole was drilled in 

the skull at the following coordinates, AP: -0.8 mm (posterior) and DV:-1.5 mm 

(lateral) from Bregma. A needle (Hamilton® 701N) was gently inserted at -4.5 mm 

(ventral), to reach the left ventricle [14]. Vehicle (phosphate buffered saline) or Aβo1-

42 was administrated at a rate of 2.5 µL/min. The scalp was sutured and an antibiotic 

was locally applied. Animals were left to recover in a heated chamber and closely 

monitored before being returned to their home cage.  

Behaviour  

Cognition was assessed by measuring short-term recognition memory in rats using 

the Novel Object Recognition (NOR) task [18, 24]. Briefly, animals were habituated 

to the testing arena with their cage mates on two consecutive days for 30 and 15 

minutes respectively prior to the first experimentation. On the day of testing rats were 

individually placed in a 52x52 cm box and left free to explore two copies of the same 

object for 3 min (acquisition phase). After an inter-trial interval (ITI) of 2 min, the 

animal was placed back in same box and left free to explore an identical copy of the 

previously seen object (referred to as the familiar object) and a new object (referred 

to as the novel object) for another 3 min (retention phase). Time spent exploring both 

objects was scored in both the acquisition and retention phases, blind to treatment 
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and to the novelty or familiarity of the object. The location of the novel object in the 

retention trial was randomly assigned for each rat using a pseudo-random Gellerman 

schedule. Different objects, validated in house, were used for the each session. All 

experiments were filmed and video-recorded for subsequent behavioural analysis by 

an experimenter blind to the treatments. Object exploration was defined as animals 

sniffing, licking or touching the objects with forepaws, but not leaning against, turning 

around, standing or sitting on the objects. The objects used, their left/right position 

and their familiarity/novelty were balanced between animals. Inter-observer reliability 

of behavioural results was assessed for all experiments.  

 

Parvalbumin immunohistochemistry 

Rats were culled by overdose of anaesthetic (5% isoflurane in O2), and brains were 

perfused with phosphate buffered saline (PBS) 0.1 M, and perfusion-fixed with 4% 

paraformaldehyde in PBS.  Brains were rapidly extracted and incubated in 4% 

paraformaldehyde for 24 hs followed by 30% glucose for 48 hs at 4˚C, before being 

stored at -80˚C. The frontal cortex and prefrontal cortex were cut and free floating 

sections were stained for parvalbumin with a mouse monoclonal anti-parvalbumin 

antibody (Swant, PV235) and revealed by ABC and DAB kits (Vector Laboratories, 

PK-6100 and SK4100) as described previously [15]. Sections were mounted on 

slides, coded and analysed blind to treatment. Stained sections were scanned at 4x 

magnification using an Olympus BX51 microscope interfaced to an Image ProPlus 

(version 6.3) analysis system (Media Cybernetics, USA) via a JVC 3-CCD video 

camera.  Estimations of neuronal density (cells/mm2) were carried out in every 6th 

section per region, with a minimum of 6 sections per animal counted. The region of 

interest was highlighted and parvalbumin positive neurons were counted live at a 
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higher magnification (20x) using randomly generated points and a 2D counting 

frame. There was no staining in sections where the primary antibody was omitted. 

 

HPLC analysis of N-acetylaspartate (NAA) 

Rats were culled by overdose of anaesthetic (5% isoflurane in O2), and brains were 

perfused with PBS 0.1 M, rapidly dissected and snap frozen in isopentane before 

being stored at -80˚C. The neuronal marker NAA was investigated in 6 brain regions 

(frontal cortex, prefrontal cortex, striatum, temporal cortex, dorsal hippocampus, 

ventral hippocampus). NAA levels were assessed as described previously [16]. 

Briefly, proteins in the tissue were precipitated with 0.1 M perchloric acid and NAA 

was extracted from the supernatant using strong anion exchange columns. The 

extracted sample was analysed by HPLC (Genesis, C18, 4μm, 4.6 mm x 250 mm), 

mobile phase 0.1% phosphoric acid, UV detection 215 nm. NAA levels in each 

sample were measured by peak height comparison with an external standard curve. 

 

Neuroinflammatory and synaptic markers  

Rats were culled by overdose of anaesthetic (5% isoflurane in O2), and brains were 

perfused with PBS 0.1 M, rapidly dissected and snap frozen in isopentane before 

being stored at -80˚C. Neuroinflammatory (IL-1β, IL-6 and TNF-α) and synaptic 

(PSD-95 and SNAP-25) markers were investigated in the frontal cortex and the 

hippocampus. Briefly, samples were homogenised in a sample buffer (Trizma base 

.01 M, sucrose .03 M, EDTA .0025M, PMSF 0.1M, sodium orthovanadate 0.1 M, 

Protease inhibitor cocktail cOmplete (Roche) tablet), and then centrifuged at 800g for 

15 min. The supernatant was further centrifuged at 12000g for 20 min. The final 

supernatant was used to measure inflammatory markers (ELISA kit for IL-1β/IL-1F2, 
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IL-6 and TNF-α, DuoSet), while the final pellet was suspended in PBS 0.1 M for 

synaptic marker analysis (ELISA kit for DG4 and SNAP-25, Cloud-Clone Corp).  

 

Data analysis 

Results are expressed as mean ± standard error of the mean (SEM). NOR data were 

analysed by ANOVA on repeated measures with object as within-subject factor and 

group as in-between subject factor. In cases of significance (p<0.05), individual 

paired samples Student’s t-tests were run in each group, comparing the exploration 

time of both objects. Total exploration times were analysed by ANOVA and 

Bonferroni post-hoc. NAA levels were analysed by independent samples Mann-

Whitney test. Inflammatory markers, synaptic markers and parvalbumin-positive cell 

density were analysed by independent samples Student’s t-tests. All the statistical 

analyses have been run using IBM SPSS (version 20). 

 

Results 

Stabilised Aβo1-42 induce a long lasting NOR deficit in the rat (Fig. 2) 

In the time course study, on days 4, 14, 35 and 70 after ICV administration of Aβo1-

42, both groups explored both objects equally, in each of the acquisition phases. 

There was no difference in left/right object exploration [F(1,18)=2.326 p>0.05] 

regardless of the day of testing [F(3,16)=0.496 p>0.05]. Total object exploration was 

not different between groups [F(1,18)=1.425 p>0.05] but was however affected by the 

day of testing [F(3,16)=47.998 p<0.001], and was decreased from day 4 to day 14 

[p<0.001] but not on the following sessions [p>0.05].  

In the retention phases, there was a significant difference of exploration between the 

familiar and novel object [F(1,16)=89.046 p<0.001] with an effect of group 
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[F(1,16)=50.249 p<0.001]. The vehicle group spent more time exploring the novel 

object on day 4 [t(9)=-6.244 p<0.001], day 14 [t(9)=-4.923 p<0.001], day 35 [t(9)=-3.180 

p<0.05], and day 70 [t(9)=-2.372 p<0.05]. There was however no difference in 

exploration for the Aβo1-42 group on any day: day 4 [t(8)=-0.715 p>0.05], day 14 [t(8)=-

0.890  p>0.05], day 35 [t(9)=-0.251 p>0.05], and day 70 [t(9)=-1.419 p>0.05]. Total 

object exploration was not different between groups [F(1,16)=2.528 p>0.05] but was 

again affected by the day of testing [F(3,14)=11.216 p<0.001], and was decreased 

from day 14 to day 35 only [p<0.05]. 

In summary, independent of the day of testing, the vehicle group significantly spent 

more time exploring the novel over the familiar object, an effect that was abolished in 

the group receiving ICV administration of Aβo1-42. 

 

Stabilised Aβo1-42 induce NOR deficits in both female and male rats (Fig.3) 

In the acquisition phase, all female and male groups explored both objects equally. 

There was no difference in left/right object exploration [F(1,36)=0.005 p>0.05]. Total 

object exploration was not different between vehicle and Aβo1-42 groups in each 

gender sub-group [F(1,36)=0.663 p>0.05]. However, total object exploration was 

higher in the female groups when compared to the male groups [F(1,36)=21.342 

p<0.001]. 

In the retention phase, there was a significant difference of exploration between the 

familiar and novel object [F(1,35)=40.563 p<0.001] with a significant effect of group  

[F(1,35)=34.649 p<0.001]. Both vehicle groups spent significantly more time exploring 

the novel object, female [t(9)=-6.244 p<0.001] and male [t(9)=-4.927 p<0.001]. There 

was however no difference of exploration in both Aβo1-42 treated groups, female 

[t(9)=-0.715 p>0.05] and male [t(9)=0.162  p>0.05]. Total object exploration was not 
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different between animals, regardless of group [F(1,35)=0.051 p>0.05] or gender 

[F(1,35)=1.042 p>0.05].  

 

In summary, independent of the gender of the rats, vehicle groups spent significantly 

more time exploring the novel over the familiar object, an effect that was abolished in 

the groups receiving ICV administration of Aβo1-42.  

 

Acute treatment with donepezil and rolipram, but not risperidone, rescues the 

NOR deficit. (Fig.4) 

In the acquisition phases all groups explored both objects equally. There was no 

difference in left/right object exploration in any group, on each day of testing; 

respectively [F(1,25)=0.0001 p>0.05] on day 4,  [F(1,22)=0.935 p>0.05] on day 8, and 

[F(1,22)=0.935 p>0.05] on day 14 after ICV administration of Aβo1-42.   

In the retention phases, ICV administration of Aβo1-42 induced a NOR deficit on each 

day of testing; an effect that was rescued by acute IP treatment with donepezil (1 

mg/kg) and rolipram (0.01 mg/kg), but not risperidone (0.1 mg/kg). All statistical test 

results are summarised in Table 1. 

In summary, vehicle groups spent significantly more time exploring the novel over 

the familiar object, an effect that was abolished in the groups receiving ICV 

administration of Aβo1-42 and restored by acute IP treatment with donepezil and 

rolipram but not risperidone.  

 

Stabilised Aβo1-42 induces a deficit in parvalbumin-containing interneurons, 

with no change in the general neuronal marker N-acetylaspartate (Fig.5) 
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Rats from the time-course study were culled following the last NOR session, 70 days 

after ICV administration of Aβo1-42.  Parvalbumin positive staining was found 

throughout the frontal and prefrontal regions with no staining in sections where the 

primary antibody was omitted (Figure 6). Parvalbumin-positive cell density was 

significantly reduced in both the frontal cortex [t(16)=3.365 p<0.01] and prefrontal 

cortex [t(10.89)=4.008 p<0.01] of the Aβo1-42 treated animals (Fig.5A).  

In a separate experiment and following confirmation of the NOR deficit (data not 

shown), levels of the neuronal marker NAA were investigated in 6 regions, 14 days 

after ICV administration of Aβo1-42. There was no significant difference in the levels 

of NAA between groups in each of the 6 brain regions investigated (Fig.5B). 

 

Stabilised Aβo1-42 result in raised levels of the inflammatory markers IL-1β and 

TNF-α in the frontal cortex. (Fig.7) 

Inflammatory markers IL-1β, IL-6 and TNF-α levels were investigated in two regions, 

frontal cortex and hippocampus, 35 days after ICV administration of Aβo1-42, and 

after confirmation of the NOR deficit (data not shown). There was no difference in 

the levels of IL-1β in the hippocampus [t(18)=-0.451 p>0.05]. In contrast, the level of 

IL-1β in the frontal cortex was significantly higher in the group administrated with 

Aβo1-42 [t(15)=-2.694 p<0.05]. There was no difference in the levels of IL-6 in the 

hippocampus [t(17)=0.862 p>0.05] or the frontal cortex [t(16)=-1.264 p>0.05]. There 

was no difference in levels of TNF-α in the hippocampus [t(17)=0.752 p>0.05]. In 

contrast, levels of TNF-α in the frontal cortex were significantly higher in the group 

administrated with Aβo1-42 [t(16)=-2.299 p<0.05]. 
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Stabilised Aβo1-42 induce a deficit in the postsynaptic marker PSD-95 in the 

frontal cortex. (Fig. 8) 

Pre- (SNAP-25) and post- (PSD-95) synaptic markers were investigated in two 

regions, frontal cortex and hippocampus, 35 days after ICV administration of Aβo1-42 

and after confirmation of the NOR deficit (data not shown). There was no difference 

in levels of SNAP-25 in the hippocampus [t(17)=1.186 p>0.05] or the frontal cortex 

[t(16)=1.908 p>0.05]. There was no difference in levels of PSD-95 in the hippocampus 

[t(14)=0.752 p>0.05]. In contrast, levels of PSD-95 in the frontal cortex were 

significantly lower in the group administrated with Aβo1-42 [t(16)=3.298 p<0.01]. 

 

Discussion 

The current study demonstrated the appearance of a robust and lasting NOR deficit 

as early as day 4 and up to day 70, and associated with neuropathological changes, 

following an acute ICV administration of 5 nmol of Aβo1-42, in both female and male 

Lister Hooded rats. Post-mortem analysis revealed an increase in inflammatory 

markers, a decrease in synaptic markers and parvalbumin containing interneurons in 

the frontal cortex, with no evidence of widespread neuronal loss. 

 

In successive NOR testing – 4, 14, 35 and 70 days following ICV administration of 

Aβo1-42 – both treatment groups showed no difference of exploration time between 

the identical objects presented during the acquisition phase, a finding which 

underlines that Aβo1-42.did not induce non -specific motor disturbances. In contrast, 

during the retention phase only the group administrated with vehicle could perform 

the task, showing a clear preference for the novel object over the familiar one 

(Fig.2A-D). It is however noteworthy to observe that in both groups there was an 
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overall decrease in total exploration time over the sessions. In line with previous 

reports [17], we found that the novelty of the task decreases over time for the rats, 

lowering their willingness to explore the environment and the objects. We also 

demonstrated that the Aβo1-42 induced NOR deficits appeared to affect both female 

and male Lister Hooded rats (Fig.3). Our data support the hypothesis of short-term 

recognition memory being one of the early cognitive domains affected in our model. 

These results supplement and confirm cognitive data from a similar mouse model 

using ICV administration of the same preparation of Aβo1-42 (SynAging, France) [10–

13]. The SynAging laboratory has found that an ICV injection of the same Aβo1-42 in 

wild type C57BL/6 mice induced an impairment in the NOR task (with no effect 

following administration of the vehicle or the reverse sequence Aβo42-1).  

 

The pharmacological experiments demonstrated a reversal of the Aβo1-42 induced 

NOR deficit following acute IP treatment with donepezil (1 mg/kg) and rolipram (0.01 

mg/kg) but not risperidone (0.1 mg/kg) (Fig.4). 

Donepezil is currently used for the symptomatic treatment of Alzheimer’s disease as 

an acetylcholinesterase inhibitor. Its effect in our model may highlight the presence 

of a deficit in acetylcholine that the drug could compensate by acutely increasing 

local levels. We recently demonstrated the ability of donepezil to improve object 

recognition deficits in a test of “natural forgetting” following a 6 h inter-trial interval in 

female Lister Hooded rats [18]. 

Rolipram is a phosphodiesterase-4 (PDE-4) inhibitor, a family of enzymes that 

regulate the hydrolysis of cAMP and cGMP. These two second messengers are 

involved in controlling levels of phospho-cAMP response element-binding (pCREB) 

in the brain and indirectly playing a role in the modulation of LTP, synaptic plasticity 



17 
 

and memory [19]. Inhibiting PDEs that hydrolyse cGMP could have beneficial effects 

in dementia [20] and opens new therapeutic possibilities. In line with our findings 

other studies in preclinical models with rolipram, have shown promising results on 

restoring cognition in both a mouse transgenic model [21] and a rat model of intra-

hippocampal Aβo administration  [22,23].   

Risperidone is an atypical antipsychotic used for the treatment of schizophrenia. At 

lower doses, where you reduce dopamine D2 receptor blockade, we have 

consistently demonstrated the ability of risperidone to improve cognitive deficits 

induced by sub-chronic phencyclidine (PCP) in female Lister Hooded (preclinical 

model of relevance to the cognitive deficits in schizophrenia). We reported 

improvements in a number of domains including object recognition memory [24], 

reversal learning [25] and attentional set shifting [26].  In the current study 

risperidone was unable to reverse the deficit in NOR following administration of Aβo1-

42. In line with the finding in the current study we previously showed that risperidone 

did not reverse the deficit in NOR in “normal” rats following a 6 h inter-trial interval 

[18]. Taken together these studies highlight the different mechanisms that underlie 

the deficits induced by sub-chronic PCP and Aβo1-42.  

As a result of the study design different drugs were tested at different, successive 

time points and we cannot fully rule this out as a potential confound. However it is of 

interest to note that the reversal of the NOR deficit in Aβo1-42 group was only 

apparent when the compound was “on-board”. The cross over design of these 

experiments demonstrated that the behavioural deficit was seen once more in the 

Aβo1-42 group when the compound (donepezil or rolipram) was washed out, 

demonstrating no carry over effect on subsequent testing.  
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These studies highlight the potential benefit of this approach in detecting 

symptomatic treatments for cognitive deficits in AD but also demonstrate the lack of 

effect on the underlying pathology responsible for these deficits, indicating the lack of 

a disease modifying effect. 

 

The density of parvalbumin interneurons was significantly reduced in both the 

prefrontal and frontal cortices 70 days after acute administration of LMW Aβo1-42 

(Fig.5A). The reduction of these interneurons is in accordance with studies of human 

AD brains, and mouse models of AD, where parvalbumin neurons are known to be 

reduced [27, 28,30]. It is plausible that these parvalbumin reductions could be 

caused by the LMW Aβ oligomers in AD. This would support data that has shown 

that the altered oscillations in AD, thought to be caused by disrupted inhibitory 

signalling via parvalbumin interneurons [29, 30] occur early in AD [31] at a similar 

time that LMW oligomers, notably trimers are found to be elevated [32, 33], 

suggesting this model may present the potential to study the Aβo mechanisms of 

relevance to early AD. 

 

N-acetylaspartate (NAA) is utilised as a non-specific neuronal marker, with changes 

indicating neuronal loss or dysfunction [34]. The lack of NAA deficits in any of the 

brain regions investigated, 14 days following ICV administration of Aβo1-42 (Fig.5), 

highlights a lack of widespread non-specific neuronal death, at the concentration of 

oligomers administrated. One conclusion could be that these oligomers are toxic to 

only parvalbumin interneurons, or at least only specific neurons, in this model, and 

that the overall neuronal population is not decreased. However, the difference in time 

points means any conclusions must be made with caution. 
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We found increased levels of the neuroinflammatory markers IL-1β and TNF-α in the 

frontal cortex, 35 days after ICV administration of Aβo1-42 (Fig.7). IL-1β is known to 

be one of the earliest pro-inflammatory cytokines released following central nervous 

system insult [35]. Moreover, IL-1β is believed to be an initiator of inflammation, 

following acute injury [36], with IL-6 and TNF-α release being delayed in time [37]. 

However, kinetics data on the mid- and long term changes in rodent in vivo models 

of Aβo administration remain an unmet need. In the current study, the presence of 

increased levels of IL-1β and TNF-α, 35 days after administration of Aβo1-42, could 

highlight an underlying phenomenon of constant and lasting inflammation, 

contributing to the NOR deficit observed at this time point. We also found reduced 

levels of the postsynaptic marker PSD-95 in the frontal cortex (Fig. 8). Aβo1-42 are 

known to specifically bind to PSD-95 positive sites [38]. Decreased levels of PSD-95 

are indicative of a disruption of synaptic activity in this area, mirroring the 

inflammatory changes seen in this region. Taken together these results suggest 

decreased synaptic activity associated with neuroinflammation, in the frontal cortex, 

following ICV administration of Aβo1-42 may be contributing to the NOR deficits 

observed. In support of this is a recent study where we demonstrated the ability of 

the anti-inflammatory Mefenamic acid to prevent the NOR deficits following Aβo1-42  

administration [39].  

We found no changes in inflammatory or synaptic markers in the hippocampus in 

this study, indicating that ICV administration of LMW Aβo1-42 does not have an effect 

in this region. In line with these findings, spatial memory (as assessed by Y-maze 

and dependent on hippocampal input) was preserved at day 35 in this model (data 

not shown). In the current study we have not been able to track the distribution of the 
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LMW Aβo1-42 following administration and so cannot fully explore the specificity of the 

deficits observed in the frontal cortex over the hippocampus. Brouillette et al., [40] 

demonstrated that repeated hippocampal injections of small soluble Aβo1-42 in 

awake, freely moving mice were able to induce behavioural (deficits in hippocampus 

dependent memory) and pathological (marked neuronal loss and tau 

hyperphosphorylation) deficits or relevance to AD. In acute administration models 

the site of injection may play an important role in the regions affected. 

 

Conclusion 

Taken together these data provide a characterisation of the effects of an acute 

administration of LMW Aβo1-42 on cognitive, inflammatory, synaptic and neuronal 

markers in Lister Hooded rats. This study adds to the evidence implicating Aβo in 

Alzheimer’s disease and may provide a platform for assessing symptomatic and / or 

neuroprotective effects of disease modifying drug candidates. 
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Figure 1: Outline of the experiments. On the day of surgery (day 0), rats were 

administrated with 10 µL of either vehicle or Aβo1-42 (5 nmol). (A, B and C) 

Experiment 1: Characterisation of the cognitive deficit. NOR tasks were performed 

on days 4, 14, 35 and 70. In study C, rats received an acute IP treatment of vehicle 

or: donepezil 1 mg/kg (day 4), rolipram 0.01 mg/kg (day 8) and risperidone 0.1 mg/kg 

(day 14), the Aβo1-42 group receiving the treatment was reversed at each time point, 

allowing a washout of the previous treatment. (A and D) Experiment 2: 

Neuropathological markers. (A) Rats from Experiment 1 were culled on day 70 and 

frontal and prefrontal cortices stained for parvalbumin-positive cells. (D) 

Neuropathological markers. On day 14, n=5 in each group were culled for N-

acetylaspartateanalysis. On day 35, n=10 in each group were culled for inflammatory 

(IL-1β, IL-6 and TNF-α) and synaptic (SNAP-25, PSD-95) marker analysis. 

 

 

Figure 2: Experiment 1 – Time course. NOR exploration times on day 4 (A), 14 (B), 

35 (C) and 70 (D) after ICV administration of vehicle or Aβo1-42. Data are presented 

as mean+SEM, n=9-10 per group. Paired ANOVA and Student’s t-test, *p<0.05 

***p<0.001 Novel vs. Familiar. 

 

 

Figure 3: Experiment 1 – Gender specificity. NOR exploration times in both female 

and male rats, on day 4 after ICV administration of vehicle or Aβo1-42. Data are 

presented as mean+SEM, n=9-10 per group. Paired ANOVA and Student t-test, 

***p<0.001 Novel vs. Familiar. 
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Figure 4: Experiment 1 – Acute pharmacological treatment. NOR exploration times 

following ICV administration of vehicle or Aβo1-42 and acute treatment with 

donepezil (A), rolipram (B) and risperidone (C). Data are presented as mean+SEM, 

n=7-10 per group. Paired ANOVA and Student t-test, *p<0.05 **p<0.01 Novel vs. 

Familiar. 

 

 

Figure 5: Experiment 2 – (A) Results from parvalbumin-positive cell counting in the 

frontal cortex and prefrontal cortex, 70 days after ICV administration of either vehicle 

or Aβo1-42. Data are presented as mean±SEM, n=8-9 per group, independent 

samples Student's t-test , ** p<0.01 vs. Vehicle. (B) NAA levels as measured by 

HPLC across 6 brain areas, 14 days after ICV administration of vehicle or Aβo1-42. 

Data are presented as individual plots, mean±SEM, n=4-5 per group. Mann-Whitney 

test, no significant difference between the two groups. 

 

Figure 6: (A) Parvalbumin immunoreactivity in the rat prefrontal cortex. Brightfield 

photomicrograph of a coronal section showing the distribution of parvalbumin 

immunoreactivity throughout the hippocampus. 4× magnification. (B) Selected area 

from (A) of high power (20× magnification) brightfield photomicrograph of 

parvalbumin-immunopositive interneurons in prefrontal cortex. Scale bar = 50 μm. 

 

Figure 7: Experiment 2 – Results from the ELISA on neuroinflammatory markers in 

the hippocampus (left panel) and frontal cortex (right panel), 35 days after ICV 

administration of vehicle or Aβo1-42. Data are presented as individual plots, 

mean±SEM, n=8-10 per group. Independent samples Student's t-test, * p<0.05 vs. 

Vehicle.  
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Figure 8: Experiment 2 – Results from the ELISA on synaptic markers in the 

hippocampus (left panel) and frontal cortex (right panel), 35 days after ICV 

administration of vehicle or Aβo1-42. Data are presented as individual plots, 

mean±SEM, n=8-10 per group. Independent samples Student's t-test, ** p<0.01 vs. 

Vehicle. 

 

 

Table 1: Experiment 1: Statistical test results from the NOR retention phases after IP 

treatment with donepezil, rolipram and risperidone. Paired ANOVA and Student t-

test. 
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Figure 2 
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Figure 3 
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Figure 4
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Figure 5
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Figure 6 
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Figure 7 

V e h ic le A  o 1 -4 2

0

1

2

3

4

n
g

 /
 m

g
 t

o
ta

l 
p

r
o

te
in

IL -1   - H ip p o c a m p u s

V e h ic le A  o 1 -4 2

0

1

2

3

4

n
g

 /
 m

g
 t

o
ta

l 
p

r
o

te
in

*

IL -1   - F ro n ta l c o rte x

V e h ic le A  o 1 -4 2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

n
g

 /
 m

g
 t

o
ta

l 
p

r
o

te
in

IL -6  -  H ip p o c a m p u s

V e h ic le A  o 1 -4 2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

n
g

 /
 m

g
 t

o
ta

l 
p

r
o

te
in

IL -6  - F ro n ta l c o rte x

V e h ic le A  o 1 -4 2

0 .0

0 .1

0 .2

0 .3

n
g

 /
 m

g
 t

o
ta

l 
p

r
o

te
in

T N F -  - H ip p o c a m p u s

V e h ic le A  o 1 -4 2

0 .0

0 .1

0 .2

0 .3

n
g

 /
 m

g
 t

o
ta

l 
p

r
o

te
in

*

T N F -  - F ro n ta l c o rte x

 

 

 



39 
 

Figure 8 
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Table 1 

 

 
Overall 

difference in 
Familiar/Novel 

object 
exploration 

Overall 
group effect 

Individual group difference in Familiar/Novel 
object exploration 

Vehicle + 

Vehicle 

Aβo + 

Vehicle 

Aβo + Drug 

D
ru

g 

Donepezil  

1 mg/kg 

F(1,25)=24.147 

p<0.001 

F(2,25)=8.638 

p<0.01 

YES 

t(7)=-2.391 

p<0.05 

NO 

t(9)=0.210 

p>0.05 

YES 

t(9)=-4.768 

p<0.01 

Rolipram  

0.01mg/kg 

F(1,27)=24.818 

p<0.001 

F(2,25)=3.288 

p=0.053 

YES 

t(9)=-3.657 

p<0.01 

NO 

t(9)=-0.924 

p>0.05 

YES 

t(9)=-4.137 

p<0.01 

Risperidone  

0.1 mg/kg 

F(1,22)=2.262 p>0.05 F(21,22)=3.973 

p<0.05 

YES 

t(6)=-3.501 

p<0.05 

NO 

t(7)=0.870 

p>0.05 

NO 

t(9)=-0.337 

p>0.05 
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