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Bacterial cells sense their population density and respond accordingly by producing
various signal molecules to the surrounding environments thereby trigger a plethora
of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty
of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems
and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction.
Moreover, bacterial QSSMs were shown to interfere with host cell signaling and
modulate host immune responses. QSSMs not only regulate the expression of bacterial
virulence factors but themselves act in the modulation of host biology that can be
potential therapeutic targets.

Keywords: Quorum sensing, N-acyl homoserine lactones, Pseudomonas quinolone signal, Pseudomonas
aeruginosa, immunomodulation

INTRODUCTION

Quorum sensing (QS) is coined to describe the phenomenon of an intercellular co-operative
behavior of bacteria used to coordinate the activities of individual cells. Diffusible QS signal
molecules (QSSMs) play crucial roles in signal transduction of which, when QSSMs reach a
threshold concentration, can coordinate multiple gene expression and a change in the behavior
of bacterial population through the activation of sensor regulatory proteins (Fuqua et al., 1994;
Miller and Bassler, 2001; Williams and Cámara, 2009). Bacteria produce a broad-range of signal
molecules. Different types of QSSMs have been identified and characterized (LaSarre and Federle,
2013). Besides prokaryote, bacterial QSSMs also affect the settlement and germination of eukaryotic
seaweed zoospores (Joint et al., 2002; Twigg et al., 2013). In several pathogenic bacteria, QS
control their virulence determinants and contribute to bacterial pathogenesis. Due to the fact
that the population density-dependent regulatory systems used by many bacterial pathogens are
not essential for survival under most conditions, the disruption/interference of QS is considered
an alternative approach to attenuate bacterial virulence in infections (LaSarre and Federle, 2013).
However, this point has recently been argued that the resistance mechanisms against QS inhibitors
could be possible and have been identified (Defoirdt et al., 2010, 2013; García-Contreras et al., 2013,
2015a).
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Pseudomonas aeruginosa is an ubiquitous Gram-negative
bacterium with remarkably large and complex genome and is
capable of adapting to versatile environments. In human cystic
fibrosis (CF) lungs where P. aeruginosa has evolved the ability to
form biofilms which are difficult to be eradicated by antibiotics
(Heeb et al., 2011; Winsor et al., 2011). QS is responsible for
the regulation of a large number of genes, for instance, around
10% of genes in the genome of P. aeruginosa are regulated by QS
(Williams and Cámara, 2009). Here we review recent advances of
P. aeruginosa QSSMs focusing on their roles in interference with
host cells (Table 1) and the development of novel compounds that
counteract the QSSMs activities.

N-ACYL HOMOSERINE LACTONES
(AHLS) AND THEIR MODULATIONS IN
HOST CELLS

Gram-negative bacteria, like Aliivibrio fischeri (previous Vibrio
fischeri; Urbanczyk et al., 2007), have a conserved QS system
with two central components, the LuxR-type and LuxI-type
proteins, which serve as the signal receptor and signal synthase,
respectively. LuxI catalyzes the synthesis of signaling molecules
called N-acyl homoserine lactones (AHLs). When an AHLs
concentration of 10 nM is reached, AHLs interact with LuxR
and form a complex which promotes the expression of target
genes, luxICDABE for bioluminescence production and also the
LuxI production (Kaplan and Greenberg, 1985). This forms a
positive loop to produce more signal molecules (Fuqua et al.,
1994; Cámara et al., 2002; Fuqua and Greenberg, 2002). The
N-acyl homoserine lactone consists of a homoserine lactone
ring from S-adenosylmethionine (SAM) and acyl chain from
acyl acyl-carrier-protein (acyl-ACP) linked by an amide bond
(Parsek et al., 1999). Based on the acyl-ACP binding site, different
LuxI homologs produce different AHLs with various acyl side
chains (Watson et al., 2002; Gould et al., 2004). A broad range
of AHLs is produced in Gram-negative bacteria and AHL-QS
systems control various bacterial behaviors (LaSarre and Federle,
2013). In A. fischeri N-(3-oxohexanoyl) homoserine lactone
(3-oxo-C6-HSL) is produced for controlling bioluminescence
production. In P. aeruginosa two AHL synthases, RhlI and
LasI, produce a wide spectrum of AHLs including N-butanoyl-
homoserine lactone (C4-HSL), N-hexanoyl-homoserine lactone
(C6-HSL) by RhlI and N-(3-oxooctanoyl)-homoserine lactone
(3-oxo-C8-HSL), N-(3-oxodecanoyl)-homoserine lactone
(3-oxo-C10-HSL), N-(3-oxododecanoyl)-homoserine lactone
(3-oxo-C12-HSL) and N-(3-oxotetradecanoyl)-homoserine
lactone (3-oxo-C14-HSL) by LasI (Ortori et al., 2011). An
unusual N-(3-oxohexadecanoyl)-homoserine lactone (3-
oxo-C16-HSL) secreted by an environmental Pseudomonas
sp. from a diseased Tilapia fish suggests that 3-oxo-C16-
HSL may contribute to the pathogenesis (Chang et al.,
2012).

The abundant concentration of 3-oxo-C12-HSL in the culture
of P. aeruginosa prompted investigations for its role in the
pathogenesis with a mechanism potentially distinct from other
pathogens. Indeed, 3-oxo-C12-HSL was found to activate

mammalian cells through a mechanism independent of the toll-
like receptor (TLR) pathways (Kravchenko et al., 2006). 3-oxo-
C12-HSL was shown to activate pro-inflammatory responses
in human epithelial and fibroblast cells through the induction
the transcriptional factor, nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) via the phosphorylation
of ERK/MARK (Smith et al., 2001). However, this molecule
selectively disrupts the NF-κB signaling pathway in activated
macrophages (Kravchenko et al., 2008). Studies indicated that 3-
oxo-C12-HSL not only induces apoptosis in haematopoietic cells
but is cytototoxic to non-haematopoietic cells including airway
epithelial cells, endothelial cells, fibroblasts, and mesenchymal
stem cells (Tateda et al., 2003; Shiner et al., 2006; Schwarzer
et al., 2010, 2012; Grabiner et al., 2014; Holban et al., 2014).
P. aeruginosa 3-oxo-C12-HSL also impairs the epithelial barrier
integrity through the alternations of calcium signaling and
phosphorylation status of junctional proteins in the intestinal
epithelial cells (Vikström et al., 2009, 2010).

In addition to its cytotoxicity, the role of 3-oxo-C12-
HSL in immunomodulation has been intensively investigated
(Table 1). Ritchie et al. (2005) reported that 3-oxo-C12-HSL
inhibits the differentiation of Th1 and Th2 cells. Human
polymorphonuclear neutrophils (PMNs) are attracted by 3-
oxo-C12-HSL and increasingly express the adhesion proteins
CD11b/CD18 and the immunoglobulin receptors CD16 and
CD64 (Zimmermann et al., 2006; Wagner et al., 2007). The
downregulation of the immune responses by 3-oxo-C12-HSL was
demonstrated in humanmonocytes andmurine macrophage-like
cells in the presence of lipopolysaccharides (LPS) that 3-oxo-
C12-HSL inhibits the production of pro-inflammatory cytokine
tumor necrosis factor α (TNF-α) but promotes the production
of anti-inflammatory cytokine interleukin-10 (IL-10; Hooi et al.,
2004; Glucksam-Galnoy et al., 2013). Grabiner et al. (2014)
noticed that despite the increasing transcriptional expression of
the murine interleukin 8 (IL-8) homologs KC and interleukin
6 (IL-6) in murine embryonic fibroblasts (MEFs), KC and IL-6
protein secretion were inhibited by the treatment of 3-oxo-C12-
HSL. It was shown that 3-oxo-C12-HSL acts upon the activation
of endoplasmic reticulum (ER) stress transducer protein kinase
RNA-like ER kinase (PERK) leading to the inhibition of protein
synthesis. However, PERK is independent of 3-oxo-C12-HSL
induced apoptosis indicating that 3-oxo-C12-HSL interferes
with host cell biological activities through different mechanisms
(Grabiner et al., 2014). Recent advances on the interactions
between 3-oxo-C12-HSL and various types of host cells are
highlighted in the review (Holm and Vikström, 2014).

Several host targets of 3-oxo-C12-HSL have been identified
(Figure 1). In murine fibroblasts and human lung epithelial cells
peroxisome proliferator-activated receptor beta/delta (PPARβ/δ)
and PPARγ may be the 3-oxo-C12-HSL receptors for pro-
inflammatory responses (Jahoor et al., 2008; Cooley et al.,
2010). 3-oxo-C12-HSL interacts and co-localizes with the
IQ-motif-containing GTPase-activating protein IQGAP1 in
human intestinal epithelial cells that causes the alternation
of cell migration in a Rac1 and Cdc42- dependent manner
(Karlsson et al., 2012). MEFs in lack of a transcriptional
factor X-box binding protein 1 transcription factor (XBP1s) are
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protective from 3-oxo-C12-HSL and C14-HSL (N-tetradecanoyl-
homoserine lactone) mediated apoptosis indicating that XBP1s
is a critical host target in response of AHLs (Valentine et al.,
2013). Paraoxonase 2, in response to 3-oxo-C12-HSL through
its lactonase activity, leads to apoptosis in human and murine
embryotic epithelial cells (Schwarzer et al., 2015). Interestingly, 3-
oxo-C12-HSL activates the expression of a taste receptor T2R38
on the surface of primary human sinonasal cells (Lee et al.,
2014) and neutrophils (Maurer et al., 2015). This recognition
regulates calcium-dependent NO production thereby stimulates
the mucociliary clearance and antibacterial effects suggesting
an alternative innate immune defense mechanism distinct from
the activation by canonical pattern recognition receptors (PRRs;
Lee et al., 2012, 2014). Identification of the host compartments
targeted by QSSMs could be the milestone for developing
effective therapeutic methods against infections.

PATHOGENIC ROLES OF
ALKYL-QUINOLONE SIGNALS

Pseudomonas aeruginosa also employs the alkyl-quinolone
(AQ)-based QS system and the signal molecule was termed
Pseudomonas quinolone signal (PQS; Pesci et al., 1999). The
study of the AQs began from their intriguing structures similar
to antimicrobial quinolones, although AQs were found no
antimicrobial activities. Further studies unveiled that among
more than 50 alkyl-quinolones found in P. aeruginosa, 2-
heptyl-3-hydroxy-4-(1H)-quinolone (PQS) and its precursor
molecular 2-heptyl-4(1H)-quinolone (HHQ) are major QSSMs
that cooperates with the AHL-QS (Xiao et al., 2006; Heeb et al.,
2011). Synthesis of PQS depends on the pqsABCDE operon.
PqsA, the anthranilate co-enzyme A ligase, catalyzes anthranilate
that is produced by PhnAB to anthraniloyl-coenzyme A. PqsD
mediates the synthesis of 2-aminobenzoylacetate (2-ABA) from
anthraniloyl-coenzyme A and malonyl-CoA, decarboxylating
coupling of 2-ABA to an octanoate group of octanoic acid
that linked to PqsBC to produce HHQ (Dulcey et al., 2013).
A recent study suggested PqsE is involved in the HHQ synthesis
through hydrolysing the 2-ABA-CoA to form 2-ABA (Drees
and Fetzner, 2015). HHQ can be transformed to PQS by the
mono-oxygenase PqsH encoded by pqsH located elsewhere on
the chromosome (Pesci et al., 1999; Diggle et al., 2006). PqsR,
also known as MvfR, is a LysR-type transcriptional regulator,
with a conserved N-terminal DNA-binding helix-turn-helix and
a C-terminal co-inducer-binding domain. PqsR activates the
transcription of pqsABCDE and possibly the phnAB operon
when binding to PQS or HHQ and triggers the typical QS
autoinducing response enhancing AQ biosynthesis (Maddocks
and Oyston, 2008; Heeb et al., 2011). PQS has been shown
to reach the maximal production at late logarithmic phase
(Diggle et al., 2003) and its production is promoted by the
availability of the substrate anthranilate and the presence of
aromatic amino acids (Palmer et al., 2005). AQ- and AHL-
QS in P. aeruginosa are hierarchical and involved in the
regulation of multiple virulence factors including rhamnolipids,
pyocyanin, elastases, exotoxin A, and alkaline protease (Xiao
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FIGURE 1 | Schematic illustration of the best characterized Pseudomonas aeruginosa quorum sensing signal molecules (QSSMs) that interfere with
mammalian host biological functions. P. aeruginosa 3-oxo-C12-HSL targets XBP1 and paraoxonase 2 leading to host cell apoptosis, and the binding of
3-oxo-C12-HSL with IQGAP1 impairs the host cell integrity. 3-oxo-C12-HSL modulates innate immune responses via the activation of T2R38 receptor and inhibition
of NF-κB pathways. P. aeruginosa Pseudomonas quinolone signal (PQS) molecule induces MSCs apoptosis, induces the secretion of inflammatory cytokines via the
inhibition NF-κB and HIP-1α pathways. PQS molecule interferes with neutrophils chemotaxis potentially through the activation of p38 MAPK pathways. See text for
details. PLCβ2, phospholipase C β2; TRPM5, transient receptor potential cation channel subfamily M member 5; PPARs, peroxisome proliferator-activated
receptors; TJ, tight junction; AJ, adhesional junction; MAPK, mitogen-activated protein kinase; MSCs, mesenchymal stem cells.

et al., 2006; Dubern and Diggle, 2008; Nadal Jimenez et al.,
2012).

Pseudomonas quinolone signal is considered a multifunctional
molecule. PQS is involved in bacterial cell autolysis at high
population densities in nutrient deprived conditions (Williams
and Cámara, 2009). PQS also has iron-chelating properties
that contribute to iron transport and facilitates siderophore-
mediated iron delivery (Diggle et al., 2007). It has been
demonstrated that there is far less extracellular DNA (exDNA)
released by a pqsA mutant than its wild-type counterpart
either in planktonic or biofilm cultures (Allesen-Holm et al.,
2006). PQS has dual pro- and anti-oxidative functions for
developing different levels of tolerance in P. aeruginosa cells
to environmental stress (Häussler and Becker, 2008). This
may shape the whole population structure, increase the fitness
in hostile environments and lead to the development of
resistance to host immune systems (García-Contreras et al.,
2015a,b).

A new QS molecule, 2-(2-hydroxyphenyl)-thiazole-4-
carbaldehyde (IQS) encoded by the ambBCDE operon was
discovered recently (Lee et al., 2013). IQS is induced when
P. aeruginosa is exposed to a phosphate-deprived environment.
Under this unfavorable environment, expression of IQS
overcomes the las-led QS circuit and promotes the expression
of virulence factors. This finding may partially explain how
P. aeruginosa clinical isolates persist in CF respiratory infections
in the absence of a functional las system. Despite the fact that the
AHL-QS of P. aeruginosa have been shown to play central roles

in the regulation of virulence and immune modulation in vitro,
this situation could differ in vivo. Around 50% of strains isolated
from lungs of late stage CF patients are deficient in lasR function
(Winstanley and Fothergill, 2009). Moreover, abolishing the
whole AHL-QS by generating a quadruple mutation of rhlIR and
lasIR exerted comparable infectivity to the wild-type strain in a
mouse lung infection model (Lazenby et al., 2013), suggesting
that the AHL-QS may not be required for full pathogenesis
in vivo and other regulatory mechanism could be involved.

The contribution of the AQ-QS system to P. aeruginosa
virulence was firstly described by Cao et al. (2001). PqsR
positively regulates the expression of phnAB operon and the
production of elastase, 3-oxo-C12-HSL and PQS that promotes
the production of numerous virulence determinants. The pqsR
mutant was attenuated up to 320-fold in the Arabidopsis plant
infection model and caused a 65% reduction of mortality in a
murine burn wound model (Cao et al., 2001). The interaction
of PqsR with the AHL-QS was investigated by other groups
showed that the effect of pqsR deficiency on pathogenesis is
independent from LasRI/RhlRI (Déziel et al., 2004; Dubern and
Diggle, 2008). Mutations in the multidrug efflux pump, such
as mexI and opmD led to the inhibition of PQS production
and the attenuation of P. aeruginosa in rat and plant infection
models. Provision of exogenous AQs to these mutants restored
the virulence on plants (Aendekerk, 2005). Rampioni et al. (2010)
found that both pqsA and pqsEmutants in PAO1 were attenuated
in plant, nematode and mouse burn wound infection models.
In an acute urinary tract infection model, PQS molecules were
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present in the renal and bladder tissue of mice infected with
wild-type P. aeruginosa but absent in the mice with PQS mutants
infections (Bala et al., 2014).Wild-type P. aeruginosa causedmore
severe inflammation and tissue destruction and greater levels of
inflammatory cytokines TNF-α, IL-6, and IL-10 at the site of
infection in mice infected with wild-type strain than with PQS
mutants. The virulence of PQS mutants can be restored by the
addition of exogenous PQS molecules (Bala et al., 2014). These
findings indicate that PQS participates in the pathogenesis of
P. aeruginosa.

Pseudomonas quinolone signal has been identified in sputum,
bronchoalveolar lavage fluid (BAL) and mucopurulent fluid from
distal airways of end-stage CF lungs removed for transplant and
at different stages from asymptotic early stage to late progression,
suggesting a potential role of PQS in coordinating virulence
factors during the course of infections (Collier et al., 2002; Guina
et al., 2003). A study involving 60 CF patients with chronic
P. aeruginosa infection indicated that the AQs were detectable
in the sputum, plasma and urine and the concentrations of
molecules are positively correlated to the P. aeruginosa bacterial
cell density. 2-nonyl-4-hydroxy-quinoline (NHQ) in plasma
was suggested to be the biomarker for P. aeruginosa infection
in CF lungs (Barr et al., 2015). An in vitro transcriptomic
study investigating the physiology of P. aeruginosa grown
in CF sputum revealed that the genes associated with PQS
metabolism, such as those coding for the aromatic amino
acid aminotransferase, 4-hydroxyphenylpyruvate dioxygenase
(hpd) and pqsABCDE, were expressed 10-fold greater than
the expression when P. aeruginosa was cultured in media
containing glucose alone as the carbon source (Palmer et al.,
2005).

Pseudomonas aeruginosa AQ molecules have been implicated
in the immuno-modulation on host cells. PQS was shown
to modulate cell proliferation, the production of interleukin-
2 (IL-2) and TNF-α in mitogen-stimulated human peripheral
blood mononuclear cells (PBMCs; Hooi et al., 2004). PQS
inhibited the production of IL-12 by LPS-stimulated bone
marrow-derived dendritic cells which led to reduced T-cell
proliferation (Skindersoe et al., 2009). Additionally AQ extracts
derived from P. aeruginosa PA14 supernatants down-regulated
host innate immune responses via inhibition of the NF-κB
and hypoxia-inducible factor 1 alpha (HIF-1α) pathways in
murine macrophages and cells obtained from BAL (Kim et al.,
2010; Legendre et al., 2012). A recent study addressed the
importance of timing in neutrophil infiltration in relation to
the role of PQS in interference with neutrophil chemotaxis.
Low levels of PQS stimulated the chemotaxis of neutrophils
via the MAPK and p38 signaling pathways, whereas high levels
of PQS, most likely produced by biofilm-like P. aeruginosa,
did not interfere with neutrophils phagocytic capability and
viability (Hänsch et al., 2014). Massive neutrophil accumulation
is commonly seen in CF airways and high levels of neutrophil
elastase correlate with poor pulmonary functions (Downey
et al., 2008; Gifford and Chalmers, 2014). PQS may thus
provide P. aeruginosa with another strategy for bacterial survival
via the interference in multiple aspects of host biological
activities.

THE DEVELOPMENT OF INHIBITORS
AND VACCINES AGAINST QSSMS

Due to the fact that QSSMs have been implicated in the
involvement of pathogenesis, the search for inhibitors and the
development of vaccines that antagonize QSSMs are currently
intensively investigated. Chang et al. (2014) suggested a strategy
to screen novel anti-QS compounds from plant extraction
that potentially could tackle the QS-mediated infections. The
antibody 3-oxo-C12-HSL-BSA conjugate was also shown to
alleviate the inflammatory responses by P. aeruginosa infections
in an acute murine lung infection model (Miyairi et al., 2006).
In a burn wound infection model, mice immunized with the
vaccine 3-oxo-C12-HSL-r-PcrV conjugate before P. aeruginosa
infection had higher survival than those without immunization
(Golpasha et al., 2015). A high-throughput screening approach
based on the inhibition of C12-mediated host responses
identified triazolo[4,3-a]quinolines as 3-oxo-C12-HSL inhibitors
with nanomolar potency that restore NF-κB activity in 3-oxo-
C12-HSL treated cell lines and shown protective using an in vivo
dermal infection model (Valentine et al., 2014). Since anthranilate
(AA) being the precursor of AQs, halogenated AA analogs
were found to inhibit the AQ biosynthesis and down-regulate
the expression of PqsR controlled genes. Treatment with AA
analogs prior to P. aeruginosa infection increased mice survival
and lowered the bacterial dissemination to the organs (Lesic
et al., 2007). MvfR-regulon inhibitors that bindQS transcriptional
regulator MvfR (PqsR) were not only protective in murine acute
and persistent infections against P. aeruginosa but also effectively
reduced the formation of antibiotic-tolerant persisters (Starkey
et al., 2014). These studies suggest the therapeutic potential of
inhibitors and vaccines against QSSMs in both acute and chronic
infections.

CONCLUSION

Quorum sensing-based bacterial communication links the
individual bacterial cells to behave as multicellular organisms
by employing signal molecules and to promote its population
survival in the environment or hosts. QSSMs also interact with
host cell signal pathways and the modulation of immune cell
biology. For more than a decade strategies have been proposed
from the use of inhibitors of QS for containing chronic infections
(Hentzer et al., 2003) to the application of QSSMs for modulating
immune responses to bacterial infections (Hancock et al., 2012).
Understanding how QSSMs interact with host cells seems the
promising land to tackle bacterial infections. Here we discussed
recent advances on the interference of QSSMs with mammalian
cells, the recently identified receptors on mammalian cells that
target QSSMs and the QSSM inhibitors and their mechanisms.
However, contradictory results suggested that many unknown
mechanisms in complex bacteria-host interactions are remained.
Also concern about bacterial resistance to QS inhibitors (García-
Contreras et al., 2015a) and unexpected impact of QS inhibitors
to environment (Decho et al., 2010) is increasing. Extending our
understanding of the multiple roles of QSSMs would be valuable
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in the development of new therapeutic strategies against bacterial
infections.
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