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Abstract 

 

Bushra Parveen 

Fibre orientation and breakage in glass fibre reinforced polymer composite 

systems: experimental validation of models for injection mouldings. 

 

Keywords: Fibre, orientation, length, prediction, Moldflow, long fibre, short fibre, 

injection moulding. 

 

End-gated and centre gated mouldings have been assessed with varying 

thickness and sprue geometries for the centre gate.  Alternative image analysis 

techniques are used to measure the orientation and length of injection moulded 

short and long fibres composite components. The fibre orientation distribution 

(FOD) measurements for both geometries have been taken along the flow path.  

In shear flow the FOD changes along the flow path, however the FOD remains 

relatively constant during expansion flow.  The core width and FOD at the skin 

within a long glass fibre (LGF) specimen is different in comparison to a short 

glass fibre (SGF) specimen.  Fibre length measurements have been taken from 

the extrudate, sprue and 2 positions within the centre gate cavity.  The size of 

the sprue has little influence on fibre breakage if the moulding is more than 1 

mm thick 

 

The SGF FOD prediction models within Autodesk Simulation Moldflow Insight 

2014 (ASMI) have been validated against measured SGF data.  At present, by 

default, the models over-predict the <cos2θ> for most geometries.  When the 

coefficients are tailored for each model, drastic improvements are seen in the 

FOD prediction.  The recently developed SGF RSC model accurately predicts 

the FOD in shear, in a thin geometry, whereas the Folgar-Tucker model predicts 

the FOD accurately in expansion flow.   

 

The measured LGF fibre length distribution (FLD) and FOD have been validated 

against the LGF prediction models.  The LGF models are currently under-
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predicting the breakage and over-predicting <cos2θ>.  The breakage prediction 

improves if measured FLD of the extrudate is input into the model.   
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Chapter 1 Introduction 

 

Polymers, materials commonly referred to as plastics, are widely used in 

everyday life in applications such as food packaging, toys, medical devices and 

many more.  The ability to rapidly and easily transform polymers into 

complicated shapes at low cost is one of the main reasons why polymers are 

widely used today.  Within the last few decades there has been a rapid increase 

in the production of synthetic composites, as it is possible to obtain new 

materials with tailored applications.   A composite is a material having two or 

more distinct constituents or phases, the constituent that is usually continuous 

and present in the greater quantity in the composite is termed matrix (Matthews 

and Rawlings, 1994).  When fine fibres are incorporated into a polymer matrix 

this results in a reinforced composite.  Enhanced performance and mechanical 

properties are the reasons behind the growth and development of reinforced 

composites material (Rhode et al., 2011).  

  

Mechanical properties of the composite as a whole are defined by the matrix 

system, type of fibre reinforcement, fibre content, fibre length and orientation 

shown by Thomason, (2002; 2008).  Fibres are produced using glass material, 

although where increased performance is desired, carbon and Kevlar 

reinforcement are available for application.  For short or long glass filled 

polymers the parameters fibre length distribution (FLD) and fibre orientation 

distribution (FOD) are influenced by the process conditions,  part design and 

processing technologies.  Injection moulding process is the most common, cost 

effective process technique available to manufacture glass fibre reinforced 

thermoplastic (GFRP) products.  For injection moulding of GFRP the average 

fibre length of a pellet is between, 2-3 mm for short glass fibre (SGF) and 12 to 

25 mm for long glass fibres (LGF).   

 

High fibre content and sufficiently high aspect ratio (length/diameter) are 

desired properties to enhance mechanical performance of a composite part.  

Short fibre thermoplastics (SFTs) have been used in the automotive industry for 

many years, there has recently been a strong growth in long fibre 
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thermoplastics (LFTs) to reduce cost in production of vehicles by replacing 

structural metallic parts (Thattaiparthasarathy et al., 2007).  The automotive 

industry is utilizing increasing amounts of long glass/carbon fibre reinforced 

plastics with the aim to decrease vehicle weight and boost fuel efficiency.  The 

majority of plastic components can be formed using injection moulding 

(Gauthier, 1995). 

 

The essence of injection moulding is injection of molten polymer within a closed 

split mould which completely defines product dimensions.  During the polymer 

melt flow, SFT experience shear and elongation stresses that distribute and 

orient the fibres along preferential directions.  LFTs in some cases behave as 

short fibre composites, however fibre interactions are more complicated due to 

long length, and this may change the FOD.  In SGF and LGF thermoplastics the 

moulding conditions, polymer rheological behaviour, gate shape, nozzle and 

screw design affect the FLD which in turn influences FOD.    All parameters 

which decrease the shear stresses in the polymer melt generally decrease fibre 

degradation such as low back pressure and slow screw speed etc.  Some 

authors Lafranche et al., (2005); Bijsterbosch and Gaymans, (1995) have 

shown how the injection moulding process affects the fibre degradation and 

advised on methods to optimize the FLD. 

 

In order to make use of injection moulded composites effectively, there is a 

great need to develop process constitutive models, as well as computational 

tools to predict microstructure of the composite (Nguyen et al., 2005).  The 

resulting property from processing can be used to produce reliable macroscopic 

or microscopic predicted responses of the final product.  Otherwise the 

mechanical state of a component must be assumed, resulting in over-

engineering and the increase in manufacturing costs.  

 

Currently there are commercial computer aided engineering (CAE) software 

packages available which simulate the injection moulding process and predict 

the structural properties of the component.  Software or modelling packages are 

usually based upon finite element (FE), approximate solutions of partial 

differential equations.  Geometries can be represented as shell or 3-d models 

and the solver uses a mesh to break the model into smaller elements and 
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nodes.  Models (equations) have been derived and incorporated into the 

software to predict the processing parameters and composite structure outcome 

of injection moulding i.e. fibre orientation (VerWeyst et al., 1999).  In order to 

enhance the accuracy of property prediction, constant development of 

mathematical models is required as well as further research to understand the 

effect injection moulding has on the product properties.  Software like Autodesk 

Simulation Moldflow Insight 2014 (ASMI) can be an extremely useful tool; 

however it requires an expert user to identify areas where accuracy may be lost. 

 

1.2 Aims and Objective 

 

The aim of the project is to study how injection moulding affects the properties 

of short and long glass fibre (SGF and LGF) composite components, using both 

experimental and computational methods.  The literature review will identify how 

the micro structural characteristics of glass FLD and FOD affect the mechanical 

properties of a composite structure.  The next step is to understand the effect 

moulding process, parameters, mould design and material behaviour has on the 

glass FOD and FLD.   

 

The objectives of the study are broken into sub-tasks;  

 

 Understand the fibre prediction models in Autodesk Moldflow Simulation 

Insight 2014 (ASMI). 

 Injection mould simple test geometries using short and long glass fibre 

material. 

 Find suitable methods to measure FLD and FOD. 

 Produce 2-dimensional (2-d) and 3-dimensional (3-d) models in ASMI 

2014 to asses FLD and FOD prediction models. 

 Compare the measured FOD with predicted FOD (short and long).  

 Compare the measured FLD with the predicted fibre breakage.  

 Assess fibre orientation and breakage models, find limitations and 

possible solutions to improve prediction. 
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1.3 Outline of Thesis  

 

This thesis has been divided into 7 chapters. Chapter one gives a brief 

introduction to the subject and outlines the key objectives of the thesis.  

Chapter two covers the detailed literature review related to the aim of the 

project.  Chapter 3 includes the experimental methodologies used to obtain 

measured and predicted data.  The focus of Chapter 4 is on SGF measured 

and predicted average FOD.  The investigation of measured and predicted LGF 

average FOD and FLD is found in Chapter 5.  Chapter 4 and 5 consist of 

detailed analysis, discussion and conclusions.  Chapter 6 presents the general 

discussion and conclusions.  Chapter 7 establishes areas where there is further 

scope of research.         
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Chapter 2 Background 

 

2.1 Structure and Properties of Polymers  

 

A polymer is a large macromolecule built up from repeated single structural 

units (monomers). The physical characteristic of a polymer depends on the 

configuration of the molecular chain.  It can be assumed that the molecules are 

not generally straight and in a tangled mass, but in some cases the molecules 

consist of linear and branched chain networks.  The degree of polymerisation 

(number of monomers incorporated) is a term used to express the length of a 

polymer chain.  The length of the chain affects the degree of interactions 

between molecules, therefore influencing mechanical and physical properties.  

  

 

Figure 2.1 Molecular structure of Polyethylene 
 

 

Thermoplastic are linear polymers. They do not crosslink to form a rigid network 

although the chains may be branched.  The bonding in thermoplastic chains is 

weak and is easily broken by the combined action of high temperature and 

applied stress (McCrum et al., 1997). 

 

Thermoplastics polymers soften when heated, eventually liquefying and 

hardening when cooled (this process is reversible).  Over 80% of plastics are 

thermoplastic in nature, some of the commodity polymers include polyethylene 

(PE), polypropylene (PP), Polyvinyl chloride (PVC) and polystyrene (PS) (Powel 

and Housz, 1998).  The semi-crystalline polymers polyethylene (PE), 
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polypropylene (PP) and Polyamides (PA) are currently the most popular 

matrixes used in industry.  The major advantage of the polymer matrix is that it 

can be economically manufactured in vast quantities and find wide application 

in areas like automotive engineering as well as packaging. 

 

2.1.1 Semi-crystalline and Amorphous Structure 

 

Polymers as completely amorphous solids have no order in their structure so 

polymer chains have a random orientation.  Cross linked plastics and rubber are 

some of the forms of amorphous polymer.  The microstructure of crystalline 

polymer depends on the packing of polymer molecule crystals.  Some material 

such as polypropylene, polyethylene and polyamide can form semi-crystalline 

structures.  Narrow and regular linear polymer chains can form ordered 

arrangement of molecules which pack closely together below a certain 

temperature.  The close packing confers on the crystallite a higher density, 

higher axial and transverse stiffness and strength.  Semi-crystalline structures 

are an intimate mixture of ordered crystallites, suspended in a matrix of 

randomly structured amorphous material of the same polymeric type Figure 2.2.   

 

 

Figure 2.2 Long molecules forming crystals randomly mixed in with the 
amorphous material (Groover, 2010) 
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2.1.2 Mechanical properties 

 

There are a number of standard tests which can be carried out in order to 

investigate the mechanical properties of polymers.  The tensile test (material is 

placed under uniaxial tension until failure) is most widely used test, which is 

performed on dumbbell shaped tensile bars; the dimensions of these comply 

with industry standards (ISO).  The dumbbell specimen with a narrow waist is 

preferred in testing for rubbers and thermoplastic material. Often single tests 

are conducted at one temperature to obtain stress-strain curves, from which a 

number of significant mechanical properties can be calculated. 

 

Many different terms exist to describe the mechanical behaviour of materials, 

which can be explained using the characteristics of the stress/strain curves.  

The ultimate strength of a sample is the stress required to make it fail.  The 

Young’s modulus also known as the tensile modulus is the gradient of the linear 

proportion of the stress strain curve.  This is a measure of the stiffness of an 

elastic material.   The toughness is the amount of energy absorbed before 

failure occurs, the area under the stress /strain curve. 

 

 

Figure 2.3 Shows stress /strain curve for crystalline 
material. 
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The material deforms up to the yield point, whereupon there is a drop in stress 

and the material starts to neck.  The neck forms as the chain segments move 

past each other to form crystalline regions.  This continues as plastic 

deformation where the molecules tend to uncoil until the molecules assume a 

fully stretched conformation and failure occurs.  The stress that induces yielding 

is called the yield stress. 

 

Polyamides are high performance semi-crystalline thermoplastics, with 

attractive high strength, resistance, wear and cost properties important for many 

industrial applications (Table 2.1).  Kagan, (2003) and Nelson, (1976) have 

reported polyamides as a class are more moisture sensitive, than most 

thermoplastics, and will absorb water vapour when exposed to air.  An increase 

of moisture absorption for PA6 and PA66 of 1% may result in 0.2% to 0.3% 

increase in dimension.  This means that the drying process prior to moulding 

must be controlled to avoid differences within each moulded batch.  

 

 

 

ASTM 

test 

PP PA6.6 

HDPE (high 

density 

polyethylene) 

uPVC 

Relative price  1.0 2.9 1.0 0.7 

Young's modulus  

(GPa) 
D790 1.5 2.8 0.8 3.0 

Yield/fracture stress 

(MPa) 
D638 33 83 28 55 

Notched Izod impact 

strength J m-1 
D256 150 53 >1300 70 

Heat distortion 

temperature (ᴼC) 
D648 <23 90 <23 55 

Table 2.1 Properties of thermoplastic polymers with testing conditions specified 
in ASTM standard (McCrum et al., 1997). 
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2.2 Fibre Composites 

 

The major problem with polymers in engineering is their low strength and 

stiffness.  Two methods used to make up for these deficiencies include; 

changing the design of the component and the other is the addition of 

reinforcing material more commonly known as adding fillers to the resin 

(Matthews and Rawlings, 1994).  Adding fillers or fibres is the means to 

increasing the strength and stiffness of a thermoplastic material at low cost.  

Most commercial composite grades are based on polypropylene and PA6 

matrices.  Synthetic inorganic fibres such as glass and carbon are examples of 

reinforcements.  The use of carbon fibre is limited to high performance 

applications due to the high cost.  Glass-fibre reinforced systems are 

responsible for the majority of the fibre reinforced plastics (FRP) and polymer 

matrix composite (PMC) market (Sims and Broughton, 2000).  E-glass material 

is commonly used due to its low cost and reasonably high modulus.  The unique 

properties obtained from the glass include high strength, heat resistance, 

flexibility and yielding (Wambua et al., 2003).  Applications for glass fibre 

reinforced composites include; automotive and aerospace bodies, construction 

and pressure vessels.    

 

2.2.1 Composite Mechanical Properties  

 

The orientation and length of fibres in an injection moulded component varies 

through the thickness of the specimen.  There are areas where fibres align 

parallel or perpendicular to the principal axis, therefore the mechanical 

properties are different in each direction.  In theory the idealised composite 

would consist of continuous aligned fibres in one direction i.e. unidirectional with 

perfect interfacial bonding between fibre and matrix (Piggot, 1989).  The 

material is orthotropic where the elastic properties are symmetric with respect to 

the chosen (1, 2 and 3) axis as shown in Figure 2.4 (Ward and Sweeney, 2013).   
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Figure 2.4 Orientation of principal composite material axis  

 

The idealised composite obeys the Rules of Mixtures (Equation 2.1).  If a load is 

applied parallel to the direction of fibres the mechanical properties are 

described by the tensile strength (fibre and matrix) and the volume fraction 

(Templeton, 1990). 

 

Ec =  VfEf + VmEm 2.1 

 

Ec = Composite Modulus, Vf = Fibre volume fraction, Vm = Matrix volume 

fraction, Ef = Fibre Modulus and Em = Matrix Modulus. 

 

The Modified Rule of Mixtures (MROM) (Equation 2.2) is used to model the 

effects of parameters on the stiffness of short fibre composites (Hine et al., 

2014).  The Krenchel orientation factor 
0
 represents the average value of the 

fourth order orientation tensor in respect to the testing direction and the 
L
 

represents the fibre reinforcing efficiency, where 
L

= 1 for a unidirectional fibre.  

 

Ec =  
0


L
VfEf + VmEm 2.2 

   

2.2.2 Discontinuous Fibre Reinforcement   

 

When a single fibre of length L (discontinuous fibre) is embedded into a 

polymer matrix and subjected to a tensile load in the fibre direction, there is a 

transfer of stress from fibre to matrix interface (Cooper and Kelly, 1969; Kelly 
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and Davis 1965).  A greater aspect ratio (Equation 2.3) increases the fibre and 

matrix interface and the ability to transfer stresses across the fibre-matrix.  The 

matrix and the fibre will experience different tensile strains as the fibre is strong 

and stiff (has a higher Young's Modulus). Interfacial shear stress acts in the 

direction of the fibre axis and the fibre is stressed in tension.  A study carried 

out by Piggot and Harris, (1980) shows the matrix is stronger in compressive 

load compared to glass, which has no relative strength against compression.   

 

Aspect ratio =  
Fibre length

Fibre Diameter
 

2.3 

 

 

 

Figure 2.5 Discontinuous fibre in matrix subjected to tensile load stress 
 

 

The efficiency of fibres also depends on interface strength as load transfer from 

polymer to fibre requires a strong interfacial bond (Greszczuk, 1969).  A feature 

which influences the interface region is the fibre surface coating applied by the 

manufacturer, before integrating into the plastic matrix and protecting from 

surface damage.  Thomason and Schoolenberg, (1994) show that the interfacial 

strength increases if a commercial coating is applied to the glass fibre 

compared to a standard silane coupling agent.  Gupta et al., (1989) confirms the 

interfacial bonding is greater for long glass fibre material as there is greater 

interaction.   

 

2.2.2.1 Fibre Length and Content 

 

Short glass fibre composites have been used in the industry for many years, 

however recently there has been an increasing growth in the use of long fibre 

thermoplastics composites in engineering applications.  The growth of 
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polypropylene based long fibre compounds has been due to excellent levels of 

performance, productivity and process-ability of these materials (Thomason, 

2008).  This section will discuss the differences before and after processing in 

SGF polyamide and long fibre polypropylene (LG-PP) pellets.  

 

 Continuous filaments of glass fibre are initially manufactured as bundles.  Each 

filament normally has a round cross-section and the bundle consists of large 

number of strand filament (1000 – 10000).  The major use of glass fibres is still 

as chopped strands into lengths of 3.2 mm, 6.4 mm, 12.7 mm or 25.4 mm 

(Mallick, 2000).  Conventional method of extrusion or screw compounding, with 

a dry blend of the chopped glass fibres and polymer is used to produce 2-3 mm 

in length polymer-coated pellets for injection moulding (Wolf, 1994).  Lunt and 

Shortall, (1979) have done a study to show the glass fibre degradation in PA66 

caused by extrusion compounding, followed by injection moulding of 3 mm in 

length glass fibres.  The results highlight even before injection moulding the 

length in the pellet ranges between 3 mm to 0.03 mm.  Kamal et al., (1986) 

carried out injection moulding using pellets with an average fibre length of 0.710 

mm, after injection moulding the average fibre length in the sample was 0.274 

mm.  

 

 In recent years new processing techniques such as wire coating, cross-head 

extrusion or thermoplastics pultrusion have received more attention to create 

long fibre polypropylene injection moulding pellets (Ahmadi et al., 2000 and 

Schijve, 2000).  In the process of pultrusion impregnation continuous fibre 

strands are pulled through liquid polymer in a die located at the end of an 

extruder, the coated fibres are then pelletized into 12.7 or 25.4 mm lengths.  An 

adapted wire coating method is introduced by Schijve, (2000) whereby each 

glass fibre filament is coated (polymer/additives), the coated filaments are then 

wire-coated (bundled) with additional polymer and then cut into 12 mm and 25 

mm pellet lengths.  Traditional wire coated materials may not have coating on 

each filament.  Due to the aligned nature of fibre in LG-PP compounds, it is 

possible to produce pellets with higher fibre concentration (Thomason, 2005).  

Two alternative studies show the average measured fibre length after injection 

moulding is 4.40 mm from a wire coated pellets compared to pultrusion 
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compounded pellets with an average fibre length of 3.54 mm. (Ward et al., 1993 

and Schijve, 2000).   

 

Figure 2.6 illustrates the FOD in short and long glass fibre pellets.  As a result of 

the different methods of pellet manufacture the orientation of fibres is random in 

a short fibre pellet and parallel in a long glass fibre pellet.  In production the 

glass fibre diameter will typically range between 10-17 µm for SGF pellets and 

16 -20 µm for LGF pellets (Thomason, 2002).   

 

 

Figure 2.6 Short and long fibre thermoplastic composite pellets used for 
injection moulding (Wolf, 1994) 

 

 

Thomason, (2002 and 2008) has compared the effect of fibre length on 

mechanical properties based on polyamide and polypropylene composites, at 

the same fibre diameters over a range of fibre contents.  In these studies long 

fibre polypropylene showed a significant improvement in tensile and flexural 

strength, for both notched and un-notched impact resistance. Long fibre 

samples have a higher modulus over short glass fibre as the strain increases, 

this is highlighted in Figure 2.7.   

 

However many of these mechanical properties reach maximum performance 

between 40-50 wt% fibre content range. In another study carried out by 

Thomason, (2005) on injection moulded 12.5 mm long glass fibre polypropylene, 

the modulus increases as the fibre content increases, but the strength and 

impact properties decrease between 40-50 wt% by fibre content.  Implementing 

a small concentration of glass fibre into the matrix is a process of improving 
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interfacial shear strength between fibre and matrix.  This reduction in interfacial 

strength with increasing fibre content is investigated by Thomason, (2007) on 

injection moulded 12.5 mm LGF polypropylene. 

 

Figure 2.7 Effectiveness of fibre is proportional to the length (Schijve, 2010) 
 

In discontinuous fibre reinforced composites as shown in Figure 2.5 there is a 

critical fibre length (lc).  The Kelly and Tyson (1965) theory assumes the critical 

length, is the length required for the fibre to reach the maximum stress condition 

within the matrix if the composite is loaded in tension.  High shear stresses are 

developed at the fibre ends, the shear stress increases with decreasing fibre 

length.    Consequently the critical fibre length (Equation 2.4) is dependent on 

the fibre diameter (𝑑𝑓), ultimate fibre tensile strength (𝜎𝑓𝑢) and the fibre-matrix 

interfacial shear stress (𝜏𝑖).   

 

𝑙𝑐 =
𝜎𝑓𝑢

2𝜏𝑖
𝑑𝑓 

2.4 

 

 

Figure 2.8 illustrates the stress distributions which occur when a single fibre is 

loaded for failure at different fibre lengths.  A value lower than the critical length, 

will result in a stress condition and the fibre will not fracture in tension.  In this 

case failure may be a result of matrix cracking, debonding or fibre pull-out.  If 

the fibre length is greater than the critical fibre length the central portion of the 

fibre will attain uniform stress level, which will allow effective use of the fibre.  
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Figure 2.8 Normal stress distribution along the length of a short fibre at the point 
of composite failure (a) l < lc (b) l = lc (c) l > lc  

 

Templeton, (1990) has calculated the critical fibre length for short glass fibre 

polypropylene to be 1.4 mm; however it is hard to use this value as an indicator 

for the critical fibre length.  The critical fibre length can vary from the grade or 

length of the raw material and the process settings (Schijve, 2000 and Wolf, 

1994).   

 

2.2.2.1.1 Fibre Dispersion  

 

Lafranche et al., (2007) highlights characteristics seen in injection moulded long 

glass fibre thermoplastics.  Areas of fibre clusters as shown in Figure 2.9 and 

porosity exist in certain locations of the specimen, reducing the flexural 

properties.  Also more bundling occurs at the centre (core) of the part.  Although 

the influence of segregation has never been measured, it is unclear if this is 

directly linked with the injection moulding process or resultant of the flow.  

According to Gupta et al., (1989) the dispersion of fibres is non-uniform and this 

uneven dispersion does not allow every fibre to act independently.  Bijsterbosch 

and Gaymans, (1995) highlighted fibres can be well dispersed during injection 

moulding but at the cost of degradation. 
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Figure 2.9 Bundling of fibres in a long glass fibre sample 
 
 

2.3 Injection Moulding 

 

Injection moulding is a traditional method used to form thermoplastic glass fibre 

composite components (Bijsterbosch and Gaymans, 1995).  Once the 

component is manufactured the injection moulding process does more than 

shape the component, it also positions the reinforcing particles and fixes their 

orientation (Templeton, 1990).  The shear stresses and flow results are an 

important characteristic of the reinforced polymer as the material exhibits 

anisotropy in its physical properties.  

 

The injection moulding process can be divided into four stages: preparing the 

melt, filling, packing causing pressure build up and solidification by cooling 

(Olmsted and Davis, 2001).  These stages are very important as they affect the 

performance of the finished product.  The filling phase occurs at a pressure only 

sufficient to cause the viscous melt to completely occupying the mould cavity. 

To compensate for the significant thermal contraction of the polymer melt it is 

necessary to force additional material at higher pressure into the cavity.  The 

packing and solidification determines the final dimensions i.e. tolerances, as 

well as the orientation of molecules or fibres and anisotropy.  The material 

enters the mould cavity through a single or multiple injection points which is 
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usually a gate.  The width, size and position of the gate are dependent upon the 

part and desired mechanical properties.   

 

2.3.1 Overview of Process 

 

Injection moulding is a recurring process which has very short cycle times 

(commonly within in the range of 10 s to 30 s and is used to produce identical, 

thin walled components, whose structure may consists of complex geometry.  

The diagram in Figure 2.10 below illustrates the main stages of an injection 

moulding process.  

 

 

Figure 2.10 Pictorial of stages in an injection moulding process (Toolcraft 
Plastics, 2014) 

 

 

The technique of injection moulding is simply a quantity of plastic pellets being 

gravity fed through a feed hole into a barrel.  The material is blended into a 

viscous liquid, softened by the means of heat and shear by the screw 

(plastification).  The screw has helical flights when the screw rotates backwards, 

the plastic moves forward and becomes a melt.  The volume of the melt builds 

up in front of the screw; it forces the screw to the rear of the barrel against an 

adjustable "back pressure".  The screw stops rotating once it reaches the 

position assigned; the machine is now ready for injection.  The screw is then 

forced forward and material is injected at high pressure (typically, 70 to 205 

MPa) under shear and guided through the nozzle and runner or gate system 

into the mould cavity (Gauthier, 1995).  The design of the runner or gate is 



18 
 

dependent on the mould geometry and is required to provide the best flow to 

the cavity.  The time taken for the material to fill the cavity is referred to as 

injection time.   The mould temperature is held constant using a heat exchanger 

and typical mould temperatures vary from 10 ᴼC to 120 ᴼC.  Temperatures are 

kept lower than the melting point of the material therefore the allowing the 

polymer to solidify as the mould fills. 

 

The machine then switches over from velocity to pressure control, to hold the 

screw in the forward position to permit packing.  A greater pressure is 

maintained to ensure polymer continues to flow as the solidifying material 

shrinks.  The mould opens once the part has solidified and then it is ejected.  

While the part cools and the mould opens, the screw is drawn back for a new 

cycle to begin.  It is important to consider the time taken for the part to cool as it 

is dependent on the nature of the cooling system, material and the mould size 

or shape.  A compromise may be necessary between product quality and 

production economics, as low melt temperatures reduce cycle times.  

Avoidance of thermal degradation is another reason for reducing processing 

temperatures, especially in the high softening glassy plastics. 

 

2.3.2 Fibre Length Degradation 

 

Severe fibre breakage occurs in the injection moulding process resulting in 

shorter FLD.  After injection moulding the average fibre length delivered for 

short glass components are < 1 mm and > 1 mm for long glass.  The screw 

rotates and the granules undergo extreme shear and heat.  As the granules 

melt a thin film of molten polymer builds up in the barrel.  Thus the fibres 

experience shear and drag forces along the length. 
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Figure 2.11 Detailed representation of the injection moulding mechanism 
(Hoshen, 2009) 

 

Fibre attrition occurs at the following stages of the injection moulding cycle 

shown in Figure 2.11; screw pre-plasticisation, nozzle tip, injection of melt 

through narrow channels like runner or gate and through cavity surface (Bailey 

and Kraft, 1987 and Gupta, 1989).  Previous work done by Lafranche et al., 

(2005) and Patcharaphun and Opaskornkul, (2008) has shown the majority of 

fibres breakage occurs in the feed and transition (compression) zone of the 

screw due to the high shear rates (Figure 2.12), such that the final length of 

long glass fibre reduces to 70% and short to 10% of its initial length.  More fibre 

breakage occurs in LGF material; this is due to the solid-melt interface and 

increased fibre-fibre and fibre-wall interactions causing fracture (Rostato, 1996).  

 

 

Figure 2.12 General purpose screw (Ticona, 2011) 

 

As majority of fibre breakage occurs in the transition (compression) zone of the 

screw, material producers usually recommended a screw profile adapted to 

their LFT material (Sabic, 2011).  In order to decrease shear stresses within the 

barrel during the plasticising stage material suppliers recommended a screw 
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with lower compression ratio, longer compression section and higher flight 

depth.  However, most plastic part manufacturers choose to use a general 

purpose screw due to cost and multi material processing capabilities.  Work 

carried out by Lafranche et al., (2007) and Nomoto et al., (2012) conclude using 

a LFT dedicated screw profile decreases the fibre breakage amount by 80% at 

the nozzle exit.   

 

Once the material comes out of the screw tip it purges into the nozzle through to 

the cavity by means of gate or runner system.  O'Regan and Akay, (1996) show 

LGF FLD exhibits particular sensitivity to nozzle arrangement, mould geometry 

and position in the moulding.  They have found a hydraulic shut off nozzle leads 

to increased fibre breakage compared to a standard nozzle, due to the reduced 

orifice dimensions Figure 2.13.  A larger gate dimension also increases the fibre 

volume average compared to a smaller gate (Bailey and Kraft, 1987).   

   

 

Figure 2.13 Comparison of shut-off and standard nozzle (O'Regan and Akay, 
1996) 

 

Some injection moulding parameters affect the overall FLD in a moulded 

component (Bailey and Kraft, 1987).  During the plastification stage of injection 

moulding the backwards rotation of the screw is opposed by a pressure this 

resistance is termed 'back pressure'.  The back pressure has the greatest 

impact on fibre length than injection speed or pressure (Rhode et al, 2011 and 

Bailey et al, 1989).  However some researcher's debate screw rotational speed 

has a stronger effect on fibre breakage than back pressure (Lafranche et al., 

2005).  Although it is recommended by suppliers to keep both the back pressure 

and screw rotational speed low when processing glass fibre material (Sabic, 

2011). 
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2.3.3 Characteristic of melt flow in the injection moulding process 

 

There are 3 main flow regions that generally occur within injection moulded 

parts are skin (frozen) layer, shear layer and core layer as shown in the Figure 

2.14.  The mould filling stage involves a non-isothermal and non-steady melt 

flow shown in research carried out by Bright and Darlington, (1980), Brydson, 

(1970) and Bay et al., (1992). 

 

 

Figure 2.14 Fountain flow effect in the cavity 
 

 

The material is stretched as it flows forward at the gate of the cavity and 

polymer viscosity reduces as it shears.  A shear flow occurs at the flow front 

and accounts for the majority of flow during injection moulding. 

 

The flow front region is referred to as the fountain flow as shown in Figure 2.14.  

The melt moves forward and rapidly cools when it comes into contact with the 

cold mould walls, which are below the freezing temperature of the melt.  When 

the melt cools it solidifies forming a thin frozen/skin layer of fibres, either 

oriented randomly or in the direction of flow depending on the width of the 

mould (Vincent and Agassant, 1986).  The shell layer is below the frozen region, 

where fibres are predominantly parallel to the flow direction.  The inner or core 

layer orientates fibres transverse to the flow direction.  Fresh material then flows 

between the frozen surface layers to create a new melt front. This cycle 
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continues until the mould is full.  The flow of the polymer has a considerable 

effect on the fibre orientation this will be discussed further in the next section. 

2.3.3.1 Influence of polymer flow on glass fibre orientation distribution 

 

Figure 2.15 illustrates the various fibre orientation distributions which might 

occur during the injection stage: 

 

1. A totally random alignment found at the entrance. 

2. Flow aligned fibres are found in the converging flow area. 

3. Highly aligned fibres in the principal direction are found in restricted 

flow or areas where high shear is experienced in a constant wall 

thickness.  

4. Transversally aligned fibres are found in the diverging flow area. 

 

 

Figure 2.15 Schematic of a plan view illustrating the influence flow pattern has 
on the FOD 

 

Orientation of fibres has a considerable influence on the strength and stiffness 

of the fibre reinforced composite.  Akay and Barkley, (1991) have examined the 

influence of FOD on mechanical properties at different position in an injection 

moulded sample.  Their findings show mechanical properties are enhanced in 

areas where fibres are orientated in the direction of flow, over those areas 

where fibre alignment is transverse.   

 

The final FOD within an injection moulded part depends on the details of mould 

geometry, part thickness and injection moulding parameters.  The resultant flow 

within the cavity is the main factor which influences the FOD predominantly at 

the core.  A secondary factor is the velocity profile (Bright and Darlington, 1980). 
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In a centre gate disc geometry the radial flow causes the fibres at the core to 

align transverse to the flow direction (Bay and Tucker, 1992).  High injection 

speeds give alignment of fibres transverse to the flow direction and at slow 

injection speeds the fibres align parallel to the flow (Bright et al., 1978).  

Therefore high injection speeds result in a larger core compared to slow 

injection speeds.   

 

The FOD changes through the thickness of the mould and from place to place 

in the mould.  This is due to the fibres aligning in layers through thickness, 

consisting of skin/shell/core (Figure 2.16).  The mid-plane of the mould will 

normally be a lower shear region; principally fibres tend to align in the direction 

perpendicular to flow direction in the core.  For many polymers the fibres in the 

shell regions tend to align in the main direction of melt flow, however there are 

very few occasions where this is not the case in some polymers.  The 

orientation in skin region (frozen layer) depends completely on the state caused 

by the fountain flow front.  As the thickness of the mould increases, the width of 

the core region gets wider.  Reference to the graph in Figure 2.16 the 

orientation below 0.5 (cos2θ) is identified as the core and the frozen skin layer 

has a lower orientation compared to the shell (Bay and Tucker, 1992).  The 

average FOD at various positions through the thickness is described by the 

orientation tensor component cos2θ.      

 

 

Figure 2.16 Example of skin, shell and core layer FOD in a simple component 
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2.3.4 Effect of Fibre Orientation on Fibre Length   

 

Research carried out by Bailey and Kraft, (1987) on 10 mm LGF material 

indicates that a higher average length was found in the core compared to the 

skin.  This is due to the mould filling characteristics, where the core of the 

component is filled with high velocity and little deformation due to the shear 

forces being retained within the surface regions.  As the overall average fibre 

length increases the rheological properties of the composite change, this has an 

impact on the fibre mobility and its ability to orient.  A study carried out by 

Thomasset., et al (2004) confirms that the viscosity of long fibre-filled PP is 

slightly larger in comparison to the short fibre-filled PP.   

 

Lafranche et al., (2007) measured the fibre orientation distribution within a 10 

mm long glass fibre injection moulded plate, changes were noticed in the skin 

layer which is made up of 2 regions.  The relative thickness of core layer 

increases; this is illustrated with 2 injection mouldings of the same geometry 

using a long and short glass fibre material (Figure 2.17).  Hoffmann, Meyer and 

Baird, (2008) made a comparison between the same geometry injection 

moulded with short and long glass fibre.  The FOD data for the centre-gated 

disc suggests that short glass fibre develops into the expected core-shell layer 

structure while the long glass fibre evolve slower and to a much higher 

transverse alignment.  An irregular flow field is also seen near of the fountain 

flow front for the long fibre system. 

 

 

Figure 2.17 A wide core is present within the LGF sample 
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2.4 Polymer Rheology 

 

Rheology is the behaviour of viscous liquids under deformation.  Knowledge of 

flow behaviour is important in processing and proves useful as a quality control 

tool to modellers.  

 

The melt flow describes the viscosity of the plastic material during the process 

of injection moulding.  The melt flow index (MFI) is the most popular method 

available in industry to measure the rate of melt flow of thermoplastic molten 

polymer.  As the material is injected through the mould it occupies a certain flow.  

This flow determines many mechanical properties of the component.  The melt 

flow depends on various variables like; fill time, velocity, pressure, momentum, 

and temperature.  These functions can be altered to suit the specification during 

the injection moulding process. 

 

Thermoplastic materials, including the ones in the study are classified as non-

Newtonian, viscoelastic or time-dependent fluids, these materials display a non-

linear response to stress.  These Non-Newtonian fluids exhibit a pseudoplastic 

behaviour, the apparent viscosity of a pseudoplastic fluid decreases with 

increasing shear rate, and hence these materials are referred to as shear 

thinning (Cheremisinoff, 1993).  As shown in Figure 2.18 very high or low shear 

regions are the exceptions, where the flow behaviour is Newtonian. 

 

 

Figure 2.18 Shear thinning behaviour of pseudoplastic fluids (Nassehi, 2002) 
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A generalised Newtonian viscosity model for polymer melts is widely accepted 

for injection moulding simulations.  The model is simple and accurate for 

injection moulding process where the shear deformation dominates the flow 

(Park and Park, 2011).  There are a few models which provide a good 

prediction for shear thinning viscosity of polymers these include the Power-Law 

and Cross-WLF model.  The Cross-WLF model (Equation 2.5) is incorporated 

within ASMI 2014 and relates critical shear stress (𝜏∗) to viscosity.  The shear 

stress is at the transition between Newtonian and power law behaviour.  The 

values n <1 denote thermoplastic material. 

 

 =  


0

1 + (


0
�̇�

𝜏∗ )
1−𝑛 

2.5 

 

For modelling injection moulding ASMI 2014 uses the zero-shear viscosity 

model in Equation 2.7.  The model can reflect the viscosity with temperature, 

pressure and in which A1, A2, D1, D2, and D3 are material parameters.  

 

0 = 𝐷1𝑒𝑥𝑝 [−
𝐴1(𝑇 − (𝐷2 + 𝐷3𝑃))

𝐴2 + 𝑇 − 𝐷2
] 

2.6 
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2.5 Analysis of fibre orientation  

2.5.1 Short Glass Fibre 

 

A description of fibre orientation distribution must begin by considering the 

motion of a single fibre and the Euler angles to define the orientation of a rigid 

body (Jeffery, 1922).  The orientation of a single fibre can be described by the 

angles (φ, θ) (Advani and Tucker, 1987) shown in Figure 2.19.  Phi (ϕ) is 

defined as the angle the projection of the fibre in the YX plane makes with the 

X-axis and 𝜃 is the angle which the fibre makes with the Z-axis (normal to the 

sectioned surface)  (Hine, 2004).  A pictorial description of fibre orientation 

distribution relative to axis 1 is shown in Figure 2.20. 

 

 

Figure 2.19 Axis of fibre orientation distribution. 

 

 

If a unit vector p is associated with the direction of the fibre, the Cartesian 

components are given by 2.7 -2.9. 

 

p1 = sin θ cosφ 2.7 

p2 = sin θ sin φ 2.8 

p3 = cos θ 2.9 
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The second order tensor for describing fibre orientation is symmetric (aij = aij), 

so it possesses 3 eigenvalues.     

 

𝑎𝑖𝑗 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

 

2.10 

 

    

 A normalization condition (Equation 2.11) reduces 9 components down to 5 

independent components.  A mathematical description is given for each of 

these tensor components in Section 3.2.3.3 Calculation of orientation averages. 

 

(𝑎11 + 𝑎22 + 𝑎33 = 1) 2.11 

 

 

 

Figure 2.20 Fibre orientation distribution relative to axis 1 

 

 

2.5.2 Capturing the flexibility of Long Glass Fibre 

 

In the case of short fibres where length < 1 mm the fibres can be treated as 

rigid particles and the structure is characterized by simply the orientation of the 

fibres.  In the case of long fibres > 1 mm, their characterisation is more complex 

due to the semi-flexibility caused by the length of the fibre.   

 

Theories have been established to predict the flexibility of long glass fibre 

(Keshtkar et al., 2010).  The flexibility of a fibre is dependent on the length and 

this varies after the process of injection moulding, Figure 2.21 shows example 

of curved fibres.  Hence in some cases long glass fibre cannot be represented 

as a rigid ellipsoid particle in 3-d space.  A clear solution is currently required to 

calculate the average fibre orientation of a curved fibre.  Alternatively 
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experimental work at present is based on the rigid fibre assumption referred as 

segmental orientation (Nguyen et al., 2005, 2008; Lafranche et al., 2007).  The 

long fibre is divided into straight segments or rigid ellipses and the average fibre 

orientation is calculated for the complete fibre.    Another similar investigation 

was carried out by Hoffmann et al., (2013) this also applies the rigid ellipse 

method to analyse a centre-gated disc.  Findings show the rigid ellipse method 

was sufficient for the centre-gated disc, as majority of the fibre alignment is 

transverse to the shear flow especially in the core region and majority of curved 

fibres are not visible.   

 

 

Figure 2.21 Example of curved fibres in a long glass fibre sample 

 

 

Constructing 3-d projections of the sample using plane to plane reconstruction 

is another method under a great deal of interest to study fibres and particles.  

McGrath, (1995) and Clarke et al., (1995, 1999) have applied different image 

analysis techniques to quantifying the fibre orientation distribution.  The different 

techniques include optical, confocal and tomography microscopy.  High 

resolution X-ray computed tomography (XCT) is becoming an established 

solution as quantitative data like fibre orientation, filler content, 3-d distribution 

of fillers and filler size distribution function can be extracted from a 3-d image 

(Kastner et al., 2012).   
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The principle applied to CT (computed tomography); 3-d micro structural image 

data is produced using a wide X-ray beam (or scanned through a narrow beam).  

The data is then used in reconstruction calculations to generate cross-sectional 

images (Rochow and Tucker, 1994).  3-d scans of a sample (Figure 2.22) are 

analysed further using a mathematical algorithm to compute fibre length and 

orientation (Monnich, 2004).  The term micro-CT is used to indicate that the 

voxel size (size of the 3-d pixel) of the cross sections is in micrometer range.  

Synchrotron scanning must be applied to produce images with higher resolution 

and enhanced accuracy.  These sub-micro-CT devices are capable of 

producing resolutions down to 1 µm or smaller, but devices like these are 

expensive (Salaberger et al., 2011).  Salaberger et al., (2011) shows FOD 

results from CT increase in error with increasing complexity of fibre network and 

higher fibre content.   

 

Figure 2.22 Example of CT scan and detected fibres in a polyamide 6 30% SGF 
 

Although successful results have been found from using micro-CT for short 

glass fibre composites (Bernasconi et al., 2012), there is no practical and cost-

effective solution which can describe the fibre orientation accurately for a long 

glass fibre sample. 
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2.6 Simulation Software 

 

In the past injection moulding and mechanical property prediction was a trial 

and error process.  This would cost a company producing vast amount of 

components a lot of time and money, as an engineer would have to go through 

many unsuitable parts to arrive at the solution. 

 

The first commercial injection flow prediction Computer Aided Engineering (CAE) 

software appeared around 30 years ago (Shen et al., 2005).  Packages 

available now are developed using the finite element or volume method in two 

and three dimensional models.  At the core of the finite analysis is a numerical 

method which determines the accuracy and speed of the analysis.  There are a 

number of software products on the market such as; Moldex3D, CADMould and 

Autodesk Simulation Moldflow Insight 2014 (ASMI), which aim to simulate the 

injection moulding process.  ASMI has become one of the leading softwares in 

predicting polymer flow during the injection moulding process.  ASMI 2014 has 

introduced a range of modules which allow engineers to simulate and optimize 

the plastic, mould and tool design before manufacturing begins (Huilier and 

Patterson, 1991).  The numerical prediction models mentioned in the next 

chapter have been incorporated into ASMI 2014. 

 

2.6.1 Finite Element Method 

 

The basic principle of finite element method (FEM) is the division of domains 

into a set of simple sub-regions without any gaps called 'finite elements' (Reddy, 

1993).  Together the finite elements provide a finite element mesh for the 

domain which is connected at points called nodes.  The elements can have 

different sizes but usually they have a common shape (linear, quadratic, 

triangular and quadrilateral) and equal number of nodes when applied to the 

geometry.   Nodes are the points where the numerical values like; Temperature, 

velocity and pressure flow are calculated for each element within the mesh in 

order to solve mathematical equations.  The generated mesh can be coarse 

(have a few elements) or refined (have many elements).  As the number of 

elements increase the approximations improves resulting in reduced error.  The 
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main disadvantage of all 3-d numerical simulations is high computational cost of 

and constant validation of prediction. 

 

Figure 2.23  Representation of triangular element and nodes (ASMI, 2014) 

 

Commercial software can predict filling conditions on the distribution of flow 

patterns as well as flow vectors, shear stress, optimum number of injection 

points, fill time, frozen skin, clamping force required, weld lines, pressure, fibre 

orientation, velocity, temperature distribution, shrinkage and warpage and many 

other injection moulding results (ASMI, 2014).  

 

To practically model injection moulded three-dimensional complex geometries 

the rheological behaviour of the melt is described as non-isothermal generalised 

Newtonian (for more information reference can be made to Section 2.4 Polymer 

Rheology).  In a non-isothermal system the viscosity is directly dependent on 

the change in temperature.  There are three kinds of models available in most 

commercial packages, including the mid-plane, surface and 3-d (solid) model.  

The surface approach is currently unique within ASMI 2014.   

 

2.6.2 Geometric Solutions 

 

Three different models and mesh techniques are utilized within ASMI to 

computationally analyse the model:-  

 

 2.6.2.1 Mid-plane 

  

Hieber and Shen, (1980) first proposed the ideas, which have later attributed in 

today’s finite element flow simulation packages.  The Hele-Shaw approximation 

of non-isothermal flow is based on their theoretical studies of filling flow in thin 

cavities.  As most injected parts are thin walled, this means the gap height (h) in 
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the thickness direction is very small compared to other attributes such as the 

length and width of the part.  The Hele-Shaw approximation models the cavity 

as 2-d flow problem, the mean velocities are averaged through the cavity gap-

width, which is related to the pressure gradient through a quantity called 

'measure of fluidity' representing the sum of the effect of changing temperature 

and viscosity across a gap (Cardozo, 2008).   

 

The arbitrary planar geometry at the centre/mid-plane of the cavity, with a 

defined thickness is used to represent the 3-d geometry. Consequently the flow 

is symmetric about the mid-plane and the z- axis is equal to zero.  The model 

assumes pressure does not vary in the z-direction and velocity is negligible in 

the z-direction compared to in-plane velocities (VX and VY) (Altan, 1990).  

Therefore the model is unable to calculate the velocity and pressure fields in 3-d 

features such as corners, gates, ribs and junctions. 

  

 

Figure 2.24 Example of thin (narrow gap) geometry as analyzed by Hele-Shaw 
approximations (Dantzig and Tucker, 2001) 

 

Another limitation of this model is that, non-slip boundary condition cannot be 

placed on the outer boundary of the cavity in the x-y plane because viscous 

diffusion is not taken into account for in this region.  A solution has been 

incorporated into Moldflow software; in order to model the effect fluid velocity 

has along the edges and on fibre alignment predictions.  An edge effect is 

integrated into ASMI 2014, which constrains orientation along the free edges 

causing fibres to align with flow direction.   In a more advanced Hele-Shaw 

simulation, special formulae have been developed, to correctly predict the 

temperature and orientation in the fountain flow region.  As long as the basic 
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assumptions of the Hele-Shaw model are met the fibre orientation prediction 

should provide a good solution (VerWeyst et al., 1999).   

 

A CAD model is converted, using the mid-plane generator.  Mesh consists of tri-

node triangular elements that form a 2.5 D representation of the part though the 

centre (Figure 2.25).  Each element also has a number of shell layers, ranging 

from 6-20.  

 

Figure 2.25  CAD part converted into a 2.5 D mid-planer mesh 

 

2.6.2.2 Surface or dual-domain 

 

Surface models or dual domain technology as known in ASMI 2014 is a finite 

element representation of a 3-d part with a boundary on the outside surface.  

The first mathematical surface model was presented by Yu and Thomas, (1997).  

This model was widely accepted as it allows users to directly examine complex 

3-d geometries, which is very difficult and time consuming when examining the 

2-d geometry.  The surface model adopts Hele-Shaw approximations and is 

very similar to the mid-plane model (Figure 2.26); as a result of this the whole 

cavity is divided into two equal parts in the gap-wise direction.  Triangular 

elements are generated on the surface and the gap-wise direction is only 

employed from one wall to the centre of the boundary condition (z = 0 to z = b) 

(Zhou and Li, 2001).  
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Figure 2.26 Schematic for boundary condition in a gap-wise direction (a) the mid-
plane model and (b) of the surface model 

 
 

The elements on the opposite surfaces of both walls are matched and aligned.  

The surface mesh is easily visualised as a hollow body as shown in Figure 2.27.  

When a rib or any discontinuity is introduced in the 3-d geometry the flow on the 

opposite surface may not match, in this case an extra connector element is 

introduced from the unmatched point through the thickness to the other side.  

 

Figure 2.27  Dual domain mesh is applied to the surfaces of a model (hollow shell) 

 

2.6.2.3 3-dimensional 

 

Interest in 3-d simulation of injection moulding has increased rapidly in the last 

10 years.  More injection parts are large, complex 3-d geometries which are 

either thick or have a non-uniform thickness.  There are many situations 

occurring during the mould filling which cannot be accurately predicted by the 

Hele-Shaw approximation.  Amongst the most significant include the fluid flow 

behaviour at the free surface (flow front), the fluid flow behaviour near and at 

the solid walls, the phenomenon occurring at the merging of two or more fluid 

streams (weldlines) and the kinematics in areas where shear and extensional 

deformations contribute significantly to stress fields (gate and ribs) (Zhou, 2005). 
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The fountain flow effect occurs at the flow front, where the fluid near the centre 

is moving faster than the average velocity across thickness (Steinbach, 2002).  

A combination of extensional and shear flow causes the material from the core 

area to move towards the wall and solidify (a thin layer).  In most injection 

moulding applications the influence of the 'fountain flow' region increases 

according to sudden thickness changes i.e. ribs.  Therefore the effects in the 

fountain region cannot be represented by the Hele-Shaw approximations.    

 

A 3-d mesh solver represents the solid CAD model by filling the volume of the 

model with 4-noded solid tetrahedral elements.  Increase in the number of 

elements makes 3-d modelling computationally intensive.  However with 

development of computer technology, 3-d simulation has become a promising 

solution and the first 3-d model was incorporated by ASMI 2014 (Talwar et al., 

1997).  For 3-d simulation the polymer flow is assumed to be compressible and 

non-isothermal during filling, hence the conservation equations for mass and 

momentum (equations that govern motion of viscous fluid) are described by the 

Navier -Stokes derivation (Navier, 1823).  In this derivation the velocity and 

pressure are the only prime field unknowns.  Tracking of the melt front (fluid free 

surfaces) is important in 3-d filling simulation.  The boundary tracking flow 

problem is modelled using the level set method (LSM) algorithm (Osher and 

Sethian, 1988).  Moldflow uses a fixed grid LSM approach to solve the tracking 

fountain flow, where the fluid moves within a single fixed mesh one element to 

the next over time.  The technique has been successful in handling possible 

topological complexities such as corners, interface splitting and merging (Zhou, 

2013) 

 

 

Figure 2.28 3-d mesh the cross-section shows the internal nodes (volume mesh) 
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2.7 Fibre Prediction Model 

 

In recent years there has been a rapid development in the ability to model the 

orientation structure in fibre reinforced composites.  This is seen by the increase 

of computer simulations, which predict the fibre orientation and polymer flow in 

injection moulded parts.  The equation(s) which allow this prediction have been 

built upon work spanning the last half-century. 

 

2.7.1 Short Fibre Prediction 

2.7.1.1 The Folgar-Tucker Equation 

 

Folgar – Tucker, (1984) model is widely used to predict fibre orientation in 

injection moulded composites.  The Folgar- Tucker model uses the principles of 

Jeffery's equation, (1922) to predict the orientation of a single fibre immersed in 

viscous fluid.  The model provides a better prediction for fibres in dilute fibre 

suspensions and can over-predict orientation in concentrated suspensions, as 

the model cannot account for fibre-fibre interactions.  The Folgar Tucker (FT) 

suggests amendments by representing flow effects and adding a rotary diffusion 

term, to represent fibre-fibre interactions.   

 

The models use a second order tensor (Advani and Tucker, 1987) to represent 

the fibre orientation at a single point this is defined in 2.12. 

 

A = 〈pp〉 2.12 

 

The orientation of a single, rigid fibre can be characterised by a unit vector p 

directed along the fibre length and the bracket is the average over a volume.  

The changes in the orientation due to flow can be predicted in terms of second - 

order tensor.  The FT model in terms of the orientation tensor A 2.13. 

 

𝐷𝐴

𝐷𝑡
 =  (W. A − A . W) +  ξ(D. A + A . D − 2𝐀: D) + 2CIγ̇(I − 3A) 

2.13 
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Hence DA/Dt is the material derivative of A (the second order tensor); W and D 

are vorticity and the rate of deformation tensors the terms were introduced by 

the Jeffrey's, (1922) equation.  Correspondingly ξ is the shape parameter and is 

dependent upon the fibre length to radius ratio.  The term 𝐶I�̇� gives the model 

proposed by Folgar and Tucker, (1984) for fibre – fibre interactions. Coefficient  

𝐶I  is the interaction coefficient and a larger value implies more fibre-fibre 

interactions (increase fibre concentration); and �̇� is strain rate.  Each interaction 

between two fibres produces an orientation change in both fibres.  The 

frequency of these interactions is proportional to the strain rate and the change 

in orientation per collision is independent of �̇� (Phelps and Tucker, 2008).  A is 

the fourth order orientation tensor is defined as A = 〈pppp〉 (Wang, 2010).   

 

Setting CI = 0 sets the model back to the Jeffery form.  Work carried out by 

Folgar and Tucker (1984) show that it is very difficult to determine an 

appropriate value for the CI, which is related to the fibre aspect ratio and fibre 

volume fraction.  Curve fitting with experimental orientation data is one method 

to determine the  CI value (Bay and Tucker, 1992).  Tucker and Advani, (1994) 

proposed an empirical expression (2.14) if there is no experimentally 

determined coefficient.  Where V𝑓 is the volume fraction of glass fibres, L is the 

fibre length and D is the fibre diameter.   

 

𝑐𝑖 = 0.0184exp (−0.7148V𝑓

L

D
) 

2.14 

 

 

The CI value can change with different flow geometries, making it difficult to 

predict a solution.  The interaction coefficient 𝐶I takes on values much less than 

1 to match experimental findings (Nguyen et al., 2010 and Phelps and Tucker, 

2009).  Bay and Tucker, (1992) carried out one of the early studies on the 

effects of the interaction coefficient in simple shear flow.  They found as the 

value of 𝐶I decrease (fibres do not interact with each other), the orientation in 

the shell layer becomes more aligned in the flow direction and the orientation in 

the core is perpendicular to the flow.  On the other hand if the value of 𝐶I 

increases, the core decrease and the shell thickness increases. 
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Within ASMI, (2014) software, for the mid-plane and dual domain mesh, the 

classical FT (Equation 2.13) is further developed by a introducing a 

DZ coefficient term (Wang and Jin, 2010).  The DZ term sets the significance of 

the randomizing which is a result of the coefficient of interaction.  For the 

modified FT model (2.15 the boundary conditions for DZ (0 < Dz < 1). 

 

𝐷𝐴

𝐷𝑡
 =  (W. A − A . W) +  ξ(D. A + A . D − 2𝐀: D) + 2CIγ̇(I − (2

+ DZ)A) 

2.15 

 

 

Setting DZ = 1.0 gives the classic Folgar-Tucker orientation model for the 3-d 

problem and if DZ = 0  gives the modified Folgar-Tucker model for the 2-d 

problem.  The hydrodynamics cause the fibres to lie parallel to the flow direction; 

hence decreasing DZ  parameter reduces the out of plane orientation but 

increases the thickness of core layer.   

 

The low DZ model results in reduced error levels for thin parts (thickness less 

than 2.5 mm).  For parts with thickness of greater than 2.5 mm the revised 

model with DZ = 1.0 is used.  The value of DZ  has been shown to increase 

rapidly with part thickness.  This increasing trend is constant with the 

expectations that out of plane fibre orientation would increase with increasing 

part thickness. 

 

2.7.1.2 Closure Approximation 

 

A closure approximation is essential to use the fibre orientation tensor to predict 

the effects of flow on the fibre orientation.  The model contains a fourth order 

tensor 𝑎𝑖𝑗𝑘𝑙  and is not yet suitable as a second order tensor derivative.  A 

solution to this problem is to use a closure approximation, a formulae which 

approximates the unknown fourth order tensor, into a known second order 

tensor.  The following conditions must be satisfied in order to construct closure 

approximations for the orientation tensor.   

 

 The approximation must be created only from the lower order orientation 

tensor and the unit tensor δ 
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 It must satisfy normalization conditions such as  𝑎𝑖𝑗𝑘𝑙 =  𝑎𝑖𝑗  

 It must maintain the symmetries of the orientation tensors. 

 

One method to form a closure approximation was proposed by Hand, (1962). 

This linear closure approximation is accurate for a completely random 

distribution of fibre orientation.  While the quadratic closure approximations are 

exact for perfect aligned fibres.  Therefore it would be sensible to combine both 

approximations to obtain a more accurate solution known as the hybrid closure 

approximation.  Experiments show the hybrid closure provides the most simple 

and steady state solutions, modelling a range of orientation levels (Advani and 

Tucker, 1987).  The hybrid method has been adopted in the software for this 

study.  The presence of the approximation itself may introduce some small 

errors or oscillations in the simulation.     

 

Although the hybrid closure is a stable model it tends to over-predict the level of 

orientation.  Therefore the search for a closure approximation, which offered 

better accuracy, was still active.  The best available closure are the family of 

approximations, known as orthotropic closures (Cintra and Tucker, 1995) and 

the natural closure  proposed by Verleye and Dupret, (1993).  However both of 

these models are not computationally efficient as they require additional time 

and computer power to solve (Park and Park, 2011).   

 

2.7.1.3 Reduced Strain Closure Model 

 

Recent findings have shown that the rate of orientation development in short 

glass fibre thermoplastics is much slower than the current model predicts.  

Wang, (2008, 2010) has introduced the reduced-strain closure (RSC) model, 

which slows the orientation kinetics in order to get a better correlation between 

experimental and prediction.   

 

The Folgar-Tucker model was modified with two assumptions; reducing the 

growth rates of the eigenvalues ( λ ) of orientation tensor by a slip factor k ≤ 1, 

but the eigenvector rotation rate factor is unchanged.  This results in what is 

now known as the RSC model Equation 2.16. 
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𝐷𝐴

𝐷𝑡
 =  (W. A − A . W)

+  ξ(D. A + A . D − 2[𝐀 + (1 − κ)(𝐋 − 𝐌: 𝐀)]: D)

+ 2κCIγ̇(I − 3A) 

2.16 

 

 

Here L and M are also the fourth order tensors; they are functions of 

eigenvalues and the eigenvectors so no closure approximation is required 

(Wang et al., 2008).  In comparison to the standard Folgar-Tucker 2.13 the RSC 

model has a diffusion term reduced by the scalar factor 𝑘 (this controls rate of 

orientation development).  Setting 𝑘  = 1 reduces RSC model Equation 2.16 

back to the FT model Equation 2.13.  Using experimentally determined 

orientation recent publications have suggested the values of 𝑘 could be set at 

0.05 for thin geometries and 0.03 for thick geometries (Wang and Jin, 2010). 

 

2.7.2 Long Fibre Prediction 

 

This section will cover the theory behind long fibre prediction models 

incorporated in ASMI 2014.  These include the long fibre anisotropic rotary 

diffusion orientation model (ARD) and the long fibre breakage model. 

 

2.7.2.1 ARD Model 

 

Fibres longer than 1 mm are generally considered as long fibres.  The fibre 

alignment in the flow direction is weaker; due to the characteristics of long fibre 

material compared to short fibre injection moulded parts.  The isotropic diffusion 

used in the Folgar-Tucker and RSC models is unable to capture the fibre-fibre 

interaction in long fibres.  Therefore the current models cannot accurately 

predict the orientation of long fibres; therefore a new anisotropic rotary diffusion 

model (ARD) for long fibre composites has been developed by Phelps and 

Tucker (2008). 

 

The first concept of the ARD model was introduced by Koch (1995), who 

considered the influence of long-range hydrodynamic fibre-fibre interactions on 

orientation in a partially diluted fibre suspension.  This idea was later developed 

by Fan et al., (1998) and Phan-Thien et al., (2002).  This model was tested as a 
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direct simulation in simple shear flow.  The rotary diffusion for fibre orientation is 

defined two-dimensionally in orientation space.  The model developed by 

Phelps and Tucker, (2008) incorporates a good 2-d understanding of the rotary 

diffusion. 

 

The ARD model is defined on the surface of the unit sphere traced by all 

possible orientations and not in the direction the unit is pointing.  The coefficient 

CI is replaced by C rotary diffusion tensor in the ARD model (2.17).  The C 

tensor can depend on orientation state and flow type, the C tensor is made up 

of 5 scalar parameters in Equation 2.18 (b1, b2, b3, b4 and b5).   

 

�̇�  =  (W. A − A . W) +  ξ(D. A + A . D − 2𝐀: D) + γ̇(2C − 2(trC)A

− 5(CA + AC) + 10A: C) 

2.17 

 

𝐶 = 𝑏1𝐼 + 𝑏2𝐴 + 𝑏3𝐴2 + 𝑏4

𝐷

�̇�
+ 𝑏5

𝐷2

�̇�2
 

 

2.18 

 

 

An ARD – RSC model which slows the kinetics of the ARD model Equation 2.19 

is applied using the RSC treatments.   

 

 �̇�𝐴𝑅𝐷−𝑅𝑆𝐶 =  (W. A − A . W)

+  ξ(D. A + A . D − 2[𝐀 + (1 − κ)(𝐋 − 𝐌: 𝐀)]: D)

+ γ̇{2[C − (1 − κ)M: C] − 2κ(trC)A − 5(CA + AC)

+ 10[A + (1 − κ)(L − M: A]): C} 

2.19 

 
 

 

Setting κ (reduced strain factor) equal to 1 reduces the ARD-RSC model to the 

ARD model.  The 5 parameters are set as defaults in ASMI 2014 as follows; b1 

= 0.0001924, b2= 0.005839, b3= 0.04, b4= 1.168 x 10-5 and b5= 0, poor choices 

of the ARD parameters can give non-physical behaviours in orientation.  The 

rotary diffusion tensor Equation 2.19 is purely phenomenological, it would be 

better to have a mechanistic model that would give the rotary diffusion as a 

function of local fibre orientation state, and type of deformation (Phelps and 

Tucker, 2008). 
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2.7.2.2 Fibre Breakage Model 

 

Autodesk Moldflow has incorporated the first quantitative fibre breakage model 

proposed by Phelps and Tucker (Phelps, 2009).  This statistical model 

describes the probability of a fibre breaking, due to buckling and shearing forces 

in the flow field.  The fibre breakage rate, at which fibres break, can be defined 

with probability Pi of length segment li at time ∆𝑡 and a probability Rik of creating 

a fibre of length segment lj from breaking a fibre of length lk.  Combining the loss 

caused by breakage (growth due generation of children) gives a basic 

conservation (Equation 2.20) fibre length Ni. 

 

𝑑𝑁𝑖

𝑑𝑡
= −𝑃𝑖𝑁𝑖 + ∑ 𝑅𝑖𝑘𝑁𝑘

𝑘

 
2.20 

 

 

The left hand side of the Equation 2.20 represents the change rate in the 

numbers of fibres, with fibre length li in a unit of volume.  The first term on the 

right hand side is for representing the loss of fibres due to breaking and the 

second term represents the creation of child fibres due to the breakage of 

longer fibres. 

 

The next part will describe the equation which gives the breakage rate Pi as a 

function of flow conditions and fibre properties.  The free moving fibres interact 

with fluid in laminar shear motion; axial forces arising due to the velocity 

component load the fibre in compression or tension.  The model assumes that 

even a small amount of contact may trigger buckling from the compressive 

forces of a hydrodynamic loaded fibre.  Therefore this model is based on Dinh 

and Armstrong, (1984) arguments for the effect of hydrodynamic compression 

of fibres on bulk viscosity.  The criterion in 2.21 can be used to describe the 

force required to break a single fibre under hydrodynamic compression. 

 

𝐹𝑖

𝐹𝑐𝑟𝑖𝑡
=  �̇̂�(−2�̂�: 𝑝𝑝) ≥ 1 

2.21 
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For a single fibre, represented by vector P, of length 𝑙𝑖 in a polymer melt of 

viscosity ɳ𝑚, the buckling forced 𝐹𝑖 (2.22) is considered from the hydrodynamic 

compression force given in terms of the deformation rate tensor �̂�. 

 

𝐹𝑖 =
𝐷𝑔ɳ𝑚𝑙𝑖

2

8
(−�̂�: 𝑝𝑝) 

2.22 

 

 

The critical buckling force is calculated using 2.23.   

 

𝐹𝑐𝑟𝑖𝑡 =
𝜋3𝐸𝑓𝑑𝑓

4

64𝑙𝑖
2  

2.23 

 

 

𝐸𝑓  and 𝑑𝑓 are fibre elastic modulus and diameter, respectively.  It is not 

computationally feasible to track each fibre individually through the flow 

simulation.  Therefore to get a statistical average of the fibre orientation the pp 

in 2.21 is replaced by fibre orientation tensor �̂�.  Now the probability of fibre 

breakage under the hydrodynamic buckling force can be expressed with shear 

strain rate influence, over a period of time (2.24) as a function of fibre 

dimensions and properties. 

 

𝑃𝑖 =  𝐶𝑏�̇� {0, [1 − exp (1 −  
𝐹𝑖

𝐹𝑐𝑟𝑖𝑡
)]} for  γ̂̇  ≥ 1 2.24 

 

 

Where scalar parameters; 

 

 𝐶𝑏= a scalar rate constant which controls the overall rate of change of 

fibre length. 

 𝐷𝑔 = dimensionless fiber drag coefficient, which controls the length below 

which fibres do not break 

 S = affects the shape of the fibre length distribution by changing the 

distribution of child fibres when fibres break 

 �̇� = the shear strain rate (additional force in the flow field) 

 

Default values for each of these are set in ASMI 2014 (Cb= 0.002, Dg = 3 and S 

= 0.25) 
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In Equation 2.24 the buckling criterion dominates the probability form, if it is less 

than one; Pi is zero this means there is no chance for a fibre to break.  A fibre 

will only break if the hydrodynamic compression force is higher than the critical 

buckling force 𝐹𝑖 >  𝐹𝑐𝑟𝑖𝑡.   Finally, the normal distribution function is used to 

describe the probability 𝑅𝑖𝑘  with consideration that breakage is most likely to 

occur at the midpoint of a fibre of length 𝑙𝑘, and scaling factor S changes the 

shape of the FLD curve by affecting the distribution of child fibres as fibres 

break in 2.25. 

 

𝑅𝑖𝑘 = 𝑁𝑛𝑜𝑟𝑚 (𝑙𝑖,
𝑙2

2
, 𝑆𝑙𝑘) 

2.25 

 

Although some initial results have shown this is a good mathematical model 

(Equation 2.20) (Wang and Jin, 2011).  There is additional fibre breakage 

caused by the melting zone of the screw, geometric features like gates and 

sharp bends in runners and these need to be incorporated into the model 

(Tucker et al, 2010).    

 

2.8 Outcome from Literature Review 

 

This section will outline the areas where there is very little or no literature 

available, this assessment will narrow down the areas where some 

advancement in knowledge is possible.  

 

There is intensive literature based on the properties of short fibre composites 

but there is very little understanding of the properties and behaviour of long fibre 

injection moulded composites.  More investigation is required to obtain accurate 

data on FOD and FLD for long fibre composites.  Researchers are currently 

trying to find a novel or existing method to capture and measure the flexibility of 

long fibres.  Solutions such as micro CT allow detailed 3-d analyses of FLD and 

FOD but this option is expensive and not easily accessible.  There is very little 

measured data comparing the difference in FOD as result of fibre length (short 

fibre and long fibre), geometry shape and thickness.  Fibre length degradation 

has a negative impact on the mechanical properties of long fibre injection 
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moulded components.  Therefore it is important to find means of reducing this 

degradation and the resultant effect of process parameters have on fibre length.  

 The same can be said for the fibre prediction models, the short fibre models 

(the FT to the RSC) have been under intensive development for over 30 years.  

However the long fibre prediction models including the ARD and fibre breakage 

model were recently (within last 3 years) incorporated into ASMI 2014.  As of 

yet the long fibre models are under mathematical review and development, 

although early validation of the long fibre FOD show good agreement with 

measured data.  Measured FOD and FLD data is important to assess the 

accuracy and to find possible areas of improvement within the prediction.  Each 

model has optimum coefficients but these are found through fitting measured 

data against predicted to both 2-d and 3-d geometries.  Apart from the FT 

model there is a lack of understanding of how these coefficients influence the 

prediction.  The long fibre breakage model is dependent on a user to input the 

measured FLD at inlet; this means the model needs to incorporate the fibre 

breakage taking place within the screw.    
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Chapter 3 Experimental Methodology 

 

This section covers the specification of the components, which have been 

injection moulded and evaluated in ASMI 2014 as part of the project.  This 

includes the overview of injection moulded short and long glass fibre material 

components, the methods of obtaining fibre orientation and fibre length data (for 

long glass fibre material).  Simple geometries including a fan-gate and a centre-

gate scenario were evaluated in order to study the effect geometry has on the 

fibre length and fibre orientation.  The components include a 1, 2 and 4 mm 

thick centre gate-disc, 2 mm plaque and a 4 mm thick plaque with a rib.  

Modifications were made to the sprue of the centre gate disc component for 

further study using long glass fibre material.  The mid-plane of the fan-gate and 

centre geometries was investigated in ASMI 2014, to assess the limitations of 

the fibre prediction models. 

 

3.1 Injection Moulded Geometries 

3.1.1 Material 

 

Short glass fibre PA6 and long glass fibre polypropylene reinforced materials 

were used to mould the components as part of the study.  These two 

thermoplastic materials have a distinct difference in fibre length and this is the 

primary reason they were selected for injection moulding.  The reason for 

selecting a short and a long glass fibre reinforced material is, to understand the 

effect processing and geometry has on the fibre orientation distribution including 

fibre degradation in the case of LGF material.  Processing conditions during 

injection moulding influence the resultant fibre breakage before and after 

material enters the mould cavity.  Processing parameters and design 

modifications were recommended by SABIC® (material supplier) to preserve 

fibre length during injection moulding of LGF material.   
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3.1.1.1 Short Glass Fibre 

 

Rhodia Technyl C216 V40 (previously known as Nyltech Sniamid C216), which 

is 40% (by weight) glass fibre (E-glass) reinforced PA6.  The 3 mm long pellets 

are manufactured using the conventional method of extrusion compounding 

more information is found in Section 2.2.2.1 Fibre Length and Content.  The 

material is reinforced with chopped glass fibres with an average length of 350 

µm and 14 µm diameter. The distribution of fibres within the pellet is random.  

The glass fibre within the material is coated but details of the coating are 

unavailable.   Glass fibre reinforced PA6 provides mechanical properties such 

as; greater dimensional stability under heat compared to unfilled material, 

advanced short term strength/stiffness and long term fatigue/creep (Rhodia, 

2011). Recommended processing settings for the material are shown in Table 

3.1. 

 

 Minimum Maximum 

Pre drying conditions 

In the case virgin material has absorbed 

moisture; it must be dried with a 

dehumidified air drying equipment. 

Drying conditions of 80 ᴼC for 3-4 hours 

Melt Temperature (ᴼ C) 260 280 

Mould Temperature (ᴼ C) 80 120 

Table 3.1 Processing guide for Rhodia Technyl C216 V40 (Rhodia, 2011) 
 

3.1.1.2 Long Glass Fibre 

 

This project was carried in collaboration with the SABIC®, therefore they have 

provided the SABIC®, Stamax 30YM240, a 30% (by weight) long glass fibre (E-

glass) polypropylene reinforced material.  The 12 mm long pellet is 

manufactured using wire coating process where continuous bundles of glass 

fibre with an average diameter of 20 µm are wired together like a cable.  The 

cable then passes through 2 % by mass chemical coating (thickness of coating 

is confidential), the coated cable is then encapsulate with polymer and after 

passing through the water bath pellets are cut down to the final size.  The fibres 

are parallel and have the same length as the pellet.  In order to achieve high 
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stiffness and strength, the glass fibres are chemically coupled (silane coating) to 

the polypropylene matrix as shown in Figure 3.1. 

 

 

Figure 3.1 Structure of the LGF material (Schijve, 2000) 

   

The advantages of LGF PP over SGF material include; low cost performance 

material (PP resin), good mechanical properties at both low and high 

temperatures, high toughness and low warpage (Sabic, 2013).  In order to 

preserve the fibre length SABIC® has recommended limits for specific 

processing parameters these are provided in Table 3.2.      

 

 Minimum Average Maximum 

Melt Temperature (ᴼC) 220 250 280 

Cylinder settings (ᴼC) Flat temperature profile 

Back pressure (Bar) 
0 

(preferred) 

As low as possible 

(e.g. 10 bar) 

150 

(only for 

specific 

screws) 

Screw speed 

As low as possible 

Target: Plasticizing complete during cooling and 

machine times. 

Injection speed Moderate 

Table 3.2 Sabic recommendation to process Stamax 30YM240 (Sabic, 2011) 
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3.1.2 Injection Moulding Apparatus 

 

Test geometries used in this study were injection moulded using the Battenfeld 

BA750/315 CDK shown in Figure 3.2.  This was the only machine available with 

a 40 mm diameter general purpose screw.  The mould was connected up to 

temperature control units to regulate the temperature within the mould.  

Machine specifications are included in Table 3.3.   

   

 

Figure 3.2 Injection moulding apparatus 

 

Equipment Details 

Moulding machine 

750 kN of clamp force Battenfeld BA750/315 CDK 

Driving power hydraulics with screw diameter 40  

mm and length:diameter ratio (L/D) of 20:1 

Max injection speed - 106 (mm/s) 

Max screw speed - 215 (rpm) 

Back pressure range - 0 to 40 (bar) 

Injection pressure - 1575 (bar) 

Specific holding pressure -140 (bar) with an 

intensification ratio of 11.25 

Mould Temperature 

Controller 

Regloplas 90S temperature control units 

Maximum temperature 90 (ᴼC) 

Table 3.3 Moulding equipment 
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3.1.3 Geometries and Moulding Conditions 

 

The geometries including fan gate and centre gate with varying thickness were 

investigated as part of this study.  The flow in both of these geometries is 

different, this is the primary reason they were selected.  The difference in the 

flow made an interesting study for FOD and FLD. 

 

3.1.3.1 Fan Gate 

 

The schematic of the 4 mm thick transverse ribbed plaque shown in Figure 3.3 

has a 6 mm diameter sprue and a complex gating system, which consists of a 

fan shaped gate with a 4 mm thick well.  The dimensions of the plaque are 120 

x 40 mm and it contains a reinforcing rib 40 x 12 x 2.5 mm, which is protruding 

40 mm from the gated end of the plaque and is perpendicular to the direction of 

flow.  The gate and sprue dimensions are the same for the 2 mm transverse 

plaque but without a protruding rib shown in Figure 3.4.  

 

The 4 mm thick ribbed plaque and 2 mm thick plaque are injection moulded 

using Rhodia Technyl C216 V40 material.  The injection moulding conditions for 

both are found in Appendix 1. 
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Figure 3.3 2-d drawing of transverse ribbed plaque. 
 
 

 

Figure 3.4 2-d drawing of flat plate 2 mm  
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3.1.3.3 Centre Gate 

 

 

 

Figure 3.5 2-dimensional drawing of centre gate disc component 

 

 

The centre gate disc component has a variable base thickness which is shown 

in diagram Figure 3.5.  The disc consists of a sprue with a diameter of 3.50 mm, 

has an outer diameter of 95 mm and a 5 mm thick circular section protruding 

from the edge with a height of 27.80 mm.  This geometry was injection moulded 

using both the short and long glass fibre material.  The disc was injection 

moulded with Rhodia Technyl material for each thickness available (1, 2 and 4 

mm) moulding conditions for these geometries are found in appendix 1.  

However only the 1 and 2 mm thick geometries were injection moulded using 

the long glass fibre Stamax material, the injection moulding conditions for these 

geometries are found in appendix 1.  To process the LGF material the screw 

speed, back pressure were kept low (50 rpm and 3 bar) and the injection speed 

was set to a moderate speed less than 50% capacity of the machine (45.6 

mm/s) as recommended by SABIC®. 
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3.1.3.2 Modifications 

 

Shear is experienced during injection moulding, this results in fibre degradation 

while processing long glass fibre material, which in turn affect the mechanical 

properties.  Apart from adjusting the processing conditions to reduce breakage 

in the LGF material, modifications can be made to design of the nozzle and 

sprue.  SABIC® has recommended using a standard extended nozzle and 

increasing the size of the sprue (Sabic, 2011).  Justification of possible 

processing and design suggestions to reduce fibre degradation are discussed in 

Section 2.3.2 Fibre Length Degradation.  The Battenfeld injection moulding 

machine was installed with a 3 mm diameter standard extended nozzle (Figure 

3.6), to injection mould the 3.5 mm sprue centre gate geometries. 

 

To preserve the fibre length the size of the sprue and nozzle exit was increased 

to 6 mm diameter (Figure 3.7).  A large nozzle and sprue diameter should 

reduce the amount of shear the material experiences between the nozzle and 

sprue before it gets to the cavity.  To examine the total fibre breakage which 

occurs as the material is plasticised in the screw, fibre length measurements 

were carried out on the material which purges out of the nozzle.  For the 

modified configuration, only the 1 and 2 mm thick geometries were injection 

moulded using the long glass fibre Stamax material.  The injection moulding 

conditions with this geometry for both materials are found in appendix 1. 

 

 

Figure 3.6 Cross-section drawing of 3.0 mm diameter nozzle 
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Figure 3.7 Drawing of modified centre gate component and nozzle 
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3.2 Fibre Orientation Distribution Measurement 

 

As discussed in 2.5.1 Short Glass Fibre the fibre orientation distribution of a 

short and long glass fibre is at present represented in a 3-d space using 

uniquely defined by two polar angles θ and φ.  FOD data can be derived from 

either polished 2-d sections using reflective microscopy (Vincent and Agassant, 

1986) or from microtomed slices (20-30µm) using CMR (contact micro-

radiography) (Darlington and Mcginley, 1975; Kamal et al., 1986).  Making the 

3-d problem into a 2-d problem considerably simplifies the data extraction 

process and makes it easier to automate.  The University of Leeds currently 

offers a reflective microscopy-based system; this offers accurate 3-d 

characteristics of fibre orientation using 2-d images over small size areas 

(Davidson, 1993; 1997 and Hine et al., 1993; 1995).  The system is controlled 

by a PC and allows samples containing tens of thousands of fibres to be 

analysed.  Regions of interest can be analysed after careful sample preparation.  

Alternate methods such as micro-CT were not investigated here but may be 

part of future work.  

 

3.2.1 Sample preparation 

 

Sample preparation steps include cutting, marking, mounting, grinding, 

polishing and etching (Valez-Garcia et al., 2012).  The end result is a polished 

cross-section ready to analyse using optical microscopy (Bay et al., 1992). 
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Figure 3.8 Procedure to measure fibre orientation distribution 
 
 

3.2.1.1 Mounting sample 

 

The specimen needs to be clearly marked and a section from the region of 

interest cut using saw blade dia. 120 x 1.7 mm.  However a relevant margin (2 

mm has been sufficient) needs to set between the measurement plane and 

cutting lines, as well as performing the cut using low speeds to prevent fibre 

damage (Bates and Wang, 2003 and Hayes and Gamon, 2010).  The material 

in the margin is easily removed during the machining step. The sample is then 

placed into a 40 mm diameter plastic mould; the region of interest must be 

placed flat against the bottom cover shown in Figure 3.9.  To ensure the sample 

does not move it is secured using either a plastic support clip or double sided 

tape.  Mould release is sprayed on to the base and mould combined thus 

ensures the sample can be easily retrieved once it hardens.  A mixture of 

EpoThin Resin and EpoThin hardener with a ratio of 5:2 is mixed together, from 

a cloudy to a clear mixture which is then poured into the mould and left to cure 

for 9 hours. Once the epoxy has cured the edge showing the sample is 

machined removing a maximum of 0.2 mm of material to give a flat surface to 

polish and grind as shown in Figure 3.9. 
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Figure 3.9 Example of cured sample 
 

 

3.2.1.2 Grinding and Polishing 

 

To ensure a parallel grinding and polishing process the specimen is clamped by 

apparatus discussed in Section 3.2.1.2.1 Apparatus.  To reveal the composite 

structure standard grinding and polishing techniques were used prior to etching 

(Sawyer and Grub, 1994; Hayes and Gamon, 2010).  The grinding process is 

essentially the removal of material; the amount of material removed is 

dependent on the coarseness of silicon carbide (SiC) paper, pressure and 

velocity.  The abrasive (grit) size determines how much material is removed by 

the SiC paper. The abrasive standard FEPA (Federation of European 

Producers of Abrasives) denotes a letter P after the abrasive size, a larger size 

removes less material (finer paper).  Water is used as lubricant during grinding 

(wet grinding) to carry debris away.  Polishing involves the removal of material 

on a microstructure level, using a polishing cloth and slurry of alumina 

(aluminium oxide) suspension containing finer abrasive particles.  To create a 

smooth and shiny surface it is important to change polishing cloths between 

different alumina suspensions. Natural or synthetic silk cloths come in different 

forms and have the fastest removal rates. 
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3.2.1.2.1 Apparatus  

 

Buehler Metaserv automated grinder/polisher (Figure 3.10) consists of a 

rotating head and a rotating wheel. The rotating head can operate in a 

clockwise or counter clockwise direction.  The wheel has a rotational speed 

between 25 to 300 revolutions per min (rpm) this is user controlled.  

Interchangeable 8 inch platens/disks can be placed on the wheel to 

accommodate for the silicon carbide paper or polishing pads.  An adjustable 

pneumatic force creates downward motion of the rotating head; this is indicated 

in lbf on the pressure gauge with a maximum value of 60 lbf (266.89 N).  There 

is a small water supply to the rotating platens, the release of water is user 

controlled.  There is an option to have a timer controlled cycle.  A central force 

specimen holder was used to hold three 40 mm specimens at one time.  It is 

best to fill the circular cavities with three specimens, with the same hardness to 

create an even pressure distribution each time the procedure is carried out.  

 

 

Figure 3.10 Buehler Metaserv automated grinder/polisher 
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Figure 3.11 Platen and specimen holder 
 
 

3.2.1.2.2 Procedure 

 

After each step the specimen holder is removed and the specimens are rinsed 

with distilled water to remove debris and dirt.  It is important to study the 

samples using optical microscopy at x100 magnification at the end of each step 

to determine if enough material has been removed (fibres are visible).  More 

time may be required to grind and polish the sample if the sample area 

increases.  Table 3.4 to Table 3. 7 indicate the operating parameters to carry 

out each step.   

 

SiC paper (Ø 8 inch) P 600 

Lubricant Wet Grinding (water on) 

Wheel speed 300 rpm 

Force 8 lb (35.6 N) 

Time 2 minutes 

Table 3.4 Rough grind parameters 
 

SiC paper (Ø 8 inch) P 800 

Lubricant Wet Grinding (water on) 

Wheel speed 300 rpm 

Force 8 lb (35.6N) 

Time 4 minutes 

Table 3.5 Fine Grind parameters 
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Polishing cloth 

(Ø 8 inch) 
Buehler Texmet 1000 

Lubricant 

(spread over cloth) 

1 μm alumina suspension 

Diluted with distilled water 

ratio (1:5) 

Wheel speed 150 rpm 

Force 10 lb (44.5 N) 

Time 15 minutes 

Table 3.6 Rough Polish parameters 
 

Polishing Cloth 

(Ø 8 inch) 

Buehler Soft, synthetic 

MicroCloth 

Lubricant 

(spread over cloth) 

0.3 μm alumina suspension 

Diluted with distilled water 

ratio (1:5) 

Wheel speed 150 rpm 

Force 6 lb (26.7 N) 

Time 15 minutes 

Table 3. 7 Fine Polish parameters 

 

3.2.1.3 Etching Sample 

 

The polished sample is investigated under an optical microscope although the 

fibres and matrix can be seen; there is difficulty in distinguishing between the 

glass fibres and matrix as a result of the similar contrast.  To overcome this 

problem the sample is etched in an oxygen rich environment; plasma etching is 

the most preferable method of etching thermoplastic glass fibre composites 

(Hine and Duckett, 2004 and Valez-Garcia, 2012).  Energised oxygen ions 

bombard the polymer surface removing < 1 mm of material (Egitto, 1990).  

Etching creates a rough surface this gives a good contrast between the fibres 

and matrix.   
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3.2.1.3.1 Apparatus 

 

Edwards Sputter Coater/Etcher - S150B (Figure 3.12) was used to etch the 

samples. The samples are placed into a glass chamber with 150 mm dia. and 

115 mm high.  The lid of the chamber has an electrode comprising of a platinum 

60 mm diameter target.  The coater is connected to an oxygen gas cylinder; a 

built in vacuum pump draws the oxygen into the chamber.  The vacuum 

pressure is regulated using a pressure gauge with maximum pressure of 5 mbar.  

High voltage is supplied to the electrode this is user controlled, the current and 

voltage range from 0 -100 mA and 0 - 2.5 kV.  

 

 

Figure 3.12 Sputter Coater/Etcher 

 

3.2.1.3.2 Procedure 

 

One sample should be placed into the glass chamber to ensure plasma etching 

is even, the region of interest should be facing the lid.  The following steps are 

taken to etch polymer from the surface. 

1. The lid is tightly closed to prevent any leaks.   

2. The valves are closed and the RP (roughing pump) button is pressed to 

create a vacuum in the chamber.   

3. Open the main valve (counter-clockwise) on the oxygen cylinder to a 

pressure of 0.8 atm (atmosphere).   
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4. Flush the chamber with oxygen several times and gradually turning the 

pressure control until pressure rises to 0.2 atmosphere.   

5. Press the HT button use the pressure control to set the HT (high tension) 

to 1 kV (voltage) and 50 mA (current).   

6. A white glow strikes the chamber once the oxygen ratio is correct (purple 

glow donates excessive amounts of nitrogen).  The sample etching time 

for PA6 and PP samples was 15 minutes; this gives enough time for the 

matrix to degrade.   

 

Figure 3.13 shows a clear difference in an etched and non-etched sample, the 

dark background allows the image analyser to detect the fibres.   

 

 

Figure 3.13 Optical images of glass fibre sample before and after etch 

  

3.2.2 Fibre Images 

 

The samples are analysed using an Olympus BX41 reflective optical 

microscope with x20 objective power and x2.5 eye piece.  The microscope is 

mounted with a Prior Scientific XY translation stage and autofocus unit.  To gain 

suitable images of the samples a Sony square pixel CCD camera is mounted on 

top of the Olympus camera adapter attached to the microscope.  Figure 3.14 

shows the schematic of the automatic image analyser system and the layout of 

the microscope unit.  As a result of pixilation and lack of detail an x12.5 

magnification power will not provide suitable images to process at a later stage.  

The magnification was increased to x50 magnification to capture accurate 



64 
 

elliptical parameters for each fibre.  This magnification produces an image field 

view of 560 µm in the x direction and 430 µm in the y direction example of one 

frame is shown in Figure 3.15. 

 

 

Figure 3.14 Schematic and image showing functions of image analysis system 

 

The output of the camera is to a computer as there is a clear difference 

between the bright fibres and dark matrix; primary objects are isolated using a 

threshold technique.  To compress the data two possible grey levels are 

associated on each digitized frame.  The threshold is set such that a value 

above this is a fibre pixel and below is recognized as the matrix (Hine and 

Ducket, 2004).  Elliptical parameters are found for every group of pixels 

recognised as a fibre.  During processing the fit to each ellipse is shown by an 

ellipse outline example of a live image is shown in Figure 3.15.   

 

 

Figure 3.15 Recognition of bright fibres during image analysis 
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The threshold was systematically altered from pixel intensity of 150 to 210.  An 

image is built up for large areas, through a series of stage movements and 

image captures using a computer controlled XY stage.  Images are saved in the 

memory as the stage moves through frames.  The number of frames in x and y 

direction are dependent on the magnification and region of interest.  For 

example a 3 x 3 area (Figure 3.16) at x50 magnification is equal to 1.68 mm in 

the x direction and 1.29 mm in the y direction.  An autofocus algorithm is 

included this ensures the sample remains in focus during image capture.   

 

 

Figure 3.16 FOD Image analysed as 3 x 3 frames 

 

 

It is possible that some fibre images will overlap the edge of the current field of 

view (Figure 3.17).  The probability of overlapping increases with the presence 

of long glass fibres, which could cross up to 3 frames if the fibre is flat in the 

measurement plane.  These partial fibre images on the edge must be 

reconstructed if the elliptical measurements are to be achieved.  The image 

analysis stores data on the partial image until the image sort process 

recognises the next part of the partial image within adjacent frames with the 

same central coordinates.  The data for each complete particle/ellipse is stored 

in a file the next step is to analyse the data. 
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Figure 3.17 Overlap area and an example of overlap in x50 mag LGF sample 

 

 

3.2.3 Processing Images 

3.2.3.1 Orientation Calculation 

 

In processing the images, the data characterising all the ellipses passes 

through an algorithm which calculates the angles of orientation.  The out of 

plane angle is theta (Equation 3.1) is determined from the elliptical footprint 

shown in Figure 3.18.  The measurements represent the semi-major axis length 

a, and semi-minor axis length b respectively. 

 

 

 

 Figure 3.18 Description of elliptical footprint 
 
 

𝜃 =  cos−1 (
𝑏

𝑎
) 

3.1 

X

 

Y
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A problem with 2-d polished surface is that there is an 180ᴼ ambiguity in the 

angle to the section normal to the axis 3 Figure 3.19.  The only way to 

determine this is to scan the sample at relative displacements through the 

thickness making sure that the position remains the same.  Some researchers 

propose a method which derives a 3-d FOD by combining data from orthogonal 

plane sections (Zhu et al., 1997).  Although it would be interesting to know the 

ambiguity in the in-plane angle the exercise of combining data from orthogonal 

planes is very time consuming and it is outside the scope of this study.   

 

 

Figure 3.19 Two possible fibre orientations based on the same elliptical cross-
section 

 

 

3.2.3.2 ANALYSE 

 

Analysis of data is carried out in "ANALYSE" software developed by Davidson, 

(1993).  The image analyser stores all the information from one complete scan 

into an assigned folder.  The information stored for each particle/ellipse during 

the scan includes; the central co-ordinates, semi-minor (a), semi-major (b), 

theta angle, phi angle and total number of pixels for each particle.  Once the 

files are extracted the distribution for each ellipse angle (θ and φ) and length 

(semi-minor and major) (pixels) is displayed as shown in Figure 3.20.           
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Figure 3.20 Example of data gathered from the scan in ANALYSE before filter 

 

 

Although the samples are prepared by polishing there may be some redundant 

particles present including, fibre fragments, build up of debris on the surface of 

the sample as shown in Figure 3.21.  This unwanted data is easily removed by 

defining upper and lower limits for the semi-minor length in pixels and a fit factor 

depending on the angle theta.  The semi-minor axis length distribution has two 

tails as shown in Figure 3.20.  The distribution under the tail to the left 

represents small fragments and the distribution under the tail to the right 

represents merged fibres.  In this example choosing a minimum value of 11 and 

a maximum value of 20 will remove any small fragments and merged fibres.  

Example of a merged fibre and fragment is shown in Figure 3.21.   

 

 

Figure 3.21 Example of particles recognised during live image process 
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Each particle is fitted with an ellipse even if the shape of the particle does not 

correspond to the shape of an ellipse.  The difference between the computer 

reduced area and the total number of pixels for each particle (fit factor) must be 

less than 5% to accept the particle.  The fit factor in (Equation 3.2) found with 

the semi-minor axis length (a), semi-major axis length (b) and the total number 

of pixels.  Choosing a fit factor of 0.05 (5%) will remove particles including holes, 

fragments, incomplete or poorly fitted fibres as shown in Figure 3.21.  A long 

fibre as shown in Figure 3.21 could be disregarded as a poorly fitted fibre by the 

fit factor calculation.  If the fibre is very long and lying in the plane of 

measurement the angle theta is usually above 80 degrees.  To overcome this 

problem and to keep the long fibres in the orientation calculation the fit factor 

condition is declined if the angle theta for the particle is above 80 degrees.   

 

 

Fit Factor =
(Total number of pixles −  πab)

(Total number of pixels)
 

3.2 

 

 

3.2.3.3 Calculation of orientation averages 

 

Once the raw data has been processed it can then be used to describe an 

orientation distribution using the second order tensor system.  The Leeds FOD 

system calculates the orientation tensor components using the following 

relations (Bay and Tucker, 1992).     

 

𝑎𝑥𝑥 = 〈sin2θcos2ϕ〉 

 

3. 3 

𝑎𝑥𝑦 = 𝑎𝑦𝑥 = 〈sin2θ cos ϕ sinϕ〉 

 

3.4 

𝑎𝑥𝑧 = 𝑎𝑧𝑥 = 〈sinθ cos θ sinϕ〉 

 

3. 5 

𝑎𝑦𝑦 = 〈sin2θsin2ϕ〉 

 

3. 6 

𝑎𝑦𝑧 = 𝑎𝑧𝑦 = 〈sinθ cos θ sinϕ〉 

 

3. 7 
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𝑎𝑧𝑧 = 〈cos2θ〉 3. 8 

 

The calculated average orientation tensor in each axis is output in the form of a 

graph or contour plot as shown Figure 3.22.  The plots represent the FOD over 

a number of strips through thickness and as this number increase the number of 

data points increase.   The data from the graph is extracted and taken to Excel 

for further evaluation.   

 

The angled brackets relates to the average taken over every fibre in the sample 

area.  The 180° ambiguity in phi means that ayz and axz terms are much more 

susceptible to errors.  Therefore an accurate orientation may be given by 

considering the remaining terms. 

 

 

Figure 3.22 Output of FOD data in ANALYSE 
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3.3 Fibre Length Distribution Measurement 

 

Over recent years fibre length measurements have been taken from pyrolised 

composite specimens (Vaxman and Narkis, 1988).  After matrix removal it is 

important to disperse the fibres preferably without physical contact.  It is 

common to disperse fibres extracted from SGF injection moulded specimens in 

a glass dish containing water (Fu et al., 2000).  Dispersion of fibres extracted 

from LGF injection moulded specimens is much more difficult as fibres are 

bundled together.  Research carried out by Kunc et al., (2007) discusses 

successful dispersion of long glass and carbon fibres on either a glass dish or 

laminating film.   

 

Capturing 2-d images by the means of optical microscopy is a typical method of 

measuring the fibre length of short fibres (Fu et al., 2000, 2002).  However this 

method is not suitable to capture long fibres, with lengths > 1 mm which could 

extend beyond the field of view at a higher magnification.  Negating long fibres 

would bias the resultant length distribution and increase the level of error.  Dahl 

et al., (2011) and Kunc et al., (2007) have found the use of a scanner to be an 

effective method to capture dispersed long and short fibres.  Alternative 

methods to this include manual stitching of 2-d images or the automated 

reflective microscopy system; this was controlled by a PC and was capable of 

measuring the length of thousands of fibres over a large area (Davidson, 1999). 

The semi-automated FLD system present at the University of Bradford captures 

high resolution images of fibres with an A3 Epson Expression 10000XL Pro 

scanner with maximum optical resolution of 9600dpi (dots per inch).  The 

images are then processed with an open source software package (ImageJ), 

using an in-house algorithm to measure the length of each straight fibre. 

 

3.3.1 Matrix removal 

 

Fibre length measurements are taken from the raw material, section of interests 

isolated from the component and extrudate within the plasticating phase 

(without injection) as shown in Figure 3.23.  The specimen is enclosed in 

aluminium sheet, where the dimensions correspond to the shape of the cut 
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specimen.  In order to allow expansion of long fibres during burn off there is a 

slight gap left between the aluminium sheet and the specimen.  The specimen 

is then placed in a vacuum oven at 480ᴼC for 5 hours.  The duration and 

environment in the oven will allow complete matrix removal leaving behind an 

entangled mass of fibres. 

 

 

 

Figure 3.23 Samples isolated in vacuum oven 

 

 

3.3.2 Fibre Images  

 

There are two stages in creating suitable fibre images for processing, the first 

involves dispersing the fibres onto thin film and the second is capturing these 

images.  Long glass fibres are susceptible to breakage therefore care has to be 

taken while dispersing.  The burn-off contains an entangled mass of fibres and 

a small volume of very short fibres which have fallen to the bottom.  The 

entangled mass of fibres is taken and placed onto a 215 x 266 mm transparent 

film 0.05 mm thick.  To avoid physical contact with fibres a small hand held 

suction pump uses air to separate and disperse the fibres.  This process is 

repeated until all the fibres are spread out sufficiently across a number of films if 

required.  In some cases it is difficult to separate the fibres at the core because 

curved long fibres increasingly intertwined.  In this scenario mechanical action is 

required to gently loosen the fibres, under a magnifying glass, using a thin 

bristle from a brush or a thin wooden stick.  In the best possible situation fibres 

do not overlap but this cannot be avoided with a large number.  The sample is 
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spread out over a number of films to reduce fibres crossing over.  An example 

of ineffective fibre arrangement for image analysis is shown in Figure 3.28. 

   

 

Figure 3.24 Cross-section schematic of the fibre length image system 

 

 

Next step is to place the thin film onto the scanner table (Figure 3.24).  The 

glass surface of scanner table should be clean and free of any dust or scratches.  

The scanner is able to capture all the fibres at a high resolution.  The glass 

fibres are transparent this makes them difficult to capture if the scanner cover is 

in use during the scan.  Therefore the scanner cover is removed and the 

scanner is completely isolated by a 0.2 mm thick black fabric, creating a 

contrast between glass fibres and the transparent film.  Addition of any colour in 

the image is not necessary as this increases the size of the image.   The end 

result is an 8-bit gray-scale image with an 8 µm (3200 dpi resolution) pixel size.  

Example of a typical image in ImageJ is shown in Figure 3.25. 
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Figure 3.25 Example of fibre length image exported into ImageJ 

 

3.3.3 Processing Images   

3.3.3.1 Image filter 

 

Before the image is processed the appropriate scale needs to be set according 

to the resolution of the image.  A calibration piece was used to determine the 

distance of 1 pixel into mm.  If the scale is not set the distance will simply be 

measured in the units of pixels.  The image then goes through a series of 

manipulations, first the image is converted into a black and white (binary) image, 

where the fibres (high-aspect ratio) particles will be represented as long thin 

clusters of black pixels on white background.  The next step involves removing 

small particles like dust.  The fibre length of 0.02 mm was found to be the 

minimum length after investigating 3 different samples.  Once the user has input 

the value an algorithm detects the particles smaller than 0.02 mm and they are 

removed from the image.  Prior to applying the fibre length algorithm each 
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object in thinned down to a path of pixels, with a single pixel thickness 

(skeletonize), each fibre is described as a straight or curved line. 

 

3.3.3.2 Line Detection 

 

 

 

Figure 3.26 Thinned down image of straight glass fibres 
 

 

The algorithm automatically recognises the backbone of high-aspect ratio 

straight particles visible in digital images, where particles may cross each other 

shown Figure 3.26.  Hough transformation (Gonzalez, 1993) is a general 

technique employed to recognise lines within noisy images.  The Hough 

transform is a practical method adopted for this application, Equation 3.9 

represents an infinitely long straight line through x-y space using polar form.  

The relative difference between two lines (𝑟1, 𝜃1) and (𝑟2, 𝜃2) is denoted by ∆𝑟 

and ∆𝜃. 

 

 

𝑟 = 𝑥 cos(𝜃) +  𝑦 sin(𝜃)              0 ≤  𝜃 <  𝜋 3.9 

 



76 
 

 

Figure 3.27  Parametric representation of a straight line using the polar form 

 

 

Where 𝑟 is the perpendicular distance from the line to the origin (top-left corner 

of the image), and θ is the angle this perpendicular makes with the y-axis.  Each 

line is broken into smaller segments equal to 10 pixels, a line segment is a 

portion of a line that is bounded by a pair of distinct end points (x1, y1) and (x2, 

y2).  The algorithm uses a line-segment merging operation based on iteratively 

joining pairs of line-segments that have values of 𝑟  and θ, within specified 

values ∆𝑟  and ∆𝜃  whose endpoints are within a distance  𝑢.  Stating these 3 

conditions allows lines crossing to be recognised with low probability of false-

detection.  The algorithm continues to join lines; if all three conditions are met 

the algorithm does not stop until the line-segments are replaced by equivalent 

single straight segments.  The end-points of the new line should be the two 

original end-points.  Analysis is performed on detected lines, using the list of 

end-point coordinates to output fibre length distribution.  

 

The algorithm cannot distinguish between fibres which increasingly overlap and 

a curved fibre examples of these arrangements are shown in Figure 3.28.  The 

software will process each curved fibre as multiple straight line - segments, 

therefore each curved fibre is measured manually.  
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Figure 3.28 Example of curved fibres and ineffective arrangement of fibres 

 

ImageJ has a solution to measure curved lines using a segmented-line feature.  

This feature allows users to superimpose a curved line and record this 

additional measurement.  Figure 3.29 shows the image after semi-automatic 

analysis; the yellow lines denote a measured fibre.      

   

 

Figure 3.29 Example of fibre length image including manual measurements 

 

3.3.4 Analysis of Data 

 

The FLD data is output from the software and taken into excel for statistical 

analysis.  The raw data is represented as a fibre length distribution plot.  The 

minimum number, the maximum number, number average length (LN) 3.10, the 

weighted average length (Lw) 3.11 and number of measurements are the output.   



78 
 

LN =
∑ Li

n
 

 

3.10 

 

Lw =  
∑ Li

2

∑ Li
 

3.11 

 

 

The number average gives more emphasis to the shorter fibres as there are 

more in quantity, however long fibres exert a disproportionate influence on 

mechanical properties.  A method which one can attribute the relative 

importance of measurements in a given sample is to calculate a "weighted 

average". To give more emphasis to the long fibres an appropriate 

characteristic of "weighting factor" for these fibres should be determined.  A 

clear weighting factor is the weight of the fibres, but determining the weight of 

each fibre is not statistically possible.  An explicit mathematical derivation 

Equation 3.11 of the weighted average length is only based on the fibre length, 

where fibres have a constant diameter. 

 

Where Li is actual measured length of the fibre and n is the number of fibre 

length measurements.  Example of the LN and Lw calculation Equation 3.12 to 

3.13 using a real data set shown in Table 3.8. 

 

Number Length 

1 0.12 

2 0.29 

3 2.66 

4 1.95 

Table 3.8 Example of fibre length data 

  

 

LN =  
0.12 + 0.29 + 2.66 + 1.95

4
= 1.26 

 

3.12 

 

 

Lw =  
0.122 + 0.292 + 2.662 + 1.952

0.12 + 0.29 + 2.66 + 1.95
= 2.19 

3.13 
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3.4 Autodesk Simulation Moldflow Insight 

 

This section will outline the key details of how to create geometries, extract and 

analyse 2-d solver predictions in ASMI 2014.  A clear method of presenting the 

predicted and measured FOD and FLD data is described in this section. 

 

3.4.1 Creating Geometries  

3.4.1.1 Mid-plane 

 

Simple 2-d surfaces which approximate the sections in the actual geometries 

are created in ASMI 2014.  All 2-d geometries are made up of curves, 

boundaries and beams illustrated in Figure 3.30.  The curves give the outline of 

the geometry and the surface is initially made up of a boundary layer.  However 

for this study the boundary layer was constrained by nodes at locations in 

purple, these are the areas where data was extracted for both FLD and FOD 

predictions.  The relevant thickness is assigned to the collapsed surface and 

mesh.  The last step is to incorporate the runner or sprue system using the 

beam tool. 

 

 

Figure 3.30 Components of a mid-plane model created in ASMI 2014 
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3.4.1.2 Mesh 

 

The geometry is broken down into a mesh consisting of triangular elements 

before any analysis is carried out within ASMI 2014, example of this is shown in 

Section 4.3.1 Mesh Study.  Each triangular element is described by a list of 3 

nodes numbers which lie upon the element vertices.   

 

In ASMI 2014 the meshing process is semi -automated and requires small 

amounts of user input, more information on the mesh solvers can be found in 

Section 2.6.2 Geometric Solutions.  To generate a 2-d mesh a reasonable 

global edge length (mesh density) and the number of laminae (number of layers 

through thickness) are set.  The global edge length is important as it determines 

the average length of each edge within a triangular element.  As the global edge 

length decreases the mesh gets finer in theory this should enhance the 

prediction results.  The laminae (normalized thickness) are invisible layers 

which spilt across the part thickness (z-axis).  The relative accuracy and the 

number of data points across the thickness increase as the number of laminae 

increase.  The normalized coordinates of grid points are listed in (Figure 3.31) 

for 20 laminae. The normalized thickness zero is at the centre line and 1 is at 

the wall of the thickness. 

 

Figure 3.31 Schematic of normalized thickness and grid points 
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Once the mesh is created the software shows the amount of triangular elements 

the model consists of; more elements increase the complexity of the model and 

more calculations are processed by ASMI 2014.  To evaluate the effect edge 

length has on the prediction a review of 3 mesh densities were carried out on 

the mid-plane model of the centre gate disc examined edge lengths include; 0.5 

mm, 1 mm and 2 mm.  A comparison of the mesh densities is found in Section 

4.3.1 Mesh Study.  

 

 

(a)  

 

 

(b) 

Figure 3.32 (a) 2-d geometry of the 4 mm ribbed plaque (b) 2-d geometry of the 2 
mm centre gate. 

 

 

Each model consists of a single or multiple injection point. This is where the 

polymer injection would take place during the moulding process.  Next the 

analysis sequence is selected to get the necessary output.  This sequence 

mimics the injection moulding process, where the important stages of injection 

and packing occur.  The manufacturer and grade of material is selected from 

the material database.  The process settings allow the user to configure the 

injection moulding parameters, consisting of machine limitations and melt 

/mould surface temperature.  The injection time, pressure settings and other 

variables are specified according to machine setting.  Any changes to the fibre 

solver parameters are made through the settings, there is an option to select 

and change the variables within various models.   
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3.4.2 Extracting Predicted FOD  

 

There are different means to extract the FOD prediction for the 2-d geometry.  

The "settings" fibre solver parameters allow users to change coefficients within 

the model.  There is an option available to toggle between the FOD in the 

preferred axial direction.  The option allows users to view the fibre orientation 

distribution in the various tensor components i.e. XX, YY, ZZ.  This tool will be 

of an advantage to compare the FOD in the same axial direction as the 

experimental data.      

 

3.4.2.1 Prediction Models and Coefficients  

 

The SGF FOD prediction models (FT, MFT and RSC) and the long glass fibre 

prediction models (ARD -RSC and fibre breakage) are dependent on user 

defined coefficients.  Each model has default coefficients defined by Moldflow. 

Many coefficients were assessed to understand the effect each coefficient has 

on the prediction and to find the best possible combination for each model.    

 

3.4.2.1.1 Folgar Tucker Model  

 

Reference to Equation 2.13 the FT model, when the value of Dz = 1 the model 

is dependent on the parameter Ci.  Table 3.9 contains the various input 

parameters into the FT model. 

 

Model CI 

1 0.1 

2 0.01 

3 0.001 

4 0.0001 

5 0.00001 

Table 3.9 Input parameters FT model 
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 3.4.2.1.2 Modified Folgar Tucker Model  

 

Reference to Equation 2.15 the MFT model is dependent on both the Dz and Ci 

parameters.  Table 3.10 contains the various input parameters into the MFT 

model. 

 

Model DZ Ci Model DZ Ci 

1 0.8 0.1 11 0.4 0.1 

2 0.8 0.01 12 0.4 0.01 

3 0.8 0.001 13 0.4 0.001 

4 0.8 0.0001 14 0.4 0.0001 

5 0.8 0.00001 15 0.4 0.00001 

6 0.6 0.1 16 0.2 0.1 

7 0.6 0.01 17 0.2 0.01 

8 0.6 0.001 18 0.2 0.001 

9 0.6 0.0001 19 0.2 0.0001 

10 0.6 0.00001 20 0.2 0.00001 

Table 3.10 Input parameters MFT model 
 

 

3.4.2.1.3 RSC Model  

 

Reference to Equation 2.16 the RSC model is dependent on both the K and Ci 

parameters.  Table 3.11 contains the various input parameters into the RSC 

model. 
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Model K Ci Model K Ci Model K Ci 

1 0.8 0.1 21 0.1 0.1 41 0.00001 0.1 

2 0.8 0.01 22 0.1 0.01 42 0.00001 0.01 

3 0.8 0.001 23 0.1 0.001 43 0.00001 0.001 

4 0.8 0.0001 24 0.1 0.0001 44 0.00001 0.0001 

5 0.8 0.00001 25 0.1 0.00001 45 0.00001 0.00001 

6 0.6 0.1 26 0.01 0.1 

 

7 0.6 0.01 27 0.01 0.01 

8 0.6 0.001 28 0.01 0.001 

9 0.6 0.0001 29 0.01 0.0001 

10 0.6 0.00001 30 0.01 0.00001 

11 0.4 0.1 31 0.001 0.1 

12 0.4 0.01 32 0.001 0.01 

13 0.4 0.001 33 0.001 0.001 

14 0.4 0.0001 34 0.001 0.0001 

15 0.4 0.00001 35 0.001 0.00001 

16 0.2 0.1 36 0.0001 0.1 

17 0.2 0.01 37 0.0001 0.01 

18 0.2 0.001 38 0.0001 0.001 

19 0.2 0.0001 39 0.0001 0.0001 

20 0.2 0.00001 40 0.0001 0.00001 

Table 3.11 Input parameter RSC model 

 

3.4.2.1.4 ARD-RSC Model  

 

Reference to 2.19 the ARD-RSC model is dependent on both the K factor and 

the 5 scalar parameters.  The 5 scalar parameters are set at default values and 

the various K parameters input into the ARD-RSC model are in Table 3.12. 

 

Model K Model K 

1 0.01 5 0.6 

2 0.05 6 0.8 

3 0.2 7 1.0 

4 0.4   

Table 3.12 Input parameters ARD-RSC model 
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3.4.2.2 Translation of data 

 

Data for FOD 2-d analysis are output in the form of patran (.ele) text file for 

each cavity laminate (normalized thickness) within each element.  The files are 

simple data files containing element number and the five independent 

orientation tensor components for each element in the model.  The orientation 

from the files is not ready for processing immediately as it requires some 

conversion in excel.  The average tensor component for each element is 

converted into an ellipse to describe the orientation angle over a given position.  

The definition of orientation is found in Section 3.2.3.1 Orientation Calculation.  

This process is repeated for the selected elements through the laminate 

thickness (Figure 3.33).  This process is made easier using a macro which 

repeats each step for each laminate. 

   

 

Figure 3.33 Conversion of predicted orientation from Moldflow to defined 
orientation angles for specified elements 

 

 

Converting the average orientation tensors into orientation angles and ellipses 

means the data can be processed through "ANALYSE".   This software was 

used to process the measured data from the fibre orientation distribution image 

analysis.  The software calculates the orientation tensors and converts this 
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information into relevant plots, more information on how the software functions 

is found in Section 3.2.3.2 ANALYSE 

 

3.4.3 Extracting Predicted FLD  

3.4.3.1 Breakage Model  

 

Referencing equation 2.20, the breakage model is dependent on 3 scalar 

parameters: Cb, Dg and S.  The default values of each parameter as follow Cb = 

0.002, Dg = 3 and S = 0.25.  For this study the coefficients remain at default for 

all fibre breakage predictions.  The effect each coefficient has on the prediction 

remains an area for further study. 

 

The fibre breakage model is able to determine the fibre breakage, when a long 

glass fibre material datasheet is incorporated into ASMI 2014.  The initial fibre 

length and aspect ratio values are input into the datasheet if they are not 

already present. The model gives the user the flexibility to change the fibre 

length distribution at inlet.  The default settings run the model with the initial 12 

mm long pellet length.  However, in this study FLD measurements are taken 

from the extrudate, sprue and at two locations from the cavity.  The FLD 

measurements taken from the sprue and extrudate are input into the fibre 

breakage model as part of the initial inlet setup.  Table 3.13 shows an example 

of the measured FLD, taken from the 3 mm nozzle extrudate (refer to Section 

3.1.3.2 Modifications) and input into AMSI.  A comparison is made between the 

predicted breakage and the measured fibre length in the cavity. 
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Number Length 
Distribution 

(%) 
Number Length 

Distribution 

(%) 

1 0 0 15 6.75 1.17 

2 0.25 7.98 16 7.25 1.11 

3 0.75 19.36 17 7.75 0.92 

4 1.25 21.63 18 8.25 0.71 

5 1.75 11.69 19 8.75 0.84 

6 2.25 7.26 20 9.25 1.14 

7 2.75 4.93 21 9.75 0.85 

8 3.25 4.26 22 10.25 0.64 

9 3.75 3.28 23 10.75 0.7 

10 4.25 2.79 24 11.25 0.64 

11 4.75 2.15 25 11.75 0.47 

12 5.25 1.69 26 12.25 0.69 

13 5.75 1.57 27 12.75 0.32 

14 6.25 1.23    

Table 3.13 Example of measured LGF extrudate FLD input into ASMI 2014  

 

It is possible to output the overall FLD prediction through the thickness at any 

area.  If the fibre length distribution is required over a given area, individual sets 

of data (15 nodes per dataset) are taken into excel and an average is taken 

over each node (Figure 3.34).   

 

 

Figure 3.34 A group of nodes selected for FLD data extraction 
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3.4.4 Representation of Data 

 

There are different ways of presenting the FOD and FLD data, this section 

introduces the techniques which will be adopted into the results chapter. 

 

3.4.4.1 Fibre Orientation Distribution 

 

A contour plot can indicate results using either greyscale or a range of colours, 

however sometimes the data can be presented more clearly through X-Y plots 

(Figure 3.35).  The X-Y plot illustrates position through sample thickness versus 

average fibre orientation.  It is more practical if the X-Y plot is in one direction 

and through a section as this will clearly illustrate levels of orientation through 

the part.   

 

A typical FOD X-Y plot consists of three regions skin, shell and core.  In the 

shell layer the average orientation of fibres is parallel to the direction of flow, the 

core is identified as cos2θ below 0.5, fibres oriented random in plane, and fibres 

at the skin layer have a marginally lower cos2θ compared to the shell layer (Bay 

and Tucker, 1992).  Each layer is easily distinguished for example the markings 

above the graph in Figure 3.35 show where each layer starts and finishes, the 

thickness of each layer as follows; 0.35 mm thick skin layer, 1.1 mm thick shell 

layer and 1 mm thick core layer for a 4 mm thick plate.   

 

Results from a number of experiments or simulation prediction are plot on to the 

same set of axis.  The disadvantage of using this method to display FOD data is 

that it can only illustrate the average distribution across a section of elements in 

a defined area. 
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Figure 3.35 Example of a typical average X-Y FOD plot through the thickness 

 

3.4.4.2 Fibre Length Distribution 

 

The FLD data is presented using distribution plots fibre length distribution in % 

against the fibre length in mm (Figure 3.36).  It is possible to have number of 

results on the same plot from both measured and predicted data.  It is good 

practice to adopt the same frequency intervals (bins) to get a good comparison 

between the measured and predicted.   
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Figure 3.36 Example of the FLD distribution plot 

  

 

3.5 Summary 

 

This chapter outlines the material, experimental and simulation techniques 

which are part of this study.  This study will focus on injection moulded fan gate 

and centre-gate SGF PA6 and LGF PP centre gate geometry with alternate 

dimensions.  Clear guidelines were given by SABIC® to process the LGF 

STAMAX material.  For this study the FOD analysis on LGF and SGF 

components was carried out on a recognized system available at the University 

of Leeds.  The samples were prepared using polishing techniques before they 

were analysed using the optical reflective microscopy.  Fibre length analysis 

was carried out on the LGF raw material, extrudate and components.  Fibre 

length measurements were carried out using a semi-automatic system, where 

straight fibres were measured using an in-house algorithm but curved fibres 

were measured manually.   

 

The 2-d geometry solutions were created to evaluate the fibre orientation and 

breakage models in ASMI 2014.  Geometries with different thickness are 
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investigated to get a good overview of the limitations for each fibre prediction.  

To evaluate a model the correct measured data is required; this data is easily 

obtained using the measurement procedures in this chapter.  The models under 

investigation include the fibre breakage, short glass fibre (FT, MFT and the RSC) 

and the ARD-RSC long glass fibre orientation more information on these is 

found in Section 2.7 Fibre Prediction Model.  The measured FOD and FLD data 

is vital to assess the accuracy and limitations of the fibre prediction models, 

including observation of essential coefficients which can influence the prediction.   
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Chapter 4 Short Glass Fibre Results 

 

4.1 Introduction 

 

The work carried out in this study was a continuation of previous collaborative 

research carried out by Whiteside, (2001) and Hine et al., (2004 and 2005).  

Initial investigation was carried out on the injection moulded 4 mm thick ribbed 

plaque fan gate geometry by Whiteside, (2001).  At a later stage Hine et al., 

(2004) examined the 2 mm thick fan gate geometry to study the FOD within a 

thick plaque.  The measured data for the 2 mm and 4 mm end-gate geometries 

was inherited from these studies.  A previous study carried out by Bubb, 2001 

suggests there is an image analysis measurement error of ±  0.02 for any 

second order orientation tensor.  His study was carried out using the same 

measurement technique while investigating SGF 2 mm and 4 mm thick plaques.  

The measured SGF FOD for the 2 mm thick plaque and the 1 mm thick centre 

gate geometry is currently being used to validate the ASMI 2014 fibre prediction 

models for both 2-d and 3-d solvers.  Through the current and next chapter 

constant mention is made to the skin, shell and core layers within the FOD 

distribution plots.  Definition of each layer is given in the previous chapter 

Section 3.4.4.1 Fibre Orientation Distribution. 

 

4.1.1 Fan Gate 

 

The classical Folgar-Tucker (FT), modified FT and RSC models have been 

applied to the 2 mm and 4 mm plates in mid-plane analyses, enhanced 

solutions were found for individual models by comparing fibre orientation 

distribution at locations A (16.5 mm from flow path) and B (67 mm from flow 

path) shown below in Figure 4.1.   

 

Various Dz (significance of the randomizing coefficient) and (coefficient of 

interaction) Ci values are examined for both the classic/modified Folgar-Tucker 

(2.13 and 2.15) shell model.  The findings from the 2 mm plate were then used 
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to tailor the solutions for the different thickness and geometries.  The examined 

parameters are specified in Section 3.4.2 Extracting Predicted FOD. 

 

Figure 4.1 Diagram showing experiment locations A and B for end gate 
geometries 

 

Figure 4.2 illustrates the filling pattern within thin and thick fan gate geometries. 

Within the thin geometry polymer enters from the sprue and the flow expands 

through the part.  This type of shear flow (through the thickness) usually creates 

a skin/shell/core formation where the fibres at the skin and shell are aligned in 

the direction of polymer flow and the fibres at the mid-plane align perpendicular 

to the direction of flow.  Previous research carried out by Tucker, (2013) and 

Whiteside, (2001) confirms that an expansion flow comes in through the gate 

within a thick plaque. 

 

 

Figure 4.2 Diagram showing flow of polymer through thin and thick fan gate 
geometry 

 

4.1.2 Centre Gate  

 

The classical Folgar-Tucker (FT), modified FT and RSC models have been 

applied to the 1, 2 and 4 mm thick base centre gate geometries in mid-plane 

analyses, enhanced solutions were found for individual models by comparing 

fibre orientation distribution from location 3 locations along the radial flow path.  

 

67 
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They are shown below in Figure 4.3; Location A (16 mm from the sprue); B (25 

mm from the sprue); and C (36 mm from the sprue).  

 

 

Figure 4.3 Diagram showing experiment locations A, B and C for centre gate 

 

The filling pattern through the centre gate geometry during injection moulding is 

observed in Figure 4.4.  The short shots show the polymer melt comes through 

the sprue located in the centre and fills the cavity in a radial form.  This creates 

significant in-plane stretching at the base, which causes the fibres at the core to 

align in the principal stretching direction (Bay and Tucker, 1992).  The gap-wise 

shearing causes the fibres at the shell to align in the direction of flow.   

  

 

 

Figure 4.4 Filling and orientation pattern of centre gate geometry 
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4.2 Experiment  

 

4.2.1 2 mm Thick Plate Measured 

 

The FOD distribution does not change drastically at the skin and shell within the 

2 mm end geometry as shown between location A and B in Figure 4.5.  At 

location A the width of the core is 0.3 mm.  However there is a change in the 

average orientation (cos2θ) at the core further on in the flow (location B).  There 

is no apparent core at location B; hence the value of cos2θ does not go below 

0.5.  The change within the core is clear in the contour plots in Figure 4.6, 

where 1.0 on the scale refers to fibres aligned parallel to the flow and 0 refers to 

the fibres aligned perpendicular to the flow direction.  A discontinuous core is 

seen in the contour plot for location B, although this is contradicting Figure 4.6 

there is a logical argument to explain the difference.  The average orientation is 

taken across the width of each strip and the majority of the middle layer is highly 

oriented in the direction of flow.  As a result the Figure 4.5 is the average 

orientation across the strip.  

 

 

Figure 4.5 Measured average FOD within 2 mm plate at location A and B 
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Figure 4.6 Contour plots of 2 mm plate at location A and B 

 

4.2.2 4 mm Thick Ribbed Plate Experiment 

 

The average FOD within the 4 mm plate changes at the skin, shell and core 

layers from position A to B (Figure 4.7).  The fibres in the skin and shell layers 

become more aligned in the direction of flow at location B, with a cos2θ of 0.65 

at the shell layer.  This change is clear in the contour plots in Figure 4.8.  

Although the thickness of the core reduces from 2.20 mm at location A to 1 mm 

at location B, cos2θ remains at 0.2 where the fibres are aligned transverse to 

the flow direction.  

  

 

Figure 4.7 Measured average FOD within 4 mm plate at location A and B 
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Figure 4.8 Contour plots of 4 mm plate at location A and B 

 

4.2.3 Variation  

 

The FOD will vary from sample to sample therefore it is important to assess the 

overall relative difference within the centre gate components.  Fibre orientation 

measurements were taken from two 1 mm thick SGF centre gate samples along 

the same flow path.  These tests were carried out on the same batch of injection 

moulded samples.  Figure 4.9 shows the data for both samples at location A, B 

and C.  To increase the data points or variation the FOD through thickness was 

split over 16 strips.  A better comparison can be made between the two 

samples with more data points.  Table 4.1 shows the standard deviation at each 

location and the average standard deviation.   
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Figure 4.9 The measured average FOD from sample 1 and 2 taken from the SGF 1 

mm thick centre gate at location A, B and C 

 

Location A Location B Location C Average 

0.06 0.078 0.065 0.068 

Table 4.1 Standard deviation between sample 1 and 2 at location A, B and C 
 

 

A greater variation is found at location B compared to location A and C.  The 

variation at each location occurs within the shell of the sample and the 

orientation within the core is the same.  The increases in variation could be a 

result of the slight deviation in positioning the sample.  The average variation of 

± 0.07 in FOD is small but this includes an error in measurement of ± 0.02 

which is a result of the image analysis system (Bubb, 2001).  The remaining 

± 0.05 random variation can be attributed to the variation in the injection 

moulding process conditions. 

 



99 
 

The number of strips dictates the random variation seen within the sample.  

Reducing the number of strips is one method of reducing this random variation. 

Decreasing the number of strips will average a larger number of fibres.  The 

FOD data for the 1 mm thick centre gate shown at a later stage is spread over 

12 strips.  The example in Figure 4.10 at location A shows the difference 

between the FOD spread over 16 strips and 12 strips.  Some of the random 

variation has been removed at the skin but the orientation and width of the core 

remains the same.  The measurements with less variation make a better 

comparison with the predicted FOD. 

 

 

Figure 4.10 The measured average FOD taken over 16 and 12 strips at location A 
for 1 mm thick centre gate 
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4.2.4 1 mm Thick Centre Gate Experiment 

 

Polymer fills the thin centre gate cavity at high shear this causes the majority of 

fibres to align parallel to the direction of flow this is illustrated by average FOD 

at location C Figure 4.11.  As a result of high shear the core represents 1/5 of 

the total thickness of the sample at locations A, B and C with fibres aligned 

perpendicular to the flow direction with cos2θ below 0.1.  The difference in the 

thickness of each layer is clearly shown in the contour plots of FOD through 

thickness in Figure 4.12.  The average orientation at location A, B and C is very 

similar in respect to the ±  0.07 variation.  The effect of in-plane stretching 

decreases towards the end of the flow path and shearing increases at location 

C, causing the fibres to align parallel to the direction of flow within the shell 

layers where cos2θ reaches above 0.8.  The orientation at location C within the 

shell layers is parallel to the direction flow compared to location B this is clearly 

illustrated in Figure 4.12.  

 

 

Figure 4.11 Measured average FOD within 1 mm centre gate at location A, B 
and C 
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Figure 4.12 Contour plots of 1 mm centre gate at location A, B and C 

 

4.2.5 2 mm Thick Centre Gate Experiment 

 

The average FOD does not vary across the radial path within the 2 mm centre 

gate geometry Figure 4.13.  The average orientation at the skin is between 0.6 - 

0.68 and above 0.8 for the shell layer.  The only noticeable change is in the 

width of the core from location B to C.  The thickness of the core reduces from 1 

mm at location B to a minimum of 0.8 mm at location C, this change is apparent 

in the contour plot Figure 4.14.  Although there is less in-plane stretching 

towards the end of the flow path the cos2θ of the fibres at the core for all 

locations still remains below 0.1. 
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Figure 4.13 Measured average FOD within 2 mm centre gate at location A, B 
and C 

 

Figure 4.14 Contour plots of 2 mm centre gate at location A, B and C 
 

 

4.2.6 4 mm Thick Centre Gate Experiment 

 

In Figure 4.15 there is a similar trend in the average FOD through the radial flow 

path (locations A, B and C) within the 4 mm thick centre gate.  The core 

represents 3 mm of the overall thickness of the sample, as a result the skin and 
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shell layers are thin with fibres aligned parallel to the flow direction with cos2θ 

above 0.7.  At all locations the fibres are oriented perpendicular to the direction 

of flow with a cos2θ of below 0.2.  The large area representing the highly 

transverse core is clearly illustrated in the contour plots in Figure 4.16. 

 

 

Figure 4.15 Measured average FOD within 4 mm centre gate at location A, B 
and C 

 

 

Figure 4.16 Contour plots of 4 mm centre gate at location A, B and C 
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4.2.7 Evaluation 

 

It is apparent from Figure 4.5 to Figure 4.16 that the average FOD varies with 

thickness and geometry.  Comparison is made between some data sets to 

investigate these changes.  

4.2.7.1 Influence of Geometry Thickness 

4.2.7.1.1 Fan-gate 

 

To examine the difference in average FOD within the fan gate geometries, as a 

result of thickness a comparison is made between data sets, the 2 mm and 4 

mm thick plaques in Figure 4.17 and Figure 4.18.  As the thickness of the 

geometry increases, cos2θ decreases at the skin and shell layers.  For example 

the alignment at the skin and shell reduces to around 0.65 and 0.62 in the 4 mm 

plaque compared to 0.79 and 0.81 in the 2 mm geometry at location B.  At 

location A there is a 1.90 mm difference between the core width of the 2 mm 

and 4 mm geometries.  The core is aligned perpendicular to the direction of flow 

with a cos2θ of 0.2 for the 4 mm plaque, compared to a potential random 

orientation within the core of the 2 mm plaque.  However at location B there no 

core observed for the 2 mm plaque compared to the 1 mm thick transverse core 

observed for the 4 mm plaque. 
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Figure 4.17 Measured average FOD 2 mm and 4 mm plates at location A 
 

 

Figure 4.18 Measured average FOD 2 mm and  4 mm plates at location B 
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4.2.7.1.2 Centre Gate 

 

The difference in the average FOD within the 1 mm, 2 mm and 4 mm centre 

gate geometries at location B is shown in Figure 4.19.  The average FOD at the 

shell layer and skin layer is similar for all three geometries.  However there is a 

significant change within the width of the core, which increases with increasing 

thickness.  Figure 4.19 represents the core width as a percentage of the actual 

width in mm.  Without taking the variation into consideration the actual core 

width for each centre gate component as follows; 0.25 mm width for the 1 mm 

geometry,  1 mm width for the 2 mm geometry and 3 mm thick for the 4 mm 

geometry.  The changes in the width illustrate the core layer represents a bigger 

proportion of the overall width as the sample thickness increases.  

 
 

 

Figure 4.19 Measured average FOD 1 mm, 2 mm and  4 mm centre gate at 
location B 
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4.2.7.2 Influence of Geometry  

 

Figure 4.20 and Figure 4.21 compare the FOD between the 2 mm and 4 mm 

plate and centre gate geometries, at the position closest to the end of the flow 

path in both geometries.  It is clear that the average FOD within the 2 mm plate 

is higher compared to a 2 mm centre gate.  The 2 mm centre gate consists of a 

highly transverse core layer with a 0.8 mm width.  The cos2θ within the shell 

layer is similar for both geometries in the 2 mm case but this is not case in the 4 

mm thick geometries.  There is a maximum 2 mm difference between the core 

width of the 4 mm centre gate and plaque Figure 4.21.  This illustrates the core 

is wider in a thick centre gate component compared to a thick plaque.    

 
 

 

Figure 4.20 Measured average FOD 2 mm thick centre gate and end gate 
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Figure 4.21 Measured average FOD 4 mm thick centre gate and end gate 
 
 

4.2.7.3 Summary 

 

The average FOD within the different components show a core, skin and shell 

layer formation.  The skin layer has a lower orientation compared to the shell 

layer, as the skin is already frozen before shearing flow is able to align fibres in 

the direction of flow.  The FOD within the centre gate disc is independent and 

does not change significantly after 16 mm along the radial flow path; however 

the same cannot be said for the end gate geometries.  Within a thin centre gate 

cavity (1 mm) high shearing aligns fibres parallel to the direction of flow, as the 

thickness of the part increases the core width increases.  However the average 

FOD reduces at the skin, shell and core layers as the thickness of the plaque 

increases.  The change in the fan-gate component is a result of the shear flow 

which comes in through the gate within a thicker plaque creating a transverse 

aligned core.  As a result of the principal stretching within the centre gate 

geometry the core is wider, transversely aligned to the direction of flow 

compared to the plaque where fibres align in the direction of shear flow. 
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4.3 Prediction 

4.3.1 Mesh Study 

 

To investigate the fibre prediction models incorporated in ASMI 2014, the 2-d 

geometry needs to be meshed accordingly.  The background on finite element 

method (mesh type and element size) is discussed in Section 2.6.1 Finite 

Element Method.  In this section a comparison is made between 3 mesh studies 

(Figure 4.22), created for the 1 mm centre gate geometry.  The mesh studies 

consist of a coarse (fewer elements) and fine (more elements) mesh, the edge 

length and the number of elements for each study is found in Table 4.2. 

 

Global Edge Length Number of Elements 

2.5 mm 4196 

1 mm 32828 

0.5 mm 133647 

Table 4.2 Number of elements created for each mesh study 
 
 

 

Figure 4.22 The mesh studies 0.5 mm, 1 mm and 2.5 mm 

 

A comparison has been made between the different mesh and the influence on 

the FOD prediction against measured FOD at location A (16 mm), B (25 mm) 

and C (36 mm) along the radial flow path, a detailed schematic of this is shown 

previously in Figure 4.3.  All three models FOD predictions are using classic 

Folgar-Tucker model with the (coefficient of interaction) Ci = 0.03.  The results in 

Figure 4.23 and Figure 4.24 show small differences occur in the skin and core 

regions between the mesh solutions.  At the end of the flow path/location C 

(Figure 4.25) the fine mesh (0.5 mm global edge length) generates a closer 
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solution to the measured FOD at the shell layer compared to the other two 

mesh solutions.     

 

The finer mesh computes the average FOD within a fraction of the shell layer 

with greater accuracy at location C towards the end of the radial flow.  However 

the predicted FOD is the same for all the other layers for each mesh at location 

A, B and C.  As a result any of the global edge length solutions are adequate to 

investigate the accuracy of the fibre prediction models within ASMI 2014.  For 

this project the shell models were meshed with a 1 mm global edge length.  I 

have evaluated the simulations using the maximum 20 laminates. 

 

 

Figure 4.23 Evaluation of mesh studies 1 mm thick centre gate at location A 
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Figure 4.24 Evaluation of mesh studies 1 mm thick centre gate at location B 
 

 

Figure 4.25 Evaluation of mesh studies 1 mm thick centre gate at location C 
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4.3.2 Flat Plate 2 mm 

4.3.2.1 Classic Folgar-Tucker and Modified Folgar-Tucker 

 

Figure 4.26 shows the effect of changing the Ci parameter within the classic 

Folgar-Tucker model.  Table 4.3 contains the width of the core and the average 

FOD (cos2θ) for the skin, shell and core layers for each Ci parameters in Figure 

4.26.  Results show 3 critical changes as the coefficient of interaction increases 

while FOD at the core remains the same, majority of the influence is on the 

orientation and thickness of the shell layer.  Between coefficients, 0.00001-

0.0001 the fibres at shell are highly aligned in the direction of flow and the core 

width ranges from 1.4 to 0.3 mm.  A further increase in the interaction 

coefficient causes fibres in the shell to come out of the plane as shown by 

0.001-0.01, the thickness of the shell increases and consequently decreasing 

the thickness of the core to 0.1 mm.  At Ci = 0.1 the alignment of the shell and 

skin layer is random and the same.  The fibre orientation at location B is over 

predicted at the core.  The Ci between 0.001-0.01 at location A and B provide 

the closest prediction to the measured data.  

 

Ci Skin Shell Core Core Thick (mm) 

0.1 0.54 0.54 0.38 0.4 

0.01 0.72 0.85 0.41 0.1 

0.001 0.78-0.79 0.98 0.41 0.2 

0.0001 0.7-0.72 0.98 0.41 0.3 

0.00001 0.63 - 0.62 0.98 0.41 1.4 - 0.8 

Table 4.3 Average FOD at each layer and core width for varying Ci 

 

 

Figure 4.27 and Figure 4.28 shows the effect of changing the Dz parameter 

between 0.8 - 0.1, within modified Folgar-Tucker model at locations A and B.  

The results show a clear indication that the Dz parameter only starts to make a 

noticeable difference when Dz < 0.4.  Decreasing the magnitude of Dz 

parameter below 0.4 increases the thickness of the core and reduces over 

prediction at the shell layer caused by the Ci above 0.1.  The Dz parameter does 

not influence the orientation when Ci = 0.1, the shell layer remains random in 
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orientation at location A and B. The Dz parameter is known to control the 

"randomizing effect" to expand on this fact, the fibres are less parallel to the 

flow direction (randomizing effect increases) as Dz decreases (Wang and Jin, 

2010).  At both locations a smaller value of Dz between 0.2-0.1 would satisfy as 

good solution.  The best solution for Ci remains between 0.001-0.01. 
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Figure 4.26 The graphs show the effect of changing the Ci coefficient within classic Folgar Tucker model Dz = 1 at 2 mm plate location 
A & B 

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

P
o

si
ti

o
n

 T
h

ro
u

gh
 T

h
ic

kn
e

ss
 (

m
m

) 

Cos2θ 
Ci = 0.00001 A Experiment A

Experiment B Ci = 0.00001 B

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

P
o

si
ti

o
n

 T
h

ro
u

gh
 T

h
ic

kn
e

ss
 (

m
m

) 

Cos2θ 
Ci = 0.0001 A Experiment A

Experiment B Ci = 0.0001 B

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

P
o

si
ti

o
n

 T
h

ro
u

gh
 T

h
ic

kn
e

ss
 (

m
m

) 

Cos2θ 

Ci = 0.001 A Experiment A
Experiment B Ci = 0.001 B

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1P
o

si
ti

o
n

 T
h

ro
u

gh
 T

h
ic

kn
e

ss
 (

m
m

) 

Cos2θ 
Ci = 0.01 A Experiment A

Experiment B Ci = 0.01 B

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1P
o

si
ti

o
n

 T
h

ro
u

gh
 T

h
ic

kn
e

ss
 (

m
m

) 

Cos2θ 

Ci = 0.1 A Experiment A
Experiment B Ci = 0.1 B



115 
 

DZ =0.8 

 

DZ =0.6 

 

DZ =0.4 

 

DZ =0.2 

 

DZ =0.1 

 

 

Figure 4.27 The effect of changing the CI coefficient within the modified Folgar-Tucker model, when varying Dz at 2 mm plate location 
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DZ =0.8 

 

DZ =0.6 

 

DZ =0.4 

 

DZ =0.2 

 

DZ =0.1 

 

 

Figure 4.28 The effect of changing the CI coefficient within the modified Folgar-Tucker model, when varying Dz at 2 mm plate location 
B
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The Folgar-Tucker model (2.13), (1984) is implemented into software packages to 

predict the fibre orientation within injection moulded composites.  The model uses the 

principles of a single fibre (Jeffery, 1922) and incorporates fibre-fibre interactions.  

Within this equation Ci is a coefficient of strain rate �̇� (CIγ̇).  A high magnitude of Ci 

indicates a greater interaction between fibres (increase in concentration or aspect 

ratio) and this interaction increases magnitude of strain rate term.  This diffusivity 

term (CIγ̇)  influences the strength and rate of fibre interactions or collisions.  

Therefore more interactions create a motion of particles, away from a higher 

orientation towards regions of lower orientation (Brenner, 1974).  This explains the 

change in orientation and size of the shell, which is observed from this study.  

 

𝐷𝐴

𝐷𝑡
 =  (W. A − A . W) +  ξ(D. A + A . D − 2𝐀: D) + 2CIγ̇(I − 3A) 

2.13 

 

Previous research carried out by Bay and Tucker, (1992) indicates that Ci = 0.01 

gives a good fit to the FT orientation model for a 3.18 mm plaque and centre-gated 

disk injection moulded with a 43 wt% of SGF.  Another study carried out by Nguyen 

et al., (2008) concludes that Ci = 0.03 provides the best solution for 40 wt% LGF 3 

mm thick centre gate and plaque geometries when applying the RSC (will be 

discussed shortly) model.  The value of Ci = 0.00043 using Tucker and Advani, (1994) 

proposed empirical expression (2.14).  Where V𝑓 = 21%, L = 250 µm and D = 10 µm 

for this particular study.  From the understanding of the Dz and Ci coefficients and the 

recommendations found in the literature, parameters can be narrowed down to arrive 

at an enhanced prediction. 

 

𝑐𝑖 = 0.0184exp (−0.7148𝑉𝑓

L

D
) 

2.14 

 

Figure 4.29 and Figure 4.30 represent the FOD prediction for the FT models against 

the measured FOD at location A and B for the 2 mm plate.  The model use the best 

and default parameters (selected by Moldflow) to predict FOD.  The most fitting 

parameter for both Folgar-Tucker models, namely Classic FT Ci= 0.03 and modified 

FT Dz = 0.15 Ci = 0.0057.  The Classic FT Ci = 0.0057 and modified FT Dz = 0.3214 Ci 
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= 0.0008, represent the default values selected by ASMI 2014.  The default value 

selected by ASMI 2014 for Ci is dependent upon the material and fibre concentration.   

 

The thickness of the core is reduced for all solutions as a result of the wide shell 

layer.  Apart from the over-prediction at the core, the MFT model (Dz = 0.15 Ci = 

0.0057) accurately predicts the orientation at the shell for both locations.  Although 

the FT model (Dz = 1 Ci = 0.03) is a good approximation of the measured FOD, the 

cos2θ is predicted lower at the skin and shell.  The orientation is over-predicted by 

the default solution at both locations at the shell and core layers.  Figure 4.29 and 

Figure 4.30 show the cos2θ at the core does not change at location A and B for 

varying Ci and Dz parameters. 

 

 

Figure 4.29 Enhanced and default prediction from both Folgar-Tucker models against 
2 mm plate average FOD at location A 
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Figure 4.30 Enhanced and default prediction from both Folgar-Tucker models against 
2 mm plate FOD at location B 

 

4.3.2.2 RSC 

 

Various (reduced strain factor) k and (coefficient of interaction) Ci values are 

examined for the RSC (Reduced Strain Closure) model (Equation 2.16) shell model.  

The findings from the 2 mm plate at location A were then used to tailor the solutions 

for the different geometries.  The examined parameters are specified in Section 3.4.2 

Extracting Predicted FOD. 
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K = 0.00001 

 

K = 0.0001 

 

K = 0.001 

 

K =0.01 

 

Figure 4.31 Effect of changing the Ci parameter within the RSC model, for different K values for 2 mm plate at location A 
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K = 0.05 

 

K = 0.1 

 

K =0.2 

 

K = 0.4 

 

K =0.6 

 

K =0.8 

 

Figure 4.32 Continuation of changing the Ci parameter within the RSC model, for different K values for 2 mm plate at location A
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Table 4.4 contains the width of the core and the average FOD (cos2θ) for the 

skin, shell and core layers for the alternating k (0.00001 - 0.8) parameter within 

the RSC model for Ci between 0.00001 - 0.1 in Figure 4.31 and Figure 4.32.  

For values of k between 0.00001 - 0.1 the thickness of the core is at the 

maximum with values between 0.4 - 0.1 mm for the various Ci solutions and the 

shell layer is aligned in the direction of flow and the orientation at the core is 

random and does not vary.  When the reduced strain factor starts to increase or 

when k > 0.2 the thickness of the core starts to reduce, the thickness of the 

shell layer increases and average FOD increases within the shell and skin 

layers.  The orientation at the core becomes more transverse as the factor 

increases (k > 0.2).  A RSC solution for the 2 mm plate at location A would lie 

between 0.01 - 0.1.  ASMI 2014 recommends using a k value of 0.05 to obtain a 

good solution.  All the Ci solutions follow a typical trend apart from Ci = 0.1.  The 

orientation in the shell and skin layers becomes increasingly random and the 

width of the core increases when the k value is above 0.01.    

  

k Ci Skin Shell Core Core Thick (mm) 

0.00001 0.1 0.63 0.76 0.4 0.2 

0.00001 0.01 0.67 0.79 0.45 0.2 

0.00001 0.001 0.67 0.8 0.49 0.35 

0.00001 0.0001 0.67 0.8 0.49 0.35 

0.00001 0.00001 0.63 0.8 0.49 0.35 

0.0001 0.1 0.63 0.76 0.4 0.2 

0.0001 0.01 0.67 0.79 0.45 0.1 

0.0001 0.001 0.67 0.8 0.49 0.35 

0.0001 0.0001 0.67 0.8 0.49 0.35 

0.0001 0.00001 0.67 0.8 0.49 0.35 

0.001 0.1 0.6 0.73 0.43 0.2 

0.001 0.01 0.67 0.78 0.47 0.1 

0.001 0.001 0.67 0.8 0.49 0.1 

0.001 0.0001 0.67 0.8 0.49 0.1 

0.001 0.00001 0.67 0.8 0.49 0.1 

0.01 0.1 0.52 0.61 0.42 0.3 

0.01 0.01 0.66 0.76 0.48 0.2 

0.01 0.001 0.68 0.81 0.49 0.1 

0.01 0.0001 0.68 0.81 0.49 0.1 
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0.01 0.00001 0.68 0.81 0.49 0.2 

0.05 0.1 0.49 0.5 0.4 0.35 

0.05 0.01 0.67 0.76 0.47 0.05 

0.05 0.001 0.71 0.84 0.49 0.05 

0.05 0.0001 0.72 0.85 0.48 0.05 

0.05 0.00001 0.72 0.85 0.48 0.01 

0.1 0.1 0.52 0.61 0.42 0.4 

0.1 0.01 0.67 0.76 0.48 0.05 

0.1 0.001 0.68 0.81 0.49 0.02 

0.1 0.0001 0.68 0.81 0.5 0.05 

0.1 0.00001 0.69 0.81 0.49 0.05 

0.2 0.1 0.49 0.5 0.38 0.3 

0.2 0.01 0.72 0.77 0.45 0.1 

0.2 0.001 0.78 0.94 0.48 0.1 

0.2 0.0001 0.78 0.94 0.46 0.1 

0.2 0.00001 0.78 0.94 0.48 0.1 

0.4 0.1 0.49 0.5 0.34 0.3 

0.4 0.01 0.82 0.77 0.43 0.1 

0.4 0.001 0.82 0.92 0.46 0.08 

0.4 0.0001 0.82 0.97 0.46 0.08 

0.4 0.00001 0.82 0.98 0.46 0.08 

0.6 0.1 0.49 0.5 0.34 0.3 

0.6 0.01 0.73 0.77 0.41 0.08 

0.6 0.001 0.84 0.92 0.44 0.06 

0.6 0.0001 0.84 0.97 0.44 0.06 

0.6 0.00001 0.84 0.99 0.44 0.06 

0.8 0.1 0.49 0.5 0.32 0.3 

0.8 0.01 0.73 0.77 0.4 0.08 

0.8 0.001 0.85 0.92 0.43 0.06 

0.8 0.0001 0.85 097 0.43 0.06 

0.8 0.00001 0.85 0.99 0.43 0.06 

Table 4.4 Average FOD at each layer and core width for varying Ci and k 
parameters 

 

Reference to the RSC model (Equation 2.16) shows the parameter influences 

the kinetics orientation caused by the fibre interactions and shear flow.  The k 

parameter reduces the fibre orientation kinetics as the magnitude of k 
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decreases.  Therefore as k increases (k ≥ 0.2) the rate of orientation 

development increases, the thickness of the shell layer increases, there is a 

decrease in core thickness but the orientation within the core becomes more 

transverse to the flow direction.  From previous literature the value of k was set 

at 0.05 (Moldflow default) for thin plaque and disk geometries and 0.03 for thick 

disk geometries (Wang and Jin, 2010). 

 

𝐷𝐴

𝐷𝑡
 =  (W. A − A . W)

+  ξ(D. A + A . D − 2[𝐀 + (1 − κ)(𝐋 − 𝐌: 𝐀)]: D)

+ 2κCIγ̇(I − 3A) 

2.16 

 

 

4.3.2.3 Summary 

 

 

Figure 4.33 and Figure 4.34 is a comparison of the best possible solutions for 

the RSC model and the MFT model.  All the predictions are using the parameter 

Ci = 0.0057, this interaction coefficient is default for this specific material 

regardless of the reduced strain factor when a Ci value is not input.  A clear 

difference is seen in the thickness of the core between factors k = 0.1 and k = 

0.05, there is reduced over-prediction at the core at both locations when k = 0.1 

compared to other solutions.  All the solutions predict the orientation at the skin 

accurately.  All the solutions from ASMI 2014 over-predict the orientation at the 

core at location B for the 2 mm plate although the measured average FOD does 

not have a core. 
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Figure 4.33 Enhanced predictions from RSC and MFT against 2 mm plate FOD at 

location A 
 

 

Figure 4.34 Enhanced predictions from RSC and MFT against 2 mm plate FOD at 
location B 
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Varying the coefficient of interaction (Ci) within the FT and MFT model primarily 

affects the alignment and thickness at the shell.  When Ci is between 0.00001-

0.0001 fibres at the shell align parallel to the flow direction, the thickness of the 

shell decreases and the thickness of the core increases.  However if Ci 

increases in the range of 0.001- 0.01 the thickness of the shell increases, the 

thickness of the core decreases and the orientation within the shell layer 

reduces as fibres become less aligned to the direction of flow.  At Ci= 0.1 the 

orientation within the skin and shell layer is the same (random) and the 

orientation at the core always remains transverse to the flow direction. 

 

In ASMI 2014 the MFT model predicts the skin and shell layer accurately and 

there is less over-prediction at the core compared to the FT model when DZ = 

0.15.  Reference to the MFT model is made in equation 2.15, within this 

equation the DZ parameter affects the orientation which is parallel to the flow 

direction.  Although this parameter shows improvement in the MFT prediction 

the width of the core still remains small.  The findings show that DZ parameter 

only impacts the fibre orientation at values below 0.4.  Decreasing the Dz 

parameter decreases the out of plane orientation, the thickness of the core 

increases and the orientation in the shell reduces.   

 

For the 2 mm plate with the FT model the parameter Ci = 0.03, over-predicts the 

orientation at the core and under predicts the orientation at the skin and shell.  

The MFT model provides a closer approximation to the measured results 

compared to the FT model as shown in Figure 4.29 and Figure 4.30 at both 

locations for the 2 mm plate.  For MFT and RSC predictions the value of Ci = 

0.0057 provides the best solution.  Published work shows the value Ci = 0.01 

(Bay and Tucker, 1992) is recommended solution for 3.18 mm thick plaque with 

43 fibre wt%. There is a difference of factor three between the predicted Ci of 

0.03 and the recommended value of 0.01 for the FT model, this includes a 3% 

difference in fibre wt%. 

 

The RSC prediction best fits the measured results compared to the MFT model 

at location A and B shown in Figure 4.33 and Figure 4.34 for the 2 mm plate.  

Although the MFT model gives a good prediction for the orientation at the shell 

and skin the core is over-predicted.  The reduced strain factor slows down the 
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rate of orientation as the factor decreases; this allows the model to predict the 

thickness of the core with accuracy.  The closest approximation to the 

measured data was found using the parameters k = 0.1 and Ci = 0.0057.  The k 

parameters recommend in the literature include 0.03 and 0.05.  The default 

value of k = 0.05 recommended by ASMI 2014 with Ci = 0.0057 is a secondary 

solution to predict the orientation within a 2 mm plaque.  When in default ASMI 

2014 selects Ci = 0.0057 for any reduced strain factor value.  

 

4.3.2.4 Conclusion 

 

The aim of this study is to specify the best possible solution to predict the cos2θ 

for different geometries and thickness using shell models in ASMI 2014.  The 

values adopted by Moldflow as default for both FT and MFT models, show a 

great deal of over prediction and inconsistency with the test data.  It can be 

concluded that the RSC model provide a better solution for the 2-d geometry 

within ASMI 2014.  A set of generic rules have been created using the 

conclusions from investigation of the 2 mm plate at location A and B.  These 

rules will narrow down the possible optimum parameters which would best 

predict the FOD within any geometry using the FT, MFT and RSC models.  

These rules will be tested on the 4 mm thick ribbed plaque and the 1 mm, 2 and 

4 mm centre gate geometries. 

 

Ci Parameter  

 

1. To generate a shell layer oriented parallel to the flow direction and a 

large core select a low Ci parameter between 0.00001 - 0.0001. 

2. To increase the shell layer thickness, reduce the thickness of the core 

and to decrease the alignment of fibres within the shell layer select a Ci 

parameter between 0.001 - 0.01 

3. To have a large skin layer with random FOD and a very small core select 

a high Ci parameter of 0.1. 
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Dz Parameter 

 

1. To reduce over prediction at the shell and increase the thickness of the 

core a DZ parameter less than 0.4 is a good solution. For thin geometries 

the DZ parameter is between 0.2 - 0.1.  

 

K Parameter 

 

1. To increase the core thickness and to decrease the shell layer thickness 

select a k value between 0.00001 - 0.01. 

2. To align the fibres in the shell layer in the flow direction select a k value 

between 0.2 - 0.8. 

3. To decrease the core thickness and to align the fibres within the core 

transverse to the flow direction select a k value above 0.05.  

 

4.3.3 Ribbed plaque 4 mm 

 

Measured 4 mm ribbed plaque FOD is compared to the predicted FOD from 

both the MFT and RSC models. 

  

4.3.3.1 Folgar-Tucker and Modified Folgar Tucker 

 

To predict the FOD within a thick geometry there is the option to choose a Ci 

between 0.001 - 0.08 and a small Dz to achieve a wide core.  The results in 

Figure 4.35 and Figure 4.36 compare MFT and FT predictions using different Ci 

parameters.  Although parameters Ci = 0.0057 and Dz = 0.15 predicted the best 

solution for the 2 mm plate, the default FT (Ci = 0.0057), is over-predicting the 

orientation at skin/shell/core layers.  The average FOD within this 4 mm thick 

geometry results in a wide core and a small but random orientation within the 

shell layer.  No value of Ci can meet this criteria, however for the MFT and FT 

models the following parameters Ci = 0.03 and Dz = 0.15 or Ci = 0.06 and Dz = 

0.15 and Ci = 0.06 and Dz = 1 offer the best solution at one location with the 

orientation at the core over-predicted.  ASMI 2014 uses as a lower value of Ci 

(Ci = 0.001 and Dz = 0.1579) as default parameters.  The default parameters 
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increase the core thickness but over-predict the level of orientation within the 

rest of the layers at both locations.  All the predictions are unable to capture the 

transverse orientation and thickness at the core. 

 

 

 

Figure 4.35 Enhanced and default prediction both FT models against 4 mm plate 
average FOD at location A 
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Figure 4.36 Enhanced and default prediction both FT models against 4 mm plate 
average FOD at location B 
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the case where no Ci value is supplied.  Applying the RSC model in Figure 4.37 
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0.03 or 0.06 value of Ci compared to a lower magnitude of Ci.  The closest 

approximation to the measured data is given by k = 0.8 and Ci = 0.03, although 

a higher value of k predicts a transverse core, the shell layer is over-predicted 
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2014 appears to over-predict the level of orientation for a thicker geometry, this 
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Figure 4.37 Enhanced predictions for RSC against 4 mm plate average FOD at 
location A 

 

 

Figure 4.38 Enhanced predictions for RSC against 4 mm plate average FOD at 
location B 
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4.3.4 Centre Gate 

 

Measured FOD at 3 locations for the 1 mm, 2 mm and 4 mm centre gate 

component is compared with FT, MFT and the RSC predictions. 

 

4.3.4.1 1 mm Thick 

4.3.4.1.1 Folgar-Tucker and Modified Folgar Tucker 

 

The measured FOD in Figure 4.39, Figure 4.40 and Figure 4.41 has a thin core 

oriented perpendicular to the direction of flow and the shell is oriented parallel to 

the direction of flow.  To the Ci between 0.001 - 0.01 and the DZ between 0.2 - 

0.15, should predict a thin core and a shell layer oriented in the direction of flow.  

ASMI 2014 default FT with Ci = 0.0057 predicts the core width but over predicts 

the orientation at the skin and shell.  Lowering the Ci = 0.0035 may increase the 

width of the core but increases over prediction for the FT model.  The most 

fitting solution within the deviation is given by the MFT model with parameters 

Ci = 0.0057 and Dz = 0.15, these parameters are identical to 2 mm plate 

prediction (Ci = 0.0057 and Dz = 0.15).  The default MFT model under predicts 

the orientation with a wide core and highly aligned shell layer, with parameters 

Ci = 0.0009 and Dz = 0.1409.  All the solutions predict (highly transverse core) 

the orientation at the core, which does not change with varying Ci and DZ 

parameters.  The transverse core prediction is in the minimum range of the 

random variation at location A and B.  All solutions are unable to predict the 

random orientation within the skin at location B and C. 
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Figure 4.39 Enhanced and default predictions for FT against 1 mm centre gate 
average FOD at location A 

 

 

Figure 4.40 Enhanced and default predictions for FT against 1 mm centre gate 
average FOD at location B 
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Figure 4.41 Enhanced and default predictions for FT against 1 mm centre gate 
average FOD at location C 
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Figure 4.42 Enhanced predictions for RSC and MFT against 1 mm centre gate 
average FOD at location A 

 

 

Figure 4.43 Enhanced predictions for RSC and MFT against 1 mm centre gate 
average FOD at location B 
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Figure 4.44 Enhanced predictions for RSC and MFT against 1 mm centre gate 

average FOD at location C 
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FOD for k= 0.05 and k = 0.4 with varying inlet conditions.  The default condition 

with the RSC model is unable to capture the transverse core.  Once the inlet 

condition changes to 'transverse at the core' the prediction improves.  The inlet 

condition has more influence on smaller k (0.05) values compared to a higher 

value (0.4). The transverse inlet improves the prediction for k=0.05 and 

provides a better solution compared to a k =0.04 at location C.   

 

 

Figure 4.45 Predictions for RSC with varying inlet condition against 1 mm centre 
gate average FOD at location A 
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Figure 4.46 Predictions for RSC with varying inlet condition against 1 mm centre 
gate average FOD at location B 

 

  

Figure 4.47 Predictions for RSC with varying inlet condition against 1 mm centre 
gate average FOD at location C 
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4.3.4.2 2 mm Thick 

 

4.3.4.2.1 Folgar-Tucker and Modified Folgar Tucker 

 

The measured FOD for the 2 mm thin centre gate geometry in Figure 4.48, 

Figure 4.49 and Figure 4.50 has a wide core oriented perpendicular to the 

direction of flow and the shell is oriented parallel to the direction of flow.  To 

capture the measured FOD the Ci can range between 0.0005 - 0.001 and the 

DZ parameter can range between 0.2 - 0.1.  ASMI 2014 default FT uses Ci = 

0.0057 to predict the FOD, this parameter over predicts the skin, shell and core 

layers.  Applying Ci = 0.001 to the FT model increases the width of the core but 

does not predict the FOD better than the MFT model.  The default MFT 

parameters Ci = 0.001 and Dz = 0.1513 and best fitting parameters Ci = 0.001 

and Dz = 0.2, predict a wide core and a shell oriented in the direction of flow.   

All the solutions predict the transverse core within the random variation and the 

orientation does not change with varying Ci and Dz parameters. 

 

 

Figure 4.48 Enhanced and default predictions for FT against 2 mm centre gate 
average FOD at location A 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

P
o

si
ti

o
n

 T
h

ro
u

gh
 T

h
ic

kn
es

s 
(m

m
) 

Cos2θ 

Default FT Default MFT

Dz = 1 and Ci = 0.0001 Dz = 0.2 and Ci = 0.001

Experiment A



140 
 

 

Figure 4.49 Enhanced and default predictions for FT against 2 mm centre gate 
average FOD at location B 

 

 

Figure 4.50 Enhanced and default predictions for FT against 2 mm centre gate 
average FOD at location C 
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4.3.4.2.2 RSC 

 

A high k factor between 0.6 - 0.8 is required to capture the average FOD of the 

2 mm centre gate component with the RSC model.  The RSC model with 

parameter k = 0.8 (Figure 4.51, Figure 4.52 and Figure 4.53) calculates an 

appropriate orientation at the core but over predicts the core/shell thickness and 

shell orientation along the radial path.   As shown the MFT model provides a 

better solution than the RSC model.  Moldflow selects a default value of Ci 

=0.0057 for any reduced strain factor.  

 

 

Figure 4.51 Enhanced predictions for RSC and MFT against 2 mm centre gate 
average FOD at location A 
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Figure 4.52 Enhanced predictions for RSC and MFT against 2 mm centre gate 
average FOD at location B 

 

 
Figure 4.53 Enhanced predictions for RSC and MFT against 2 mm centre gate 

average FOD at location C 
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4.3.4.3 4 mm Thick 

 

4.3.4.3.1 Folgar-Tucker and Modified Folgar Tucker 

 

The majority of the fibres are oriented in a random distribution this creates a 

wide core where fibres are oriented perpendicular to the direction of flow within 

the 4 mm thick centre gate (Figure 4.54, Figure 4.55 and Figure 4.56).  The 

fibres at the shell are partially oriented in the direction of flow but the size of the 

shell and skin are very small.  Therefore the optimum solution for each model 

can be achieved using the following parameters; Ci can range between 0.0001 - 

0.001 to achieve a wide core, the DZ parameter could range between 0.2 - 0.1.  

The default FT uses Ci = 0.0057 to predict the FOD, by decreasing the Ci to 

0.00065 the FT prediction improves and the thickness of the core increases.  

The MFT model provides better solutions with parameters Ci = 0.00065 and DZ 

= 0.2 and default MFT Ci = 0.0012 and DZ = 0.1857, a low Ci value increases 

the thickness of the core.  All the solutions predict (highly transverse core) the 

orientation at the core, which does not change with varying Ci and DZ 

parameters.  The transverse core prediction is in the minimum range of the 

random variation at location A and B.   
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Figure 4.54 Enhanced and default predictions for FT against 4 mm centre gate 
average FOD at location A 

 

 

Figure 4.55 Enhanced and default predictions for FT against 4 mm centre gate 
average FOD at location B 
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Figure 4.56 Enhanced and default predictions for FT against 4 mm centre gate 
average FOD at location C 

 

4.3.4.3.2 RSC 

 

Figure 4.57, Figure 4.58 and Figure 4.59 shows the solutions for the MFT and 

the RSC prediction against the 4 mm centre gate average FOD.  The RSC 

model was investigated with Ci = 0.00065 and the k parameter in the range of 

0.6 - 0.8 to predict the transverse core.  The RSC model with k = 0.8 accurately 

predicts the highly transverse orientation at the core but is unable to predict the 

width of the core.  The RSC model with k = 0.8 over predicts the FOD at the 

skin and shell along the radial direction.  Moldflow selects a default value of Ci = 

0.0057 for any reduced strain factor, in the case where no Ci value is supplied.   

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

P
o

si
ti

o
n

 T
h

ro
u

gh
 T

h
ic

kn
es

s 
(m

m
) 

Cos2θ 

Default FT Default MFT
Dz = 1 and Ci = 0.00065 Dz = 0.2 and Ci = 0.00065
Experiment C



146 
 

 

Figure 4.57 Enhanced predictions for RSC and MFT against 4 mm centre gate 
average FOD at location A 

 

 

Figure 4.58 Enhanced predictions for RSC and MFT against 4 mm centre gate 
average FOD at location B 
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Figure 4.59 Enhanced predictions for RSC and MFT against 4 mm centre gate 
average FOD at location C 

 

4.3.4.4 Summary 

 

The MFT model reasonably (within the measured random variation) predicts the 

orientation within skin/shell/core layers of the 1 mm thick centre gate geometry 

at all 3 locations in the radial direction.  The default FT parameter Ci = 0.0057 

predicts the orientation at the core but over predicts the orientation at the shell, 

this value of Ci enhances the RSC prediction for the 1 mm thick plate.  The 

default MFT parameters under predict the level of orientation compared to the 

best fitting MFT parameters (Ci = 0.0057 and DZ = 0.2).  The RSC model over 

predicts the level of orientation but predicts the transverse core. A small value 

of k (0.05) captures the wide core but cannot predict the transverse alignment.  

The RSC prediction can be improved to capture the core width or orientation by 

changing inlet condition.  
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For the 2 mm centre gate the MFT model offers the best solution for the FOD 

prediction in the radial direction, by changing the DZ to 0.2 the default MFT 

prediction with parameters Ci = 0.001 and DZ = 0.1513 is enhanced.  The 

default FT (Ci = 0.0057) over predicts the level of orientation more than the 

optimum FT (Ci = 0.001) and RSC (k= 0.8 and Ci = 0.001) models.  The RSC 

model using the default inlet is unable to capture the wide core.  The MFT 

model also offers the best solution for the 4 mm thick geometry.  Compared to 

the default MFT parameters the best fitting MFT parameters Ci = 0.00065 and 

DZ = 0.2 over-predict less.  The FT (Ci = 0.00065) does not predict the 

orientation as well as the MFT model but is a better solution compared to the 

default FT and RSC model. 

 

The MFT model with the right choice of parameters enhances the FOD. This 

result is seen within the 4 mm thick sample.  Although the MFT model predicts a 

transverse core for each thickness of the centre gate geometries the prediction 

remains in the random variation.  Default (Moldflow) MFT parameters for the 2 

and 4 mm centre gate geometries provide a good solution.  These findings 

contradict some of the previous facts drawn from the 2 and 4 mm plate 

geometries.  Below are some key conclusions for both the end gate and centre 

gate geometries. 

 

4.3.5 Conclusions 

 

 The FOD within the centre gate disc does not change significantly after 

16 mm along the radial flow path.  The cos2θ reduces at the skin, shell 

and core layers as the thickness of a plaque increases.  As a result of the 

principal stretching within the centre gate geometry the core is wider, 

transversely aligned to the direction of flow compared to the plaque 

where fibres align in the direction of shear flow. 

 

 The MFT and FT model can predict the in-plane stretching motion which 

orientates the fibres within the 1 mm, 2 mm and 4 mm centre gate 

geometries.  However the previous findings for the end gate geometries 

suggest the RSC model offers a better solution, especially for the 2 mm 
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thick plate.  Hence the RSC prediction slows down the rate orientation 

develops in the FT model.  At present models within ASMI 2014 are not 

capable of predicting the FOD within the 4 mm thick plaque.  

 

 ASMI 2014 selects a default value of Ci = 0.0057 regardless of the 

reduced strain factor for Rhodia Technyl C216 V40, which is 40 wt% 

short glass fibre.  This setting is the same for any geometry or thickness 

and is imposed by material selection.  For any part with a thickness < 1.5 

mm the default value of Ci can be set to 0.0057.  The optimum 

coefficients for the centre gate geometry do not match the findings from 

previous literature.  

 

 The solution found for the Ci = 0.01 in published work is very similar to 

the solutions found for the fan gate geometries using the FT model.  The 

Ci parameters for the centre geometries are different. The k parameter of 

0.05 is found in the published domain and is the recommend default by 

ASMI 2014.  However this value does not provide the best solution for 

both fan gate and centre gate geometries unless further adjustments are 

made to Ci.   

 

 For a pin or centre geometry where in-plane stretching is influencing the 

direction of fibre orientation ASMI 2014 can predict the orientation up to 4 

mm thickness.  ASMI 2014 is able to agree with measured data up to 2 

mm thick for the fan gate geometry hence the limit for accurate prediction 

could be between 3 - 3.5 mm.  Further investigation to find the thickness 

limits for the fan gate problem is necessary but outside the scope of this 

project. 
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Chapter 5 Long Glass Fibre Composites 

 

5.1 Introduction 

 

All the long glass fibre injection moulding studies were done with SABIC® 

Stamax 30YM240 material.  This is a 30% wt reinforced long glass fibre 

polypropylene material with a 12 mm pellet length.  Figure 5.1 shows the FLD of 

1290 measurements from a pellet with an average fibre length (Ln) of 12.52 mm.  

The fibre length measurements range between 12 mm and 12.98 mm.  This 

shows that fibre breakage did not occur during the wire coating process, 

manufacturing of LGF material or fibre length measurement. 

 

 

Figure 5.1 Fibre length measurements and average fibre length of the pellet 
material 
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5.2 Fibre Length Distribution  

5.2.1 Geometry  

 

Fibre length measurements were taken from the extrudate (material which goes 

into the sprue), top of the sprue and from 2 locations within the 1 mm and 2 mm 

centre gate components (Figure 5.2).  This exercise was repeated for the centre 

gate component with sprue and nozzle modifications.  Refer back to chapter 3 

for more information on the sprue and nozzle modifications.  The diameter of 

the original sprue was 3.5 mm this was increased to 6 mm for the modified 

centre gate geometry.  Figure 5.2 is the diagram illustrating where the 12 x 12 

mm square specimens were taken.  The extrudate was in the form of a strand 

(varying width) so this was cut down to a length of 12 mm.  

 

The 2-d centre gate geometry was implemented to verify the fibre breakage in 

ASMI 2014 (Autodesk Simulation Moldflow Insight) and the predicted FLD was 

extracted from location A and B.  The area of A and B in the shell model is 

representative of the 12 x 12 area shown in Figure 5.2.    

 

 

Figure 5.2 Diagram showing experiment locations A, B and sprue for FLD 

 

 

 

 

T = 1 mm and 2 mm  
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5.2.2 Measurement Technique 

 

The fibre length measurements in this chapter were carried out using the fibre 

length measurement technique described in Chapter 3.3 Fibre Length 

Distribution Measurement.  In some cases the number of measured fibres for a 

single specimen was above 30,000.  Therefore the standard procedure was to 

measure each sample once.  Repeats were carried out for 2 samples to verify 

the small level of error in these large datasets.  Sample 1 is a specimen taken 

at location B from the 1 mm centre gate geometry with a 3.5 mm sprue (Figure 

5.2).  Sample 2 is a specimen taken at location B from the 1 mm centre gate 

geometry with a 6 mm sprue (Figure 5.2).  Figure 5.3 and Figure 5.4 show the 

FLD for sample 1 and sample 2 with their repeats, both of the dataset show 

very small variation in fibre length distribution (FLD) from one sample to another.  

The samples show a greater variation in the weight average length (Lw) than the 

number average length (Ln).  Long fibres are more susceptible to breakage; this 

could be a reason for the difference in Lw between the samples.  Table 5.1 

shows the standard deviation for each sample and an average value of the 

standard deviation (0.03).  The average value for the standard deviation is 

insignificant this shows there is a small level of error for each sample 

measurement.  

 

 

Figure 5.3 FLD for sample 1 including repeat measurement 
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Figure 5.4 FLD for sample 2 including repeat measurement 
 

 

 
Standard 

Deviation (mm) 

Sample 1 0.049 

Sample 2 0.013 

Average of standard deviation 0.03 

Table 5.1 Average standard deviation for sample 1 and 2 

 

 

To confirm the small level of error another large dataset with 36773 fibres was 

investigated.  Fibre length measurements were taken from the large data set at 

random and analysed.  Measurements were taken at random and added to the 

initial random set.  This process was repeated until the entire data set was 

analysed.  Figure 5.5 from 4530 to 36773 there is little change between the 

distribution at 16932 and that at 36773.  Table 5.2 highlights the change in the 

Ln and Lw as more fibres are examined.  More deviation is seen in the Lw 

compared to the Ln.  Less change is seen in the Ln value after 16932 

measurements.   
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Figure 5.5 Change in FLD depending on random measurements 

 

Number of fibres Ln Lw 

4530 1.22 1.81 

11267 1.58 3.33 

13388 1.57 3.15 

16932 1.58 3.03 

19827 1.69 3.17 

23604 1.68 3.17 

36773 1.7 3.62 

Table 5.2 Change in Ln and Lw as the number of random fibres increases 

 

5.2.3 Sample size 

 

In this study 12 mm by 12 mm square specimens were taken from the centre 

gate components at specific locations of interest (Figure 5.2).  Inevitably fibres 

will be cut at the edge of the samples; in theory studying a specimen with a 

bigger area should reduce the proportion of fibres cut at the edge.  Part of this 

study a comparison was made between two sample sizes from the same 

component.  Sample 1 was 12 mm by 12 mm and sample 2 was 18 mm by 18 
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mm.  The specimens were taken at location A from the 1 mm thick centre gate 

component (Figure 5.2).  Figure 5.6 shows the FLD for each sample.  There is a 

greater proportion (8%) of short fibres (< 1.3 mm) in an 18 x 18 mm sample.  

Apart from this difference there is a small variation in the overall distribution.  

  

To confirm if this difference is a result of other injection moulding factors and 

independent of the size of the sample, the total number of fibres in the 0.25-

0.75 mm fibre length range was divided by the sample area.  Figure 5.7 shows 

the number of fibres in this length range per unit area against the position 

(centre) of the sample along the radial path.  There are two data points for the 

12 x 12 mm sample at location A and B (Figure 5.2) and one data point for the 

18 x 18 mm sample at location A.  Figure 5.7 indicates the proportion of small 

fibres in the bigger area lies within the close range of two values for the 12 x 12 

mm samples along the radius.  This suggests that the small difference between 

the FLD for the large and small specimens at 3 mm and 4.5 mm respectively 

could be accounted for by fibre breakage between the locations.  This suggests 

cutting fibres at the boundaries is not a significant factor.  Therefore in this study 

12 x 12 mm specimens will be taken from each region of interest. 

 

 

Figure 5.6 Difference in FLD between 2 sample size 
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Figure 5.7 Distribution of fibres according to the area and position along radius 

 

5.2.4 Observed curved fibres 

 

The percentage of curved fibres increase from 4 % within the extrudate to 13 % 

- 33 % at different positions within the centre gate components analysed in this 

study, this observation was made from the fibre length measurements.  The 

majority of the long glass fibres are sandwiched within the core layer of each 

injection moulded sample (Bailey and Kraft, 1987).  Although the curved fibres 

expand after the matrix removal, the majority of them still remain curved.  Figure 

5.8 (a) shows the typical curvature of a long fibre found within an injection 

moulded component.  Figure 5.8 (b) shows another arrangement of a curved 

fibre but this might only occur once or twice in one sample measurement. 
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Figure 5.8 The different types of curvature found in fibres after matrix burn off 

 

 

The length measurement of curved fibres is carried out using the semi-manual 

technique described in Section 3.3.3.2 Line Detection. 

 

5.2.5 Experiment 

 

5.2.5.1 1 mm Thick Centre Gate 

3.5 mm Sprue 

 

Figure 5.9 shows the FLD measured from the extrudate taken from the 3 mm 

nozzle (refer to Section 3.1.3.2 Modifications), and from the 1 mm centre gate 

geometry taken from the 3.5 mm sprue and at the two locations A and B within 

the component (Figure 5.2).  Figure 5.10 shows the Lw and the Ln values.  

Before the material enters the sprue the Ln is 2.37 mm and the Lw is 5.34 mm, 

and the FLD shows there are more long fibres (> 9 mm) in the extrudate.  The 

Ln is 2.19 mm and the Lw is 4.26 mm in the sprue; as a result of long fibre 

breakage there is an increase of short fibres with lengths in the range of 0.75 - 

2.25 mm.  The distribution at the gate (location A) shows relative to the sprue 

there is an increase of fibres with lengths in the range of 2.25 - 5.25 mm, where 
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Ln is 2.28 mm and the Lw is 4.20 mm.  The difference of 0.09 mm in Ln could be 

a result of hold pressure applied to the sprue causing fibre breakage as an 

outcome of greater stress on the fibres.  At location B the majority of the long 

fibres have broken and formed child fibres or short fibres, with the distribution of 

fibres between 0.75 -1 mm lengths now being above 40%.  The Ln is 1.34 mm 

and the Lw is 2.69 mm at location B and the averages reflect the FLD.  The short 

fibres in the range of 0.1 - 0.25 mm length reduce within the gate and sprue but 

the proportion increases at location B. 

 

 

Figure 5.9 FLD measurements for 1 mm centre gate 3.5 mm sprue with error bars 
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Figure 5.10 Average length for 1 mm centre gate 3.5 mm sprue with error bars 

 

 

6 mm Sprue 

 

Figure 5.11 shows the FLD once the 1 mm thick component is modified with a 6 

mm sprue (Figure 5.2).  FLD measured from the extrudate is taken from the 6 

mm nozzle (refer to Section 3.1.3.2 Modifications).  Figure 5.12 corresponds to 

an Ln value of 2.31 mm and Lw value of 4.53 mm for the extrudate.  The 

extrudate from a 6 mm nozzle contains a greater distribution of short fibres 

compared to material from a 3 mm nozzle.  Within the sprue the distribution of 

fibres with the length in the range of 0.75 - 1.5 mm increases; this reduces the 

Ln to 1.96 mm and the Lw to 4.07 mm.  At the gate Ln = 2.17 mm and Lw = 3.96; 

the FLD of short fibres increases but the distribution of short fibres within the 

gate remains less than in the sprue.  There is a 0.21 mm difference between the 

Ln of the gate and of the sprue.  This finding confirms there is more breakage at 

the sprue when packing material into a thin cavity.  The effect of the hold 

pressure on the fibres within the sprue is shown in Section 5.2.5.3.  The Ln 

reflects the greater number of short fibres present within the sprue.  At location 

B the long fibres have broken to give an Ln = 1.83 mm and the Lw = 3.62.  There 

is a 0.48 mm difference between the values of Ln in the extrudate and location B; 

this means there is minor fibre breakage in the cavity. 
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Figure 5.11 FLD measurements for 1 mm centre gate 6 mm sprue with error bars 
 

 

 

Figure 5.12 Average length for 1 mm centre gate 6 mm sprue with error bars 
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5.2.5.2 2 mm Thick Centre Gate 

3.5 mm Sprue 

 

Figure 5.13 shows the FLD measured from the extrudate taken from the 3 mm 

nozzle (refer to Section 3.1.3.2 Modifications), 2 mm centre gate geometry with 

3.5 mm sprue and the two locations within the component (Figure 5.2).  Figure 

5.14 shows the Lw and the Ln values.  Before the material enters the sprue the 

Ln is 2.37 mm and the Lw is 5.34 mm, the FLD shows there are more long fibres 

in the extrudate.  The FLD shows a clear trend of long fibres breaking further 

along the cavity (location B).  The Lw and the Ln shows a clear trend in reduction 

of the fibre length through the sprue to location B.  At location B the Lw = 3.05 

mm and the Ln = 1.59 mm, there is a 0.79 mm and 2.29 mm difference between 

the Ln and Lw of the extrudate and location B.  This means there is a reasonable 

amount of fibre breakage within 2 mm thick component.  The distribution of very 

short fibres between 0.1 - 0.25 mm length reduces at the end of the flow path. 

 

 

Figure 5.13 FLD measurements for 2 mm centre gate 3.5 mm sprue with error 
bars 
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Figure 5.14 Average length for 2 mm centre gate 3.5 mm sprue with error bars 

 

 

6 mm Sprue 

 

Figure 5.15 shows the FLD once the 2 mm thick component is modified with a 6 

mm sprue (Figure 5.2).  Figure 5.16 corresponds to an Ln value of 2.31 mm and 

Lw value of 4.53 mm for the extrudate.  The FLD and the average fibre length 

shows there is very little change or fibre breakage between the sprue where Ln 

=1.94 mm and at the gate Ln =1.98 mm.  There is a greater proportion of short 

fibres (< 1.5 mm) within the sprue but more long fibres have broken within 

location A hence a 0.17 mm difference in Lw.  As expected the fibre breakage 

increases at location B.  This results in more fibres with the length in the range 

of 0.75 - 2.25 mm.  At location B the Ln =1.78 mm and Lw =3.54 mm, giving a 

0.35 mm and 0.99 mm difference between the Ln and Lw respectively of the 

extrudate and location B.  This means there is minor fibre breakage within 2 mm 

thick component with a 6 mm sprue.  The distribution of very short fibres 

between 0.1 - 0.25 mm length reduces at the end of the flow path. 
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Figure 5.15 FLD measurements for 2 mm centre gate 6 mm sprue with error bars 

 

 

Figure 5.16 Average length for 2 mm centre gate 6 mm sprue with error bars 
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mm thick centre gate geometries for the 3.5 mm and 6 mm sprue (Figure 5.2).  

To calculate the total breakage at location B, a percentage difference was 

calculated between the Ln within the pellet and the Ln at location B (Equation 

5.1).  In Equation 5.1 Lp is the number average fibre length in the pellet and Lb 

is the number average fibre length in the sample at location B. 

 

∆𝑙 =  [
(Lp − Lb)

LP
] ×  100 

5.1 

 

 

Figure 5.17 and Figure 5.18 illustrate the total breakage is less in the 2 mm 

thick centre gate geometry with a 3.5 mm sprue compared to a 1 mm thick 

geometry where shear flow causes breakage to reach 89.3%, reducing Ln to 

1.34 mm and Lw to 2.69 mm.  There is more breakage at location B within the 1 

mm centre gate geometry compared to 2 mm centre gate geometry.  The 

average fibre length at location B shows more fibres break if the gate is smaller.  

The total breakage in the 2 mm thick centre gate cavity with a 6 mm sprue is the 

same as the 1 mm thick geometry.  This is indicated by a similar Ln and Lw.  

However a similar trend is seen at location A between the 1 mm and 2 mm thick 

geometries with a 6 mm sprue; there is less fibre breakage if the gate is wider.   

 

The number average fibre length within the extrudate from the 6 mm and 3 mm 

nozzle remains the same; there is a greater volume of long fibres (Lw) present in 

the 3 mm extrudate.  The Ln in the 6 mm sprue is less than the 3.5 mm sprue 

therefore the increase in the sprue size results in more fibre breakage.  The 

total breakage in a 1 mm thick cavity with a 6 mm sprue is 3.9 % less compared 

to the 1 mm thick cavity with a 3.5 mm sprue.  The average Lw and Ln is similar 

at location A for the 1 mm cavities.  The total breakage in a 2 mm thick cavity 

with a 6 mm sprue is 2 % less compared to the 2 mm thick cavity with a 3.5 mm 

sprue.  There is a 0.25 mm difference between the Ln at location A for both 2 

mm geometries with different sprues, this difference is more compared to the 

thin cavity.  This means a small sprue attached to a 2 mm thick gate results in 

more fibre breakage as a wider sprue allows higher packing pressure at location 

A. 
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Figure 5.17 Comparison of average length between centre gate geometries. 
Percentages refer to breakage as defined in equation 1 

  
 

 

Figure 5.18 Comparison of weighted average length between centre gate 
geometries 
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A.  The greater proportion of short fibres results in a lower Ln for the sprue 

compared to location A.  To understand if this was a result of the hold pressure 

applied during injection moulding the FLD was measured from the 3.5 mm 

sprue geometry before hold pressure.  Figure 5.19 shows the difference in the 

3.5 mm sprue when there is no hold pressure applied to the 1 mm centre gate 

geometry.  The results show there is breakage of long fibres caused by the hold 

pressure applied at the sprue.  The results before hold pressure for both 

averages are slightly higher compared to location A (Figure Figure 5.10) where 

Ln is 2.28 mm and the Lw is 4.20 mm.  These results highlight fibre breakage at 

the sprue after packing material into a thin cavity. 

 

 

Figure 5.19 Difference in FLD and average length in sprue due to hold pressure 
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average fibre length at location B for the 1 mm and 2 mm geometry with a 6 mm 

sprue is similar.  The fibre breakage reduces at location B if the thickness of the 

geometry increases to 2 mm with either sprue geometry.  There is more 

breakage when a 3.5 mm sprue is filling a wide gate compared to a 6 mm sprue.  

A clear trend in fibre breakage is seen in the FLD for the 2 mm centre gate 

geometries.  The FLD for the 1 mm components result in more fibre breakage 

within the sprue caused by the hold pressure when applied to a thin cavity.  A 

wider sprue reduces the total fibre breakage within the 1 mm thick geometry.  

The size of the sprue has little influence on the overall fibre breakage within the 

2 mm thick geometry.     

 

5.2.6 Prediction 

 

The fibre breakage model (Equation 2.20) in ASMI 2014, can predict the fibre 

breakage within the component.  By default the breakage model uses the initial 

average fibre length of the pellet (12.5 mm), but there is the option for a user to 

input the initial fibre length distribution as described in Section 3.4.3.1 Breakage 

Model.  For this study the measured extrudate and sprue FLD was input into 

ASMI 2014, to predict the FLD at location A (Figure 5.2).  To predict the FLD at 

location B (Figure 5.2) the measured extrudate, sprue and gate FLD was input 

into ASMI 2014.  The prediction from each input will be assessed against the 

measured FLD.  For this exercise the 3 scalar factors will remain default at Cb= 

0.002, Dg = 3 and S = 0.25.    

 

5.2.6.1 1 mm Centre Gate  

3.5 mm Sprue 

 

Figure 5.20 and Figure 5.21 shows the prediction for each FLD input into the 

fibre breakage model for the 1 mm centre gate with a 3.5 mm sprue at location 

A and B (Figure 5.2).  Table 5.3 contains the measured and predicted average 

fibre lengths (Ln) at location A and B.  The default FLD (pellet length as input) 

predicts inaccurate fibre breakage with 60 % and above fibres remaining at 12.5 

mm (initial length) at both locations.  At location A the FLD prediction from the 

extrudate input and sprue input is the same and both inputs predict a greater 
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proportion of fibres between 0.64 and 1.28 mm length.  The over -prediction of 

short fibres at location A results in a Ln much lower compared to the measured 

average.  At location B the over-prediction is reduced when the predicted FLD 

for the sprue, extrudate or gate is input.  The predicted average lengths at 

location B for all inputs reflect the measured average length.  According to the 

predicted average fibre length in Table 5.3 the Ln at location B is greater than 

the Ln at location A, but the measured average shows the opposite result.  In 

practice the greater distance from the gate (location A) the more fibres fracture 

resulting in a lower number average. 

 

 

Figure 5.20 Fibre breakage prediction for 1 mm centre gate with 3.5 mm sprue at 
location A 
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Figure 5.21 Fibre breakage prediction for 1 mm centre gate with 3.5 mm sprue at 
location B 

 
 

Location 
Default 

Predicted 

Input 

Extrudate 

Predicted 

Input 

sprue 

Predicted 

Input 

Gate 

Predicted 

Experiment 

average 

A 3.85 1.05 1.04 - 2.28 

B 5.75 1.22 1.21 1.26 1.34 

Table 5.3 Predicted averages compared to the measured average at location A 
and B for 1 mm centre gate with 3.5 mm sprue 

 

6 mm Sprue 

 

Figure 5.22 and Figure 5.23 shows the prediction for each FLD input into the 

fibre breakage model for the 1 mm centre gate with a 6 mm sprue at location A 

and B (Figure 5.2).  Table 5.4 contains the measured and predicted average 

fibre lengths (Ln) at location A and B.  The default FLD (pellet length as input) 

predicts inaccurate fibre breakage with 60 % and above fibres remaining at 12.5 

mm (initial length) at both locations.  Figure 5.22 shows the FLD prediction at 

location A, the input extrudate provides the best prediction against the 

measured FLD.  There is over-prediction when the measured sprue FLD is input 

into the fibre breakage model.  The increase in smaller fibres within the sprue 

results in a lower Ln compared to the measured average.  At location B (Figure 
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5.23) the distribution of fibres with 1.28 mm length has increased but the 

proportion of fibres shorter than 1.28 mm length is less compared to location A.  

The predicted Ln from the input extrudate and gate is closer to the measured Ln 

at location B.  ASMI 2014 is predicting a higher Ln at the end of the flow path 

(location B).       

 

 

Figure 5.22 Fibre breakage prediction for 1 mm centre gate with 6 mm sprue at 
location A 

 

 

Figure 5.23 Fibre breakage prediction for 1 mm centre gate with 6 mm sprue at 
location B 
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Location 
Default 

Predicted 

Input 

Extrudate 

Predicted 

Input 

Sprue 

Predicted 

Input 

Gate 

Predicted 

Experiment 

average 

A 3.85 1.35 1.30 - 2.17 

B 5.74 1.62 1.58 1.62 1.83 

Table 5.4 Predicted averages compared to the measured average at location A 
and B for 1 mm centre gate with 6 mm sprue 

 

5.2.6.2 2 mm Centre Gate 

3.5 mm Sprue 

 

Figure 5.24 and Figure 5.25 shows the prediction for each FLD input into the 

fibre breakage model for the 2 mm thick centre gate with a 3.5 mm sprue at 

location A and B (Figure 5.2).  Table 5.5 contains the measured and predicted 

average fibre lengths (Ln) at location A and B.  The default FLD with the pellet 

length as input predicts inaccurate fibre breakage with 70 % and above fibres 

remaining at 12.5 mm length at both locations.  The input extrudate and sprue 

provide the best prediction for the measured FLD for locations A and B.  At 

location B the input gate is over-predicting the fibre breakage.  At location A the 

predicted Ln for both inputs is similar, the difference between the measured and 

predicted Ln is less than 0.6 mm.  The difference between the measured and 

predicted Ln is less than 0.3 mm at location B.  The model predicts a higher Ln 

at location B compared to location A.         
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Figure 5.24 Fibre breakage prediction for 2 mm centre gate with 3.5 mm sprue at 
location A 

 

 

Figure 5.25 Fibre breakage prediction for 2 mm centre gate with 3.5 mm sprue at 
location B 
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Location 
Default 

Predicted 

Input 

Extrudate 

Predicted 

Input 

sprue 

Predicted 

Input Gate 

Predicted 

Experiment 

average 

A 4.72 1.15 1.14 - 1.74 

B 8.81 1.33 1.32 1.15 1.59 

Table 5.5 Predicted averages compared to the measured average at location A 

and B for 2 mm centre gate with 3.5 mm sprue 

 

 

6 mm Sprue 

 

Figure 5.26 and Figure 5.27 shows the prediction for each FLD input into the 

fibre breakage model for the 2 mm centre gate with a 6 mm sprue at location A 

and B (Figure 5.2).  Table 5.6 contains the measured and predicted average 

fibre length (Ln) at location A and B.  The default FLD with the pellet length as 

input predicts inaccurate fibre breakage with 70 % and above fibres remaining 

at 12.5 mm length at both locations.  At both locations the input extrudate 

enhances the FLD prediction; this is reflected by a higher predicted Ln for the 

extrudate at both locations.  The input sprue at both locations and the gate at 

location B (Figure 5.27) over-predict the fibre breakage with a greater 

distribution of small fibres (< 1.25 mm).  Although the input extrudate generates 

a better prediction of the FLD, the Ln is 0.8 mm and 0.42 mm less than the 

measured fibre length at location A and B.  For all inputs the fibre breakage 

model predicts a lower Ln at location A compared to location B, the measured Ln 

is showing the opposite effect.    
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Figure 5.26 Fibre breakage prediction for 2 mm centre gate with 6 mm sprue at 
location A 

 

 

 

Figure 5.27 Fibre breakage prediction for 2 mm centre gate with 6 mm sprue at 
location B 
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Location 
Default 

Predicted 

Input 

Extrudate 

Predicted 

Input 

sprue 

Predicted 

Input 

Gate 

Predicted 

Experiment 

A 4.97 1.19 1.06 - 1.99 

B 8.79 1.36 1.19 1.15 1.78 

Table 5.6 Predicted averages compared to the measured average at location A 
and B for 2 mm centre gate with 6 mm sprue 

 

 

5.2.6.3 Summary 

 

The breakage model predicts an inaccurate FLD and Ln when the initial pellet 

length is input into to the model.  The FLD illustrates the majority of fibres 

remain the initial length (12.5 mm) following an injection moulding cycle.  The 

input of the sprue and extrudate enhance the FLD prediction for the 3.5 mm 

sprue geometries at both locations.  For the 6 mm sprue geometries the input 

extrudate provides a better approximation of measured FLD.  In most cases the 

FLD prediction is a good representation of the measured FLD.  However the 

predicted average fibre length is always less than the measured average length 

for both locations and geometries.  Therefore the model over predicts the fibre 

breakage in all scenarios.  According to ASMI 2014 the predicted average fibre 

length at location B is always greater than the Ln at location A, but the 

measured average shows the opposite effect.  Fibre breakage occurs due to 

fibre-fibre interactions and fibre wall interactions as a cavity fills so in hindsight 

more fibres have broken at location B. 

 

 

 

 

 

 

 



176 
 

5.3 Fibre Orientation Distribution 

5.3.1 Introduction 

 

The long glass fibre ARD-RSC and ARD model has been applied to the 1 and 2 

mm thick base centre gate geometries in mid-plane analyses, enhanced 

solutions were found for the model by comparing fibre orientation distribution 

from location three locations along the radial flow path.  They are shown below 

in Figure 5.28; Location A (16 mm from sprue); B (25 mm from sprue); and C 

(36 mm from sprue).   

 

 

Figure 5.28 Diagram showing experiment locations A, B and C for centre gate 

 

5.3.2 Experiment 

 

The measured FOD was found for the 1 and 2 mm centre gate geometries with 

either sprue geometry at location A, B and C. 

 

5.3.2.1 Variation 

 

This segment covers the FOD variation within the 6 mm and 3.5 mm sprue 

centre gate geometries.  Fibre orientation measurements were taken from two 1 

mm thick LGF samples along the same flow path.  These tests were carried out 
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on the same batch of injection moulded samples.  Figure 5.29 and Figure 5.30 

show the data for both samples at location A, B and C within the 3.5 mm and 6 

mm sprue geometries.  Table 5.7 and Table 5.8 show the standard deviation for 

two measurements at each location and the average standard deviation for both 

geometries. 

 

 

Figure 5.29 Measured average FOD from sample 1 and 2 taken from the LGF 1 
mm thick 3.5 mm sprue centre gate at location A, B and C 

 

 

Location A Location B Location C Average 

0.062 0.084 0.045 0.064 

Table 5.7 Standard deviation between sample 1 and 2 at location A, B and C 
 

 



178 
 

 

Figure 5.30 Measured average FOD from sample 1 and 2 taken from the LGF 1 
mm thick 6 mm sprue centre gate at location A, B and C 

 

 

Location A Location B Location C Average 

0.081 0.079 0.046 0.068 

Table 5.8 Standard deviation between sample 1 and 2 at location A, B and C 

 

 

The variation for either sprue geometry is the same two decimal places as 

shown in Table 5.7 and Table 5.8.  The average variation for both geometries is 

the same as the variation found for the SGF 1 mm thick injection moulded 

samples ±0.07.  The average variation includes an error in measurement of 

±0.02 which is a result of the image analysis system (Bubb, 2001).  The 

remaining ±0.05 random variation can be attributed to the variation in the 

injection moulding process conditions.  Figure 5.29 and Figure 5.30 illustrate 

majority of the variation occurs at the shell.  A consistent pattern is seen for 

both sprue geometries at location C where the variation reduces.  
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5.3.2.2 1 mm Thick Centre Gate 

3.5 mm Sprue 

 

The average FOD distribution is the same within the ±0.07 variation at the skin, 

shell and core layers for the 3.5 mm sprue 1 mm thick centre gate geometry 

between locations A, B and C as shown in Figure 5.31.  The orientation at the 

skin is random with cos2θ varying between 0.4-0.5.  Although material fills the 

thin cavity at high shear the core represents up to 0.5 mm (half) of the total 

sample thickness at locations A, B and C with fibres aligned perpendicular to 

the flow direction with cos2θ of 0.1 or below.  The orientation is similar at each 

location this is clearly shown within the contour plots of FOD through thickness 

in Figure 5.32.  However the effect of in-plane stretching reduces towards the 

end of the flow path and shearing increases at location C, causing the fibres to 

align parallel to the direction of flow within the shell layers where cos2θ is 0.58.   

   

 

Figure 5.31 Measured average FOD within 1 mm centre gate 3.5 mm sprue at 
location A, B and C 
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Figure 5.32 Contour plots of 1 mm centre gate 3.5 mm sprue at location A, B and 
C 

 

 

6 mm Sprue 

 

The average FOD distribution is qualitatively similar at the skin, shell and core 

layers within the 6 mm sprue, 1 mm thick centre gate geometry at locations A, B 

and C as shown in Figure 5.33.  The orientation at the skin is random with cos2θ 

varying between 0.4-0.45 in most circumstances.  At location C the fibres align 

partially parallel to the direction of flow within the shell layers where cos2θ is 0.6 

and above.  The core represents 0.5 - 0.55 mm of the total thickness of the 

sample at locations A, B and C with fibres aligned perpendicular to the flow 

direction with cos2θ of 0.1 or below.  The orientation is similar at each location 

this is clearly illustrated within the contour plots in Figure 5.34. 
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Figure 5.33 Measured average FOD within 1 mm centre gate 6 mm sprue at 
location A, B and C 

 

 

Figure 5.34 Contour plots of 1 mm centre gate 6 mm sprue at location A, B and C 

 
 
 

5.3.2.3 2 mm Thick Centre Gate 

3.5 mm Sprue 
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illustrated by the contour plots in Figure 5.36.  Within the given random variation 

the average orientation at the skin is between 0.4 - 0.5 and 0.5 or above for the 

shell layers.  The only noticeable change is in the width of the core from location 

A to B.  The thickness of the core remains the same at location A, B and C this 

is apparent in the contour plots Figure 5.36.  The cos2θ of the fibres at the core 

for all locations is 0.1 or below.                                                                                                                                                                           

 

 

 

Figure 5.35 Measured average FOD within 2 mm centre gate 3.5 mm sprue at 
location A, B and C 

 

 

Figure 5.36 Contour plots of 2 mm centre gate 3.5 mm sprue at location A, B and 
C 
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6 mm Sprue 

 

The average FOD distribution is qualitatively similar at the skin, shell core layers 

within the 6 mm sprue, 2 mm thick centre gate geometry between locations A, B 

and C as shown in Figure 5.37.  There is a small change within the position of 

the core from location B to C this is illustrated by the contour plots in Figure 

5.38.  The orientation at the skin and shell layer is different at the top and 

bottom of the sample.  The orientation at the shell layer cos2θ is 0.6 at the 

bottom of the sample and 0.4 at the top.  The core represents up to 1.20 mm of 

the total thickness of the sample at locations A, B and C with fibres aligned 

perpendicular to the flow direction with cos2θ of 0.1.  

   

 

Figure 5.37 Measured average FOD within 2 mm centre gate 6 mm sprue at 
location A, B and C 
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Figure 5.38 Contour plots of 2 mm centre gate 6 mm sprue at location A, B and C 

 

 

5.3.2.4 Evaluation 

5.3.2.4.1 Influence of Geometry 

 

Previous findings in this chapter have shown the average orientation does not 

change within the centre gate geometries through the radial flow path.  A 

comparison has been made between the same width but different sprue (3.5 

mm and 6 mm) geometries at location C.  Figure 5.39 shows the average FOD 

for the 1 mm thick centre gate for both sprue geometries.  The average 

orientation is similar at the skin and shell and core layers.  The core width is the 

same for the 6 mm sprue and the 3.5 mm sprue.  The comparison between the 

average FOD for the 2 thick mm centre gate for 6 mm sprue and the 3.5 mm 

sprue is shown in Figure 5.40.  The average orientation is very similar at the 

skin, shell and core layers.  There is a maximum 0.2 mm difference in the core 

width between the 6 mm sprue.  From the findings in the previous Section 

5.2.5.3, the average fibre length is greater in the 6 mm sprue geometries.  

Therefore the slightly wider core could be a result of the higher average fibre 

length.  However these findings and published work (Hine et al., 2014) on 

STAMAX LGF material confirms the average FOD, is not sensitive to changes 

in average fibre length when studying the same geometry.     
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Figure 5.39 Comparison of average FOD between 3.5 mm and 6 mm sprue 
geometries for the 1 mm centre gate at location C 

 

 

Figure 5.40 Comparison of average FOD between 3.5 mm and 6 mm sprue 
geometries for the 2 mm centre gate at location C 
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5.3.2.4.2 Influence of Geometry Thickness    

 

The difference between the average FOD of the 1 mm and 2 mm centre gate 

geometries with the 3.5 mm sprue is illustrated in Figure 5.41.  The cos2θ at the 

skin and core layer is similar for both geometries.  The cos2θ at the skin for the 

2 mm thick is 0.6 and above this means the fibres at the skin are aligned 

partially parallel to the direction of flow.  The core thickness amounts to 50 % of 

the total thickness (1 mm) of the 2 mm centre gate compared to 45 % of the 

total thickness (0.45 mm) of the 1 mm centre gate.  The proportion the core 

width occupies is similar for the 1 mm and 2 mm centre gate LGF samples.  

This difference is 20 % less compared to the SGF 1 and 2 mm thick centre gate 

samples (4.2.7.1 Influence of Geometry Thickness).  Evaluating the LGF FOD 

with SGF FOD would provide a better understanding of this difference.  

 

 

Figure 5.41 Difference in average FOD between 1 mm and 2 mm centre gate 3.5 
mm sprue at location C 
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5.3.2.4.3 Short Glass Fibre vs Long Glass Fibre  

 

Figure 5.42 and Figure 5.43 evaluates the LGF against SGF average FOD for 

the 1 mm thick and 2 mm centre gate geometries (3.5 mm sprue).  The average 

FOD within the long glass fibre samples is not symmetrical.  This creates a shell 

layer with a slightly higher cos2θ on the bottom compared to the top.  Both 1 

and 2 mm thick LGF samples have a lower cos2θ at the shell layer compared to 

the SGF samples.  The fibres are oriented in a random distribution within the 

LGF shell layer compared to fibre oriented parallel to the direction of flow in the 

SGF shell layer.  The difference in cos2θ between the LGF and SGF skin is less 

in comparison to the shell layer.  The average orientation at the core of 0.1 does 

not change as a result of material.  The core width is 0.2 mm greater within the 

LGF 1 mm thick sample compared to the SGF 1 mm thick sample.  There is a 

0.1 mm difference between the core thicknesses of the 2 mm thick LGF sample 

compared to the 2 mm thick SGF sample.  The results show the core width 

increases in a LGF sample but the change is more evident in a thin cavity or the 

1 mm thick centre gate. 

 

 

 

Figure 5.42 Difference in average FOD between LFG and SGF 1 mm centre gate 
at location B  
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Figure 5.43 Difference in average FOD between LFG and SGF 2 mm centre gate 
at location B 

 

 

5.3.2.5 Summary 

 

The average FOD remains similar along the radial flow path for LGF 1 and 2 

mm thick centre gate geometries for both 6 mm and 3.5 mm sprues.  An 

increase in the average fibre length does not change the average FOD within 

the LGF component.  The cos2θ is the same for a 1 mm and 2 mm thick LGF 

centre gate geometry where the core width is a similar proportion.  In 

comparison to a thin SGF centre gate a thin LGF centre gate has random 

orientation at the shell and skin but the orientation at the core is the same.  The 

difference in the core width for the SGF and LGF samples is more apparent in a 

1 mm thick centre gate. 
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5.3.3 Prediction 

 

ASMI 2014 uses the ARD (Equation 2.17) or ARD-RSC (Equation 2.19) model 

to predict the orientation within a long glass fibre injection moulded component.  

To slow the rate of orientation development the k parameter is introduced into 

the ARD-RSC model from the SGF RSC model.  The k parameter reduces the 

fibre orientation kinetics as the magnitude of k decreases.  If the value of k is 

equal to 1 the ARD-RSC model reverts back to the ARD model.  From 

investigating the SGF RSC model generic rules were found to select a k factor 

which improves FOD prediction.  These rules should be the same for the ARD-

RSC model if the k factor behaves as the k factor within the RSC model.  

Predicting the measured FOD of the 1 mm and 2 mm centre gate geometries 

with a 3.5 mm sprue should confirm the RSC rules.   

 

K Parameter Rules 

 

1. To increase the core thickness and to decrease the shell layer thickness 

select a k value between 0.00001 - 0.01. 

2. To align the fibres in the shell layer in the flow direction select a k value 

between 0.2 - 0.8. 

3. To decrease the core thickness and to align the fibres within the core 

transverse to the flow direction select a k value above 0.05.  

 

5.3.3.1 1 mm Centre Gate 

 

Figure 5.44, Figure 5.45 and Figure 5.46 shows the long fibre prediction against 

the average FOD with the measured deviation for the 1 mm centre gate at 

location A, B and C.  Various (reduced strain factor) k are examined for the 

ARD-RSC (Equation 2.19) shell model.  The examined parameters are 

specified in Section 3.4.2 Extracting Predicted FOD.  The measured FOD has a 

wide core oriented perpendicular to the direction of flow and a shell layer with 

reasonably aligned fibre in the direction of flow.  To predict this orientation the k 

needs to be between 0.6 -0.8.  From the trial of various k parameters in the 

ARD-RSC model it can be concluded the k parameter does follow the generic 
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rules compiled for the RSC model.  Apart from increasing the shell layer 

thickness the cos2θ within the shell layer decreases with a k value between 0.2 

- 0.8.  The ARD-RSC and ARD model over-predict orientation above the 

deviation within the skin and shell.  The width of the core is over-predicted but 

the ARD model predicts the orientation at the core at all 3 locations.  The over-

prediction at the shell layer does reduce at location C.  The ARD (k = 1) and 

ARD-RSC with k parameter 0.8 are better solutions compared to the ASMI 2014 

default with k parameter of 0.05.  The 5 scalar parameters within the ARD 

model are set at default values, reference of these can be made from Section 

2.7.2.1 ARD Model. 

 

 

Figure 5.44 Predictions for the ARD and ARD-RSC model against 1 mm centre 
gate average FOD at location A 
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Figure 5.45 Predictions for the ARD and ARD-RSC model against 1 mm centre 
gate average FOD at location B 

 
 

 

Figure 5.46 Predictions for the ARD and ARD-RSC model against 1 mm centre 
gate average FOD at location C 
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5.3.3.2 2 mm Centre Gate 

 

From the above findings and the understanding of the LGF FOD within the 2 

mm centre gate, a very high k parameter for the ARD-RSC model or the ARD-

RSC model is required to predict the average FOD.  Figure 5.47, Figure 5.48 

and Figure 5.49 shows the long fibre prediction against the average FOD for the 

2 mm centre gate at location A, B and C.  The ASMI 2014 default k parameter 

of 0.05 is over-predicting the level of orientation.  Both the ARD models over-

predict the core orientation and width.  Within the measured deviation the ARD-

RSC with k parameter 0.8 and the ARD model provide the best solution for the 

core and skin.  The 5 scalar parameters within the ARD-RSC model are set at 

default. 

 

 

Figure 5.47 Predictions for the ARD and ARD-RSC model against 2 mm centre 
gate average FOD at location A 
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Figure 5.48 Predictions for the ARD and ARD-RSC model against 2 mm centre 
gate average FOD at location B 

 

 

Figure 5.49 Predictions for the ARD and ARD-RSC model against 2 mm centre 
gate average FOD at location C 
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The 5 parameters are set as defaults in ASMI 2014 as follows; b1 = 0.0001924, 

b2 = 0.005839, b3 = 0.04, b4 = 1.168 x 10-5 and b5 = 0.  Although it is not 

recommended to change these scalar parameters, for this study two of these 

were changed to give b1 = 0.0001924, b2 = 0.005839, b3 = 0.04, b4 = 3 and b5 = 

4.  The prediction is implementing the ARD model (k = 1) so there is no 

influence of the k factor.  The model is predicting the average FOD at location A 

and B of the 2 mm centre gate.  Figure 5.50 demonstrates the under prediction 

(non-physical behaviour) which occurs in the orientation upon the change of 2 

scalar parameters.  The prediction improves using the default parameters.  A 

better understanding is required of each scalar parameter before a better 

solution is established.       

 

 

Figure 5.50 Predictions for the ARD default and ARD altered parameters against 
2 mm centre gate average FOD at location A and B 

 

 

5.3.3.3 Summary  

 

The generic rules created for the k factor in the RSC model are applicable to the 

ARD-RSC model with the addition of the change seen in the shell layer.   

 

Updated K Parameter Rules for ARD-RSC Model 

 

1. To increase the core thickness and to decrease the shell layer thickness 

select a k value between 0.00001 - 0.01. 
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2. To increase the shell layer thickness and reduce cos2θ select a k value 

between 0.2 - 0.8. 

3. To decrease the core thickness and to align the fibres within the core 

transverse to the flow direction select a k value above 0.05.  

 

Both the ARD models over-predict the orientation at the skin and shell layers for 

both 1 mm and 2 mm centre gate geometries.  The core width is over-predicted 

but the models can predict the transverse alignment of fibres in the core.  For 

the 1 and 2 mm thick centre gate the ARD model or the ARD-RSC with a high k 

parameter provides the best solution.  The solutions predict the orientation at 

the skin for the 2 mm thick centre gate.  Changing the scalar parameters will 

adjust the ARD prediction.  Better understanding is required of each parameter 

to enhance the prediction, but this problem is outside the scope of this study.   

 

5.4 Conclusions 

 

 Insignificant amount of fibres are cut at the edges when studying the FLD 

of a 12 x 12 mm specimen compared to an 18 x 18 mm specimen from 

the LGF centre gate.  

 

 The distribution of curved fibres in the investigated samples is between 

13 % and 33 %. 

 

 A large distribution of small fibres is created within the 1 mm centre gate 

with a 3.5 mm sprue, but the average fibre length increases if the 

thickness of the sample increases.  The fibre breakage is reduced and 

the average fibre length increases if the sprue size increases to 6 mm.  

There is more breakage when a 3.5 mm sprue is filing a thick gate 

compared to a 6 mm sprue.  The FLD for the 1 mm components result in 

more fibre breakage within the sprue caused by the hold pressure when 

applied to a thin cavity.   

 

 Measured FLD from the extrudate or the sprue is required to enhance 

the fibre breakage prediction.  Even though measured FLD is input into 
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ASMI 2014 the model over-predicts the fibre breakage within all the 

components, this is confirmed by the lower average fibre length 

compared to the measured average fibre length at both locations.  The 

model predicts more fibre breakage at location A compared to location B, 

which is opposite to the experimental findings.  

 

 The increase in the average fibre length does not change the FOD when 

studying the centre gate geometry.  The size of the core remains in a 

similar proportion for the 1 mm and 2 mm thick LGF centre gate.  A 

higher orientation is found at the skin within 2 mm thick LGF centre gate. 

 

 The LGF centre gate has a lower orientation at the shell (randomly 

oriented) and a wider core compared to a SGF centre gate.  The 

difference in the core width between a LGF and SGF specimen is more 

apparent in a 1 thick mm centre gate compared to the 2 mm thick 

geometry.    

 

 The long glass fibre FOD model (ARD or ARD-RSC) over- predicts the 

measured average orientation at the skin and shell layer for the 1 mm 

and 2 mm thick centre gate.  The models predict the transverse core but 

over-predict the core width.  The K parameter in the ARD-RSC model 

follows the same rules as the K parameter in the SGF RSC model.  

 

  Better understanding is required of the 5 scalar parameters embedded 

into the ARD model, the wrong choice of parameters can significantly 

change the prediction. 
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Chapter 6 Discussion and Conclusion 

 

6.1 Overall Discussion 

6.1.1 Experimental Technique 

 

The reflective microscopy system was developed to measure the fibre 

orientation distribution within SGF composites.  For this study the system was 

used to investigate LGF as well as SGF injection moulded samples.  The core 

within the LGF centre gate geometries is wider in comparison to the SGF 

samples and the majority of fibres within the core are aligned in the radial 

direction by the in-plane stretching.  The majority of the fibres within LGF 

samples have the same appearance as short fibres and so the reflective 

microscopy system can be applied in the same way.  The fibres which were 

over 1 mm in length as well as curved crossed over 2 frames.  The image 

analysis system is capable of capturing a long fibre passing over two adjacent 

frames.  The particle is stored as a fibre which is flat in the measurement plane 

or a fibre aligned perpendicular to the flow direction.  The LGF components 

investigated in this study consist of 33 % to 13 % of curved fibres at different 

positions within the centre gate components.  In this study there was no method 

of confirming if the ellipse particle was in fact a curved fibre.  

 

Although the 2-d image analysis system was successful in capturing the 

average FOD of the centre gate geometry, it may fail to capture the average 

FOD within other flow patterns.  Currently there is no practical and cost-effective 

solution which can describe the fibre orientation accurately for a long glass fibre 

sample.  A study carried out by Bernasconi et al., (2012) shows very small 

differences in the measured FOD of a short glass fibre specimen; captured 

using micro-CT and the optical method.  The results from the study show the 

optical method has a low level of accuracy when measuring the orientation 

angles of fibres almost perpendicular to the flow.  Micro-CT 3-d image analysis 

is a potential solution to capture the orientation distribution of curved fibres but 

this involves expensive facilities and lengthy data analysis.     
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Fibre length measurements were made using the semi-automatic fibre length 

measurement system.  The image analysis detects and measures the length of 

each straight fibre but the curved fibres were measured manually.  As a result of 

analysing a large dataset the level of error for each specimen measurement 

was very small.  Although the manual measurements of curved fibres was a 

time consuming exercise, the system is capable of measuring thousands of 

straight fibres.  The system is suitable for measuring the fibre length of short 

glass fibre samples and requires further development to detect and measure 

curved fibres. 

 

6.1.2 Modelling 

 

In this study 2-d geometries were created to assess the accuracy of the fibre 

prediction models.  Mid-plane solver consists of a 2-d mesh, which collapses 

the 3-d model into a number of mid-planes.  In essence the flow is symmetric 

about the mid-plane and the z- axis is equal to zero within the 2-d solver. 

Therefore the mid-plane solution is unable to calculate the velocity and pressure 

fields in 3-d features such as corners, gates and ribs.   An alternative solution to 

the mid-plane solver is the 3-d solver, which represents the solid geometry by 

filling the volume of the model with 4-noded tetrahedral 3-d elements.  The 

overall results suggest that the mid-plane solver is a good solution for 

investigating simple geometries; the results are achieved with less 

computational time and speed compared to 3-d models.  However the 3-d 

solver is a solution extensively applied in industry as it is capable of evaluating 

micro-macro geometries with large differences in dimensional scales (Tofteberg 

and Andreassen, 2009).  

 

Figure 6.1 shows a comparison between the mid-plane and a latest 3-d solver 

FOD prediction against the measured 1 mm centre gate SGF average FOD at 

location A and C.  Both geometries are made of elements with an edge length 

of 1 mm and are applying the SGF RSC model with parameters k = 0.4 and Ci = 

0.0057.  The results show the 3-d model predicts the orientation better at the 

beginning (location A) compared to location C.  However the shell model is a 

better solution to predict the average FOD through the radial flow path.  It is 
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known from the literature that both models use different flow predictions.  The 3-

d solver technology is still undergoing major development.  In the future it could 

be used to find an accurate solution to the fibre orientation and breakage 

prediction in any kind of geometry. 

 

Figure 6.1 Difference in average SGF FOD between the 3-d and 2-d for the 1 mm 
centre gate geometry 

 

6.1.3 Fibre Orientation Distribution 

 

The discussion for the FOD results is broken down into two sections including 

measured average FOD and predicted FOD for the fan-gate and centre gate 

geometries.   

 

6.1.3.1 Experiment 

 

The SGF fibres within thin fan-gate geometry align with the shear, resulting in 

fibres aligned parallel to the direction of flow towards the end of the plaque.  

The flow changes in a thick plaque resulting in a wider and transverse core.  

The average FOD within the SGF centre gate geometry does not vary along the 

radial flow path for any given thickness.  In the centre gate geometry the shell is 

highly aligned in the direction of flow and the core is aligned perpendicular to 

the direction of flow by the in-plane stretching.  If the thickness of the centre 

gate geometry increases the core width increases.  The core is wider and 

aligned transverse to the direction of flow within a 2 mm thick SGF centre gate 

geometry compared to a 2 mm thick plaque. 
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The average FOD  2mm thick centre gate geometry is different for SGF and 

LGF systems.  In comparison to the SGF the core of a LGF system is wider and 

the fibres in the shell layer are oriented in a random formation.  The difference 

between the core width of a 1 mm thick and 2 mm thick LGF is negligible in 

comparison to the change seen in SGF component.  When the thickness of the 

part increases the change noticed in core width is less within the LGF 

orientation compared to the SGF orientation.  Increasing the average length 

within the LGF centre gate does not change the average FOD.  The FOD 

measurements were not taken from the 5 mm thick section which protrudes 

from the base of the centre gate geometry.  However it would be interesting to 

investigate the FOD within this section in the future. 

 

6.1.3.2 Prediction 

6.1.3.2.1 Short Glass Fibre Orientation 

 

There are user defined parameters for each SGF orientation prediction model 

assessed in this study.  Generic rules have been created for each parameter 

within these models, which narrow down the possible solutions which could 

enhance the FOD prediction for each parameter.  The rules were applied to the 

4 mm plaque and the 1, 2 and 4 mm centre gate measured data and functioned 

well.  The generic rules apply against the measured average SGF FOD.  The 

parameters found for the geometries in this study are possible solutions for 

other geometries when processing a similar material.  The recommended 

parameters found for each model are not the same as the recommended 

parameters in the published domain.  

 

The FT model is not as accurate as the RSC and MFT models.  The majority of 

the default parameters chosen by ASMI 2014 do not predict a better solution 

compared to the recommended parameters.  The solutions for the centre gate 

geometries are a closer approximation to the measured FOD (including 4 mm 

centre gate) compared to the fan-gate solutions.  The recommended 

parameters for each SGF prediction model are summarised in Table 6.1.  The 

best solution for each SGF 40 wt% injection moulded geometry is highlighted in 

grey in Table 6.1.  
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Geometry FT MFT RSC 

2 mm plaque Ci = 0.03 Ci = 0.0057 and Dz = 0.15 Ci = 0.0057 and K = 0.1 

4 mm plaque Ci = 0.06 Ci = 0.03 and Dz = 0.15 Ci = 0.0057 and K = 0.8 

1 mm centre gate Ci = 0.0057 Ci = 0.0057 and Dz = 0.15 Ci = 0.0057 and K = 0.6 

2 mm centre gate Ci = 0.001 Ci = 0.001 and Dz = 0.2 Ci = 0.001 and K = 0.8 

4 mm centre gate Ci = 0.00065 Ci = 0.00065 and Dz = 0.2 Ci = 0.00065 and K = 0.8 

Table 6.1 Recommended parameters for each SGF FOD model 
 

 

Clearly the existing theories cannot accurately model the 4 mm thick plate. It 

would be of interest to investigate similar plates of thicknesses ranging between 

0.5 and 3.5 mm to determine the limits of accurate prediction.  However the 

MFT model can accurately model the orientation within the 4 mm thick SGF 

centre gate geometry.  Each fibre orientation prediction model is suitable if the 

right parameters are selected when studying expansion flow.  However in the 

case of shear dominated flow this only applies to geometries 2 mm thick. 

 

6.1.3.2.2 Long Glass Fibre 

 

The long glass FOD (ARD and ARD-RSC) models over-predict the average 

measured FOD.  Although a high value of the k parameter can predict the 

transverse core the models are unable to predict the core width.  The ARD 

model is dependent on 5 scalar parameters which influence the prediction.  

More research is required to understand these parameters; there is no 

published work to explain the effect each parameter has on the orientation 

prediction.  To improve the mathematical model and to predict the orientation of 

a curved fibre, more research could be carried out on LGF injection moulded 

composites.  Further LGF FOD measurements need to be carried out on 

various LGF material and injection moulded cavity shapes.  Additional 

investigations need to be carried out using different measurement techniques 

including the optical technique.  Any new measurement technique will assess 

the limitations of the optical FOD measurement system.   
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6.1.4 Fibre Length  

 

The discussion for the FLD of long glass fibre is broken down into two sections 

including measured FLD and predicted FLD for the centre gate geometries.  

  

6.1.4.1 Experiment  

 

The design of the sprue and the thickness of the base were configured for the 

centre gate geometry.  Increasing the size of the sprue increases the average 

fibre length within a 1 mm thick centre gate.  Changing the sprue size has very 

small significance within the 2 mm thick part.  Hence the overall fibre breakage 

(at location B in Figure 5.2) is similar within the 2 mm component with either 

sprue geometry.  The average fibre length does not change within the extrudate 

(material from the barrel) if the size of the nozzle increase.  The overall 

breakage within the centre gate geometry reduces as the thickness increases.  

Approximately 30,000 fibres were measured for each specimen.  A large 

dataset allows an accurate comparison between the predicted and the 

measured FLD or average length at location A and B of the centre gate 

component.          

 

6.1.4.2 Prediction 

 

The fibre breakage predictions improve significantly with the input of measured 

FLD.  The FLD prediction for the 2 mm thick centre gate is a better prediction to 

the measured FLD in comparison to the 1 mm thick centre gate.  However the 

predicted average in each scenario is lower compared to the measured number 

average fibre length.  The lower average fibre length indicates the model is 

over-predicting the fibre breakage.  The model under-predicts the fibre 

breakage which occurs at location B (further along the flow path).  The 

predicted results are using the default ASMI 2014 defined parameters.  The 

fibre breakage prediction may be improved further by validating the parameters 

against the measured FLD.   
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6.2 Conclusions 

 

The conclusions derived from this thesis are listed below; these conclusions 

outline the objectives to validate long and short fibre orientation and breakage 

models, with measured FLD and FOD measurements.  Measurements were 

taken from long and short injection moulded components.  Limitations and 

possible solutions are outlined to improve predictions of fibre length and 

orientation. 

 

 The FOD within the centre gate disc does not change significantly after 

16 mm along the radial flow path.  The cos2θ reduces at the skin, shell 

and core layers as the thickness of a plaque increases.  As a result of the 

stretching within the centre gate geometry the core is wider, transversely 

aligned to the direction of flow compared to the plaque where fibres align 

in the direction of shear flow. 

 

 The MFT and FT model can predict the in-plane stretching motion which 

orients the fibres within the 1 mm, 2 mm and 4 mm centre gate 

geometries.   

 

 Findings for the end gate geometries suggest the RSC model offers a 

better solution, especially for the 2 mm thick plate.  Hence the RSC 

prediction slows down the rate at which orientation develops in the FT 

model.  At present models within ASMI 2014 are not capable of 

predicting the FOD within the 4 mm thick plaque.  

 

 ASMI 2014 selects a default value of Ci = 0.0057 regardless of the 

reduced strain factor for Rhodia Technyl C216 V40, which is 40 wt% 

short glass fibre.  This setting is the same for any geometry or thickness 

and is imposed by material selection.   

 

 For any part with a thickness < 1.5 mm the default value of Ci can be set 

to 0.0057.  For the thin geometries the parameter Ci = 0.0057 is a good 

solution for both the MFT and RSC models.   The optimum coefficients 
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for the centre gate geometry do not match the findings from previous 

literature.  

 

 A significant increase in the average fibre length does not change the 

average FOD when studying the LGF centre gate geometry.   

 

 When studying the average FOD the size of the core remains in a similar 

proportion for the 1 mm and 2 mm thick LGF centre gate.  

 

 The average FOD for the LGF has a lower orientation at the shell 

(randomly oriented) and a wider core compared to a SGF centre gate.  

The difference in the core width between the LGF and SGF average 

FOD is more apparent in a 1 mm centre gate compared to the 2 mm 

wide geometry.  

 

  A higher orientation is found at the skin within 2 mm thick LGF centre 

gate. 

 

 Reducing the sprue size from 6 mm to 3 mm increases the overall fibre 

breakage within a 1 mm thick centre gate cavity. 

 

 The size of the sprue has little influence on the overall fibre breakage 

within the 2 mm thick centre gate geometry.     

 

 The FLD for the 1 mm thick centre gate components result in more fibre 

breakage within the sprue, caused by the hold pressure when applied to 

a thin cavity.   

 

 Insignificant amount of fibres are cut at the edges when studying the FLD 

of a 12 x 12 mm specimen compared to an 18 x 18 mm specimen from 

the LGF centre gate.  

 

 The fibre breakage model under-predicts the FLD and Ln when the initial 

pellet length (12.5 mm) is input into to the model.  In the case of the 
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centre gate geometry the model predicts more fibre breakage closer to 

the gate compared to location B (further along the flow path), which is 

opposite to the experimental findings.  

 

 The measured FLD at the end of plastification is input into ASMI 2014 to 

enhance the predicted FLD and Ln. 

 

 The long glass fibre FOD model (ARD or ARD-RSC) over-predicts the 

measured average FOD for the 1 mm and 2 mm thick centre gate.   

 

 Better understanding is required of the 5 scalar parameters embedded 

into the ARD model, the wrong choice of parameters can significantly 

change the prediction. 
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Chapter 7 Future Work 

 

Areas where there is a deficient amount of knowledge have been found from 

the established conclusions.  Below is a brief outline of each idea which could 

be examined further.    

 

 There is opportunity for further refinement and optimisation of the latest 

fibre orientation and length prediction models, which have been 

incorporated into Autodesk Moldflow.  These models include the LGF 

orientation model (ARD-RSC), which has been developed by Phelps, 

(2009) and is based upon the orientation of LGF.  The fibre breakage 

model introduced by Tucker et al., (2010) is based upon the initial length 

of LGF material.  Both of these models are over-predicting in comparison 

to the measured findings.  The fibre breakage prediction improves 

dramatically if measured FLD at the end of plasticization is input.  Further 

investigation is required into the parameters which influence the LGF 

prediction models.    

 

 In order to optimise the LGF FOD prediction model, reliable test data is 

required for the FOD.  The long glass fibre specimens contain long fibres 

in a specimen which have a tendency to curve.  To overcome the 

problem of distinguishing curved fibres from straight the specimen can be 

investigated using micro-CT.  This technique will create a 3-d image 

reconstruction of the specimen at a micrometer scale.  Algorithms then 

need to be developed to calculate the FOD of each fibre.  A comparison 

of the optical and micro-ct image analysis techniques shall point out 

limitations of the optical technique. 

 

 The LGF components were injection moulded using the recommended 

back pressure, screw speed and injection speed parameters.  A separate 

study could be carried out to investigate the effect varying injection 

moulding parameters has on the fibre length and mechanical properties.  

The injection speed, screw speed and back-pressure are the parameters 

which could be investigated.   
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 Clearly the existing theories cannot accurately model the FOD within the 

4 mm thick plate.  A solution is required to improve the SGF FOD 

prediction for the thick plaque geometry.  For future studies the geometry 

should have a thicknesses ranging between 0.5 and 3.5 mm to 

determine the limits of accurate SGF FOD prediction. 

  

 The mid-plane solver provides a good solution to investigate the fibre 

prediction models.  However in the future the 3-d solver could be applied 

to study complex geometries.  

 

 It would be useful to measure and predict the FOD and FLD around ribs 

and corners for both short and long glass fibre material.  The 5 mm thick 

section protruding from the base of the centre gate geometry is a good 

example for the study.   
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Appendix 1: Injection Moulding Parameters 

 

Injection moulding settings for settings for 4 mm ribbed plaque 

 

Machine Battenfeld 

Injection Time (seconds) 0.8 

Hold Pressure (bar) 45 

Hold Time (seconds) 15 

Melt Temperature (ᴼC) 270 

Mould Temperature (ᴼC) 90 

Cooling Time (seconds) 15 

  

Injection moulding settings for settings for 2 mm plaque 

 

Machine Battenfeld 

Injection Time (seconds) 0.37 

Hold Pressure (bar) 40 

Hold Time (seconds) 8 

Melt Temperature (ᴼC) 270 

Mould Temperature (ᴼC) 90 

Cooling Time (seconds) 15 

  

Injection moulding settings for the centre gate geometries with Rhodia Technyl 

C216 V40. 

 

Machine Battenfeld 

Thickness Geometry (mm) 1 2 4 

Injection time (mm) 0.47 0.57 0.59 

Injection rate (mm/s) 79.5 79.5 79.5 

Screw speed (rpm) 75 86 58 

Hold Pressure (bar) 40 40 40 

Hold Time (seconds) 10 15 10 

Melt Temperature (ᴼC) 270 270 270 

Mould Temperature (ᴼC) 85 85 85 

Cooling Time (seconds) 90 90 90 
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Injection moulding settings for 3.5 mm sprue centre gate geometry for Stamax 

material. 

 

Machine Battenfeld 

Thickness Geometry (mm) 1 2 

Injection time (mm) 0.67 0.71 

Injection rate (mm/s) 45.6 45.6 

Screw speed (rpm) 49.5 49.5 

Back Pressure (bar) 3 3 

Hold Pressure (bar) 35 40 

Hold Time (seconds) 10 15 

Melt Temperature (ᴼC) 250 250 

Mould Temperature (ᴼC) 60 60 

Cooling Time (seconds) 60 60 

 

Injection moulding settings for 6 mm sprue centre gate geometry for Stamax 

material. 

 

Machine Battenfeld 

Thickness Geometry (mm) 1 2 

Injection time (mm) 0.67 0.74 

Injection rate (mm/s) 45.6 45.6 

Screw speed (rpm) 49.5 49.5 

Back Pressure (bar) 3 3 

Hold Pressure (bar) 25 25 

Hold Time (seconds) 5 10 

Melt Temperature (ᴼC) 250 250 

Mould Temperature (ᴼC) 60 60 

Cooling Time (seconds) 60 60 
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