
 

University of Bradford eThesis 
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access 
repository. Visit the repository for full metadata or to contact the repository team 

  
© University of Bradford. This work is licenced for reuse under a Creative Commons 

Licence. 

 

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


 

 

A NOVEL APPROACH FOR CONTINUOUS SPEECH TRACKING AND 

DYNAMIC TIME WARPING 

 

 

 

Adaptive Framing Based Continuous Speech Similarity Measure 

and Dynamic Time Warping using Kalman Filter and Dynamic State 

Model  

 

 

Wasiq KHAN 

 

 

 

Submitted for the Degree of 

Doctor of Philosophy 

 

 

 

 

School of Electrical Engineering & Computer Science 

University of Bradford 

 

 

 

2014 

 

  



i 

 

ABSTRACT 

Wasiq Khan 

A Novel Approach for Continuous Speech Tracking and Dynamic Time Warping 

Adaptive Framing Based Continuous Speech Similarity Measure and Dynamic Time 

Warping using Kalman Filter and Dynamic State Model  

Keywords: Speech Tracking, Dynamic Time Warping, Kalman Filter, Dynamic Noise 

Filtration, Adaptive Framing, Keyword Spotting, Template Matching, Similarity 

Measurement. 

 

Dynamic speech properties such as time warping, silence removal and 

background noise interference are the most challenging issues in continuous speech 

signal matching. Among all of them, the time warped speech signal matching is of 

great interest and has been a tough challenge for the researchers. An adaptive 

framing based continuous speech tracking and similarity measurement approach is 

introduced in this work following a comprehensive research conducted in the diverse 

areas of speech processing. A dynamic state model is introduced based on system 

of linear motion equations which models the input (test) speech signal frame as a 

unidirectional moving object along the template speech signal. The most similar 

corresponding frame position in the template speech is estimated which is fused with 

a feature based similarity observation and the noise variances using a Kalman filter. 

The Kalman filter provides the final estimated frame position in the template speech 

at current time which is further used for prediction of a new frame size for the next 

step. In addition, a keyword spotting approach is proposed by introducing wavelet 

decomposition based dynamic noise filter and combination of beliefs. The 

Dempster’s theory of belief combination is deployed for the first time in relation to 

keyword spotting task. Performances for both; speech tracking and keyword spotting 

approaches are evaluated using the statistical metrics and gold standards for the 

binary classification. Experimental results proved the superiority of the proposed 

approaches over the existing methods. 
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1. INTRODUCTION 

There is a proliferation in the process of Automatic Speech Recognition (ASR) 

research and development (Li et al. 2014; Baker et al. 2009) in the timeframe for the 

speech analysis and synthesis systems development. Early days ASR systems were 

only able to respond a significantly limited set of sound samples that have been 

improved to sophisticated systems that respond to fluently spoken natural language 

taking into account the dynamic properties of the spoken language. Despite the fact 

that literature consists of a variety of methodologies that have been introduced for 

ASR modelling, there is a limited research work available to deal with time warped 

continuous speech signal matching. In exception to Dynamic Time Warping (DTW) 

and some of its enhanced versions, most of the related research is focused on 

statistical models. Stochastic language modelling based ASR systems are able to 

deal with large vocabulary and continuous speech recognition (Arora and Singh 

2012; Rabiner and Juang 2004). Hidden Markov Model (HMM) based ASR systems 

are the best examples of such systems that are considered as state of the art. On 

the other hand, template based approach to speech recognition provided several 

simple and interesting techniques for speech recognition.  

In the template based ASR model, recognition is performed by matching the test 

word (utterance) with stored template of words and calculating the matching score 

based on acoustic features (Cheng et al. 2014; Arora and Singh 2012; Rabiner and 

Juang 1993). The DTW and vector quantization (VQ) based ASR is the best 

examples of such systems. In relation to continuous speech signal matching, there 

are some limitations associated to all aforementioned techniques. For example, 

statistical ASR approach depends upon the phonemes probability assignment which 

if not assigned correctly, leads to mis-recognition. The pattern based methods are 
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limited to specific vocabulary of words with high computational cost for system 

training. The boundary constraints and pruning of search space degrades the 

similarity matching performance in DTW approach. Similarly, static frame size and a 

single source of information for decision making in DTW approach are the 

concerning issues (Cheng et al. 2014; Ratanamahatana and Keogh 2005). 

The proposed research work emphases on a Time Warped Continuous Speech 

Tracking (TWCST) and similarity measurement based on the acoustic features in the 

speech utterance. Speech is a rich information carrying signal consisting of useful 

features that provide significant knowledge to represent a speech utterance. 

Therefore, in present work, detailed review in the area of speech signal 

enhancement, spectral analysis, and feature extraction is conducted. The existing 

silence removal approaches are reviewed and a new approach is introduced that is 

based on combination of simultaneous information from time and frequency domain 

features. In addition, a recursive feedback system is deployed that uses the Kalman 

Filter (KF) for tracking the current position of test speech frame with respect to 

template speech. Usage of a KF provides novelty in terms of adaptive frame size 

and fusion of multi-source information for decision making that resolve the major 

issues related to the existing template matching based similarity measurement 

approaches. Also, a new approach for keyword spotting is introduced that uses the 

Dempster’s theory of combination of evidence from multiple resources of information. 

The usage of theory of evidence make the existing keyword spotting approaches 

more reliable and trustable in terms of decision making based on multi information 

resources.  
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1.1.  Motivation 

Similarity measurement between speech signals aims at calculating the degree of 

similarity using the acoustic features. Nowadays, it is receiving much interest due to 

the large volume of multimedia information. A time warped speech signal matching is 

related to pattern based speech recognition. However, there is a limited effort 

available in the literature that deals with continuous speech signal matching and time 

warping issues. Most of the available research work for speech signals matching is 

limited to isolated word matching and keyword spotting that is based on statistical 

modelling, acoustic features, and DTW. In relation to continuous speech signal 

matching, there are various limitations associated to all aforementioned techniques. 

For example, statistical ASR approach is limited to a specified language model as it 

involves the language grammar and a learning process that uses the transcribed 

data. Moreover, it depends upon the phonemes probability assignment which if not 

assigned correctly, leads to mis-recognition. Pattern based methods are limited to 

specific vocabulary of words with high computational cost for system training. Also, 

there is a trade-off between recognition efficiency and vocabulary size.  

The DTW is a popular technique that has been used for time warped signal 

alignment. However, there are several drawbacks associated with the DTW 

approach as described below that are critical to be resolved in the proposed 

research work. To trade-off between the search space pruning and similarity 

performance is a challenging issue associated with the DTW approach. In addition to 

this, the DTW uses fixed frame size in speech signal matching that lakes the use of 

global time warping in terms of continuous speech signals. However, it would be 

much better to use dynamic frame size that can be adapted recursively in a similar 

fashion as of the natural time warping phenomenon of a speech signal. In addition, 
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DTW measures the warping distance based on a single source of information that 

uses traditional distance metrics (i.e. Euclidean distance, cosine similarity). In 

contrast to this, the use of a dynamic model that considers the noise factors and 

provides an additional support to the distance metric base warping distance 

calculation. A TWCST approach having the aforementioned capabilities would be a 

novel as introduced in the current research.  

1.2.  Research Questions 

Following from the motivations listed in the section above, one may find the 

following challenges to be addressed in this work: 

1) Is there a similarity measure that is able to estimate the corresponding 

positions for two time-warped continuous speech signals consisting same 

speech content spoken by the same speaker at different time? 

2)  Is there a reliable approach available that can produce template 

matching based speaker dependent keyword spotting without using the 

transcribed data? 

To answer the above research questions, it is necessary to consider the 

challenges associated with a DTW approach as discussed in (Cheng et al. 2014; 

Abad et al. 2013; Ratanamahatana and Keogh 2005). A speech tracking approach 

will be helpful for proof reading and for children’s speaking and reading skills 

improvement. Similarly, it would be helpful to provide a feedback to a user who 

wants to learn the speech contents by heart. Likewise, the keyword spotting in 

continuous speech is an interesting research topic with a number of useful real time 

applications. For example, search by association where a user has no specific aim 

other than finding interesting things. It can be used to search for a specific word in a 
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long speech recording. Moreover, keyword spotting applications may be helpful for 

human-computer interaction where a user can pass the command by speaking out a 

specific word and machine performs relevant task accordingly. In a similar way, 

keyword spotting may be very useful for intelligent agencies to keep track of specific 

target word in trapped calls.  

1.3.  Research Methodology 

Several related formal analytical approaches and research methodologies were 

studied to establish a research design for the development of an appropriate 

experimental system. A quantitative research method is used to address the critical 

questions which are the formal, objective, and systematic processes to: (1) describe 

and test relationships, and (2) examine cause and effect interactions among 

variables (Burns and Grove 1993).  

RESEARCH 

METHODOLOGY

Observation

Problem 
Definition

Research 
Hypothesis

Prediction

Test: 
Experimentation

, Results

Report 
Findings

Test does not supports hypothesis; Revise hypothesis 

    

   
 

Test supports hypothesis; 
Make additional predictions and test them

 

Figure 1-1: Research Methodology for the Current Research 
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The quantitative research design has the advantage of finalizing the results and 

proving/disproving the hypothesis and known as a standard experimental method of 

the scientific disciplines (Shuttleworth 2008). Overall structure of the quantitative 

research approach for this work is presented in the Figure 1-1.  

1.3.1.  Aims and Objectives 

The main aim of this thesis is twofold that is: 

1)    To propose a speaker dependent speech tracking approach that deals with 

the dynamic time warping to produce a similarity calculation between two 

time-warped continuous speech signals.  

2)    To propose a reliable speaker dependent keyword spotting approach that is 

able to find a target keyword in a continuous speech signal. 

In order to achieve the goal, following objectives have been set: 

A. To amalgamate a number of methodologies to measure the similarity 

between two time warped continuous speech signals, that includes: 

a. Speech enhancement. 

b. Speech segmentation. 

c. Spectral analysis. 

d. Time and frequency domain feature extraction. 

e. Dynamic state model for segmented speech. 

f. Similarity measurement using different similarity measures. 

g. Kalman filter based feedback system for the recursive frame position 

estimation in template speech. 

B. To further improve the existent isolated word matching and keyword spotting 

techniques at a level where they are able to identify an utterance/keyword in 

https://explorable.com/users/martyn
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a continuous speech signal on the basis of acoustic features using the 

Dempster’s rule of mass combination. 

C. To design a framework that sequentially combines aforementioned 

techniques to provide a recursive frame size adaptation along the time 

progression. 

D. To design a dynamic filter based on wavelet decomposition that is capable of 

removing the unnecessary time and frequency components from the speech 

signal. 

E. Deployment of the posterior probability measure for the purpose of speech 

signal matching in the presence of background noise. 

F. To Critically evaluate and test the proposed approaches for speech tracking 

and keyword spotting using the performance evaluation and validation 

methods of a binary classifier and comparing with the existing state-of-the-

art techniques. 

1.3.2.  Data Collection 

For the proposed research study, data is collected by various open source and 

proprietary speech dataset that consists of speech recorded by speakers from 

diverse backgrounds, age groups, gender, and speaking accents. The speech 

corpuses include American Rhetoric’s (Michael 2001), CMU ARCTIC (Festvox, arctic 

database), (Online audio stories), Mobio (McCool et al. 2012), and Wolf (Hung and 

Chittranjan 2010) are requested from IDIAP research institute. These corpuses 

contain speech phrases for isolated words, short phrases, paragraphs contents, and 

long speech recordings. In addition, a case study is conducted for the proposed 

research studies and a dataset is recorded by 30 speakers from diverse background 

and speaking accent. This data is naturally time warped as it recorded at different 
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time, hence each sub-word in a speech recording is naturally time warped. A detailed 

description of the speech corpus used for experimental analysis is provided in 

Section 4-4 and Table 4-3. 

1.3.3.  Method of Data Analysis and Processing 

Speech processing is a research area that consists of a wide range of working 

platforms available in the market. There are several platforms that can be used to 

analyse the speech signal depending upon the required task. In the proposed 

research work, Audacity is used for recording the new data. It provides a high range 

of processing tools that are very easy to understand and use. Another most common 

platform known as Speech Filing System (SFS) is used in the current research work. 

The main purpose of this tool is to analyse the speech feature in time-frequency 

domain. An SFS platform provides deep level information about a speech segment in 

terms of its properties. Similarly, PRAAT is most feasible and commonly used 

platform for the speech labelling and annotations. Matlab is a powerful tool that is 

used for analysing the speech data and results. Detailed description of these 

toolboxes is provided in Appendix C. 

Although the aforementioned platforms provide a variety of speech processing 

functionalities, yet Matlab is a well-known toolbox for signal processing. It consists of 

a wide range of built-in routines for speech processing. To conduct the proposed 

research study, Matlab 2009a is used for most of the speech processing tasks and 

the development of a demo work. Small routines are utilized for different tasks that 

include silence removal, noise reduction, sample rate conversion, framing, spectral 

analysis, feature extraction, and distance metrics etc. In addition, it provides a variety 

of data presentation tools that can demonstrate the output results in form of two and 
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three dimensional representations. A detailed description for each toolbox is provided 

in Appendix C.  

1.3.4.  Experimental Methodology 

The proposed research contributions for continuous speech tracking and keyword 

spotting are based on multiple processes that run sequentially to perform the desired 

task. Each component (process) is related to a different research area that is 

explored individually. In the proposed research work, these components include 

speech enhancement (sampling, noise reduction and silence removal), framing, 

spectral analysis and feature extraction, distance metrics, dynamic state modelling, 

belief combination, and feedback systems. To conduct the research in the 

aforementioned areas of the proposed research contributions, following methods are 

deployed: 

A). Literature Review 

A comprehensive literature review is conducted for related research areas that 

provide the information of latest research work associated to each sequential 

component of the TWCST and keyword spotting approaches. Speech enhancement, 

spectral analysis, and feature extraction related research is discussed in Chapter 2. 

Existing research work related to distance metrics, dynamic time warping, keyword 

spotting, query bay example, and feedback systems are presented in Chapter 3. 

B). Mathematical Formulation 

To achieve the research objectives of TWCST approach, a mathematical model is 

presented that describes the whole system in a set of equations. Chapter 4 presents 

a mathematical model for the proposed research contribution for time warped 

continuous speech tracking. Wavelet decomposition based TWCST approach is 
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presented in Chapter 5. To address the second research question, the mathematical 

formulation of keyword spotting approach is presented in Chapter 6.   

C). Theoretical justifications 

To empower the research contribution (research question 1), a detailed discussion 

is presented in Section 5.4 that compares the key advantages of the contributed 

work in terms of TWCST approaches with the existing techniques. A justification for 

each contribution is discussed that empowers the theoretical aspects of the 

proposed research work. 

D). Descriptive Design (Case Studies) 

To prove whether a scientific theory and model work in real world, a case study 

research design is also useful. As the idea of TWCST is introduced very first time as 

a part of current research study, the case studies empower the validity of hypothesis 

in the real world. For the aforementioned research questions, case studies are 

conducted with an average and diverse population while performance is evaluated 

using the statistical analysis. Details of the case study dataset, population, 

environment, and statistical results are presented in performance evaluation sections 

of keyword spotting and continuous speech tracking. 

E). Validity and Performance Evaluation 

The performance is evaluated using true experimental design which has the 

advantage of evaluating the results by statistical analysis. The overall model is 

tested on the collected speech data and the performance is validated using binary 

classification validation methods. The criteria for performance evaluation are set 

according to the gold standards used for validation of a binary classifier (i.e. 

sensitivity, specificity, likelihood ratios, absolute error rate, and F1 Score) which are 

described in Chapter 4, section 4.4. The performance is compared with existing 
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techniques to measure the degree of validity of the research hypothesis. A detailed 

discussion on performance evaluation is presented in both scenarios in Chapter 4 

and Chapter 5. The performance evaluation for research question 2 is presented in 

Chapter 6. 

F). Report the Findings 

Finally, the research contributions are published in peer reviewed journals and 

conference papers as described in the contributions list of Appendix A. 

1.3.5.  Ethical Considerations  

Shamoo & Resnik (2003) list several ethical principles such as honesty, objectivity, 

integrity, openness, respect for Intellectual Property (IP), confidentiality, responsible 

publication, responsible mentoring, social responsibility, non-discrimination, 

competence, legality, and human subjects protection. In particular, regarding human 

subjects, there is a need to conduct research with a view to minimising risks and 

maximising advantages for the subjects while respecting their privacy and 

maintaining confidentiality. As we planned to conduct research on speech tracking 

and keyword spotting in multiple speech recordings and investigate the effects of 

time warping due to speaking speed variations, there was a need to engage with 

human subjects for speech data collection. This necessitated ethical compliance of 

the study based on a clearly specified framework of practice.  

Informed consent: Subjects have been orally informed of the procedures in the 

research study prior to being asked for their consent. 

Confidentiality: All data that is recorded personally is rendered anonymous and kept 

confidential at all times. Once the study will be completed, the personally collected 

data would be kept secret. Identifying information would be kept strictly confidential 

and accessible only to those directly involved in the study. Only essential personal 
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information would be sought from the participants in the study and all such 

information would be anonymised.  

1.4. Research Contributions 

The achievements and contributions in the proposed research work that are 

presented in this thesis are listed as follows: 

A. Dynamic State Model for Speech Tracking 

In the speech processing related literature, to the best of our knowledge, there is 

no clue of time warped speech tracking and similarity measure that may be a great 

interest for human-machine interaction applications. The existing speech signal 

similarity matching techniques have been reviewed in order to achieve the 

uniqueness of the proposed approach for the continuous speech tracking. Based on 

equations for object’s linear motion, a Dynamic State Model (DSM) is presented 

(Chapter 4, Section 4.3) that considers the input or test speech signal as a frame by 

frame linearly moving object along the template/reference speech signal with the 

progression of time (Khan and Holton 2015; Khan et al. 2014).  

B. Dynamic Time Warping and Frame Size Adaptation 

 In the proposed approach for TWCST, a novel idea of adaptive frame size is 

introduced (Chapter 4, Section 4.3.6) that changes the template speech frame size 

dynamically at each time step with respect to input speech. Initially; the template 

frame size is kept same as of test frame but it dynamically changes at each time step 

with respect to the speaker’s speed of input (test) speech. This implies that rather 

than finding the overall warped distance as in traditional DTW, the warped distance 

can be minimised by recursively and dynamically adapting the template frame size 
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according to input speech, on the basis of position estimated by dynamic model at 

previous step (Khan and Holton 2015; Khan et al. 2014). 

C. Kalman Filter and Position Estimation in Continuous Speech Tracking 

In the proposed approach for speech tracking, a Kalman filter (KF) is used for the 

input speech frame position estimation with respect to template speech signal. The 

two position observations; from DSM and similarity measure are forwarded to KF 

along with process and measurement noise covariance. The KF process these 

inputs and provides a best position estimate in the template signal corresponding to 

test speech frame at current time. This position estimate is further processed by 

adaptive framing process to predict the new template frame size for next time step. 

The whole feedback cycle runs recursively until the end of test or template speech 

signal. The best estimated positions in the template speech relative to input speech 

frames are recorded along with a similarity score (Khan and Holton 2015; Khan et al. 

2014). 

D. Dynamic Filtration of Speech Signal Using Wavelet Transform 

An efficient technique is presented in the proposed research work for the Wavelet 

Decomposition (WD) based time and frequency band filtration (Khan et al. 2014). 

The filtration process improves the matching performance because of the 

unnecessary components filtration. In the literature, Short Time Fourier Transform 

(STFT) has been successfully used for the frequency domain representation of 

speech signal. The disadvantage of the STFT is the low time-frequency resolution as 

compared to WD that provides simultaneous representation of time and frequency of 

speech signal (Fugal 2009). A major advantage of three dimensional representations 

by WD is the filtration of unnecessary segments and frequency bands (levels) from 
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the speech signal that improves the test and template matching outcome (Chapter 

5).  

E. Keyword Spotting Based on Acoustic Features and Theory of Mass 

Combination 

In the proposed research work, a variety of time and frequency domain acoustic 

features are analysed and performance of the proposed technique (Khan and Holton 

2015) is compared with existing word identification approaches. The proposed 

wavelet based dynamic filtration is applied to input speech and then passed for the 

feature extraction process. The extracted features are forwarded to multiple similarity 

measure algorithms that calculate the matching scores for the target speech 

utterance and all corresponding frames of template speech. These scores are 

forwarded to a Decision Support System (DSS) that uses the Dempster’s rule of 

mass combination. The Dempster’s rule considers these scores as observer’s beliefs 

with the predefined weights and measures a combined belief. All frames in the 

template speech crossing a pre-set threshold value for the combined belief are 

identified as spotted keywords (Chapter 6). 

F. Deployment of Posterior Probability Measure for Speech Signal 

Matching 

An interesting technique for image blob matching known as Posterior Probability 

Measure (PPM) is deployed for the first time in the proposed research work (Chapter 

6, Section 6.4). Originally, the PPM was proposed by (Fing et al. 2008) for blob 

matching and tracking the target object in the image. The PPM has a unique 

property of differentiating the background noise components from speech 

components when measuring the similarity between target and reference speech 

models. The separation of these features shared by both target and background 
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models produced robust results in object tracking and localisation. It results more 

reliable and tolerant pattern match to varying model scale. Experiments proved the 

superiority of PPM over the existing similarity measure techniques; more specifically 

in the presence of background noise. The minimization of noise effects on similarity 

measure performance is very useful that is achieved in the proposed research (Khan 

et al. 2012) with the deployment of PPM in speech signal area to degrade the 

background noise influence from a speech signal.  

G. Vector Addition Based Similarity Measure 

A literature review is conducted for the comparison of various similarity 

measurement algorithms for isolated speech utterance matching. In addition, by 

comparing the mathematical implementation of the most commonly used cosine 

similarity measure and Euclidean distance, a new similarity measure (Resultant 

Vector) is proposed in the current research work (Khan et al. 2013) that uses the 

head to tail rule for vector addition. Performance of the newly introduced similarity 

measure is compared with Euclidean distance, vector cosine angle distance, and 

Bhattacharyya coefficients that show satisfactory results in terms of matching output 

(Chapter 6, Section 6.5). 

1.5. Report Outline 

The research work and contribution presented in this thesis are based on diverse 

areas that include speech enhancement, distance metrics, feedback system, and 

decision support systems. Therefore the thesis chapters are organised according to 

the area of studies. This thesis consists of seven chapters. Chapter 1 introduces the 

research area of time warped continuous speech tracking and keyword spotting 

together with the speech recognition concepts employed in current research work. 
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The scope, motivation, research questions, aims, objectives, research methodology, 

and outcomes of the thesis have been highlighted in this chapter. Chapter 2 presents 

the background concepts and literature review of the speech processing used in the 

current research study. Speech enhancement, segmentation, spectral analysis, and 

feature extraction are the target modules that are reviewed corresponding to the 

speech tracking and similarity measurement. 

Distance metrics and Kalman filter’s theoretical concepts and research work in the 

related area of speech processing is presented in chapter 3. Chapter 4 presents the 

major contributions of proposed research work towards a TWCST and similarity 

measure approach. Mathematical formulation and the performance analysis are 

presented in this chapter. The Sequential process is presented in a flowchart. The 

overall procedure is further divided into four subsections detailing the design of 

speech tracking structure along with dynamic state model and KF deployment. First 

two subsections are based on speech enhancement and feature extraction. Third 

section provides the detailed formulation of a dynamic static model that considers 

the speech signal as a linearly moving object with uniform velocity. Finally, the last 

section presents the formulation of KF for speech tracking approach and producing a 

recursive position estimate that is used for dynamic frame size measurement. 

Chapter 5 addresses the contributed work towards an alternative approach for 

TWCST that uses the concept of dynamic noise filtration. A dynamic noise filter is 

introduced that uses the WD to represent the speech signal in a 3 dimensional 

forms. Rest of the model for this approach is same as discussed in Chapter 4. The 

performance is evaluated by statistical analysis methods used for the validation test 

of binary classification. 
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 Chapter 6 demonstrates the contributions towards the keyword spotting in 

continuous speech as well as for the isolated word matching in the presence of 

background noise. In addition, a comparison between the existing similarity 

measures is presented in this chapter. The keyword spotting locates multiple 

occurrences of a target utterance in a long continuous speech recording. A dynamic 

noise filtration method using WD is introduced. A novel idea of deployment of 

Dempster- Shafer’s theory of evidence is presented for the key word spotting 

approach. The performance is compared with the existing keyword spotting methods 

and the statistics are presented in the performance evaluation section. Chapter 7 

aims to provide a conclusion of the thesis and relates the main objectives to the 

contributions made in the current research work. In addition, it provides detailed 

recommendations for the possible future directions. Finally, Appendices present the 

publications list, technical reports, detailed statistical results for TWCST approaches; 

Matlab scripts for the contributed work, and details about processing and simulation 

tools.  
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2. SPEECH PROCESSING 

2.1. Scope  

To achieve the specified research objectives towards the TWCST and keyword 

spotting approaches, it is necessary that the query and reference speech signals are 

pre-processed and enhanced. This enhancement can be made in terms of silence 

removal and background noise reduction while considering the speech intelligibility. 

Enhanced speech signal is then forwarded for the spectral analysis and feature 

extraction process. This chapter consists of three sections which aim to provide a 

comprehensive insight into the speech signal processing and current level of 

research performed in this area. A comprehensive review is presented in terms of 

different aspects of speech processing that includes: (1) speech enhancement, (2) 

segmentation (i.e. windowing and framing), and (3) spectral analysis. Detailed 

implementation of Fast Fourier Transform (FFT), STFT, and Wavelet Transform (WT) 

is presented along with their advantages, disadvantages, and applications in the 

related area. The last section is based on a comprehensive discussion of how 

different features are extracted in time and frequency domain that possess enough 

information for the identification and similarity matching of speech utterances.  

2.2. Speech Signal Processing 

“A digital signal processor is an integrated circuit designed for high speed data 

manipulations and is used in audio, communications, image manipulation, and other 

data acquisition and data control applications” (Digital Signal Processing, Pp. 1-18). 

Speech processing is the application of digital signal processing (DSP) to process 

and analyse the speech signals. Speech signal consists of several kinds of 

information that may be useful in real life applications. As an example; speech signal 
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carries the information about meaning of the contents a speaker wishes to impart, 

speaker information, emotions in the speech, and much more. This information is 

useful for development of the applications in diverse areas in real life. To extract 

such information, speech signal can be processed either in time domain or frequency 

domain. A time-domain representation of speech signal shows how the signal 

changes over time. Speech signal can be converted from time domain to the 

frequency domain by a transformation process. A number of transforms are available 

that are explained later in this chapter. The most common purpose of speech signal 

analysis in frequency domain is to extract those features that can’t be retrieved in 

time domain. These features may help for the identification of speech utterance on 

the basis of their dominant acoustic properties. Speech processing is a broad and 

multi-functional term that can be mainly divided into different subtasks that are 

described in the following sections. 

2.2.1.  Speech Enhancement  

Speech enhancement has been an interesting research area mainly focusing on 

the suppression of additive background noise (Ephraim and Malah 1985). The term 

speech enhancement basically refers to the speech quality improvement in terms of 

degrading all those factors that affect its intelligibility. There are different aspects to 

be considered for the speech signal enhancement. For example, different kind of 

noise including additive acoustic noise, acoustic reverberation, and convoluted 

channel effects, have been studied in the literature using signal resampling, echo 

suppression and silence removal (Speech Enhancement, Pp. 48-52). Additive noise 

and convolution effects degrade the intelligibility and ability to listen the contents of 

speech. Generally, there are multiple aims of speech enhancement such as effective 

encoding for storage and transmission, improved performance of ASR systems, and 
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acceptability to the human listeners (Sahoo and Patra 2014), (Brookes et al. 2012). 

In the literature, most of the research work conducted in the area of speech 

enhancement is related to ASR and speaker recognition system. The most common 

approaches used for speech enhancement are discussed below.  

2.2.1.1. Frame based processing 

Speech enhancement methods operate in both; time and frequency domain. For 

the frequency domain signal enhancement, the sampled input signal ( )x n  is required 

to be decomposed into overlapping frames as shown in Figure 2-1. Each frame 

consists of ‘N’ samples and is given by: 

( , ) ( ) ( ( ))x n l w n x n l N M          2-1 

Where; n = 0...N - 1, ‘ l ’ is the frame counter and ‘M’ represents the number of 

overlapping samples with M<N and represents the time increment between two 

consecutive frames (number of samples). The ( )w n  represents the window function 

that is zero valued out of some chosen interval.  

  

Figure 2-1: Speech Framing and Overlapping 
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The most common types of window function include rectangular window, hamming 

window and hanning window. There is a trade-off between time and frequency 

resolution because of their inverse relationship. Hence, the window length, ‘N’ has to 

be compromised and is typically chosen in the range 10-50 milliseconds for speech 

signals processing (Ravindran et al. 2010). The original speech signal can be 

reconstructed if no processing is done on the frame in time or frequency domain. 

However, distortion artefacts may be introduced due to signal discontinuities at frame 

edges and aliasing of rapidly changing frequency components in the result of 

frequency-domain processing. To deal with the problems caused by frequency 

domain processing and to reconstruct the original signal, windowing function and 

overlap ratio are used. To provide the perfection in reconstructing the original signal 

and to deal with discontinuities at the boundaries of frame; a square root hanning 

window for both; analysis and synthesis of speech signal with 50% overlap is 

introduced by (Martin and Cox 1999). Similarly, a detailed research analysis is 

presented by (Allen 1977) and (Allen and Rabiner 1977) to overcome the 

aforementioned challenges, where a hamming analysis window with three-quarters 

of overlap is introduced.  

2.2.1.2. Sampling 

Speech signal is analogue signal that needs to be digitized by a specific number 

of samples per unit time for further processing. This process is called sampling and 

the value of the signal we choose to retain is determined by sampling rate or 

sampling frequency that represents the number of samples per second. The amount 

of time between two successive samples is known as sampling period or sampling 

interval. Sampling frequency depends upon the signal’s maximum frequency. Harry 

Nyquist presented his findings about the relation between sampling frequency and 
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signal maximum frequency that is known as Nyquist sampling theorem. It states that 

“a signal must be sampled at a sampling rate equal to at least twice its highest 

frequency component” (Deng and Shoughnessy 2003). i.e., fs = 2f, where fs is the 

sampling frequency and ‘f’ represents the maximum frequency component. 

 

Figure 2-2: Analogue and Digital Signal Representation (Kuphaldt 2007) 

The green line in Figure 2-2 represents the continuous analogue signal, whereas 

red dots indicate samples. The problem of aliasing occurs when a speech signal is 

sampled under the Nyquist sampling frequency. This means that the sample rate is 

too low for the higher frequency components of a signal. A best example of aliasing 

is shown in Figure 2-3. The analogue signal is presented by a solid curve whereas; 

dotted curve represents the sampled signal formed by circled samples. It is clear that 

the dotted curve consists of only two cycles instead of 20 cycles of original signal. 

This is the most common reason of digital speech signal distortion. 
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Figure 2-3: Aliasing Due to Low Sampling Frequency (Lieberman and Blumstien 1988) 

The aliasing effect can be avoided by pre-filtering the signal so that maximum 

frequency (highest frequency) of the signal is less than half of the sample rate (Wang 

2006). This means that a low-pass filter can be use that cut-off the frequency at half 

of sample rate. A research is conducted in (Hirsch et al. 2001) for the comparison of 

speech recogniser performance using different sampling frequencies for a speech 

signal. It is analysed that word error rate remains almost constant for the 8, 11 and 

16 KHz speech signals when tested by HMM based speech recognition system. This 

is because, human speech is covered between the range of 80 Hz to 3.3 KHz that 

needs maximum 8 KHz sampling frequency to satisfy Nyquist theorem and to avoid 

aliasing effects. In the proposed research, a sample rate of 8 KHz is used for the 

speech signal analysis that is supported by conducted research experimentation as 

well as by the literature (Lakshmikanth et al. 2014), (Rodman 2006), and (Lieberman 

and Blumstien 1988). 
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2.2.1.3. Noise Filtration 

Noise filtration is one of the most important processes for the speech 

enhancement. The main intension is to lower the noise level without affecting the 

speech quality. Basically, background noise estimation or degradation is needed to 

increase the speech intelligibility and clarity that can be achieved through applying 

different speech filtering techniques. A filter is based on electronic circuit that 

attenuates the unwanted and noisy components from the original signal. There is 

always a trade-off between the noise reduction quantity and speech distortion that is 

considered a common challenge for noise filtration process. More noise reduction 

cause the degradation of speech signal in terms of information lost. 

A comprehensive study on speech signal noise filtration techniques is presented 

by (Lakshmikanth et al. 2014) and (Maher et al. 1992). Different adaptive filtration 

methods including Wiener filter, line enhancer, multiple microphone, and spectral 

subtraction were operated on the speech spectrum. The speech signal was 

segmented over 10 milliseconds duration and FFT is performed with 75% overlap. 

The sampling frequency was decreased to 8 KHz from 20 KHz and Gaussian 

distributed noise was generated at 5, 10 and 20dB SNR. The noise reduction 

performance showed that the adaptive Wiener filter outperforms all other techniques. 

However, using SNR measures, a spectral subtraction technique provided up to 10 

dB improvements in SNR, compared with 6 dB for an adaptive line enhancement 

method. Spectral subtraction is also a commonly used technique for noise reduction. 

A speech enhancement approach is presented by (Djigan et al. 1999) for the 

reduction of additive stationary and quasi stationary colour broad band noise without 

voice activity detection deployment.  
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Research conducted by (Chen et al. 2006) evaluates the performance of a Wiener 

filter for the noise reduction. It is analysed that if linear prediction coefficients of 

desired clean signal are known; then the clean signal can be achieved with a minor 

level of speech distortion using these coefficients. In case of no prior knowledge, 

they introduced a sub-optimal filter on the basis of a free parameter to control the 

compromise between speech distortion and the level of noise to be reduced. The 

performance of sub-optimal filter showed that using compromise parameter value 

0.7, the noise reduction performance decreased by 10% with a 50% less speech 

distortion as compared to traditional Wiener filter. In the current research study, a 

dynamic noise filtration technique is introduced (Chapter 5) based on wavelet based 

processing that is used for the background noise reduction (Khan et al. 2014).  

2.2.1.4. Silence Removal 

Speech signal changes its properties with respect to the analysis window or frame 

size. For a short frame size, speech signal shows very slow variations along the time 

progression, whereas for long time interval, speech features are dynamic and non-

stationary. Normally, speech signal is classified into voiced, unvoiced, and silence 

components. In a voiced speech, vocal tract produces periodic vibrations by which 

the fundamental frequency is calculated. All vowels, semivowels, and some 

consonants like /m, /n/ (i.e. nasal cavity usage) fall in this category. In unvoiced 

speech on the other hand, the vocal cord does not vibrate, hence the speech 

produced is much like random nature. The excitation of the vocal tract by a steady 

air flow creates a turbulent in the region of a constriction in the vocal tract that 

produces fricatives like /f/, /s/, and /sh/. In the silence part of speech, there is no 

sound produced resulting very low energy for the signal.  
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Silence removal plays a significant role in speech processing and recognition 

applications (Sahoo and Patra 2014). Once, silence segments are identified, these 

are removed from the speech signal which improves the performance in terms of 

speech recognition, signal matching and computational cost. The higher frequency of 

unvoiced speech segments means higher zero crossing rates (Rabiner and Juang 

1993). Similarly, silence part can be easily separated by considering low energy 

segments of speech. On the basis of aforementioned time dependant features of 

speech signal, an extensive research work has been conducted in the literature for 

the speech labelling and silence removal. Generally, Zero Cross Rate (ZCR) for 

silence speech part is always lower than unvoiced speech and higher than voiced 

speech (Sahoo and Patra 2014), (Sarma and Venugopal 1978). On the other hand, 

energy value is comparatively higher for voiced speech than the unvoiced and 

silence segments. In addition to ZCR and energy estimate, Fundamental frequency 

(F0) and pitch have also been considered as a useful factor for the speech 

classification and silence removal. The unique quality of pitch is that it rises when the 

speech is voiced and zero for silence speech (Sharma and Rajpoot 2013). 

There are a number of techniques in the literature that uses time and frequency 

domain features (e.g. Energy, zero cross rate, spectral centroid etc.) and pattern 

recognition methods to remove the silence part of speech utterance (Sahoo and 

Patra 2014), (Zhang 2014), (Liscombe and Asif 2009), (Saha et al. 2005), 

(Giannakopoulos 2014). Figure 2-4 represents the sequential steps involved for the 

speech classification into voiced, unvoiced, and silence segments proposed by 

(Sharma and Rajpoot 2013). The system is tested on a dataset of 15 words spoken 

by 4 speakers (3 male, 1 female) and achieved an average performance of 97% for 

speech classification into voiced, unvoiced and silence parts. A test case scenario is 
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presented in Figure 2-5 where the original signal is processed by the aforementioned 

silence removal approach. It can be analysed that the total number of speech 

samples are reduced from 85000 to 65000 after removal of silence segments. 

 

Figure 2-4: Silence Removal Process Using Energy, ZCR and F0 
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Figure 2-5: Silence Removed By Energy, ZCR and F0 Based Approach 

Similarly, an efficient Voice Activity Detection (VAD) technique is proposed by 

(Giannakopoulos 2014) based on ZCR and spectral centroid. In order to extract the 

feature sequences, speech signal is first broken into non-overlapping short-term-

windows (frames) of 50 milliseconds duration. Then for each frame, signal energy 

and spectral centroid is calculated. Along with the two feature calculation, a simple 

threshold-based algorithm is applied in order to classify the speech segments as 

shown in Figure 2-6. The process is executed for both feature sequences, leading to 

two thresholds: T1 and T2, based on the energy sequence and the spectral centroid 

sequence respectively. As long as the two thresholds have been estimated, the 

threshold value is set for two feature sequence. The segments are formed by 

successive frames for which the respective feature values are larger than the 

computed thresholds. Finally, the identified speech segments are extended by 5 

short term windows length and merged together to form silence free speech signal.  
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Figure 2-6: Time Domain Feature Based Voiced, Unvoiced and Silence Detection 

 In the proposed research study (Khan and Holton 2015), a novel approach is 

introduced for the silence removal by deploying a pitch tracking technique introduced 

in (Zahorian and Hu 2008). Detailed process of pitch tracking and silence removal is 

presented in the Chapter 4, Section 4.3. Also, keyword spotting and speech tracking 

performances are compared and presented in performance evaluation sections 

(Chapter 4, 5, and 6) for the aforementioned silence removal approaches. 

2.2.2.     Time Frequency Representation and Spectral Analysis 

For the analysis and processing purpose, usually speech signal is divided into 

smaller units called segments or frames. Segmentation is the very basic step in any 



30 

 

voiced activated systems that include speech recognition systems and speech 

synthesis systems. Speech signal can be segmented into a set of fundamental 

acoustic units that include words, phonemes or syllables. Most of the time, phonetic 

units are used for the purpose of speech recognition and synthesis. Because of the 

slow varying nature of the speech signal, the processing of speech is conducted in 

blocks or frames of specific length over which the properties of the speech waveform 

can be assumed as stationary signal.  

Extensive research work has been conducted related to frame size selection. It is 

analysed that speech signal remains almost stationary for the duration of 10 

milliseconds to 50 milliseconds (Ravindran et al. 2010) depending upon speaker, 

speech contents, and nature of the problem. The frame by frame analysis is called 

short term, time domain or frequency domain analysis of speech signal. Time domain 

analysis of speech signal provides some dominant features that are useful for 

different purpose. For example, zero crossing, time domain signal energy, and 

autocorrelation are some dominant features that may help for a variety of 

applications. Speech signal contains very rich information that if not lost, may help in 

diverse application areas. Speech synthesis, speaker recognition, speech 

recognition, and speech compression are the most common examples of such 

applications. There are some dominant features existing in speech signal that can’t 

be extracted in time domain, hence it is necessary to transform the speech signal 

into frequency domain to retrieve its spectral components. A number of techniques 

have been used in literature for the purpose of time-frequency representation of 

speech signal. A Discrete Fourier Transform (DFT), STFT, and WT are the most 

commonly used spectral analysis techniques (Mayer 1989) that are described in the 

following sections. 
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2.2.2.1. Fourier Transformation 

Time series data and hence speech signal can be described by a waveform as a 

function of time. The FT basically decomposes the speech signal into sinusoids to 

represent in alternative way. The FT provides information about the time varying 

nature of spectral features existing in the speech signal. The continuous FT converts 

the signal from time to frequency domain for infinite duration of continuous spectrum 

that is made up from infinite number of sinusoids. In the context of speech signal, 

most of the related research work is based upon DFT that is presented below.  

A. Discrete Fourier Transform 

Suppose ( )x t  is continuous time signal, then continuous FT is given by: 






 dtetxfX ftj 2)()(         2-2 

Where; ‘ f ’ is the current frequency being analysed, ‘ t ’ is a current sample in‘ x ’, 

2j fte  is the alternative representation of complex trigonometric function that indicates 

the circular path covered with specific frequency. In case of speech signal 

processing, we deal with digital signal that is sampled at specific frequency. Hence 

( )x t  is sampled as 0 1 1, ,..... Nx x x   over time ‘T’ with t as sampling interval. Moreover, 

continuous FT deals with infinite time ‘T’ and number of samples ‘N’ which is 

impossible. To deal with the infinity, the continuous FT can be replaced by DFT. 

Mathematically: 
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With spectrum frequency of
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k
k )2(   , kX represents the DFT of the sampled 

signal nx .  
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B. Short Time Fourier Transform 

The major limitation of continuous and DFT is the inability of simultaneous 

representation of time and frequency localisation. Consequently, DFT is considered 

not useful for the time variant and non-stationary signal analysis. One possible 

solution for time-frequency localisation was presented in the form of where input 

signal is broken into equal length short term frames which normally overlap each 

other to reduce the artefacts at the boundary. Each frame is windowed that means 

the multiplication with a smooth function that gradually decreases towards both ends 

of the frame. A DFT is computed for each overlapped frame and the complex output 

is added into a matrix which keeps the record of magnitude and phase for each point 

in time and frequency (Allen and Rabiner 1977). Mathematically, it can be 

represented as follows: 

( ) ( ) ( ) jwt

m

t

X w x t w t mR e






          2-4 

( . ( ))wDTFT x SHIFTmR w  

Where; ‘ m ’ is the index for window shifting. Output of STFT is 2-dimensional matrix 

with ‘N’ rows and ‘M’ columns that can be represented as: 
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The FT has been used in a wide range of application areas that include differential 

equations analysis, spectroscopy, quantum mechanics, and signal processing (Allen 

and Rabiner 1977). In the context of speech, DFT and STFT have been mostly used 

for time frequency analysis of signal (Dhingra et al. 2013), (Dave 2013), 

(Lakshmikanth et al. 2014) that is needed for feature extraction and noise reduction 

in speech signals. As an example; a speaker recognition system is presented by 

(Farah and Shamim 2013) that use STFT to extract the MFCC feature vectors from 

the speech signal. Similarly, a key word spotter is presented in (Bahi and Benati 

2009) based on STFT as a spectral analysis method. The frequency domain data is 

processed for the MFCCs calculation while energy of the speech signal is calculated 

from the time domain speech signal. Both; energy and MFFCs coefficients were 

used as a feature set that were incorporated for the system training. The system is 

analysed using hamming window with 36 milliseconds frame length. The VQ 

algorithm is used for the vector training and codebook generation. Each codebook 

represents the acoustic features of the signal. HMMs were used for the probability 

assignment for observation given a word. If the highest probability is up to a given 

threshold, the system confirms the detection of the keyword. The system is tested on 

the 10 files each having 10 seconds length. Results show that the system 

outperforms for a limited dataset with very minor error rate. However, this system is 

based on VQ and HMM that need a high computational cost. Moreover, HMM based 

recognizers depend upon probability assignment that may not be assigned correctly 

and may cause misrecognition. 

A sampled speech signal analysis model based on STFT is presented by (Griffin 

and Lim 1984). Speech signal was assumed as the output of a linear non-stationary 

function operated by a quasi-periodic impulse. A narrow-band and wideband 
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analyses of voiced speech is obtained using STFT. For the case of wide-band 

analysis of voiced speech, additional assumption of a formant structure for the 

speech yielded a simplified interpretation of the wide band STFT. The transformed 

signal is represented by the features including magnitude, phase, and instantaneous 

frequency of the STFT. This model is applicable to a wide range of areas specifically, 

for speech spectrogram that is widely used for speech analysis, speech synthesis, 

phase Vocoder, channel Vocoder, sub-band Vocoder, and transform Vocoder. 

Similarly, it has a number of applications for time compression and expansion of 

speech signal (Portnoff 1978) and (Portnoff 1981). 

Research conducted in our previous work (Khan et al. 2012) provides the solution 

for word similarity matching based on Posterior Probability Measure (PPM). The 

STFT is applied for the frequency domain transformation of speech signal. The 

transformed data is passed to PPM frame by frame and a similarity score is 

calculated. System performance showed that the PPM provides an efficient signal 

matching performance in the presence of background noise in the speech signal as 

compared to existing similarity measure algorithms. This approach uses STFT based 

frequency components for the dominant feature extraction that are processed further 

for a similarity measurement. 

The issue associated with STFT is the limitation of a simultaneous time frequency 

representation. It can provide a simultaneous time frequency localisation by a 

compromise on window size that causes the limitation for localisation accuracy. 

Large size window provides good frequency resolution but poor time resolution and 

vice versa. This problem is known as Heisenberg uncertainty principle which says 

that the exact time-frequency representation of a signal can’t be known.  

Consequently, the unnecessary time and frequency components that may cause a 
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mismatch and misidentification cannot be filter out. This issue is resolved in the 

proposed research work by the usage of WD for time-frequency representation and 

noise filtration from the speech signal (Khan et al. 2014).  

2.2.2.2. Wavelet Transform 

In the STFT, sinusoids are used as basic functions and windows are used to localise 

the signal to a particular time interval. In wavelet transforms, the windows are 

incorporated directly into the basic functions and a variety of non-sinusoidal shapes 

are common. “A wavelet (referred as mother-wavelet) is a short term signal with an 

average value of zero”. As compared to sinusoids which works better for stationary 

signal, Morlet introduced the idea of wavelets (Mayers 1989) that are irregular and 

works better for non-stationary and non-periodic signals. The wavelet transform uses 

the mother-wavelet likewise STFT uses a windowed sinusoid. In the wavelet 

transformation, mother-wavelet is stretched and compressed with the shifting 

process along the input signal. This process is called scaling and is analogues to 

frequency in STFT. The mother wavelet is scaled and shifted along the whole signal 

to calculate the frequency spectra for corresponding scale as shown in Figure 2-7.  

 

Figure 2-7: Scaling and Shifting Process of Mother Wavelet (Fugal 2009) 

Above figure shows the shifting and scaling process of mother wavelet. At first step, 

a mother-wavelet is picked up and shifted along the whole signal to check the 

frequency at that level. In the next step, mother-wavelet is stretched and again 

shifted along the whole signal to get the frequency available at next level. The 
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process of scaling and shifting runs recursively and a three-dimensional time-

frequency representation is achieved as shown in Figure 2-8 (c).  

 

Figure 2-8: Difference between FFT and Wavelet Transform (Fugal 2009) 

Above figure describes the time-frequency representation difference between 

STFT and wavelet transform. The STFT introduced short time window concept that 

solved the time localisation issue to some extent with a compromise on window 

length. Wavelets, on the other hand solved the both issues by introducing the 

mother-wavelet shifting and stretching over time, to provide time-frequency domain 

analysis while magnitude of the frequency as 3rd dimension as shown in the Figure 

2-8 (c). Mathematically;  

( , ) ( , ) 1/ ( ) *( / )x xCWT s s s x t t s dt         
2-5 

The above equation provides the frequency transformation of the speech signal 

using continuous wavelet transform as a function of shift and scale parameters 

represented by ‘ ’ and ‘s’ respectively. The transforming mother-wavelet is 

represented by ( )t , ‘ t ’ is the time axis and output is known as Continuous Wavelet 

Transform (CWT). The ‘ ’ corresponds to the time information of the window 

whereas, ‘s’ indicates different level of frequencies in the signal. Larger value for ‘s’ 

corresponds to dilated signal while smaller value corresponds to compressed signal. 
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The transformation process of speech signal using wavelets is represented in the 

figure below. 
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Figure 2-9: Wavelet Transform of a Speech Signal 

Discrete Wavelet Transform (DWT) on the other hand uses a dyadic set of scales 

that means; the input signal is decomposed into mutually orthogonal set of wavelets 

which is the main difference from a CWT. The DWT is based on smoothing and non-

smoothing filters that are constructed from wavelet coefficients. Suppose ‘L’ is the 

signal length with 2N number of sampled data ‘D’ then at first step; D/2 data at scale 

L/2(N-1) are computed. Then (D/2)/2 data at scale L/2(N-2) and so on till last 2 data at 

scale L/2 as shown in figure below.  
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Figure 2-10:   WD into Approximation and Detailed Coefficients (Meyer 1989) 

In Figure 2-10, A1,2,3… and D1,2,3… represents the approximation and detailed 

coefficients at level 1,2,… respectively. The input signal can be reconstructed by 

adding up the approximation and detailed coefficients at each level. The major 

difference between WD and wavelet packet decomposition is shown in the Figure 

2.10. It is clear that wavelet packet decomposition (right side figure) expands both; 

approximation and detailed coefficients into ‘A’ and ‘D’ whereas WD does expand 

only approximation coefficients in the next level. There are different families of 

mother-wavelet with corresponding properties in terms of structure as shown in 

Figure 2-11.  

 

Figure 2-11:   (a) Mexican Hat Wavelet, (b) Complex Morlet Wavelet, (c) Coiflets Wavelet,                   

(d) Daubechies Wavelet, (e) Complex Gaussian Wavelet, and the                                                          

(f) Bi-Orthogonal Spline Wavelet (Fugal 2010). 
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Wavelet transform have continuously and successfully been implemented in the 

literature for diverse application areas. For example, wavelets have an extensive use 

for the data compression, time varying signal analysis, noise filtration, and signal 

smoothing, speech recognition and word identification applications (Akansu et al. 

2010). In addition, wavelet transform has been used in the area of communication. 

Orthogonal Frequency Division Multiplexing (OFDM) is one of the best examples of 

such applications. Wavelet based OFDM is capable to perform efficiently in terms of 

deep notches achievement as compared to FFT based OFDM (Galli and Logvinov 

2008).  

Over the past two decades, research works have been directed towards the use 

of wavelet based feature extraction (Byung-chul 2001), (Tufecki 2001), (Sarikaya 

2001) in the area of ASR and similarity measure. Three dimensional representation 

property of DWT can be used for the filtration for the signal of interest. For example, 

a wavelet based speech recognition is presented by (Gamulkiewicz and Weeks 

2003) for the phonemes matching. A DWT (Daubechies 8) is applied on the pre-

processed data to obtain five levels of frequency bands. User speaks a test word for 

the recognition. Using DWT, the test word is converted into five frequency bands that 

are compared with the template phonemes frequencies to generate the identified 

phonemes list. The system is tested on a small dataset of 35 template phonemes 

with 5 recordings for each phoneme as test data. The performance results showed 

overall 57% correction out of total 175 possible matches. Moreover, it is observed 

that the best performance (77%) is achieved using first three approximation 

coefficients as compared to higher frequency bands. 

A speaker identification system is presented by (Shafik et al. 2009) on the basis of 

wavelet transform based MFCC feature vectors that works efficiently in the presence 
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of different level of noise in telephonic speech signal. The noisy speech signal is 

passed to DWT that transforms the signal from time to frequency domain by 

breaking it up into approximation and detail coefficients. Both; approximation and 

detailed coefficients are concatenated and passed to MFFC features extraction 

process. The MFCC coefficients of the original noisy signal were extracted too. Both 

MFCCs feature vectors were concatenated to produce a huge feature space for the 

speaker identification. The system is trained using ANN over the extracted features 

from a dataset of 150 Arabic sentences by 15 speakers. For the test purpose, same 

speakers were asked to repeat a sentence with the same contents. Different 

scenarios have been generated for the system performance evaluation based on 

time domain MFCCs, DWT based MFCCs, and combination of both. It is analysed 

that the best performance is achieved when the system is trained on the combined 

MFCCs feature vector produced by DWT and original signal. Moreover, system 

performed efficiently not only in low level of SNR but also in moderate and high level 

of SNR. 

An effective research work is presented by (Fugal 2010) that use Dabuchies 

wavelet for finding the matching patterns in speech waveform in the regional dialects 

of demographic region. Speech samples were recorded by a number of speakers 

from five different dialects regions. The data is loaded to wavelet filter for the 

transformation into frequency domain. Standard deviation, mean, variance and mode 

were used as the feature set for the similarity calculation between test and template 

waveform. Although, the contents of speech test and template speech were different, 

yet the performance result showed a huge resemblance in the corresponding dialect 

speech contents. In the proposed research work, WD is used as a spectral analysis 

and filtration method for the continuous speech tracking and keyword spotting 
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applications. A detailed analysis of the WD based dynamic noise filtration and feature 

extraction performance is presented in Chapter 5.  

2.2.3.  Feature Extraction 

Feature extraction is a common term used in pattern recognition area that means 

the measurement for characteristics (i.e. features) of a specific pattern (e.g. speech 

signal in proposed research). These features are passed to a classifier or similarity 

measure algorithm to identify the pattern (e.g. speech utterance). Basically, a speech 

signal consists of bunch of information that is useful for multiple purposes including 

speech recognition, word identification, and speaker recognition etc. This information 

exists in the form of variety of acoustic features in speech signal that represent the 

dominant properties of a specific segment of speech signal. Moreover, as discussed 

in previous section, speech signal can be considered as a stationary in short term 

analysis. These features are considered constant for that segment of short time (10-

50 milliseconds) (Ravindran et al. 2010). Features may be extracted in time domain 

as well as in frequency domain. In the literature, Mel Frequency Cepstral Coefficient 

(MFCC) is the most dominant feature set that have been used for the automated 

speech recognition (Dhingra et al. 2013), (Dave 2013). However, there are some 

other features that may be useful for other purposes related to speech processing 

that include Linear Predictive Coding (LPC) (Bradbury 2000, Juricka 2014), 

Perceptual Linear Predictive (PLP) (Dave 2013), (Hermansky 1990), energy, ZCR, 

and F0 (Zahorian and Hu 2008). In the proposed research work, MFCC and WD 

based Energy are used as feature set for the purpose of TWCST and keyword 

spotting.  
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Mel Frequency Cepstral Coefficient 

In speech signal processing, elimination of the unnecessary components from 

speech signal is one of the challenging task. These components may be in the form 

of background noise, silence, and emotion etc., that if not eliminated, may lead to 

misidentification or misrecognition. As discussed earlier, sound generated by human 

are filtered by vocal tract and other linguistic parts including jaws, nose, and tongue 

etc. On the basis of this filtration, shape of the output sound is determined in the 

form of phonemes. The vocal tract shape produces the output sound in the form of 

short time power spectrum envelopes that are also produced by MFCC. The MFCCs 

were first time introduced by Davis and Mermelstein in the 1980's and have been 

used in ASR and speaker recognition area as state-of-the-art ever since (Lyons 

2012), (Farah and Shamim 2013).  

Basically, vibrations of the human cochlea at different spots depending on the 

frequency of incoming sounds in the form of power spectrum, cause different nerves 

fire to produce information to brain about the existence of certain frequencies. The 

spectrogram of speech signal performs same task of identifying which frequencies 

are present in the frame. As there are unnecessary frequency components in the 

spectrogram of signal, it is hard to classify two closely related frequencies. For this 

purpose, the whole spectrum is divided into different frequency regions and the 

corresponding energy is calculated for individual ranges. In the context of MFCC, 

this is performed by Mel filter-bank (Lyons 2012). The Mel filter-bank filters are 

gradually stretched from start to end to indicate the energy levels for zero towards 

higher frequencies respectively. Hence, the Mel scale provides a range measure for 

the width of a filter-bank. In the next step, the filterbank energies are logged to make 

it more closely to what human hears. This is because human hearing doesn’t work 
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on linear scale. Finally, Discrete Cosine Transform (DCT) of log filterbank energies is 

computed to de-correlate the energies.  

To process the input speech for MFCC feature extraction, firstly, segmentation is 

applied to input speech signal with frame length of 20-50 milliseconds. Hence, for a 

typical sampling frequency of 8 KHz, one frame consists of 0.025*8000 = 200 

samples. Then, the DFT is applied on each overlapped frame which is given by: 

2 /
( ) ( ) ( )
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Where; ( )h n is ‘N’ sample long analysis window (e.g. Hamming window), ‘ k ’ is the 

current frequency to be analysed by DFT, and ‘ n ’ is the sample index. The period-

gram based power spectral estimate for the speech frame ( )is n  is given by:  
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The above relation represents the period-gram estimate of the power spectrum. 

After the power spectrum estimate, Mel-spaced filter-bank is computed that consists 

of a set of 20-40 (26 is standard) triangular filters that are applied to the period-gram 

power spectral. These filter-banks comes in the form of 26 vectors of length 257 

(depending upon DFT setting for FFT points). Normally, all vectors consists zero 

values mean with a non-zero for a certain section of the spectrum. Each filter-bank is 

multiplied with the power spectrum and the coefficients are added up to provide filter-

bank energies. As a result, there are only 26 numbers each indicating energy level in 

the corresponding filterbank. To get log filterbank energies, a log of each of the 26 

filterbank energies is taken. In the next step, the DCT is applied to the 26 log filter-

bank energies to get 26 cepstral coefficients. In the literature, only lower 12-13 of the 
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26 coefficients are kept for ASR and speaker recognition application (Lyons 2012). 

The resulting features (12 numbers for each frame) are called Mel frequency cepstral 

coefficients. 

 

Figure 2-12: Plot of Mel Filterbank and Windowed Power Spectrum (Lyons 2012) 

Mel Filter-bank Computation 

To calculate the filter-banks shown in Figure 2-12(a), lower and upper frequencies 

are selected. In most of the literature, lower frequency limit is set as 300Hz and 

8000Hz for the upper frequency (Lyons 2012). Moreover, 8 KHz sampling frequency 

means 4 KHz limit for upper frequency using Nyquist sampling theorem. The upper 

and lower frequency can be converted into Mels using: 

( ) 1125ln(1 / 700)M f f         2-8 

Thus using the above relationship between frequency ‘ f ’ and mel scale, 300 Hz 

is represented by 401.25 mel and 8000Hz are 2834.99 mel . In case of 10 filterbanks, 



45 

 

12 points are needed that can be added linearly between 401.25 and 2834.99. To 

convert mel back to frequencies, we use: 

1( ) 700(exp( /1125) 1)M m m         2-9 

In the next step, as the frequency resolution required putting filters at the exact 

points which are not specified, the above frequencies are rounded to the nearest 

FFT bin depending upon FFT size and sampling frequency. Finally, the filter-banks 

are created starting from the first point; reach its peak at the second point, then 

return to zero at the 3rd point. The second filter-bank will start at the 2nd point, reach 

its max at the 3rd, then be zero at the 4th etc., as shown in Figure 2-13. Equation 2-10 

presents a relationship to calculate these boundaries as: 

( 1)
     ( 1)

( ) ( 1)

                               ( 1) ( )
( )

( 1)
     ( ) ( 1)

( 1) ( )

                              ( 1)

m

k f m
k f m

f m f m

f m k f m
H k

f m k
f m k f m

f m f m

k f m

  
   

 
   

  
    

  
 

        2-10

 

Where ‘ m ’ is the number of desired filters, and ‘ f ’ is the list of ‘ 2m ’ mel spaced 

frequencies.  
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Figure 2-13: A Mel-Filter-Bank Containing 10 Filters (0Hz to 8000Hz), (Lyons 2012). 

The MFCC has been used in a variety of applications in the literature. As an 

example; a key word spotter is presented by (Bahi and Benati 2009) based on 

MFCC as features vector. The frequency domain data is passed for the MFCCs 

calculation while energy of the speech signal is calculated from the time domain 

speech signal. Both; energy and MFFCs coefficients were used as a feature set for 

the system training. The system is analysed using Hamming window with 36 

milliseconds frame length. The VQ algorithm is used for the vector training and 

codebook generation. Each codebook represents the acoustic features of the signal. 

The HMMs were used for the probability assignment for observation given a word. If 

the highest probability is up to a given threshold, the system confirms the detection 

of the keyword. The system is tested on the 10 files each having 10s length. The 

results show that the system outperforms for this limited dataset with very minor 

false detection rate. However, this system is based on VQ and HMM that have high 

computational cost due to training process. Moreover, HMM based recognizers 
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depend upon probability assignment that may not be assigned correctly and may 

cause misrecognition. 

A speaker identification system is presented by (Shafik et al. 2009) on the basis of 

wavelet transform based MFCC feature vectors that works efficiently in the presence 

of different level of noise in telephonic speech signal. The noisy speech signal is 

passed to DWT that transforms the signal from time to frequency domain by 

breaking it up into approximation and detail coefficients. Both; approximation and 

detailed coefficients are concatenated and passed to MFFC features extraction 

process. The MFCC coefficients of the original noisy signal were extracted too. Both 

MFCCs were concatenated to produce a huge feature space for the speaker 

identification. The system is trained using ANN over the extracted features from a 

dataset of 150 Arabic sentences by 15 speakers. For the test purpose, same 

speakers were asked to repeat a sentence with the same contents. Different 

scenarios have been generated for the system performance evaluation based on, 

time domain MFCCs, DWT based MFCCs and combination of both. It is analysed 

that the best performance is achieved when the system is trained on the combined 

MFCCs feature vector produced by DWT and original signal. Moreover, system 

performed efficiently not only in low level of SNR but also in moderate and high level 

of SNR. 

Similarly, (Farah and Shamim 2013), (Dhinjra 2013), (Gandhiraj and Sathidevi 

2007) and (Katsamanis 2009) have used MFCC for speaker identification, speech 

recognition, and speech emotion recognition resulting a considerable performance. 

Meinard (2007) utilized MFCC for gender classification and audio similarity measure. 

Along with the advantages of MFCC, there is a limitation associated in the form of 

their use in the presence of additive noise. Researchers have been working to 
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overcome this limitation and successfully improved the MFCC performance by 

increasing the log-Mel amplitude power (Tyagi and Wellekens 2005). In the proposed 

research, MFCCs coefficients are extracted and used in different forms as the 

dominant features for the TWCST and keyword spotting approaches.  

2.3. Summary 

In this chapter, a detailed study on the concepts of speech signal processing is 

presented. The entire speech signal processing is broken down broadly into different 

components. This includes speech enhancement and pre-processing, speech 

segmentation, spectral analysis, and feature extraction. Each component is further 

explained in depth along with the formulations and applications in the literature and 

in the proposed research work. In the pre-processing and speech enhancement 

component, more emphasize was on most commonly used techniques for the 

silence removal. Segmentation section provides a deep review on framing analysis. 

Spectral analysis (i.e. time frequency representation) is the most important section of 

this chapter that provides a complete sketch of time-frequency representation 

methods in terms of literature review, implementation methodologies, and 

exploitation in the proposed research work. More specifically, wavelet transforms and 

Fourier transform are discussed in detail. The formulation of MFCC based features 

vector extraction from speech signal is addressed in the final section.  
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3. RELATED WORK FOR SPEECH SIMILARITY     

MEASURE AND KEYWORD SPOTTING 

3.1. Scope 

This chapter consists of four sections which aim to provide a comprehensive 

insight into: (1) dynamic time warping, (2) Kalman filter, and (3) the current level of 

speech processing related research performed using these approaches. The first 

section introduces similarity metrics followed by a detailed description of DTW 

including its implementation and constraints in Section 3. Section 4 demonstrates the 

most recent research work that is introduced in the area of keyword spotting, isolated 

word recognition based on DTW, spoken term detection, and continuous speech 

matching. In the final section, a Kalman filter is introduced and its related work in the 

area of speech processing is discussed.   

3.2. Introduction 

Similarity measure is a function that provides the quantity of similarity between 

two objects. In terms of speech signal matching, it provides a measure of how much 

two utterances are similar to each other. Another most commonly used terminology 

that is the inverse of similarity measure is known as distance metric. Distance metric 

provides the quantity of dis-similarity between two objects. There are more than one 

definition for similarity measures and distance metrics with respect to their area of 

applications. Literature consists of a vast use of distance metrics in the area of 

pattern matching and time series data similarity measurement. The most widely used 

distance metrics include Euclidean distance (Carlin et al, 2011), Vector Cosine Angle 

Distance (VCAD) (Yuan and Sun 2005), (Hafner et al. 1995); Bhattacharyya 

coefficient (Sahoo and Patra 2014), (Djoudi 1990), (Lin 1991); Kullback-Leibler 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Yuan%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=16240776
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sun%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16240776
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divergence (Liu and Chen 2004); normalized cross correlation (Theodoridis and 

Koutroumbas 2003); histogram intersection distance (Joukhadar et al. 1999), 

Tanimoto coefficient (Willet et al. 1998), and a PPM (Fing 2008). The cross 

correlation and Bhattacharya coefficient are most common pattern matching 

techniques applied in speech recognition and image processing (Fing 2008). Unlike 

PPM, the existing similarity measure algorithms lack the ability to differentiate 

between speech signal and background noise which participates actively in 

mismatching or misidentification. This issue was addressed in the current research 

work (Khan et al. 2012) by applying PPM for isolated keyword matching to degrade 

the effect of background noise in speech signal.  

In signal based word identification systems, cross correlation and Euclidean 

distance are typically used to determine similarities between a pair of spoken words. 

In document retrieval systems on the other hand, distance metrics based on cosine 

angle are more commonly used for determining similarity between two documents 

(Dehak et al. 2010). Even though the Euclidean distance and the cosine angle based 

distances coincide when the components of the feature vectors are normalised by 

the norm of the vector, they differ when they are normalised otherwise. In speech 

processing applications, components of a feature vector are usually normalized by 

the size of the spectrogram and as a result, Manhattan distance, Euclidean distance, 

cosine angle based distance, and histogram intersection distance produce degree of 

similarities between two signals. As in the proposed research study, main focus is on 

the time warped speech utterance match, therefore; formulation of the Euclidean 

distance, DTW, and their applications for speech matching and keyword spotting are 

presented in the following sections.  
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3.3. Euclidean Distance 

In DTW techniques, a Euclidean distance is commonly used as a similarity 

measure. In a two dimensional coordinate system, if A = (a1, a2) and B = (b1, b2) are 

two points, then Euclidean distance between A and B can be defined as: 

   
2 2

1 1 2 2ABE a b a b   
       3-1 

In case of n-dimensions where A= (a1, a2, a3,……, an) and B = (b1, b2, b3,……, bn), 

then the generalised form of above equation will be: 
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The importance of Euclidean distance is based on its fundamental properties of 

metric. These properties include non-negativity, symmetry, and inequality (Cai and 

Ng 2004). Most of the time, a metric function is desired because to prune the index 

during search, the triangle inequality may be used that allows the execution to be 

speed-up for exact matching (Mueen 2009).  

 

Figure 3-1: T And S Are Two Time Series Of A Particular Variable v Along The Time Axis t.  

(Cassisi et al. 2012) 
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A limited use of Euclidean distance is available related to speech utterance 

matching. Thakur and Sahayam (2013) proposed an MFCC based speech 

recognition for password detection based on weighted Euclidean distance. Similarly, 

feature detection for stress existence in speech signal based on Euclidean distance 

is proposed by (Ruzanski 2006). The performance is compared with K-means 

clustering that provided 50.5% error rate as compared to 38% of Euclidean distance 

based approach.  Even Euclidean distance provided better performance, yet the 

error rate is unreliable in real time applications. The functionality of Euclidean 

distance measure is affected in a situation where it calculates the in-normalised 

vectors similarity. As an example, in Figure 3-2, vector ‘A’ and ‘C’ are more similar in 

terms of direction as compared to ‘A’ and ‘B’, but Euclidean distance results ‘A’ and 

‘B’ more similar because of the magnitude difference of vector ‘B’ and ‘C’. The 

problem can be solved by normalising the vectors which means all vectors will be 

converted to unit vectors.  

 

Figure 3-2: Euclidean Distance vs. Cosine Similarity 

Another issue related to Euclidean distance is the constraint on query vectors 

length to be same that does not happen in most of the cases; especially when 

matching two continuous, non-stationary time series signals. In such a case; DTW is 
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considered one of the best solutions for the time warped signal matching (Carlin et 

al. 2011), (Ratanamahatana 2002). As compared to Euclidean distance that can deal 

only with same length sequences, the DTW can measure the distance between two 

sequences of different length as shown in figure below.  

 

Figure 3-3: Difference between DTW Distance and Euclidean Distance (Cassisi 2012). 

3.4. Dynamic Time Warping 

The DTW is a well-known technique to find an optimal alignment between two 

given (time-dependent) sequences that may vary in time. The DTW has been used 

as one of the powerful algorithm for time series alignment and isolated word 

recognition (Cassisi 2012). In terms of Spoken Term Detection (STD) and Query by 

Example (QbyE) related work, the DTW have been used extensively since last 

decade (Chan and Lee 2010), (Thambiratmann and Sridharan 2007), (Zhang and 

Glass 2011), (Carlin et al. 2011), (Zhang and Glass 2010), (Jansen et al. 2010), 
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(Zhang et al. 2012). In speech signals, multiple recordings of a speech utterance 

spoken at different time may differ in length. Moreover, the length of phonemes 

within the utterance may also differ that causes the time warping issue.  

 

Figure 3-4: DTW Time Axis Alignment (MIT 2003) 

In case of two time warped speech utterance matching, the DTW iteratively warps 

the time axis until an optimal match between two speech utterances is found as 

shown in Figure 3-4. Usually, the speech signal can be represented as a sequence 

of its features. The total distance between two sequences is a sum of the minimised 

local distances. Suppose T = {t1, t2, . . . , tn} and S = {s1, s2, . . . , sm} are two time 

series of lengths ‘n’ and ‘m’ respectively, DTW  exploits information contained in a   

‘n × m’ distance matrix: 
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where ( , )distMatrix i j  corresponds to the distance d(Ti, Sj) of ith point of ‘T’ and jth 

point of ‘S’ with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Figure 3-5 provides a sketch of a sub-matrix 

that provides distances between two time warped isolated words ‘hello’. 

 

Figure 3-5: Distance Matrix between Times Warped Speech Utterances 

The main focus in the DTW is to find the minimum warping path P = {p1, p2, . . ., 

pk} of contiguous elements on ‘ distMatrix ’ with max(n, m) < P < m + n -1, and wp = 

( , )distMatrix i j such that it minimizes the following function: 

1

( , ) min
K

p

p

DTW T S w
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The warping path is subject to several constraints (Ratanamahatana 2002). Given 

wp = (i, j) and wp -1 = (I’, j’) with i, i’ ≤ n and j, j’ ≤ m. 

Boundary conditions: In DTW, the warping path starts from bottom left and ends at 

top right; i.e. p1 = (1,1) and pK = (n, m). Figure 3-4 demonstrates the example of 
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warping path progression that starts from bottom left and progress towards the top 

right corner of the matrix. 

Continuity: Progress in the warping path is made one step (depends upon 

constraint) at a time (Figure 3-6). Both i and j can only increase by at most 1 

(depends upon constraint) on each step along the path, i.e. i – i’ ≤ 1 and j – j’ ≤ 1.  

 

Figure 3-6: Local Constraints and Alignment Flexibility (MIT 2003) 

Monotonicity: The path will progress forward only. It can’t move in backward 

direction even a single step. 

Warping width: A path is considered optimal if it doesn’t move very far from the 

diagonal as shown in Figure 3-7. The distance that the path is allowed to extend is 

known as warping width. 

Slope constraint: The optimal path never provides too steep or too shallow slope. A 

big advantage of this restriction is the prevention of short sequences matching too 

long ones. 
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Figure 3-7: Global Constraint: Exclusion of Search Space Using Local Constraints (MIT 2003) 

Dynamic programming (DP) is used to calculate the required warping path by 

generating a cumulative distance metric using; 

 ( , ) ( , ) min ( 1, 1), ( 1, ), ( , 1)i ji j d T S i j i j i j                3-4 

Where ‘ ’ represents the output warping path. The aforementioned restrictions 

are used accordingly to change the output of DTW. For example warping path 

restriction can be used to force the warping path to progress diagonally by 

introducing a threshold depth where recursion has to stop, i.e. 

 ( , ) min ( 1, 1), ( 1, ), ( , 1)          |
( , )

                                                                                     otherwise

i jd T S i j i j i j i j
i j

   


        
  

  
     3-5 

Where ‘ ’ represents the threshold value for the maximum depth of the local 

search function. Figure 3-8 shows the calculated warped path (slope) obtained by 

the matrix data presented in Figure 3-5. It can be observed that the warping path 

progresses diagonally from bottom left to top right according to the aforementioned 

constraints. The DTW has been most commonly used in the literature for the isolated 

word matching tasks. Prior to introduction of the statistical models (i.e. HMMs) for 

speech recognition, the DTW has been considered as one of the dominant technique 
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for isolated word recognition (Cassisi 2012). Literature contains a variety of isolated 

word recognition and ASR approaches that are based on different versions of DTW. 

The following section presents the latest research work in relation to STD, QbyE, 

and speech signal matching using a variety of DTW approaches.  

 

Figure 3-8: Warped Path between Two Speech Utterances 

3.5.    A Review of Speech Signal Matching  

Keyword spotting and speech similarity measurement have been a popular 

research topic since long period of time. However due to dynamic nature of 

continuous speech signal in terms of noise interference, time warping, connected 

speech, and variability in frequency ranges; the tasks of keyword spotting and 

continuous speech similarity measurement become more challenging. Literature 

consists of a massive research work related to these tasks that can be categorised 
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into isolated word matching, keyword spotting, and continuous speech matching 

tasks that are presented in the following sections.  

3.5.1.  Isolated Word Matching 

Isolated word recognition is an easy task as compared to continuous speech 

matching or keyword spotting due to the discreteness and isolation of the speech 

signal. Literature contains a high number of research studies where the isolated 

word matching is addressed using a variety of approaches. An MFCC based isolated 

word recognition is presented by (Dhingra 2013) where extracted features for test 

and template word in the form of MFCC are passed to DTW model for the distance 

calculation. The DTW score for test word is calculated against all template words 

and the best (minimum) score is picked up as a corresponding best recognized 

word. Although, this technique works very well (72% accuracy), it is only limited to 

isolated word/utterance matching. The recognition accuracy will be effected for 

connected speech. 

In the context of speech recognition and signal processing, DTW has been used 

successfully for time warped speech utterance matching. A signal dependent 

matching for isolated word recognition is proposed by (Yegnanarayana and 

Sreekumar 1984) resulting a better performance using FFT for feature extraction and 

enhanced version of DTW that uses Euclidean distance for signal matching. The 

algorithm is divided into two stages. The first step includes path construction 

between template and test (input) word. In the second step, distance between these 

words is calculated along the path. Matching strategy is based on the Euclidean 

distance calculated between input and template frames using DTW. The 

conventional DTW matching algorithms treat same matching for all categories of 

speech signal. For example, when silence frame is matched with another silence 
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frame, the matching result could be high due to noise in the data. In enhanced 

version of DTW, weight factor is proposed to differentiate the test signal into silence, 

voiced, and unvoiced classes which improve the performance of conventional DTW. 

However, the vocabulary is based on only 6 alphabets that include F, H, L, M, N and 

X. The enhanced DTW showed improved performance of 78.14% from 56.34% when 

compared with conventional DTW. 

An improved DTW technique is proposed in (Lin and Ji 2010) based on cross 

correlation for digit recognition. A new approach of slacked start and end point is 

introduced that improves the performance which is different from traditional DTW 

algorithms that depends on the performance of end point detection. Cross correlation 

is used for the similarity measure between reference and template components. The 

sound was recorded at the sampling rate of 8 KHz, frame size was fixed to 30 

milliseconds with 240 sampling points, and overlap was set to 10 milliseconds with 

80 sampling points. The system produced improved performance over traditional 

DTW with limited parameters such as vocabulary size of 10 digits. 

In addition to DTW, there are some other methods to deal with the time warped 

matching of two signals. For example, the landmarks similarity that is based on 

extracted features such as local maxima, local minima, and inflection points. 

Similarly, interpolation and extrapolation (down sampling) is another solution to 

stretch or compress a time warped signal to required length. However; interpolation 

may lead to change the originality of the function (model fitting) that might be a major 

cause for mismatching or misidentification in terms of speech signal matching. In 

proposed research work, a novel technique for dynamic time warping and speech 

signal tracking is proposed (Chapter 4) that is based on the amalgamation of 
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different speech processing techniques, a dynamic model for object linear motion, 

and a Kalman filter.  

A speaker independent isolated word recognition system is presented by (Peinado 

1991) based on HMMs and VQ. The system is trained on a limited vocabulary of 10 

Spanish digits spoken by 20 speakers, 3 utterances per speaker for each digit. The 

training and test data was sampled to 8 KHz and is framed to 256 samples. The 

system is tested on the same amount of data recorded by same speakers and 

achieved 90% recognition score. As the system is based on HMM and VQ algorithm, 

it needs training process on a very specific and limited vocabulary, hence can’t be 

applied for keyword spotting of unlimited vocabulary and language independence. 

An isolated word recognizer is introduced by Lipeika (2010) which uses ANN for 

the training of extracted feature vector of the templates. Power spectral density is 

calculated by autoregressive method in each frame of speech signal. Autoregressive 

method is parametric approach for estimation of spectrum of data that can achieve 

with small data set. After resampling the speech signal to 8 kHz, power spectral 

density is calculated and forwarded to feature extraction method. Two features; 

amplitude and location of peaks in each frame were extracted and passed to training 

process. The system is trained on these two features for available templates of two 

words ‘yes’ and ‘no’ using ANN. Only two recordings for each word are used for the 

training. The system was tested 80 times for both words by the same speaker and 

100% accuracy was achieved. Despite of the robust performance of this system, it is 

limited to recognize only two words. Moreover, it uses a supervised approach (i.e. 

ANN) for training the network that is not applicable in our proposed system due to 

unlimited vocabulary. 
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3.5.2.  Keyword Spotting and Continuous Speech Matching 

Keyword spotting is based on the partial information extraction (keyword) from a 

continuous speech signal. Despite of the fact that research has been conducted in 

the area of keyword spotting since forty years, yet the formulation of the keyword 

spotting has not been well established (Chen 2014). The related research work can 

be summarized into three main categories that include Query-by-Example (QbyE) 

methods, keyword/filler methods, and Large Vocabulary Continuous Speech 

Recognition (LVCSR) methods. Literature consists a number of keyword spotting 

approaches in relation to QbyE (Anguera et al. 2014), (Joho and Kishida 2014), 

(Wang et al. 2011), (Tejedor et al. 2013), (Tejedor et al. 2015), (Abad et al. 2013) and 

STD (Mandal et al. 2014), (Metze et al. 2012), (Anguera et al. 2013), (Chan and Lee 

2013) that use some sort of variations in DTW (Sakoe and Chiba 1978), (Zhang and 

Glass 2009; 2011), (Chunan and Lin-shan 2010). Over the past decade, most of the 

related research is focused on novelty of template representation methods (Fousek 

and Hermansky 2006), (Hazen et al. 2009), (Huijbregts et al. 2011), (Parada et al. 

2009), (Wang et al. 2011). 

Recent research work introduced in (Abad et al. 2013) addresses the fusion of 

heterogeneous STD system. In the first step, a number of heuristics are 

hypothesised for the similarity score estimation and then linear logistic regression 

method is used for the combination of these scores. The performance is measured 

using eight different techniques individually as well as by fusing them together using 

linear regression. It is observed that the STD rate improved with multiple systems 

fusion as compared to their individual performances. However, this fusion method 

doesn’t provide the degree of ignorance as introduced in the proposed research 

work for keyword spotting. Also, the pre-processing in terms of speech enhancement 
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can also improve the keyword detection rate that is addressed in the proposed 

research. Likewise, (Metze et al. 2012) proposed an effective approach for STD that 

is based on acoustic segment models. This method amalgamates the self-organising 

models, query matching, and query modelling processes to construct an efficient 

STD approach. 

An unsupervised spoken term detection using acoustic segment model is 

presented by (Wang et al. 2011). The aim of the study was to measure the QbyE 

performance using acoustic segmentation model based posteriorgrams and 

traditional Gaussian Mixture Model (GMM) posteriorgrams. The acoustic segment 

models are the unsupervised HMMs of non-transcript speech data. The segmented 

DTW is applied for the query and test utterance matching and the location of the 

query utterance are identified. The Fisher and the TIMIT dataset (Garofolo et al. 

1993) are used for the experimentation purpose. The system performance is 

measured using the standard binary classification method. With a tolerance of a 

single window size in position measurement, a 77.5% for ‘recall’ is achieved. It is 

observed that the ‘recall’ increases to 88.2% with the tolerance of double window 

size. Despite of the fact that this approach does not uses the speech transcript for 

the supervised training, it uses the HMMs for posteriorgrams representation that may 

take huge amount of computational cost. 

Spoken term detection in speech for QbyE approach is introduced in (Hazen 

2009) for a limited or no in-domain training data. The keyword and template 

speeches are represented by phonetic posteriorgrams obtained from a phonetic 

recognition system. The measured posteriorgrams are forwarded to a constrained 

DTW that measures the warping distance and the position with minimum warping 

distance is identified as desired keyword. The fisher dataset is used for the 
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performance evaluation while 40 keywords were chosen for the query utterance. It is 

observed that the average query detection error varies from 10% to 20 % depending 

upon the DTW constraints. The advantage of this approach is the language 

independence as there is no training on the phonemes models. However, the 

accuracy in terms of keyword detection may be a question that is improved in the 

proposed research work. 

Hierarchical posterior based keyword recognition is proposed by (Fousek and 

Hermansky 2006) where each targeted word is classified by a separate binary 

classifier against the template utterances. For ‘N’ number of keywords, ‘N’ parallel 

binary classifiers are applied that uses the posterior probabilities of the phonemes 

classes. This technique performs better than other unsupervised keyword spotting 

techniques in terms of out of vocabulary issue. However, a huge amount of data and 

time is necessary for this approach that is the major concern addressed in the 

proposed research study. (Junkawitsch et al. 1996) presented the keyword spotting 

approach that is based on traditional HMMs and a modified Viterbi algorithm. This 

approach also suffers from the limited vocabulary issue. Also, it needs a huge 

training dataset to train the HMMs on the phoneme models. 

A keyword spotter is presented in (Bahi and Benati 2009) based on MFCC and 

energy of the speech signal as feature set. The system is analysed using Hamming 

window with 36 milliseconds frame length. The VQ algorithm is used for the vector 

training and codebook generation. Each codebook represents the acoustic features 

of the signal. The HMMs were used for the probability assignment for observation 

given a word. If the highest probability is up to a given threshold, the system 

confirms the detection of the keyword. The system is tested on a limited data of ten 

speech recordings each having a length of ten seconds. The results show that the 
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system outperforms for this limited dataset with very minor false detection rate. 

However, this system is based on VQ and HMM that need a high computational time 

for training learning the models. Moreover, HMM based recognizers depend upon 

probability assignment that may not be assigned correctly and may cause 

misrecognition. 

One of the most interesting and challenging area of speech pattern matching 

research is associated with the human-computer interaction based applications. 

These applications include voice based user interfaces such as voice dialling; call 

routing, keyword spotting, data entry, and speech to text processing (Hagen et al. 

2007). Despite of the significant progress in the performance of ASR since the past 

decade, there is a limited research focus on the continuous speech tracking and 

similarity measure. As discussed aforementioned, keyword spotting, spoken term 

detection, and QbyE research work has been focused over the long period of time. 

An extension to these approaches may leads to a continuous speech tracking 

approach. 

 A speech tracking related approach work is proposed by (Renger et al. 2011) 

where the children orally read stories to develop/improve the skills of reading and 

speaking. In such kind of human-computer interactive applications, children are 

offered the opportunity to orally read the given text and learn about their reading 

abilities on a real time basis. It can be very helpful in the situation of proof reading for 

people who want to learn speech contents by heart. Similarly, a very fruitful use of 

speech tracking is for the identification and localization of word occurrences in a long 

speech recording. Such kind of application can be used for the security institutions 

and intelligence agencies. 
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However; it is not a simple task to develop a robust speech tracking system due to 

variable length of spoken words, speech continuity and word connectivity, 

background noise interference, computational complexity, and vocabulary size. 

Among these issues, the dynamic word length (time warped speech) based on the 

variable speed of input speech is one of the big challenges to deal with. Different 

recordings of the same sentence may vary in time durations. In addition, each word 

within a sentence may also differs in length which may result in the failure of 

similarity measurement techniques to find the best match in a continuous speech. 

Consequently, obtaining the accurate information about the test speech frame 

position with respect to template speech becomes a challenge.  

As discussed earlier, most of the related work is based on a variety of DTW 

approaches which provided the optimal path between time-warped speech signals. 

However, there are some limitations associated with the DTW approach. For 

example, the trade-off between computation time and optimal warping path is one of 

the most common issues associated with DTW (Ratanamahatana and Keogh 2005). 

This is because in DTW, the computation time is linear to the number of frames 

(signal length) to be searched through (Cheng-Tao et al. 2014). Extensive efforts 

were made to enhance the DTW performance in terms of computation time such as 

segment-based DTW (Chan and Lee 2011), lower-bound estimation for DTW (Zhang 

and Glass 2011), (Zhang et al. 2012), and a locality sensitive hashing technique for 

indexing speech frames (Jansen and Durme 2012). Similarly, the conventional DTW 

approaches use a fixed length frame matching that is problematic in case of 

speaking rate variations; resulting in poor matching and tracking performance. Also, 

none of the aforementioned approaches considers the degree of ignorance, model 

uncertainty, or noise variances that affects the desired performance.  
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To overcome the dynamics of variable speed of spoken speech, a dynamic state 

estimator is needed which gives an accurate estimate of the true speech position. 

Therefore, it is useful to have a robust speech tracking system which is capable of 

tracking from a speech template and provide an optimal performance in terms of 

time warped signal matching and localisation from a stream speech. A Kalman filter 

(KF) is an effective state estimator which can satisfy the criteria of better dealing with 

variable speed and noise variances. Also, it is an optimal recursive data processing 

algorithm and has been used for noise cancellation and object tracking for long time 

(Gelb 1974).  

3.6. A Review of Kalman Filter Based Speech Processing 

Kalman filter is a recursive solution to the discrete data linear problem that was 

introduced by R. E. Kalman in 1960. Since that time, research has been conducted 

on the KF and its applications in different areas. With the advancement in digital 

computing; the KF has been used in a wide range of applications particularly in the 

area of target tracking and navigation (Kalman 1960). A KF estimates the state of a 

process recursively using a set of mathematical equations subject to minimum mean 

squared error. The most powerful aspect of a KF is the estimations of past, present, 

and the future states even precise nature of modelled system is unknown as 

described by Greg and Gary (2006). Due to its recursive nature, KF does not require 

any information on previous states of the model except the last calculated state. It 

calculates the best optimal state estimation using input measurement and previously 

calculated state. It has been widely used for dealing with uncertainties by fusing 

inexact forecasts of a system's state with inexact measurements.  

In the past, KF has successfully been applied in sensor fusion, radar tracking, 

global positioning system, manufacturing, economics, signal processing, and free-
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way traffic modelling (Grewal and Andrews 2001). A well-known application of state 

estimate is the tracking of a moving object from radar that has received a great deal 

of attention in the literature (Daum and Fitzgerald 1983). A discrete time KF is based 

on mathematical equations in the form of prediction-correction estimator that 

minimises the error covariance. It addresses the general problem of state estimation 

of a discrete process that is controlled by linear stochastic difference equation. The 

implementation details of a KF are presented in (Greg and Gary; Rodman 2006). A 

practical implementation of KF for a linearly moving object (vehicle) with a uniform 

velocity and a zero mean random acceleration is presented by (Friedland 1980). 

 An interesting research work is conducted by (Simon and Jeffery) where KF is 

utilized for the online filtering application. An extensive use of KF is available for the 

data fusion in navigation and scene modelling (Joost 2013). Similarly, there is some 

research work that use KF in the area of image processing and short time non-

stationary signal processing. For example, Johnson and Sakaaulis (2003) produced 

some interesting techniques based on KF for the extraction of components as the 

trends and seasonal fluctuations in the economic data. Similarly, McGee and 

Schmidt (1985) used KF as a tool for the aerospace and industry. A detailed study 

about theoretical and practical aspects of KF is presented by (Gelb 1974). An 

interesting example of KF application is presented that uses KF for a vehicle 

navigation to calculate the vehicle position dynamically. Another interesting research 

work is presented by Ramachandra’s (1988) model that describes the KF based 

model for a moving vehicle.  

In the area of speech signal processing, KF has successfully been used for the 

speech signal enhancement. More specifically, KF has been used as a noise filter to 

reduce the noise impact from the speech signal. A KF based speech enhancement 
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algorithm for filtering the speech contaminated by white and coloured noise is 

presented by (Gibson et al. 1989). By implementing scalar and vector KF, an iterative 

signal and parameter estimator is presented which can be used for both types of 

noise. The whole process switches between the corrupted speech measurements 

given as prior and the estimation of the speech parameters given the enhanced 

speech waveform. Experiments showed that the algorithm performed better when 

dealing with coloured noise as compared to white noise. The results were taken on 

helicopter noise by using state-of-the-art coloured noise assumption in KF which 

performed very well in terms of signal to noise ratio, sound spectrogram, and output 

speech quality.  

A disadvantage of the aforementioned algorithm is that it does not address the 

model parameters estimation problem. Also, the performance of this technique is 

poor against white noise. This problem is solved in research work proposed by 

(Gannot et al. 1998) where KF is applied for filtering the background noise from 

actual speech. The expectation-maximisation method is used which estimates the 

spectral parameters of the speech and noise parameters iteratively. A sparse signal 

recovery from a series of noisy observations based on KF is presented by (Carmi et 

al. 2010) in which, a pseudo measurement technique is used to enforce an LP-norm 

constraint. To retain the linearity of the basic filter, L1 norm constraint was enforced. 

The performance results showed that this approach outperformed the Dantzig 

selector which was considered as an ideal scheme for solving the compressed 

sensing problem. The distribution of the estimation error over 100 Monte Carlo runs 

showed that average normalised error for Dantzig selector was 300 as compared to 

16 of this approach. Another speech enhancement algorithm based on adaptive KF 

is presented in (adaptive KF based speech enhancement algorithm) that prevents 
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the explicit estimation of noise and process variances using optimal Kalman gain. 

The performance of this algorithm is compared with traditional KF based speech 

enhancement method that uses the voice activity detection for the silence removal. 

Moreover, this algorithm provides better performance in terms of computation cost 

because there is no need of filtering step during the optimal Kalman gain estimation.  

Despite of the extensive usage of KF in speech related area, there is no clue of its 

applications towards the continuous speech similarity measurement or speech 

tracking tasks. In the proposed research work (Khan and Holton 2015), (Khan et al. 

2014), for the first time, a KF is used as a feedback system to deal with the time 

warping effect in the speech signal leading to the introduction of an adaptive frame 

size.  

3.7. Summary 

In this chapter, a detailed study on the concepts of distance metrics, DTW, and KF 

based feedback system is presented. Each method is further explained in depth 

along with the mathematical formulation and their applications in the literature and in 

the current research study. The difference between Euclidean distance and DTW is 

presented. Limitations related to Euclidean distance are discussed and presented in 

the form of mathematical formulation as well as graphical representation. The 

constraints associated with DTW approach are addressed. A detailed review of the 

most recent research work in the area of keyword spotting and continuous speech 

matching is presented. Similarly, a comprehensive review of the Kalman filter 

applications in the area of speech enhancement is presented. 
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4. TIME WARPED CONTINUOUS SPEECH TRACKING 

AND SIMILARITY MEASUREMENT 

4.1. Scope 

This chapter consists of four sections, which aim to provide a comprehensive 

insight into the research contributions in terms of time warped continuous speech 

tracking (TWCST) and similarity measurement approach. Section 4.2 provides an 

introduction to the problem followed by a brief discussion on Kalman filter (KF) based 

object localisation. Section 3 addresses a detailed discussion on the formulation of a 

dynamic state model for TWCST approach. The concept of adaptive framing, search 

region, pitch tracking based silence removal, and tuning of the KF are explained. 

Sequential components of TWCST that include speech enhancement, spectral 

analysis, feature extraction, and similarity measure are presented. In Section 4.4, 

detailed discussion on evaluation methodology, simulation settings, simulation tools, 

and speech corpuses is presented. In Section 4.5, the experimental results and 

performance evaluation is presented using statistical metrics and validation methods 

for binary classification and speech tracking. Results for the proposed TWCST 

approach are compared with the existing DTW based methods and presented in the 

form of statistics and graphical representation. Finally, a summary of the chapter is 

presented.  

4.2. Introduction 

Speech signal based pattern matching and similarity measure have been a 

challenging research area since 1950's. For past three decades, steady 

improvements have been shown in speech signal based pattern matching. More 

difficult tasks have been considered with the passage of time and different 
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techniques have been applied to achieve good performance (Arora and Singh 2012, 

Hagen et al. 2007). Time warped speech tracking and signal matching is an 

interesting and challenging research topic that is introduced in the proposed 

research work (Khan and Holton 2015). The practical implementation of speech 

tracking may face the speech dynamics issues. In this sense, time warping is one of 

the challenging issues to be focused that are resolved by innovative approach of 

adaptive framing (Khan and Holton 2015), (Khan et al. 2014) in the research work 

presented in this chapter. 

To overcome the dynamics of background noise and variable speed during 

speech tracking, a dynamic state estimator is needed which gives an accurate 

estimate of the true speech position. A KF is one of the effective state estimators that 

can satisfy the criteria of better dealing with variable speed and noise. Also, it is an 

optimal recursive data processing algorithm and has been used for noise 

cancellation and object tracking for long time (Gelb 1974). The deployment of KF for 

speech tracking is a novel approach that is introduced very first time in the proposed 

research (Khan et al. 2014). A Dynamic State Model (DSM) is presented based on 

equations of linear motion. In DSM, initially, a fixed length frame of test speech is 

considered as a unidirectional moving object by proceeding it frame by frame along 

the template signal. The position estimate in template speech for corresponding test 

frame at current time is calculated using equations of motion. Real time applications 

of speech tracking may be proof reading, learning speech contents by heart, and 

content matching for copyright checks. Similarly a productive use of speech tracking 

is the identification and localization of word occurrences in a long speech recording 

also called keyword spotting. Such kind of application may be useful for the 

intelligence agencies. 
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4.3. Proposed Method for Time Warped Continuous 

Speech Tracking Using Kalman Filter and Mel Frequency 

Cepstral Coefficients 

The research contribution presented in this scenario introduces a time warped 

speech tracking approach based on the amalgamation of sequential and parallel 

processes to deal with variable speed of speaker’s speech, silence removal and 

background noise reduction (Khan and Holton 2015). First, speech signals are 

passed to pre-treatment process for speech quality enhancement in term of silence 

removal and noise reduction. Second, the framing process is applied to the 

enhanced signal that divides the entire test signal into fixed length frames. All frames 

are then passed sequentially for spectral analysis which uses STFT for the time to 

frequency domain conversion. The STFT based spectrogram is useful for extraction 

of features that don’t exist in time domain.  

The most dominant features are extracted from frequency domain frames which 

are known as MFFC and passed to a distance metric. Euclidean distance is then 

used for the calculation of similarity scores between features of test frame and all 

overlapped template frames in a specified search space. Position of the best 

matched template frame is selected as the current location for corresponding test 

frame. Simultaneously, a DSM provides the predicted position of the same test and 

template frames using equation of linear motion. Both; position estimate by DSM and 

distance metric are forwarded to KF along with the noise variances and the best 

estimated frame position in the template speech for the current state at time ‘t’ is 

calculated. Finally, forecasting of the noise variances, template frame size, and 

search region limits are updated according to the KF output.  
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Figure 4-1: Flowchart for Time Warped Continuous Speech Tracking Approach 

The entire process runs recursively to provide the best matching position of the 

test speech frame in the template at each time step. A sequential flowchart for 

TWCST approach is shown in Figure 4-1 followed by the technical details for each 

component. 

4.3.1.  Pre-Processing 

Most of the time, speech signal consists of silence parts that may be a major 

cause of mismatching and misidentification. In the proposed approach, the pre-

processing is used for the enhancement of input speech signal quality in terms of 

sampling and silence removal. The human vocal sound frequency range varies 
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significantly from one person to another. However, the frequency range of 300Hz to 

3.4 kHz is found the best frequency range for the speech intelligibility and speaker 

recognition (Nortel 2002). According to the Nyquist sampling theorem, phenomenon 

of aliasing can be prevented if bandwidth of a sampled signal is equal to half of the 

sampling frequency of that signal. Hence, following these facts and the conducted 

research experiments, the sampling frequency is set to 8 kHz in the current 

research. 

 

Figure 4-2: Implementation Design of YAAPT (Zahorian and Hu 2008). 

There are a number of techniques in the literature that uses time and frequency 

domain features (e.g. energy, zero cross rate, spectral centroid) to remove the 
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silence part of speech signal (Section 2.2.1.4. for detailed review). For example 

(Sharma and Rajpoot 2013) proposed a silence removal technique based on energy 

and zero cross rate (ZCR). Similarly, a voice activity detection technique is proposed 

in (Giannakopoulos 2014) based on zero cross rate and spectral centroid. In the 

proposed research, a robust pitch tracking approach (YAAPT) is deployed that was 

proposed by Zahorian and Hu (2008). As compared to conventional pitch estimation 

approaches, it estimates the F0 using multiple information sources that are based on 

time and frequency domain features. A block diagram of YAAPT is presented in 

Figure 4-2. 

It can be observed that fundamental frequency is estimated using multiple 

information sources. Firstly, the original speech and squared speech signals are 

cross-correlated to extract the peaks. Meanwhile, a smoothed pitch track is obtained 

from the spectral information using FFT. Information by the aforementioned sources 

is combined using dynamic programming to extract the fundamental frequency 

estimate. As the F0 components do not exist in the silence part of speech (Sharma 

and Rajpoot 2013), we can easily eliminate the silence frames after the F0 

estimation. The Original speech signal is forwarded to the pitch tracking algorithm 

which searches for the existence of fundamental frequency components in each 

frame of input speech signal. All frames having the fundamental frequency 

components are produced as an output. Finally, these frames are recombined and 

the silence free speech signal is reconstructed which is used for further processing. 

Figure 4-3 demonstrates the steps for the utilization of pitch tracking and 

reconstruction of silence free speech signal.   
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Figure 4-3: Silence Removal from Speech Signal 

In the current research study, the aforementioned silence removal techniques are 

compared based on their performances for the TWCST (Appendix B, Figure 4-16). 

Figure 4-4(b) demonstrates a test case for silence removal performance using 

energy, ZCR, and F0. It can be analyse that even most of the silence segments are 

identified yet, the pitch tracking based silence removal produces more efficient 

results in terms of discreteness while applied on the same speech signal as shown in 

Figure 4-4(c). More information about the silence removal approaches can be found 

section 2.2.1.4.  

 

Figure 4-4 (a): Input speech signal with silence segments 

 

Figure 4-4 (b): Silence Removal Based On Energy, ZCR and F0 
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Figure 4-4 (c): Silence Removal Performance by YAAPT 

To summarise, the silence free speech is forwarded for the segmentation 

process. The test speech signal is segmented by a fixed frame size while the 

template frames size changes dynamically depending upon the varying speaking 

speed. Speech framing is a process of decomposing the speech signal into smaller 

units. Because of the slowly varying nature of the speech signal, it is common to 

process speech in blocks (also called “frames”) of 10 to 50 milliseconds, over which 

the speech waveform can be assumed as a stationary signal (Ravindran et al. 

2010). In the proposed research, the speech signal is decomposed into frames of 

40 milliseconds duration and forwarded for further processing. A detailed discussion 

on framing process in presented in Section 2.2.1.1. 

4.3.2.  Spectral Analysis and Feature Extraction 

Generally, human voice contains important information such as gender, emotion 

and identity of speaker that can be categorized in different classes. To extract this 

information, speech signal is needed to be analysed in frequency domain. Spectral 

analysis is the component of speech tracking system that converts the time varying 

speech signal into frequency domain. One of the most common frequency domain 

transformations is known as FFT or the more efficient STFT. The STFT is used most 

of the time when a signal is time varying or when it is desirable to have better time 

localization as in our case of speech tracking. A mathematical implementation of 

STFT is presented in section 2.2.2. Feature extraction component calculates the 
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dominant features out of time and frequency domain signals that may provide 

sufficient information to represent the speech signal. A speech signal harbours very 

rich information which can easily classify the words, speaker, gender, and emotion 

etc., if no useful information is lost during the feature extraction. The MFCCs 

features have been successfully used in ASR areas and considered as the most 

dominant and distinguishing features of human speech (Dhingra et al. 2013), (Dave 

2013). A detailed discussion on MFCC features, their mathematical formulation and 

applications in the related areas is presented in Chapter 2, Section 2.2.3. Figure 4-5 

presents a block diagram for extracting the MFCC features from a speech signal. 

Apply Windowing Calculate FFTWindowed
 Signal

Apply Mel-frequency 
Wrapping

Apply DCT
Mel

 Spectrum

Spectrum

Speech Frame

MFCC

 

Figure 4-5: Block Diagram for MFCC Features Extraction 

4.3.3.  Similarity Measurement 

In the next step, the normalised extracted MFFC features for both; test and 

template frame are forwarded to measure the similarity score. Euclidean distance is 

used as a similarity metric. As Euclidean distance provides dissimilarity score, fewer 

score means more similar. A detailed formulation and related work for Euclidean 

distance is presented in Chapter 3, Section 3.3. Suppose, the mean MFCC feature 

vectors for test and template speech frame with are represented as 

1, 2,{ .... }nkm km km km  and 1, 2,{ .... }ntm tm tm tm  respectively. The normalised Euclidean 

based similarity measure for aforementioned features is then measured by: 
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Output measurement mS  gives the similarity measurement between test and 

template speech features which is normalised to get the similarity measurement 

values within the ranges of 0 and 1 for each pair of test and template speech frame. 

These measurements are used as the match/mismatch beliefs that are forwarded to 

further processing.  

The process of feature extraction and similarity score calculation for the template 

frames iteratively runs until the end of a search region. A search region is a segment 

of the template speech signal that starts at synchronised position with test frame and 

ends a frame length after the test frame position as shown in Figure 4-9. The test 

frame proceeds along the search region and the likelihood for the each overlapped 

frame is calculated in terms of the probability distribution over the specified space 

'2 'f
 
of search region given as prior information, where ' 'f  is the frame size in 

template speech. Thus the aim is to calculate the maximum likelihood estimate 

(MLE) of the position from the calculated similarity distribution. For each frame shift 

if ( i = 1, 2 ... n  and n  = number of shifts), the likelihood positions ( )if l  are 

calculated using: 

( ) ( )i curf l l i f           4-2 

where; 
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In equation 4-2, 
if  is the ith overlap position of template frame corresponding to 

the current position of the test frame and 
curl  is the current position (i.e. position 

before the MLE calculation) of test frame in the search region. The ‘Ω’ is the overlap 

interval and varied to check the performance and ‘L’ is the total length of the search 

region. It is experimented that the best similarity performance is achieved with the 

Ω=f/2 which also supports the experiments conducted by Bob (2009). Figure 4-6(b) 

indicates that the execution time is directly proportional to Ω. It can be easily 

observed in Figure 4-6 that the execution time is almost stable (slightly increasing) 

when Ω is within the range of 1% to 50%.  

  

         (a) Error Rate (dissimilarity)                               (b) Execution Time  

Figure 4-6: Template Frame Overlap Effects On Error Rate and Execution Time Performance 

In order to obtain the normalised distribution over the specified range, the 

probability distribution is normalised using:  

1

i

i

l

l n

l

i


 


            4-3       

where;  
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Фl is a vector of the similarities calculated by a feature based distance metric 

when frame overlap is also taken into account; i = 1…n represents the number of 

elements in 
l . 

                                                    4-4 

 

The best estimate of the position with regard to l  is calculated by the above 

equation which provides the maximum likelihood estimate (MLE) of the best matched 

position of the template frame in the search region for corresponding test frame. This 

MLE is forwarded to KF model as the observation at current time. 

4.3.4.  Mathematical Formulation of the Kalman Filter and 

Dynamic State Model 

Generally, KF is a recursive process which provides an optimal estimate by taking 

dynamic model and all possible observed values into account as inputs. The 

prediction step in KF calculates the position estimate of the template frame 

corresponding to test frame on the basis of a DSM. In DSM, the test speech signal is 

segmented into fixed size frame where each frame is considered as a unidirectional 

moving object by preceding it within the search region of template signal. The DSM 

estimated position and position measured by the feature based Euclidean distance 

are passed to the update step. The update step takes both position estimates as 

control inputs along with process and measurement noise variances to provide a 

best position estimate. Mathematical formulation of KF (Figure 4-7) for the proposed 

speech tracking approach is explained below. 

arg max
iest l

i
l MLE  
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Figure 4-7: Kalman Filter Prediction-Correction Steps (Rodman 2006) 

a) Prediction Step and Dynamic State Model 

In order to overcome the position noise using KF, the process that is being 

measured must be able to be described by a linear system. The equations for 

speech frame position prediction and correction are modelled by a linear system as 

follows: 

         

where, A, B and H are state, input, and output matrices respectively, ‘t’ is the time 

index, ‘ x ’ is the state of the system at time ‘t’, ‘u ’ is known input to the system which 

is Δḟ  in our case, zt is the measured output, ft and gt are process and measurement 

noise respectively. In the context of speech tracking, the noise is taken into account 

in terms of variable length of same spoken words and hence short phrases, 

paragraphs, and long speech recordings. In speech tracking system, a DSM is 

implemented by considering the test speech signal as a moving object along the 

template speech frame by frame with the time progression. For test frame, suppose 

1t t t t

t t t

x Ax Bu f

z Hx g

+ = + +

= +

4-5 

4-6 
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pt is position, vt is initial velocity, vt+1 is final velocity, and Δḟ  as change in the 

template frame size at time ‘t’. The equation for current velocity will be:  

.

1t tv v f T            4-7 

At very first step, velocity is set to sample rate (8000 samples/sec) and recursively 

updated with respect to Δḟ. There is no change in the frame size of template speech 

at initial step, i.e. Δḟ  = 0 which is updated after each iteration using Equation 4-14 

and passed to the system to update the search region and adapt the template frame 

size accordingly. The equation for position ‘p’, at time ‘t’ can be represented as: 

.
2

1

1

2
t t tp p Tv f T            4-8 

Where; 1tp   is the current test frame position at time 1t   and tp  is the previous 

test frame position at time ‘t’. ‘T’ is the fixed time interval (40 milliseconds) which 

represents the fixed length of test speech frame. Initially, starting position tp  is zero 

and end position pt+1 = 320 samples (test frame size). This implies that the change in 

template frame size Δḟ shows the relative change in speed of test speech. A state 

vector ‘ϰ’ can be defined consisting of position and velocity as components. 

t

t

t

p
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v

 
  
 

 

By comparing Equation 4-5, 4-6, 4-7, and 4-8, the linear system can be written as: 

2

.
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         4-10 
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To control the test speech signal with some sort of feedback system, an accurate 

estimate of test speech frame position and speed would be needed. In other words, 

an optimal estimate of the state is needed by considering various noise sources of a 

speech. This is where KF comes in. In the above described system, ft is the process 

noise and gt is the measurement noise. KF solution does not apply until certain 

assumptions about ft and gt are made. In the proposed system for speech tracking, it 

is assumed that there is no correlation between ft and gt that means both are 

independent random variables. Based on experimental results for KF tuning 

addressed in next section, the initial values for ft and gt are set to 0.72 and 0.28 

respectively. The covariance matrices for process and measurement noise can be 

defined as: 

 

4 3
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2 3
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      4-11 

The above matrix represents the standard deviation in position and velocity. 

2( ) ( )T

t t tR E g g E g           4-12 

This represents the standard deviation of measurement noise covariance. 

b) Update (Correction) Step 

The predicted test frame position by DSM along with the estimated position by 

distance metric at time ‘t’; are passed to update step of KF. This step is also called 

correction step and it updates the estimate with the updated Kalman gain ‘ k ’, 

process noise variance, measurement noise variance, and state estimate ‘ x ’. 

Equation for ‘ k ’ is represented as:    

1( )T T

t t tk P H HP H R   
        4-13 
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Equations for state estimate and error covariance update can be represented as: 

( )t t tt tx x k z H x
   

  
           4-14

( )t t tP I k H P           4-15 

The update step consists of the above three Equations (4-13, 4-14, and 4-15) 

which involve matrix manipulations. The ‘-1’ superscription in Equation 4-13 indicates 

the matrix inverse and ‘T’ superscription represents the transpose of the matrix, ‘zt’ in 

Equation 4-14 represents the measurement provided by feature based Euclidean 

distance at current time ‘t’ and tx


, tx


represents the state estimate provided by DSM 

at time ,  1t t   respectively. The estimated error covariance is represented by ‘ P ’ 

which is the estimate of initial test frame position variance and is equal to process 

noise covariance matrix ‘Q’ at the first step (i.e. P=Q). The equation for ‘ k ’ shows the 

state estimation dependency upon process and measurement noise covariance. The 

above set-up represents the cycle of KF for speech tracking using a feature based 

similarity measurement and DSM position estimates as input parameters.  

4.3.5.  Tuning the Kalman Filter 

Practically, the measurement noise covariance ‘R’ can be measured prior to filter 

operation because during the filter operation, as the process is needed to be 

measured, the process noise covariance ‘Q’ measurement can be a challenge. 

Generally speaking, a robust filter performance may be achieved by tuning the filter 

parameters ‘Q’ and ‘R’. Most of the time; the tuning is performed offline, frequently 
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with the help of another (distinct) KF in a process generally referred to a system 

identification (Greg and Gary 2006). It can be analysed from measurement update 

that in case of constant values of ‘Q’ and ‘R’, estimation error covariance Pk and 

Kalman gain kk will stabilize quickly and then remain constant. This means that these 

parameters can be computed prior to filter operation by offline tuning or by 

determining the steady state values (Grewal and Andrews 1993). Variations in the 

values of ‘Q’ and ‘R’ indicate the dependency (level of trust) of the system. Greater 

value for a variance means less dependency on the corresponding measure and 

vice versa. 

 

Figure 4-8: KF Noise Variance Selection 

In TWCST approach, values for measurement and process variances are 

validated using the ROC curve points that are retrieved by varying them from 0 to 1 

with a lag of 0.01 as shown in Figure 4-8. The entire setup is tested on a speech 

dataset acquired to conduct the case study (Table 4-3) and the best values for 

process and measurement noise variances are selected based on sensitivity and 

specificity. 
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4.3.6.  Frame Size and Search Region Adaptation  

A major issue associated with existing time warped speech signal matching 

approaches is the dynamic length of speech. Same word recorded at different time 

might have variable length due to the dynamic spoken speed of speaker. To 

overcome the time warping issue, an efficient approach is introduced based on 

dynamic adaptation of frame size and search region with the progression of time. 

Initially, both test and template signals are divided into segments or frames having 

the same length. The figure below shows the template frames and search region 

updating process along the time progression. 

 

(a): Test frame progression in the search region 

 

(b): Updated Positions of Search Region, Test and Template Frames 

Figure 4-9: Adaptive framing and progression of test frame along the template speech 
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Suppose, ḟ1 is the fixed frame size for the test frame and ḟ2 is the initial frame size 

for the template frame. At very first step, ḟ2 is set equal to ḟ1 and is recursively 

updated according to KF estimates thereafter as shown in Figure 4-9(b). Suppose 

.

f is the change in template frame size based on the current velocity, the template 

frame size 
.

2( 1)t
f

 for the next iteration can be measured by adding 
.

f  to
.

2( )t
f . This 

implies that the adaptive frame size for template signal depends upon the speed of 

test speech and changes with respect to the KF position estimation. The relationship 

of KF position estimate and adaptive frame size can be represented as: 

.
1t tv v

f
T

 
 

          4-16

 

. . .

2( 1) 2( )t t
f f f


           4-17  

The above equations calculates the template frame size for the next iteration (i.e. 

at t+1) which will be either decreased or increased by the amount ‘
.

f ’. In other 

words, ‘
.

f ’ represent the acceleration/deceleration of the template speech frame 

due to the phenomenon of time warping. The whole process runs recursively and the 

best estimated frame position by a KF and the calculated 
.

2( 1)t
f

  are forwarded to 

framing process. Figure 4-10 represents the output for frame size adaptation for a 

test case. It can be analysed that the template frame size changes instantly using 

Equation 4-17 and reflects the natural time warping phenomenon in a speech signal. 
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Figure 4-10: Adaptive Frame Size in Template Speech Signal 

4.4.  Experimental Setup 

To achieve the satisfactory performance, a number of factors are set by iteratively 

analysing the experimental results and updating the setup values. These factors 

consist of KF tuning, recording devices, processing tools, processing devices, and 

recording environments etc. For recording purpose, the SENNHEISER e935 is used 

which is a vocal dynamic microphone that consists a built in noise filter. Also, the 

dataset is recorded in a noise free research lab environment. Table 4-1 shows the 

simulation settings for the experimentation of speech tracking performance. 

Table 4-1: Simulation Settings 

Hardware specifications 

Processor: Intel® Core™ i5 CPU 

Installed memory: 4 GB 

System type: 32 bit Operating system 

OS: Window 7 Home Premium 

H-Disk: 500 GB 

Microphone: SENNHEISER e935 

Simulation tools Matlab R2009a, PRAAT, SFS, Audacity 

Sampling frequency 8000 Hz 
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Initial frame size 320 samples 

Overlap amount 50% 

Search Region 2 * frame size = 640 samples 

Tolerance ½ template frame  

Kalman filter variables 

T 0.04 seconds 

pt 0 

pt+1 320 (40 milliseconds) 

f  0 (changes dynamically) 

ft 0.72 

gt 0.28 

4.4.1.  Evaluation Methodology 

The evaluation methodology entails experiments for multiple settings that involve 

KF variables setting, silence removal approaches, similarity metrics, search space 

constraints, and feature selection. A number of metrics have been used in the 

literature for the validation of keyword spotting approaches. However, the most 

relevant are the gold standards used for the performance evaluation of a binary 

classifier (Soluade 2010). This is because the output of test and template speech 

frames is in the binary form (i.e. match or mismatch). Table 4-2 presents the detailed 

metrics that are used for the validation of the proposed TWCST approach.  

True Positives (TP): All instances where the recognizer correctly measures the 

template frames locations for corresponding test speech frames while considering 

the tolerance level with respect to start and the end of a frame position. 

True Negatives (TN): The recognizer correctly rejects the out-of-grammar 

utterances.  
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Table 4-2: Results Validation Metrics 

Condition as determined by Gold Standard 

 

Total Population 

 

Condition Positive 

 

Condition negative 

 

Positive Match 

 

True Positive 

 

False Positive 

 

 

Negative Match 

 

False negative 

 

 

True Negative 

Accuracy (ACC) 

= (Σ True positive + Σ True 

negative) 

/ Σ Total Population 

 

True positive rate (TPR), Sensitivity, Recall 

= Σ True positive/ Σ Condition Positive 

(Type I Error) 

False positive rate (FPR), Fall-out 

= Σ False positive/ Σ Condition Negative 

(Type II Error) 

False negative rate (FNR) 

= Σ False negative/ Σ Condition Positive 

 

True negative rate (TNR), Specificity 

(SPC) 

= Σ True negative/ Σ Condition Negative 

Precision 

= Σ True positive/ Σ Positive Match 

F1 Score 

= 2x Precision x Recall/ 

 (Precision + Recall) 

 

Positive likelihood ratio (LR+) 

= TPR/FPR 

 

Negative likelihood ratio (LR−) 

= FNR/TNR 

 

False Positives (FP): Represents all instances that are recognised as best matched 

template frames locations when there is no similarity exists between test and 

template frames. 

False Negatives (FN): The recognizer incorrectly rejects the in-grammar utterances. 

Sensitivity (Recall or True Positive Rate): Probability that a test frame is positively 

matched with template frame with high confidence when the test frame is actually in-

grammar (template frame). This is expressed as a percentage of all the in-grammar 

matches. 

Specificity (True Negative Rate): Probability that a test speech frame is matched 

as out-of-grammar when it is indeed out-of-grammar and is therefore not accepted 
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by the recognizer. This is expressed as a percentage of the all out-of-grammar 

matches. 

Accuracy: This is a percentage of all the matches that were correctly classified. 

Positive Likelihood Ratio: The ratio of the probability of positively recognizing a 

test frame with high confidence when an in-grammar test frame is spoken and the 

probability of positively recognizing a test frame with high confidence when an out-of-

grammar test frame is spoken. This is basically the True Positive Rate/False Positive 

Rate. 

Negative Likelihood Ratio: The ratio of the probability of rejecting an in-grammar 

test frame and the probability of rejecting an out-of-grammar test frame. 

Precision (Positive Predictive Value): Fraction of retrieved instances that are 

relevant.  

F-Score: Also known as F1-Score that represents the weighted average of precision 

and recall with best output value at 1 and worst at 0. It provides a good indication of 

system accuracy while considering simultaneously recall and precision with varying 

weights. 

Receiver Operating Characteristics (ROC): In binary classification, the ROC curve 

is a standard indication for the trade-off between sensitivity and specificity as its 

discrimination threshold varies (Soluade 2010). This curve is achieved by plotting the 

true positive rate against the false positive rates for a varying threshold. For the 

proposed TWCST approach, this threshold defines the decision boundary for the 

similarity metric to decide whether the test and template frame are matched or 

mismatched. Thus the ROC curve provides a tool to select the optimal approach with 

the best threshold value and discard suboptimal thresholds. Closer the ROC curve to 

the upper-left corner indicates the accuracy rate of the test. Similarly, area under the 
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curve (AUC) is also considered as a standard measure for the ROC curve analysis. 

The AUC with a value of 1 represents a perfect test; 0.5 represents a worthless 

(random) test and 0 represents a failed test. 

Tracking Accuracy: Likewise the matching accuracy; the tracking accuracy 

indicates the perfection level for the test frames localisation in the template speech. 

However, tracking accuracy can’t be measured using the sensitivity and specificity. In 

TWCST, the tracking accuracy indicates the percentage of correct position 

estimation of test speech frames in the template speech and is calculated by: 

( _ )
1       _

N
KF Estimate i

itrackingAccuracy KF Estimate groundTruth tolerance
N


       4-18 

Where, ‘ N ’ represents the total number of iterations and ‘ groundTruth ’ are the actual 

positions in the template speech for corresponding test frames.  

4.4.2.  Simulation Tools  

A number of simulation tools have been deployed based on required 

functionalities. Matlab R2009a is used as a main tool for the experimentation, 

speech analysis and graphical representation. Matlab is considered as a special 

simulation tool for the signal processing. One of the main advantages of using 

Matlab is the availability of huge built-in libraries. Different toolboxes (e.g. Voice-box, 

Phase-Vocoder) are available that can easily be utilized for speech manipulation, 

feature extraction, distance metrics, KF, and graphical interfaces. 

Audacity 2.0.5 is used for the speech recordings and manipulation. Audacity is an 

open source cross-platform multi-track audio editor that is normally used for 

recording and editing sounds. It may be utilized for speech editing in terms of sample 

rate conversion, noise reduction, silence removal, speech effects, tempo editing, and 
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channel manipulation. Also, it provides the facility of simultaneous manipulation of 

multiple speech files and broadcasts to output file names in a sequence. Another 

well-known open source platform (PRAAT) is used for speech annotations. The 

PRAAT also provides the facility of analysing different speech features that include; 

formant frequencies, pitch tracking, speech intensity, and spectrogram. Moreover, it 

provides a user friendly interface for graphical representation of these features. 

Similarly, Speech Filing System (SFS) has been used for speech processing and 

feature analysis. The SFS provides a huge functionality set in form of executable that 

can be export easily for the reusability purpose. The snapshots of aforementioned 

functionalities by these simulation tools are presented in Appendix C. 

4.4.3.  Speech Corpus and Dataset 

The research experiments are conducted on various open source and proprietary 

speech dataset consisting speech recorded by speakers from diverse backgrounds, 

age groups, gender, and speaking accents. The corpuses contain speech phrases 

for isolated words, short phrases, paragraphs contents, and long speeches. Most of 

speech recordings are used from open speech repository that is based on American 

English accent, available at CMU ARCTIC (Festvox, arctic database). An open 

source speech dataset consisting contents of children stories (Online audio stories) 

is also used that consists of 65 children stories of various lengths and recorded by 

diverse speakers in terms of their age, accent, and gender. 

 To conduct a case study, we have recorded a speech dataset by 30 speakers (17 

male, 13 female) that consists of connected words in the form of digits (5 recordings 

for each digit by each speaker), short phrases of up to 10 seconds (5 sentences by 

each speaker) and long phrases of up to 20 seconds (5 paragraph bay each 

speaker). Although, the proposed TWCST approach is purely based on acoustic 
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features without the transcribed data, yet to prove the concept of language 

independence, the dataset is recorded for multiple languages that include English, 

Arabic, and Urdu. For the long speech phrase tracking experiments; a speech 

corpus from American Rhetoric’s (top 100 speeches) (Michael 2001) is used. It is 

based on hours of speeches recorded by different people on different topics. 

Moreover, two speech corpuses, Mobio (McCool et al. 2012) and Wolf (Hung and 

Chittranjan 2010) are requested from IDIAP research institute. These dataset consist 

hours of speech recordings from variety of speakers in the form of single, binary and 

group discussions. The details of all datasets are provided in table below.  

Table 4-3: Speech Corpuses Used For Performance Evaluation 

Corpus name No. of Speakers Gender Length Availability 

Mobio 152 M, F 135 GB 
Licence 

agreement 

Wolf 12 M, F 100 GB, 81 hours 
Licence 

agreement 

CMU ARCTIC 4 M, F 1150 utterances Open source 

Online Children 

Stories 
65 F 

65 stories & 

poems 
Open source 

American 

Rhetoric’s 
100 M, F 100 speeches Open source 

Case Study 

Dataset 
30 M, F 

Connected Digits, 

Short phrases, 

Paragraphs 

Personal 

recordings 

4.5.  Results and Performance Evaluation  

Detailed experiments are conducted using aforementioned metrics to validate the 

performance results. Because of the template frames overlapping, a tolerance of half 

frame size for the matching decision is set throughout the experiment conduction. In 

addition to traditional test validation methods, a number of important metrics are 
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added that have been mostly used in the area of binary classification. Figure 4-11 

demonstrates an accumulative statistical results comparison of the proposed 

TWCST approach using different similarity measurement methodologies. Individual 

performances of adaptive speech tracking based on mean MFCC (KF+ED), DTW 

with MFCC (KF+DTW), and constrained DTW with MFCC (KF+DTWC) are 

compared in terms of sensitivity, specificity, matching accuracy, likelihood ratios, F-

score, and tracking accuracy. By using the aforementioned simulation setup, 99% 

sensitivity for the proposed approach is achieved as compared to 45% for DTW. The 

robustness in true positive detection rates imparts 100% tracking accuracy as 

desired.  

 

Figure 4-11: Results Comparison of Different Approaches for TWCST  
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Despite of the fact that the sensitivity and hence the tracking accuracy for DTW 

and DTWC is very low, yet the perfection in specificity indicates that their 

performance can be improved using relative threshold. The likelihood ratios (LR+, 

LR-) are considered as one of the best metrics to measure the diagnostic accuracy. 

In terms of test and template frames matching, LR presents the probability of a test 

with test frame match divided by the probability of the same test with test frame 

mismatch. Larger LR+ consist more information than smaller LR+. On the other 

hand, smaller LR- consist more information than larger LR-. To simplify the LR 

values, a relative magnitude is considered by taking the reciprocal of LR+. It can be 

analysed from Figure 4-11 that the LR- for KF+ED is negligible (0.008) as compared 

to 0.67 for DTW and 0.96 for DTWC which indicates the robustness of the proposed 

TWCST. Similarly, F-score is a measure that considers both precision and recall to 

measure the system performance. Figure 4-11 demonstrates that the F-score of the 

proposed TWCST approach is double to DTW based TWCST. 

Threshold Setting 

It can be observed in Figure 4-11 that the true rejection rates for DTW and DTWC 

are approximately 100%. The trade-off between true positive hits and true negative 

rejection rate is based on the threshold value that is used as a decision boundary for 

test and template frames match/mismatch. Figure 4-12 presents a three dimensional 

relation among the true positive rate, false positive rate, and threshold values. To set 

a threshold value for match/mismatch decision boundary, ROC curve is achieved by 

varying threshold from 0 to 1 with a lag of 0.01. It means that the template frame will 

be rejected if its matching score with the corresponding test frame is less than the 

threshold value. The best threshold value (0.85) for the proposed TWCST approach 
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is selected based on a best compromise between sensitivity and specificity as shown 

in figure below.  

 

Figure 4-12: Measuring the Best Threshold Value for Similarity Match Decision  

Selection of the best threshold values for different TWCST approaches is 

validated through ROC curve analysis. The area under the curve (AUC) is known as 

a standard method for ROC curve analysis (Hand and Till 2001). Figure 4-13 

demonstrates the ROC analysis for ED using mean MFCC and an enhanced version 

of DTW (i.e. Segmented DTW) with MFCC. It is clear that the AUC for mean MFCC 

is greater than DTW based approach which indicates the superiority of the proposed 

approach over the traditional DTW.  
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Figure 4-13: Analysis of ROC Curve Based On Varying Threshold Values 

 

Figure 4-14: Effects of Relative Threshold on the Performance of Different Approaches  
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Figure 4-14 provides a clear indication of the relative threshold effects for DTW 

and DTWC based TWCST. It can be observed that the true positive hit rates for DTW 

and DTWC based approaches are increased from 45% to 89% and 73% 

respectively. Likewise, the tracking accuracy for both approaches is increased. 

Despite of the fact that the performance for aforementioned approaches is increased 

by relative threshold values, yet the statistical results indicate superiority of the 

proposed adaptive tracking based approach.  

Table 4-4 demonstrates the statistical results for TWCST approach using multiple 

scenarios under diverse circumstances. The performance difference between KF 

based adaptive framing and search region based non-adaptive approach is 

presented using the gold standard metrics addressed in Table 4-2. It is observed that 

the similarity matching and speech tracking performance degrades while using the 

non-adaptive approach. This is because the proposed adaptive framings approach 

resolves the issue of dynamic nature of speech in terms of time warping. Also, the 

use of KF and DSM provides the substitute tracking information that never loses the 

tracking path when a mismatch or false positive occurs. This proves the reliability of 

the proposed approach for TWCST. Further detailed statistical results for all 

aforementioned approaches using the dataset presented in Table 4-3 are addressed 

in Appendix B and Table 4-4. 
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Table 4-4: Accumulative Performance Comparison for TWCST 
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Similarity Measurement Approaches 

Evaluation Metrics Mean-MFCC S-DTW DTWC 

Sensitivity 0.9918 0.8999 0.7334 

Specificity 0.9726 0.8702 0.9949 

Matching Accuracy 0.9801 0.8958 0.9455 

1/LR+ 0.0276 0.1578 0.0071 

LR- 0.0084 0.1229 0.2682 

F-Score 0.9713 0.8487 0.8199 

Tracking Accuracy (%) 1 0.9484 0.8914 

Avg. Execution Time (Sec)   1.3747 3.0419 1.6250 

Type I Error 
µ 0.0011 0.0332 8.4183e-05 

σ 0.0016 0.0960 2.1318e-04 

Type II Error 
µ 3.1270e-04 0.0282 0.1335 

σ 8.8200e-04 0.0735 0.2487 
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Sensitivity 0.7299 0.7517 0.1399 

Specificity 0.9856 0.9421 0.9998 

Matching Accuracy 0.9415 0.9121 0.8739 

LR+ 0.0182 0.0909 0.0046 

LR- 0.2717 0.2560 0.8603 

F-Score 0.8957 0.8698 0.2587 

Tracking Accuracy (%) 0.6822 0.6991 0.1515 

Type I Error 
µ 0.0011 0.0047 1.1904e-06 

σ 0.0016 0.0052 5.2907e-06 

Type II Error 
µ 3.1270e-04 0.1462 0.7569 

σ 8.8200e-04 0.2237 0.2035 
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Figure 4-15: Effects of Window Size Adaptation on the Tracking Performance  

The figure above explains the degree of diminution in sensitivity and tracking 

accuracy while excluding the adaptive behaviour from the proposed TWCST 

approach. A substantial decrement of 27% in the sensitivity and 32% in tracking 

accuracy can be observed when adaptive framing is changed with non-adaptive 

static frame size. Likewise, the performances of segmented-DTW and constrained 

DTW are degraded 15% and 60% respectively in terms of sensitivity. Consequently, 

the desired speech tracking accuracy is badly affected and is unable to maintain the 

tracking path information because of mismatches and false negatives. This proves 

the novelty of the DSM and dynamic frame size concept as introduced in this 

research study.   
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Figure 4-16: Effects of Silence Removal Approaches on the Overall Performance  

In addition to DSM and adaptive framing, appropriate selection of a silence 

removal approach also affects the performance. There are a number of techniques 

in the literature that uses time and frequency domain features (Energy, zero cross 

rate, spectral centroid) and pattern recognition methods to remove the silence part 

of speech utterance (Sahoo and Patra 2014), (Zhang 2014), (Liscombe  and Asif 

2009), (Saha et al. 2005), (Giannakopoulos 2014), (Sharma and Rajpoot 2013). In 

the proposed approach for TWCST, an effective method for silence removal is used 

which is based on robust pitch tracking algorithm (Khan and Holton 2015). In Figure 

4-16, the performance for the pitch detection based silence removal is compared 

with the most commonly used energy and spectral centroid based method. It is clear 

that the sensitivity, specificity, frames matching accuracy, and speech tracking 

accuracy are decreased 2%, 5%, 3%, and 2% respectively using traditional silenced 

removal approach as compared to pitch detection based approach that is introduced 

very first time in this research study.  
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Figure 4-17: 3D Representation of Frame Size and Search Region Adaptation in TWCST for A Test Case 
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Figure 4-18: A Test Case Speech Data for TWCST 

Figure 4-17 demonstrates the proof of concept for TWCST approach using a test 

case for the speech signals presented in Figure 4-18. The concept of adaptive 

framing and search region can be observed in 3D representation of the output. 

Intensity of the colour indicates the match/mismatch score. The dynamics in the 

frame size can be analysed in the above figure that indicates the adaptive framing in 

TWCST approach. It can also be observed that there exists at least one frame in the 

search region that crosses the matching threshold which indicates the robustness in 

sensitivity leading to consistency in the tracking path. It can also be analysed that the 

proposed approach resolves the time warping issue in efficient way. For 120,000 

samples of test speech as compared to 10,6000 samples for template speech, 

TWCST approach provides a robust similarity matches between test and template 

frames without lsoing the tracking path. 
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Figure 4-19: Error Rate Analysis for Different Approaches  

Absolute Type I and Type II error rates for aforementioned approaches are 

presented in above figure. It is observed that the both type of errors are 

approximately zero with the relative thresholds except the constrained DTW. Type I 

and Type II errors indicates the recogniser failure rates related to FP and FN 

respectively. These metrics have been represented in a number of ways in the 

related area including mean square error and absolute erros as most commonly 

used. Table 4-4 demonstrates ‘µ’ (mean) and ‘σ’ standard deviation for both types of 

error for different approaches while using the same speech dataset.    
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Figure 4-20: Comparison of Computation Costs of Multiple Approaches  

Computation time is also an important factor that is needed to be analysed for 

aforementioned approaches. Table 4-4 shows the average computational costs for 

these approaches whereas; Figure 4-20 demonstrates variations in computational 

time for varying lengths of test and template speech signals. It is observed that the 

KF based approach have a lead over the conventional approaches. This is because 

of computation time in DTW is linear with the number of frames to be searched 

through (Cheng-Tao et al. 2014) (detailed description in Chapter 3, Section 3.4). 

Despite of the fact that constrained DTW reduces the average time complexity to 1.6 

seconds, yet its computation time is greater than mean MFCC based approach (1.3 

sec) because of two dimensional local search processes (Chapter 3, Section 3.4). 

Finally, a Matlab script is presented in Figure 4-21 that reflects the processing flow 

shown in Figure 4-1. Detailed Matlab script for TWCST approach using all 

aforementioned methodologies is provided in Appendix D.  
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Figure 4-21: Matlab Script for TWCST 

4.6. Summary 

In this chapter, a comprehensive overview of the research contribution towards 

TWCST approach and its comparison with existing approaches is presented. For the 

first time, the concept of dynamic frame size is introduced using a dynamic state 

model that is based on object’s linear motion. A detailed flowchart for sequential 

processing of TWCST is presented along-with the mathematical formulation of a 
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DSM and KF in the proposed approach. Kalman filter that has successfully been 

used for object localisation is deployed as a recursive feedback system that fuses 

the location information from more than one resource. The deployment of KF and 

DSM is novel in speech tracking. It empowers not only the decision of 

match/mismatch but also provides a backup to recover the tracking path in case of 

mismatch or false negatives. In addition, a novel approach for removing the silence 

segments from the input speech signal is introduced that is based on pitch tracking 

in speech signal. Multiple speech corpuses are used for evaluating the proposed 

approach. Performance of the newly introduced TWCST approach is evaluated using 

the gold standards metrics for binary classifier (i.e. match/mismatch) as well as for 

speech tracking. In addition to speech tracking performance, the new approach is 

compared with the existing works in terms of similarity matching and computational 

cost analysis. Finally, detailed results are presented in form of statistics and 

graphical representations. 
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5. SPEECH TRACKING USING DYNAMIC NOISE 

FILTRATION BY WAVELET DECOMPOSITION 

5.1.  Scope 

This chapter presents an alternative approach for TWCST that uses the Wavelet 

Decomposition (WD) for time frequency representation of speech signal.  In Section 

5.2, the process of WD is presented followed by the introduction of a dynamic noise 

filtration method to enhance a speech signal by filtering out the unnecessary 

information from speech signal. Section 5.3 addresses the performance comparison 

for different scenarios including silence removal techniques, static frame size, and 

adaptive framing based TWCST approach.  Section 5.4 demonstrates a detailed 

discussion on the advantages of proposed TWCST approaches over the existing 

speech signal matching techniques while considering their practical and theoretical 

aspects. Finally, a brief summary of the chapter is presented. 

5.2. Dynamic Noise Filter and Time Warped Continuous 

Speech Tracking 

Research work presented in (Khan et al. 2014) introduces an alternative approach 

for the TWCST that is addressed in Chapter 4. The major differences for alternative 

TWCST approach include:  

 WD for spectral analysis 

 Dynamic noise filtration 

 Wavelets energy as features vector 

The WD is superior over the FFT in terms of defining a particularly useful class of 

time-frequency distributions which specify complex amplitude versus time and 
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frequency for any signal (Fugal 2010). Wavelets express signals as sums of 

wavelets and their dilations and translations. They act in a similar way as FFT but 

can approximate signals which contain both; large and small frequencies as well as 

discontinuities. This is due to the fact that wavelets do not use a fix time frequency 

window as in case of FFT or STFT.  
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Figure 5-1: TWCST Approach Using Wavelets Based Dynamic Filter 

The underlying principle of wavelets is to analyse according to varying scale. 

Hence, overall phenomenon of WD provides an advantage over FFT that has the 

issue of poor time-frequency resolution. That is, if window size is kept small, the 

frequency resolution will be poor and vice versa. Figure 5-1 represents the 

sequential flow of various processes that are amalgamated to produce a new 
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TWCST approach. It can be analyse in Figure 5-1 that most of its processes are 

identical to the previous approach (Figure 4-1) except the WD, dynamic noise filter, 

and feature extraction. Therefore, only those aspects are discussed in this chapter 

that are different from previous approach followed by the detailed evaluation of their 

impacts on the statistical results.  

5.2.1.  Wavelet Decomposition 

Discrete time signal decomposition was introduced by Croiser, Esteban, and 

Galand in 1976. Later on, a number of variations have been introduced to 

decompose the digital signal with different approaches and terminologies. However, 

the main idea is same as CWT that is already discussed in Chapter 2, Section 2.2.2. 

As compared to CWT that is computed by scale changing, shifting the window in 

time, multiplying the signal and integrating over all time, WD uses filters for different 

cut-off frequencies to analyse the signal at different scales (Policar 2006). In the first 

step, test and template speech signals are passed through a series of high pass and 

low pass filters to analyse the high and low frequencies respectively.  
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Figure 5-2: Wavelet Decomposition 
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Where ‘F’ and ‘G’ are the low-pass and high-pass filtered speech signals 

respectively, cA1 are the approximation coefficients and cD1 are the detailed 

coefficients at level 1. This procedure runs recursively and the approximation 

coefficients are further decomposed until the desired number of levels. Thus, for next 

step, cA1 will be decomposed into cA2 and cD2 and so on as shown in figure below. 
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G
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Level k+1Level k+1

Figure 5-3: Decomposition of the Approximation Coefficients 

The low-pass and high-pass filters use the mathematical operation of convolution 

of the speech signal with the impulse response of filter and can be expressed as: 

     ( * ) . 
k

x h n x k h n k




        5-1 

Where ‘ x ’ is the speech signal, ‘h ’ is the filter impulse response, ‘ k ’ represents 

the sample number, and ‘ n ’ is the index. The frequencies above the half of the 

highest frequency in the speech signal are removed by half band low-pass filter. 

Scale of the signal is doubled by subsampling the signal by two. This procedure can 

mathematically be represented as: 

     . 2
k

y n x k h n k




         5-2 
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In WD, speech signal is analysed at different frequency bands by decomposing 

the signal into the approximation and detailed coefficients using a scaling and 

wavelet processes. Scaling function produces the task of low-pass filter while 

wavelet function performs the high-pass filtration on the input speech signal. A time 

domain speech signal is thus decomposed into different levels (i.e. frequency bands) 

by recursive low-pass and high-pass filtration processes. Let’s ' 'g and ' 'h represent 

the high-pass and low-pass filters respectively for input speech signal ' 'x , then a 

single level WD expressed in Equation 5-2 can be rewritten as: 

   [ ]. 2high

k

y n x k g n k




        5-3 

   [ ]. 2low

k

y n x k h n k




        5-4 

Where  highy  and lowy  are the high-pass and low-pass filters output respectively 

after subsampling by a factor of 2 for each index ‘ n ’. The decomposition process 

reduces the time resolution by half because of subsampling while increasing the 

frequency resolution to double. This procedure is also known as sub-band coding 

which runs recursively for further decomposition till desired level as shown in Figure 

5-2 and 5-3. 

5.2.2.  Dynamic Noise Filtration 

In the second step, a dynamic noise filter is applied to time and frequency domain 

speech signal. Wavelet based signal decomposition has an advantage over the other 

spectral analysis techniques because of its multi-scale representation of function. A 

WD analyses the function at various levels of resolution and provides a simultaneous 
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time-frequency representation of input speech signal. This representation empowers 

the wavelet’s superiority because of its efficiency for localising the frequency in time 

domain along with the correlation matrix as a third dimension.   
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Figure 5-4: A 3-Dimensional Representation of WD Output 

A three dimensional representation of WD output is demonstrated in Figure 5-4.  It 

can be observed in above figure that the WD output can be analysed simultaneously 

in time-frequency domain. Thus the task of noise filtration can easily be performed 

by applying a threshold constraint on the energy magnitude. Approximation and 

detailed coefficients possessing the magnitude values below a predefined threshold 

are filtered out while remaining coefficients are integrated together and forwarded for 

further processing. After the noise filtration, energy in a frequency level is measured 

by integrating the intensity magnitudes over time and can be represented as: 
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 Where ‘ n ’ represents the total number of coefficients in current frequency scale, 

ScaleE is the total energy measure for specific scale, and ‘ y ’ represents the output 

coefficients produced by WD for the current scale. The above procedure is applied to 

each scale and corresponding energy vector is measured. For the TWCST 

approach, speech signal is decomposed up to seven scales. This is because the 

sampling frequency of input speech is set to 8000 Hz and following the Nyquist 

sampling, 4000 Hz would be enough to analyse the speech signal. This implies that 

the signal is analysed between 64 Hz to 4000 Hz which covers the lower and upper 

bounds of human voice frequency ranges. After calculating the normalised energy for 

each frequency band, a threshold value (0.5) is applied to each frequency band to 

filter out the unnecessary scales.  

A WD approach has been successfully used as a spectral analysis tool (Policar 

2001). It can effectively compress the information about the non-stationary into a 

piece of local information. Moreover, it reveals the scale-wise organization of 

singularities, thus allowing for the selection of the interesting strongest events 

(Young 2008). As speech signal is dynamic in nature, for multiple instances of a 

same speech utterance for same speaker, different frequency magnitude values may 

be produced by WD.  
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(a)                                                                 (b) 

Figure 5-5: Dynamic Level Time-Frequency Domain Noise Filtration (Khan et al. 2014) 

Figure 5-5 illustrates the three dimensional representation and noise filtration 

example for a test case. The WD is performed on an isolated speech utterance. It 

can be analysed that in Figure 5-5(a), most of the frequencies (i.e. colour intensity 

indicates the magnitude values for a specific frequency band) are available in level 3, 

4, and 5. Therefore, level 1, 2, and 6 can be filter out as there is no clue of useful 

information that can be used for feature extraction. However; it can be observed in 

Figure 5-5(b) that for same speech utterance by same speaker but recorded at 

different time, level 6 can’t be filtered out because of the high energy components 

existence in this level. In addition to frequency domain noise filtration, same process 

is repeated for time domain components as well. For example, initial 500 coefficients 

can be filter out in Figure 5-5(b) as they possess extremely low energy magnitude. 

After the dynamic noise filtration and energy calculation for test and template 

speech frames, a similarity score is calculated using the Euclidean distance. Details 

for calculation of similarity score is already presented in Chapter 4, Section 4.3.3. 

Likewise the previous approach, a DSM is formulated and the KF is used as the 

recursive feedback system which is described in Chapter 4, Section 4.3.4. Procedure 
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of KF tuning, frame size adaptation, and search region is similar to previous 

approach for TWCST (Section 4.3). 

5.3.  Performance Evaluation 

Experiments are conducted using the statistical metrics described in Chapter 4, 

section 4.4 to validate the performance results. The experimental setup is already 

discussed in Chapter 4, section 4.4 along with the simulation tools and speech 

corpuses (Table 4-3). Likewise the previous approach, half of the template frame 

size is set as a tolerance values for tracking accuracy measurement throughout the 

experimental analysis. Figure 5-6 demonstrates an accumulative statistical results 

comparison of the proposed TWCST approach using KF based adaptive frame size 

and search region based static framing. Performances for both scenarios are 

compared in terms of sensitivity, specificity, matching accuracy, likelihood ratios, F-

score, and tracking accuracy. The likelihood ratios (i.e. LR+, LR-) are considered one 

of the best metrics to measure the diagnostic accuracy. In terms of test and template 

frames matching, LR presents the probability of a test with test frame match divided 

by the probability of the same test with test frame mismatch. Larger LR+ consist 

more information than smaller LR+. On the other hand, smaller LR- consist more 

information than larger LR-. To simplify the LR values, a relative magnitude is 

considered by taking the reciprocal of LR+. Similarly, F-score is a measure that 

considers both precision and recall to measure the system performance. 
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Figure 5-6: Statistical Results Comparison for TWCST Approaches 

It can be observed that the statistical results for pitch detection based silence 

removal are almost identical with the traditional silence removal approach. This 

proves the robustness of the dynamic filter which discards unnecessary coefficients 

from the speech signal. Hence, the poor performance of a silence removal approach 

does not affect the tracking accuracy. 
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Figure 5-7: Statistical Results Comparison for Static and Adaptive Framing 

Figure 5-7 shows the statistical results for static and adaptive framing based 

TWCST approaches. It is observed that the statistical metrics indicate almost equal 

performance for both approaches except the sensitivity which is slightly (2%) 

decreased for static framing. As the LR- and tracking accuracy are directly related to 

the sensitivity, there is a minor decrement in the performance for these metrics. The 

robustness in true positive detection rates imparts 100% tracking accuracy as 

desired. The trade-off between true positive hits and true negative rejection rate is 

based on the threshold value that is use as a decision boundary for test and 

template frames match/mismatch. Figure 5-8 presents the relation between true 

positive rate, false positive rate, and threshold values. To set a threshold value for 

match/mismatch decision boundary, a ROC curve is achieved by varying threshold 

from 0 to 1 with a lag of 0.01. It means that the template frame will be rejected if its 

matching score with the corresponding test frame is less than the threshold. The 
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best threshold value (0.75) for the proposed wavelet based TWCST approach is 

selected by a compromise between sensitivity and specificity.  

 

Figure 5-8: Measuring the Best Threshold Value for Similarity Match Decision 

Absolute Type I and Type II error rates for aforementioned scenarios are 

presented in Figure 5-9. Type I and Type II errors indicates the recogniser failure 

rates related to FP and FN respectively. These metrics have been represented in a 

number of ways in the related area including mean square error and absolute erros 

as most commonly used. It is observed that the Type I error is approximately zero in 

all scenarios which shows the robustness of true negative rate. However, Type II 

error increased slightly (from 0.01 to 0.02) for static frame based CTWST approach 

that proves the superiority of KF based frame size adaptation for tracking accuracy.   
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Figure 5-9: Error rate analysis for different approaches  

 

Figure 5-10: A Test Case Speech Data for Wavelet Based TWCST Approach 

Figure 5-11 demonstrates the proof of concept by a test case for TWCST using 

the speech signals shown in Figure 5-10. The concept of adaptive framing and 

search region can be observed in 3D representation of the output. The colour 

intensity indicates the match/mismatch score. The dynamics in the frame size can be 

analysed in Figure 5-11 that indicates the adaptive framing in TWCST approach. It 

can also be observed that there exists at least one frame in the search region that 

crosses the matching threshold which indicates the robustness in sensitivity leading 
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Figure 5-11: 3D Representation of Frame Size and Search Region Adaptation in TWCST for A Test Case
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to consistency in the tracking path. It can also be analysed that the proposed 

approach resolves the time warping issue in efficient way. For 120,000 samples of 

test speech as compared to 10,6000 samples for template speech, TWCST 

approach provides a robust similarity matches between test and template frames 

without lsoing the tracking path. 

Table 5-1: Accumulative Performance Comparison for Wavelet Based TWCST 

Wavelet Based Adaptive Speech Tracking & Similarity Measurement Performance 

Evaluation Metrics 

Wavelet 

+ 

Adaptive KF 

Wavelet 

+ 

Non-Adaptive SR 

Wavelet + Adaptive KF 

(E & Spectral Centroid) 

Sensitivity 0.9907 0.9721 0.9951 

Specificity 0.9841 0.9893 0.9654 

Matching Accuracy 0.9869 0.9877 0.9764 

1/LR+ 0.0106 0.0108 0.0349 

LR- 0.0107 0.0280 0.0052 

F-Score 0.9833 0.9676 0.9683 

Tracking Accuracy (%) 0.9983 0.9885 1 

Type I Error 
µ 0.0019 0.0010 0.0040 

σ 0.0070 0.0053 0.0104 

Type II Error 
µ 0.0086 0.0157 2.7232e-04 

σ 0.0460 0.0817 0.0011 

Table 5-1 demonstrates the statistical results for wavelet based TWCST using 

multiple scenarios under diverse circumstances. Performance difference between KF 

based adaptive framing and search region based non-adaptive approach is 

presented using the gold standard validation metrics addressed in Table 4-2. The 

performance efficiency of the proposed approach is because of the adaptive 
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framings that resolves the issue of dynamic nature of speech in terms of time 

warping. Also, the use of KF and DSM provides the substitute tracking information 

that never loses the tracking path when a mismatch or false positive occurs. This 

proves the reliability of the proposed approach for TWCST. Further detailed 

statistical results for all aforementioned scenarios using the dataset presented in 

Table 4-3 are addressed in Appendix B. 

 

Figure 5-12: Matlab script for TWCST using WD 



 

127 

 

5.4.  Comparison of Proposed Time Warped 

Continuous Speech Tracking Approaches with Existing 

Methodologies 

As compared to existing similarity measure and time warping techniques, there 

are a number of advantages of the proposed research contributions for TWCST 

approaches that are presented in the following paragraphs. 

A. Adaptive Frame Size  

Speech signals are naturally time warped which means that each word (utterance) 

may have different length if spoken at different time. In the literature, DTW with 

different variations has been used as the best approach to deal with time warped 

signals and minimize the warping path between two time series data inputs (Cassisi 

2012), (Chan and Lee 2010), (Thambiratmann and Sridharan 2007), (Zhang and 

Glass 2011), (Carlin et al. 2011), (Zhang and Glass 2010), (Jansen et al. 2010), 

(Zhang et al. 2012). However, in case of speech dynamics, each corresponding 

frame in the template speech may be time warped, and hence it might be helpful to 

use dynamic frame size that changes according to the speaking speed. This issue is 

resolved in the current research work (Khan and Holton 2015) and (Khan et al. 2014) 

by introducing the concept of an adaptive frame size in TWCST approach. Equation 

4-17 shows how the template frame size changes recursively according to the 

speaking (input speech signal) speed. Also, statistical results in Table 4-4, Table 5-1, 

Figure 4-11, Figure 5-6, and Appendix B demonstrate the performance comparison 

between adaptive and static framing based speech tracking techniques. 
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B. Search Region 

An important contribution is made in the current research study by introducing the 

concept of a search region (Khan et al. 2014; Khan and Holton 2015). A search 

region is the template speech segment that is always larger than the test frame as 

shown in Figure 4-9. The test speech signal proceeds along the template speech 

signal within the search region and the best matched position is picked up as 

represented in Equation 4-4. Without search region, the DTW and speech tracking 

techniques would only be able to map each corresponding frame of test and 

template speech which might produce false results that will lose the tracking path 

due to the time warping phenomenon. Moreover, the computation cost for traditional 

DTW will increase exponentially with respect to speech signal length as discussed in 

Chapter 3, section 3.4. Performance evaluation for search region based DTW is 

presented in Appendix B. It can be analysed that the computation cost of a DTW is 

sufficiently decreased using the mean MFCC feature set. Moreover, the similarity 

matching and speech tracking performances are also increased as compared to 

traditional mapping of the test and template frames. 

C. Computational Cost 

As mentioned earlier, most of the related research work is based on STD, QbyE, 

and isolated word/utterance matching where the DTW is applied with a number of 

variations to minimize the warping path. However in case of continuous speech 

signals longer than a couple of words, the traditional DTW approach can’t be utilised 

without the collaboration of search region. This is because of the exponential growth 

in the size of distance matrix (Cheng-Tao et al. 2014) as shown in Figure 3-4.  As an 

example, for a 10 seconds long test and template speech signal recorded at 8 KHz 

sampling frequency, DTW would need to map 80,000 times distance measure. 
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Therefore, the distance matrix size will be 80,000 x 80,000. This issue can be 

resolved using the boundary constraints to prune the warping path as shown in 

Figure 3-7. However, this sacrifices the desired performance in sufficient amount as 

shown in statistical results in Table 4-4 and Appendix B. This issue is resolved in the 

current research work by introducing the idea of segmentation and search region 

based speech tracking (Khan and Holton 2015) and mean-MFCC feature vectors. 

Multiple scenarios are generated where the segmentation (framing) and search 

region are applied to DTW and the proposed TWCST and the performance is 

compared in terms of computational cost as well as for speech tracking and similarity 

measure.   

D. Multiple Source of Information 

One of the major contributions of the research work presented in (Khan et al. 

2014), (Khan and Holton 2015) is the idea of a DSM where test speech signal is 

analysed frame by frame. Each test frame is considered as a linearly moving object 

along the template speech signal within the search region at current time as shown 

in Figure 4-9. A mathematical implementation of DSM is presented in Chapter 4, 

Section 4.3. The existing research work for keyword spotting and continuous speech 

matching uses a single source of information to make decision for match/mismatch 

of two speech signals. For example DTW uses Euclidean distance and cosine angle 

for calculating the degree of dissimilarity and matching score respectively. However, 

considering multiple resources and combining their beliefs supports the decision 

making. In the proposed speech tracking approach, an observation from Euclidean 

distance based similarity match is produced which is fused with the DSM estimate 

using a KF. The KF processes both inputs and provides a combined position 

estimate at current time. Another advantage of including DSM is the recovery in case 
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of losing the tracking path. The DTW approach will provide sudden surges in case of 

mismatches; consequently lose the tracking path. However, in the proposed 

approach, a continuous estimate is produced by a DSM which supports the feature 

based observation in case of a mismatch; therefore resulting a smooth tracking path. 

The tracking accuracy for all aforementioned approaches is presented in the 

statistical results (Table 4-4, Table 5-1). 

E. Noise Covariance 

There is always an uncertainty in the model (process) which indicates the error in 

process and the aim is to minimise this error. The beauty of KF is that it recursively 

updates the states according to noise covariance at each time step as shown in 

Equation 4-15. In the current approach for speech tracking (Khan and Holton 2015), 

noise variance plays multiple roles. Firstly, it measure the quantity of error that exists 

in terms of process and measurement noise as represented in Equation 4-15. 

Secondly, the noise variance provides the degree of dependency on both 

observations. That means how much the model depends upon the DSM and 

Euclidean distance position estimate. In other words, noise covariance assigns initial 

weights to each observation on the basis of which a KF tunes itself recursively as 

shown in Figure 4-8. On the other hand, to the best of our knowledge, existing 

approaches for speech similarity measure and DTW techniques don’t use noise 

variances. 

5.5.  Summary 

In this chapter, a comprehensive overview of the research contribution towards 

wavelet based dynamic noise filtration is presented. A comparative study is 

conducted for wavelet based TWCST approach and previous approach as presented 

in Chapter 4. The formulation of WD and its application for noise filtration are 
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introduced.  For the first time, the concept of time-frequency domain noise filtration in 

the speech signal is applied for TWCST purpose.  Likewise the previous approach, a 

DSM is used that is based on object’s linear motion. A detailed flowchart for 

sequential processing of the wavelet based TWCST is presented. As discussed in 

Chapter 4, the deployment of KF and DSM is novel in speech tracking in many 

aspects. It empowers not only the decision of match/mismatch but also provides a 

backup to recover the tracking path in case of mismatch or false negatives. Multiple 

speech corpuses are used for evaluating the performance for newly introduced 

TWCST approach using the gold standards metrics for binary classifier (i.e. 

match/mismatch). In addition to speech tracking, the new approach is compared with 

the existing work in terms of similarity matching and computational cost. Detailed 

statistical results are presented in form of tabular and graphical form. Finally, 

advantages of the proposed approaches for TWCST over the existing methodologies 

in terms of theoretical and practical aspects are discussed. 
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6. KEY-WORD SPOTTING IN CONTINUOUS SPEECH 

6.1.  Scope 

This chapter consists of five sections that present a comprehensive overview of 

keyword spotting also known as Spoken Term Detection (STD) in continuous 

speech. First section introduces the idea of keyword spotting and its practical 

applications. Formulation of the Dempster-Shafer’s theory of mass combination and 

its application to keyword spotting (Khan and Holton 2015) is addressed in Section 

6.3. For the first time, the theory of belief combination is used in the speech related 

work. The idea is to combine the similarity beliefs produced by more than one 

resource to make a final decision (belief) of keyword match/mismatch. These 

resources are in the form of distance metrics and feature set. A detailed discussion 

on the implementation of newly introduced keyword spotting followed by a 

comprehensive discussion on the comparison with existing approaches is also 

presented in this section. Section 6.4 presents the research contribution (Khan et al. 

2012) in the form of a PPM deployment for word identification in the presence of 

background noise. The mathematical formulation and performance analysis is 

discussed in detail. Section 6.5 presents the contributed work (Khan et al. 2013) 

towards the introduction of a similarity measure approach that is based on vector 

addition method. Its mathematical justification and relationship with other distance 

metrics is presented. Finally, a summary of the chapter is presented in the last 

section. 

6.2.  Introduction 

Keyword spotting in continuous speech is an emerging but challenging task that 

needs to deal with speech dynamics. Literature consists a number of keyword 
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spotting approaches in relation to Query By Example (QbyE) (Anguera et al. 2014), 

(Tejedor et al. 2013), and STD (Anguera et al. 2013), (Chan and Lee 2013) that use 

some sort of variations in DTW (Zhang and Glass 2009; 2011), (Chunan and Lin-

shan 2010). Over the past decade, most of the related research is focused on 

novelty of template representation methods (Fousek and Hermansky 2006), (Hazen 

et al. 2009), (Huijbregts et al. 2011). A detailed review of the existing methodologies 

for keyword spotting is presented in Chapter 3, section 3.5.2. In the proposed 

research, a valuable contribution to the existing keyword spotting approaches is 

made in the form of dynamic noise filtration method that uses the WD to filter out the 

unnecessary time domain as well as frequency domain components from the speech 

signal (Khan and Holton 2014). Frequency components with maximum correlation 

with mother wavelet are forwarded for the feature extraction and signal matching 

process. 

In addition, for the first time, the Dempster-Shafer’s Theory (DST) of combined 

evidence is deployed for keyword spotting purpose (Khan and Holton 2015). A most 

interesting aspect of DST is the combination of beliefs (i.e. probabilities) obtained 

from multiple resources and the modelling of conflict between them. In case of 

keyword spotting, DST can play a significant role while integrating the keywords 

match/mismatch beliefs (i.e. scores) from multiple resources and providing a final 

combined belief. The evidence resources may include a variety of distance metrics, 

extracted features, and/or keyword spotting approaches. Practically, there are 

numerous occasions where one resource provides better belief than the other. 

Therefore, it is helpful to combine the evidences from multiple approaches and make 

the final decision about the keyword (i.e. target word) occurrence in the continuous 

speech. Keyword spotting approach plays an important role in practical life. As an 
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example, a keyword spotter can be useful for localization of the specific word 

occurrences in a long speech (e.g. telephone) recording that would be useful for the 

intelligence agencies and security organisations. Similarly, wake-up word to activate 

a device or initiate the voice recognition platform is another area of application. 

6.3.  Key-word Spotting and Dempster-Shafer’s 

Theory of Evidence 

Keyword spotting can be considered as a sub-part of the ASR which aims to 

extract the partial information from speech signal in the form of query utterance 

(keyword). Figure 6-1 shows the keyword spotting task addressed in the proposed 

research study where the keyword would be identified regardless of the spoken 

language. 

 

Figure 6-1: Keyword Spotting in Continuous Speech 

As discussed in Section 3.5.2, one of the major challenges associated with the 

existing approaches is the time warping. Due to dynamic length of spoken words and 

existence of the silence segments, performance of the existence techniques 

degrades. To resolve the speech dynamics and time warping issues for the proposed 
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keyword spotting, a number of methodologies are amalgamated sequentially as 

shown in Figure 6-2. 
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Figure 6-2: Processing Flow of the Keyword Spotting 

Firstly, the template and keyword signals are processed by a silence removal 

technique to filter out unnecessary segments. Enhanced signals are then forwarded 

to the framing process. In the next step, the most dominant acoustic features that 

represent the speech frames are extracted and forwarded for the similarity 

measurement. Finally, the similarity scores (i.e. beliefs) from multiple similarity 
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measures are combined using DST that provides a combined belief for keyword 

match/mismatch. Further discussion and mathematical formulation of each 

component in Figure 6-2 is presented in the following sections. 

6.3.1.  Pre-Processing 

In the first step, the template speech and keyword utterances are forwarded to the 

pre-processing unit which enhances the speech quality in terms of resampling and 

silence removal. A detailed formulation for sampling and silence removal is already 

discussed in Chapter 2, section 2.2.1. There are a number of methodologies in the 

literature that have been used for silence removal as presented in Chapter 2. 

However, an efficient approach is introduced in the proposed research (Khan and 

Holton 2015) that is based on pitch tracking. Detailed implementation of the 

proposed silence removal approach is addressed in Chapter 4, Section 4.3. 

6.3.2.  Speech Signal Framing 

In second step, speech framing is applied to the enhanced template speech that 

recursively crop a fixed length frame and forward it for further processing until the 

end of template speech. In order to handle the occurrence of discontinuities at the 

frame boundaries, keyword is matched to the overlapping frames of template 

speech. Figure 6-3 demonstrates the keyword progression along the overlapped 

frames of template speech. A detailed mathematical formulation of framing process 

and related work is presented in Chapter 2, section 2.2.1. 

6.3.3.  Dynamic Speech Filter and Feature Extraction  

The segmented speech frames for keyword and template speech are forwarded 

for the feature extraction process. Rather than extracting only MFCC features from 
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the speech signal, wavelet based energy features are also extracted. Combination of 

the MFCC mean values and wavelet energy based features empowers the keyword 

spotting performance that is discussed later in the performance section. A detailed 

implementation of the MFFC feature extraction is presented in Section 2.2.2. 

 

Figure 6-3: Progression of Keyword along Template Speech 

Also the process of dynamic noise filtration and wavelet based feature extraction 

is presented in Chapter 5, section 5.2. A major advantage of WD is the simultaneous 

representation of time-frequency components which helps to filter out the noisy 

segments in the spectrum as well as from the time-domain speech signal. Figure 6-4 

presents the block diagrams for MFCCs and WD based energy features.  
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Figure 6-4: Block Diagram for MFCC and Wavelet Features Extraction 
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6.3.4.  Similarity Measurement 

In the next step, the extracted MFFC features for both; keyword and template 

frames are normalised and forwarded to a similarity measure. A Euclidean distance 

is used as a similarity measure. As Euclidean distance provides dissimilarity score, 

fewer score means more similar. A detailed formulation and related work for 

Euclidean distance is presented in Chapter 3, section 3.3. Simultaneously, the 

wavelet energy based features are also forwarded to Euclidean distance and a 

similarity score along with template frame position is measured. The extracted 

feature vectors are normalised to always get a similarity scores between zero and 

one.  

Suppose the mean MFCC feature vectors for keyword and template speech frame 

are represented as 
1, 2,{ .... }nkm km km km  and 

1, 2,{ .... }ntm tm tm tm  respectively. 

Similarly, 1, 2,{ .... e }nke ke ke k  and 
1, 2,{ .... e }nte te te t represents the wavelet energy 

feature vectors for keyword and template speech frame respectively. As the keyword 

and template speech frames size is static, the extracted features consists the same 

length and is denoted by ‘ n ’. The normalised Euclidean based similarity measure for 

aforementioned features can be defined as: 

2
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Where mS  and eS are the similarity measurements between keyword and template 

speech frames for MFCC and wavelet energy based features respectively. Because 
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of the normalised data distribution, the similarity measurement values are within the 

ranges of 0 and 1 for each pair of keyword and template speech frame. These 

measurements are used as the match/mismatch beliefs that are forwarded to DST 

approach for beliefs combination along with the pre-set weights.  

6.3.5.  Formulation of the Combination of Beliefs 

The DST is considered as a generalization to the Bayesian theory in such a way 

that it can handle the degree of ignorance (Foley 2012). In case of certain 

information, there are a number of fusion methods that can provide the combined 

belief. However, most of these approaches are unable to handle the degree of 

ignorance. The DST provides the best estimate for the degree of belief by 

combination of evidences/ believes (CE) from multiple resources. Along with the 

advantages of the DST, it has been criticized by the researchers due to lack of ability 

to deal with high degree of conflict. A detailed study on DST advantages, 

disadvantages, criticism, and its application areas is presented in (Foley 2012). In 

the proposed study, for the first time the DST is used for evidence combination in the 

keyword spotting. The advantage of this method is to obtain the basic probability 

assignment based on the similarity values obtained from Euclidean distance. Also, it 

empowers the decision making for keyword match/mismatch to be dependent on 

multiple resources simultaneously. Figure 6-5 shows the block diagram of DST for 

the proposed keyword spotting.  
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Figure 6-5: Block Diagram for Deployment of DST in Keyword Spotting 

Mathematical formulation of the DST in terms of keyword spotting approach is 

represented in the following steps. 

Define the Basic Attributes:  

Let’s { , }E mel e represents the set of basic attributes for the proposed keyword 

spotting where ‘ mel ’ and ‘ e ’ are the belief resources. In our case, MFCC and 

wavelet energy based features are such resources.  The relative weights for the 

basic attributes are pre-set by offline experiments (as discussed in performance 

analysis section) such that 0 1i   and it fulfils Equation 6-3. 

1

1
L

i

i




          6-3 

Where; ‘L=2’ represent the number of attributes that are ( ,mel e ) for keyword 

spotting. 

The distinctive evaluation grades are defined as set of two entities, i.e. 

{ , _ }H match mis match         6-4 
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For each attribute in ‘ E ’ and evaluation grade ‘ H ’, a degree of belief n  is assigned. 

The degree of belief denotes the source’s level of confidence when assessing the 

level of fulfilment of a certain property. 

Basic Probability Assignments for Each Basic Attribute: 

Let 
,n im  be a basic probability mass representing the degree to which the thi  basic 

attribute. A hypothesis that the general attribute is assessed to the thn  evaluation 

grade nH can be presented as: 

, ,n i i n im            6-5 

Where ‘ n ’ are the number of evaluation grades (i.e. , _match mis match ). The 

remaining probability mass 
,H im  unassigned to each basic attribute is calculated as: 

2

, , ,

1 1

1 1
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H i n i i n i

n n

m m  
 

            6-6 

 ‘ N =2’ are the total number of evaluation grades. 

The remaining probability mass is further decomposed into ,H im and ,H im as: 

, 1H i im            6-7 
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, , ,H i H i H im m m 
        6-9 
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Equation 6-7 measures the degree to which final attributes have not been assessed 

yet to individual grades due to the relative importance of basic attributes after their 

aggregation. Equation 6-8 measures the degree to which final attributes cannot be 

assessed to individual grades due to the incomplete assessments for basic 

attributes. 

Combined Probability Assignments: 

In this step, the probability mass of the basic attributes { , }E mel e  are aggregated 

to form a single assessment for keyword match/mismatch. The combined probability 

masses can be generated using the following set of recursive evidence reasoning 

equations: 

, 1 1 , , 1 , , 1 , , 1

{ }:

[ . . . ]

1,...,

n

n i i n i n i H i n i n i H i

H

m K m m m m m m

n N

      



  6-10 

Where {1,..., 1}i L  , L =2 are the number of basic attributes, and ‘ N =2’ are the total 

number of evaluation grades. 

In above equation, ,1 ,2.n nm m  measures the degree of both attributes { , }mel e

supporting the general attribute of keyword match to be assessed to nH . The term 

,1 ,2.n Hm m  measures the degree of only 1st attribute { }mel  supporting keyword match 

to be assessed to nH . The term ,1 ,2.H nm m  measures the degree of only 2nd attribute 

{ }e supporting final belief to be assessed to nH . 

{ }:H  

, , ,H i H i H im m m         6-11 

, 1 1 , , 1 , , 1 , 1 ,[ . . . ]H i i H i H i H i H i H i H im K m m m m m m          6-12 
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, 1 1 , , 1[ . ]H i i H i H im K m m         6-13 
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 , for {1,..., 1}i L      6-14 

In Equation 6-12, 
,1 ,2.H Hm m  measures the degree to which final attribute cannot be 

assessed to any individual grades { , _match mis match } due to the incomplete 

assessments for both attributes{ , }mel e . Term 
,1 ,2.H Hm m  measures the degree to 

which final attributes cannot be assessed due to the incomplete assessments for 

{ }mel  only. In Equation 6-13, 
,1 ,2.H Hm m measures the degree to which final attributes 

have not been assessed yet to individual grades due to the relative importance of 

{ }mel  and { }e after { }mel  and { }e have been aggregated. The normalization factor 

' 'K  is used to normalize ,n Hm m such that
2

1

1
N

n H

n

m m




  . 

Calculation of the Combined Degrees of Belief: 

Let n  denotes the combined degree of belief that a keyword spotting is assessed to 

the grade nH , which is generated by combining the assessments for all the 

associated basic attributes { , }E mel e , then n  is calculated by: 
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Above equation for H measures the belief that is left unassigned during the 

assessments. 
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6.3.6.  Performance Evaluation and Experimental Setup 

A number of metrics have been used in the literature for evaluating the 

performance of keyword spotting approaches. However, most relevant are the gold 

standards used for the binary classification (Soluade 2010). This is because of the 

output from keyword spotting approach is in the binary form (i.e. match or mismatch). 

Table 4-2 presents the detailed metrics that are used for the validation of the 

proposed keyword spotting approach.  

True Positive (TP): The recognizer correctly spots a query (keyword) utterance with 

high confidence. 

True Negative (TN): The recognizer correctly rejects an out-of-grammar keyword. 

False Positive (FP): The recognizer incorrectly spots the query utterance. 

False Negative (FN): The recognizer incorrectly rejects an in-grammar query 

utterance. 

If there are ‘N’ utterances in template speech, then TP + FP + TN + FN = N. 

Sensitivity (True Positive Rate): Probability that a keyword is positively matched 

with high confidence when the keyword is actually in-grammar (i.e. template frame). 

This is expressed as a percentage of all the in-grammar matches. 

Specificity (True Negative Rate): Probability that a keyword is matched as out-of-

grammar when it is indeed out-of-grammar and is therefore not accepted by the 

recogniser. This is expressed as a percentage of the of all the out-of-grammar 

matches. 

Accuracy: This is a percentage of all the matches that were correctly classified. 

Positive Likelihood Ratio: The ratio of the probability of positively recognising a 

keyword with high confidence when an in-grammar keyword is spoken, and the 

probability of positively recognising a keyword with high confidence when an out-of-
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grammar keyword is spoken. This is basically the True Positive Rate/False Positive 

Rate. 

Negative Likelihood Ratio: The ratio of the probability of rejecting an in-grammar 

keyword and the probability of rejecting an out-of-grammar keyword. 

F-Score: As described in Chapter 4, section 4.4. 

Receiver Operating Characteristics (ROC): As described in Chapter 4, section 

4.4. 

The proposed keyword spotting approach is tested on two types of dataset. A 

case study is conducted on a recorded speech dataset by a number of speakers. 

This data is recorded in noise free lab environment using an efficient microphone 

that consist a built-in noise filter. Speakers from different gender, age, and accent 

recorded the template speeches and corresponding keywords. Table 6-1 

demonstrates the keyword list, number of occurrences, number of speech 

recordings, and gender information. In addition, a number of dataset are considered 

that are available online. Details of these dataset are already presented in Chapter 4, 

section 4.4. For recording purpose, the SENNHEISER e935 is used which is a vocal 

dynamic microphone that consists a built in noise filter. Speech is recorded at a 

sampling frequency of 8KHZ. A laptop device with Intel® Core™ i5 CPU, 4 G-byte 

memory, 32 bit operating system and running the Window 7 home premium 

operating system is used for the processing and experimentation purpose.   

6.3.7.  Experimental Results 

Detailed experiments are conducted using aforementioned metrics to evaluate the 

performance in terms of sensitivity, specificity, accuracy, likelihood ratios, absolute 

error, execution time, and F-score. Because of the template frames overlapping, a 

mismatch tolerance of one frame size is set throughout the experiment conduction. 
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In addition to traditional test validation methods, a number of important metrics are 

added that have mostly been used in the area of binary classification.  

 

Figure 6-6: Results Comparison and Validation Using Different Metrics 

Figure 6-6 demonstrates a detailed performance comparison of the proposed 

keyword spotting approach and other state-of-the-art keyword spotting approaches. 

Individual performances of the proposed keyword spotting approaches using 

combined evidence (CEv), wavelets (Wav), and MFCCs (MFC) are compared with 

the existing constrained DTW and enhanced DTW (i.e. segmented DTW) based 
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keyword spotting approaches. It can be observed that the sensitivity of CEv is 

greater than the individual values of MFCCs and wavelets by a factor of 2% and 5% 

respectively. This implies that the deployment of DST increases the keyword spotting 

as well as it empowers the performance in terms of decision making. It can also be 

observed from the above figure that there is a dramatic decrease (50%) in the 

sensitivity when constrained is applied to conventional DTW. Despite of the fact that 

the search space in DTWC is far less than segmented DTW (as discussed in 

Chapter 3, section 3.4), yet the segmented DTW is better than DTWC in terms of 

keyword spotting outcomes. 

The likelihood ratios (LR+, LR-) are considered as one of the best metrics to 

measure the diagnostic accuracy. In terms of keyword spotting, LR presents the 

probability of a test with keyword match divided by the probability of the same test 

with keyword mismatch. A larger LR+ consist more information than the smaller LR+ 

whereas smaller LR- consists more information than a larger LR-. To simplify the LR 

values, a relative magnitude is considered by taking the reciprocal of LR+. It is 

analysed from the Figure 6-6 that the LR- for CEv approaches to zero (0.03) as 

compared to 0.2 for DTW and 0.9 for DTWC which indicates the robustness of the 

proposed keyword spotting approach. Similarly, F-score is a measure that considers 

both precision and recall to measure the system performance. Figure 6-6 

demonstrates that the F-score of CEv and MFC based keyword spotting is 80% as 

compared to 57% of DTW based keyword spotting approach.  

Threshold Setting 

An important factor for the proposed keyword spotting is the threshold value that 

specifies the decision boundary for the keyword to be considered as a match or 

mismatch. The trade-off between sensitivity and specificity depends upon the 
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threshold value change. The threshold value is directly proportional to specificity and 

may vary with respect to the application area. For example, keyword spotting use for 

the intelligent agencies must assign more importance to sensitivity to maximize the 

true positives by reducing the threshold value. This is because the priority in such 

cases will not to miss a keyword (e.g. blast, terror) that exists in a speech recording. 

To set up the threshold value for the proposed approach, the ROC curves are 

achieved for various methods while conducting experiments on the dataset acquired 

in the aforementioned case study. 

To set a threshold value for match/mismatch decision boundary, an ROC is 

achieved by varying threshold from 0 to 1 with a lag of 0.01 as shown in Figure 6-7. 

It is observed that the best value in the ROC is achieved with a threshold value of 

0.85 (85%). It means that the template frame will be rejected if its matching belief 

with the keyword is less than 85%. As there is a trade-off between sensitivity and 

specificity, threshold value is chosen while considering both metrics.  

 

Figure 6-7: The ROC Curves for Varying Threshold Values for Match/Mismatch Decision 
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In addition to the best threshold value selection, the ROC curves in Figure 6-7 

manifest the superiority of the CEv based keyword spotting as compared to state-of- 

the-art DTW approach. Another aspect of the ROC curves shown in Figure 6-7 is the 

validation of the silence removal approach introduced in this research study. It is 

clear that area under the curve for energy and spectral centroid based silence 

removal is far less than pitch detection based silence removal approach. Figure 6-8 

shows a simultaneous representation of sensitivity, specificity, and threshold values 

that helps to analyse the relative variations in these metrics. 

 

Figure 6-8: Setting the Weights to Belief Resources 

Weight Allocation to Basic Attributes 

It can be observed in Equation 6-7 and 6-8 that the final belief of keyword spotting 

depends upon the weights assigned to the basic attributes { , }E mel e . Experiments 
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are conducted by setting continuously varying weights for both attributes from 0 to 1 

with a lag of 0.01. The ROC curve is achieved (Figure 6-8) for 100 values of weights 

between 0 and 1. It is observed that the best performance in terms of FPR and TPR 

is achieved at 0.75mfccw  0.25wavw  . This implies that the best performance is 

achieved by assigning more weight to matching belief of MFCC. It is also clear from 

Figure 6-6, and Table 6-1 that the individual performance by both attributes { , }mel e  

in terms of sensitivity and error rate is poor than the combined evidence. This 

validates the importance of DST for the keyword spotting. 

 

Figure 6-9: A Typical Keyword Spotting Example 
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Figure 6-9 demonstrates the proof of concept for a test case using a keyword 

{‘Albert’}. The robustness of the proposed approach can be observed by mapping 

the spotted locations (i.e. peaks) in the template speech corresponding to the ground 

truth keyword positions. In addition, it can be easily observed in above figure that the 

length of template speech signal is significantly reduced by a significant amount (i.e. 

60% approximately). This shows the robustness of the silence removal approach 

that is introduced very first time in this research (Khan and Holton 2015). Detailed 

experimental results for 35 mutilanguage keywords are presented in Table 6-1. 

Information about the datasetset is shown in terms of total number of occurences, 

length, gender, language, and keyword. As the proposed research study is based on 

the phonemes based signal processing, there is no training process involved leading 

to the language independency. It can be observed from the test metrics (TP, TN, FP, 

FN, sensitivity, specificity, accuracy, LR+, LR-) that the spotting performance is 

achieved consistently regardless of the spoken keywords. 
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Table 6-1: Performance Analysis of KeyWord Spotting Approaches using Confusion Matrix and Likelihood Ratios 
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Combined Evidence 
(Mean-MFCC + Wavelets) 

DTW + MFCC DTW-Restricted + MFCC 

TP TN FP FN Sen Spec Acc 1/LR+ LR- TP TN FP FN Sen Spec Acc 1/LR+ LR- TP TN FP FN Sen   Spec Acc 1/LR+ LR- 

‘most’ 4 4 1M/2F 3 20 0 1 0.75 1 0.95 0 0.25 3 19 1 1 0.75 0.95 0.91 0.12 0.27 0    20 0 4 0 1 0.83 NaN 1 

‘today’ 3 5 2M/1F 5 30 3 0 1 0.90 0.92 0.09 0 4 31 2 1 0.8 0.93 0.92 0 0.6 0 33 0 5 0 1 0.86 NaN 1 

‘fish’ 2 4 1M/1F 4 27 4 0 1 0.87 0.88 0.12 0 3 27 4 1 0.75 0.87 0.85 0.18 0.28 1 31 0 3 0.25 1 0.91 0.18 0.8 

‘again’ 3 4 1M/1F 4 38 2 0 1 0.95 0.95 0.05 0 4 32 8 0 1 0.80 0.81 0.16 0.28 2 40 0 2 0.5 1 0.95 0 0.7 

 3M/2F 5 48 11 0 1 0.81 0.82 0.18 0 3 50 9 2 0.6 0.84 0.82 0.25 0.47 1 58 1 4 0.2 0.9 0.92 0.08 0.8   5 5 قلُ

‘dog’ 1 4 1M/1F 4 27 2 0 1 0.93 0.93 0.06 0 1 26 3 3 0.25 0.89 0.81 0 0.75 1 29 0 3 0.25 1 0.9 NaN 1 

‘john’ 3 5 2M/1F 5 32 5 0 1 0.86 0.88 0.13 0 4 30 7 1 0.8 0.81 0.8 0.16 0.23 0 37 0 5 0 1 0.8 NaN 1 

‘wood’ 3 3 1M/2F 3 24 0 0 1 1 1 0 0 3 22 2 0 1 0.91 0.92 0.2 0.71 0 24 0 3 0 1 0.88 NaN  

1 

‘collect’ 3 3 1M/2F 3 27 1 0 1 0.96 0.96 0.03 0 2 27 1 1 0.6 0.96 0.93 0 0.33 0 28 0 3 0 1 0.9 NaN 1 

‘found’ 2 4 2M/2F 4 40 1 0 1 0.97 0.97 0.02 0 4 35 6 0 1 0.85 0.86 0.1 0.27 3 41 0 1 0.75 1 0.97 NaN 1 

‘enough’ 2 4 2M/2F 4 33 1 0 1 0.97 0.97 0.02 0 4 33 1 0 1 0.97 0.97 0.8 1.1 3 34 0 1 0.75 1 0.97 NaN 1 

‘cap’ 3 4 2M/1F 3 18 1 1 0.75 0.94 0.91 0.07 0.26 3 19 0 1 0.75 1 0.95 0.7 0.91 0 19 0 4 0 1 0.82 NaN 1 

 2M 4 22 0 1 0.8 1 0.96 0 0.2 4 21 1 1 0.8 0.95 0.92 0.05 0.21 0 22 0 5 0 1 0.81 NaN 1 5 2 الَناّس

‘bed’ 1 4 2M/1F 4 36 5 0 1 0.87 0.88 0.12 0 4 37 4 0 1 0.90 0.91 0.05 0.26 0 41 0 4 0 1 0.91 NaN 1 

‘throw’ 1 4 1M/2F 4 41 2 0 1 0.95 0.95 0.04 0 4 40 3 0 1 0.93 0.93 0 0.5 0 43 0 4 0 1 0.91 NaN 1 

‘tim’ 3 4 2M/1F 4 45 11 0 1 0.80 0.81 0.19 0 4 47 9 0 1 0.83 0.85 0.25 0.57 4 56 0 0 1 1 1 NaN 1 

‘thought
’ 

4 4 1M/1F 3 44 4 1 0.75 0.91 0.90 0.11 0.27 2 41 7 2 0.5 0.85 0.82 0.19 0.78 1 48 0 3 0.25 1 0.94 NaN 1 

‘dog’ 3 4 1M/1F 4 43 4 0 1 0.91 0.92 0.08 0 4 42 5 0 1 0.89 0.9 0.26 0.8 2 47 0 2 0.5 1 0.96 NaN 1 
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‘decline’ 3 4 1M/2F 4 31 5 0 1 0.86 0.87 0.13 0 4 30 6 0 1 0.83 0.85 0 0 1 36 0 3 0.25 1 0.92 NaN 1 

‘said’ 2 5 1M/2F 5 50 17 0 1 0.74 0.76 0.25 0 3 58 9 2 0.6 0.86 0.84 0.13 0.43 2 67 0 3 0.4 1 0.95 NaN 1 

 2M/1F 4 26 0 0 1 1 1 0 0 3 22 4 1 0.75 0.84 0.83 0.21 0.29 1 26 0 3 0.25 1 0.9 0 0.7 4 3 آپ

‘fish’ 2 5 2M/2F 5 34 5 0 1 0.87 0.88 0.12 0 3 37 2 2 0.6 0.94 0.9 0.13 0.22 1 39 0 4 0.2 1 0.9 0 0.8 

‘albert’ 3 4 2M/1F 4 21 0 0 1 1 1 0 0 4 21 0 0 1 1 1 0.11 0.27 1 21 0 3 0.25 1 0.88 NaN 1 

‘threw’ 4 4 1M/2F 4 43 11 0 1 0.79 0.81 0.20 0 4 45 9 0 1 0.83 0.84 0 0.5 2 54 0 2 0.5 1 0.96 NaN 1 

‘spect’ 2 4 1M/1F 4 28 0 0 1 1 1 0 0 4 26 2 0 1 0.92 0.93 0.4 0.62 1 28 0 3 0.25 1 0.9 NaN 1 

‘collect’ 3 4 1M/1F 4 25 0 0 1 1 1 0 0 3 25 0 1 0.75 1 0.96 0.05 0.26 0 25 0 4 0 1 0.86 NaN 1 

‘pilled’ 3 4 1M/1F 4 33 5 0 1 0.86 0.88 0.13 0 4 28 10 0 1 0.73 0.76 0.2 0.55 2 38 0 2 0.5 1 0.95 NaN 1 

‘please’ 3 4 2M/2F 4 34 1 0 1 0.97 0.97 0.02 0 4 33 2 0 1 0.94 0.94 0.08 0 2 35 0 2 0.5 1 0.94 NaN 1 

‘main 
Road’ 

4 4 2M/2F 4 12 0 0 1 1 1 0 0 3 12 0 1 0.75 1 0.93 0.15 0 1 12 0 3 0.25 1 0.81 NaN 1 

 3M/1F 5 22 0 0 1 1 1 0 0 5 22 0 0 1 1 1 0 0 1 22 0 4 0.20 1 0.85 0 0.8 5 4 دهماکہ

 4M/1F 4 13 0 1 0.80 1 0.94 0 0.2 4 13 0 1 0.80 1 0.94 0 0.2 0 13 0 5 0 1 0.72 NaN 1 5 5 اََله

‘scare 
Me’ 

2 4 2M/1F 4 18 2 0 1 0.90 0.91 0.1 0 3 18 2 1 0.75 0.9 0.87 0.12 0 1 20 0 3 0.25 1 0.87 NaN 1 

‘port’ 4 4 2M/2F 4 27 0 0 1 1 1 0 0 4 24 3 0 1 0.88 0.9 0.37 0.61 1 27 0 3 0.25 1 0.9 NaN 1 

‘quickly’ 3 4 1M/1F 4 19 2 0 1 0.90 0.92 0.09 0 3 20 1 1 0.75 0.95 0.92 NaN 1 0 21 0 4 0 1 0.84 NaN 1 

‘short’ 3 3 1M/1F 3 38 4 0 1 0.90 0.91 0.09 0 3 35 7 0 1 0.83 0.84 0.45 0.78 0 42 0 3 0 1 0.93 NaN 1 

Average of Sensitivity, Specificity, 
Accuracy, 1/LR+, LR-: 

0.97 0.93 0.92 0.06 0.03  0.83 0.90 0.88 0.17 0.43  0.24 0.99 0.89 NaN 0.96 
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Figure 6-10: Performance Analysis for Different Silence Removal Approaches 

Above figure demonstrates a good indication of silence removal impacts on 

different keyword spotting approaches. It is clear that the sensitivity is increased to 

97.5% with the proposed pitch detection based silence removal (Khan and Holton 

2015) as compared to 56% with the most commonly used energy and spectral 

centroid based approach (Sahoo and Patra 2014), (Sharma and Rajpoot 2013). It 

can also be observed that the traditional silence removal approaches don’t effect the 

proposed CEv based approach merely but also reduce the performance of other 

approaches which validates the generalization of the newly introduced silence 

removal approach. 
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Table 6-2: Impact of Silence Removal Techniques and Performance Analysis of KeyWord 

Spotting Approaches in Terms of Execution Time and Mean Square Error 

 
Combined Evidence DTW DTW Constrained Mean-MFCC Wavelets 
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0.9750 0.2928 0.2617 0.9572 0.9322 

T
y
p

e
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 E
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o

r µ 0.0105 0.0105 6.8871e-05 0.0090 0.0258 

σ 0.0148 0.0110 3.7722e-04 0.0118 0.0260 

T
y
p

e
 I
I 
E

rr
o

r µ 0.0063 0.2596 0.9588 0.0113 0.0300 

σ 0.0191 0.2762 0.1262 0.0274 0.1042 

Avg. Ex. Time 
Per Test Case 

(Seconds) 
1.3483 1.4445 0.0826 0.0672 1.2604 

 

Type I and Type II errors indicate the recogniser failure related to FP and FN 

respectively. These metrics have been represented in a number of ways in the 

related area including mean square error and absolute errors as the most common 

metrics. Table 6-2 demonstrates ‘µ’ (mean) and ‘σ’ (standard deviation) for both types 

of error for five different approaches while using the same dataset. As discussed 

before, in keyword spotting related tasks, Type II error may have more importance as 
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compared to Type I error because of the more emphasis on spotting a keyword. 

However, it may vary with respect to application area. It can be observe from Table 

6.2 that the ‘µ’ and ‘σ’ for Type II error are negligible (i.e. 0.006 and 0.019 

respectively) in case of CEv based keyword spotting as compared to DTW approach 

(i.e. 0.25 and 0.27 respectively) which indicates the robustness of the proposed 

approach. In addition, it can also be observed that the individual errors for MFCCs 

and wavelet based approaches are higher than the CEv approach that proves the 

significance of the deployment of DST for keyword spotting task.  

  

Figure 6-11: Absolute Error for Multiple Keyword Spotting Approaches 

Despite of the keyword spotting performance of the aforementioned approaches, it 

is also important to analyse the computation time. This may help to analyse the 

workload increment due to additional processing of DST application. Figure 6-12 

provides an indication of execution time for all aforementioned approaches. It is quite 
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clear that the best execution time is acheievd by MFFC based approach that is 

introduced in the current research study. This is because of Euclidean distance 

deployemnt for mean values of MFCCs features in the current research rather than 

DTW which increases the search space (Cheng-Tao et al. 2014) as it has been used 

in the literature. Although, the minimum execution time (i.e. 0.06 sec) is achieved by 

MFCC based approach, yet CEv approach with higher excution time (i.e. 0.3 sec) 

would be preferred because of its superiority in terms of keywords detection rate 

which is the desired objective. 

  

Figure 6-12: Trade-Off between Keyword Detection Rate and Computational Cost  

The impact of DTW constraints in terms of pruning as discussed in Chapter 3, 

Section 3.4 can be observe in Figure 6-12. It is quiet clear that the the execution time 

is dramatically decreases from 1.4 seconds to 0.1 seconds by applying constaints on 

the traditional DTW. However, it sacrifies a significant amount of keyword detection 

rate (50%) that fails the achievement of the primary objective. 
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Figure 6-13: Matlab Script for Keyword Spotting  

Figure 6-13 presents a Matlab script for the proposed keyword spotting. Complete 

scripts corresponding to each component of the flowchart in Figure 6-2 are presented 

in Appendix D. 

6.4.     Word Matching Based on Posterior Probability 

Measure 

Speech signal may consist of background noise that reduces the similarity 

matching performance. Differentiation between background noise and speech signal 

may be one possible solution to avoid the mismatch or at least improve the 

performance. To predict the target word in template speech, it may be helpful to 
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search an estimated segment rather than the entire signal. The area searched for a 

match is called a search region (S). The matching task proceeds along the speech 

signal by overlapped frames. The most similar matched frame is called target region. 

During localisation of the target keyword, it is certain that the background noise 

components of ‘S’ are mixed with the template speech. When speech quality is poor, 

these components may produce interference in localisation of the true target and 

lead to biased localisation or misidentification. One way to prevent misidentification of 

target speech is the differentiation between keyword features and background noise 

features.  

Usually ‘S’ is larger than keyword which means there exist more background noise 

components than the keyword components. Consequently, feature vectors of the 

search region can provide clues to understanding the statistical characteristics of the 

background noise components. A larger value of ‘Su’ indicates feature ‘u’ is more 

likely to be a feature of background noise, whereas for a sample feature of keyword, 

‘Su’ is more likely to be small. This consideration leads to the introduction of ‘1/Su’ as 

a rectifying weight for the reduction of background noise influence on actual speech. 

This idea is introduced very first time by (Fing et al. 2008) as a PPM for image 

matching that leads to adaptive scaling. The aforementioned consideration is utilized 

by using the cross-correlation as a prototype to get the new similarity measure, PPM. 

Mathematically;  
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Where ‘Su’, ‘Au’, and ‘Bu’ represent the uth element of un-normalised feature 

vectors ‘S’, ‘A’, and ‘B’ respectively; ‘A’ and ‘B’ are the feature vectors of the keyword 

and the template speech respectively; ‘ m ’ is a normalisation constant representing 
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the number of components in keyword. Consideration of the background noise 

components is the major advantage of PPM over Bhattacharyya and other existing 

similarity measure techniques. The similarity is measured by correlation between 

template and keyword feature components.  

The aim is to search for a keyword/target model (TM) in a short speech phrase 

consisting 4 words at maximum including ‘TM’ at least once. The template speech 

utterance is divided into small segments with size equal to ‘TM’. The overlapped 

segments that are matched against the ‘TM’ are named target candidates (TC). Both, 

‘TM’ and the ‘TC’ are characterised by a same size features vector (i.e. MFCCs, 

section 2.2.3). Thus, we have: 
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Where ‘A’ and ‘B’ represent the ‘TM’ feature vector and ‘TC’ feature vector 

respectively and ‘mu’ is the dimension of frequency vectors. A block diagram is 

presented below that shows the sequential processing for PPM based keyword 

identification.  

Pre Process the Speech Signals
-> Sample rate to 8KHZ

-> Remove silence

Template Words

Keyword
Extract Frequency Domain Features

MFCCs

Measure the Posterior Probability 
for Test and Template Features

Apply Threshold on 
Similarity Matrix

Similarity
 matrix

Match Position

 

Figure 6-14: Block Diagram for PPM Based KeyWord Matching  
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In the pre-treatment component, template and input speech utterances are 

resampled to 8 KHz. After resampling; the silence segments are removed from the 

speech signal using the energy and spectral centroid method (Chapter 2, section 

2.2). In next stage, the enhanced signal from previous step is divided into small 

frames with size equal to ‘TM’. The framed data and ‘TM’ are then converted into 

feature vectors which are used for further process of similarity match. Generally, 

human voice contains important information such as gender, emotion, and identity of 

speaker that can be categorised in different classes. Extracted features provide 

better results when they do not loose class related information. In this approach, 

MFCC feature vectors are used to represent the speech signals. Detailed 

implementation of MFCCs is presented in Chapter 2, section 2.2.3.  

The PPM is then applied to the feature vectors of ‘TM’ and ‘TC’ to find out the 

similarity score for ‘TM’. Based on this score, position of the ‘TM’ in reference speech 

is measured. This is achieved by calculating the start and end positions of ‘TM’ in 

‘RM’. The similarity measure results of overlapped windows are saved into one 

dimensional matrix called similarity matrix (SM). The start and end positions of ‘TM’ 

can be localised in reference speech as: 

1 2
1 2

* *
,     

Y X Y X
Y Y

X X
          6-20 

where ‘X’ represents the number of samples in speech phrase, ‘X1’ is start position 

of ‘TM’ in speech sentence, ‘X2’ is the end position of ‘TM’ in speech sentence, ‘Y’ 

represents the number of indexes in ‘SM’, ‘Y1’ and ‘Y2’ are the resulting start and end 

indexes within the ‘SM’ respectively that represent the most similar segment for ‘TM’ 

in the speech sentence. The word recognition and localisation result is perfect if the 

similarity values from ‘Y1’ to ‘Y2’ are higher than rest of ‘SM’ indexes values as shown 

in performance analysis below.  
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6.4.1.  Performance Analysis of PPM 

The inability of existing speech similarity measures to efficiently differentiate 

between target frequency components and background noise components 

downgrades their performance. Existing techniques work well with word recognition 

in the absence of background noise but produce bad performance in the presence of 

background noise that is not the case for PPM which is capable of differentiating the 

target components from background noise components while performing the match 

operation. This feature enables the PPM to provide comparatively sharper match 

results even in the presence of background noise. For the first time the PPM is 

deployed as a similarity measure for the speech signal matching (Khan et al. 2012). 

The use of PPM for speech signal produced improved results not only for isolated 

word similarity measure but also for the word localisation in a short continuous 

speech phrase.  

In the experimental results presented in Table 6-3, a public crowd noise is added 

to speech data as background noise. Results are achieved and compared for 

different level of intensity in background noise using Matlab R2009a. Table 6-3 

demonstrate the overall performance comparison of PPM with Bhattacharya and 

cross correlation approaches. The Accuracy metric is measured using the confusion 

matrix as described earlier in this chapter. A small dataset with 60 recordings of 3 

keywords is used. It can be observe that the performance of PPM is better than other 

two approaches not only in in normal speech but also, it is better in case of noise 

addition.  
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Table 6-3: Performance Evaluation of PPM and Existing Similarity Measures 

For Keyword Identification (Khan et al. 2012) 

Keyword 
No.      of 
Template 

Speech Phrases 

Accuracy   (%)   W ithout Noise 

Accuracy (%) with Background 
Noise of Amplitude [-0.2 0.2] 

i.e. SNR is 2:1 

PPM Bhata Cross Correlation PPM Bhata Cross Correlation 

Hello 25 98.1 90 70.3 98 45 43 

computer 20 90 60 67.8 90 30.1 27.2 

slow 15 100 89 85 100 52 49 

 

A test case is presented in Figure 6-15 and Figure 6-16 for the performance of 

PPM, Bhattacharyya and cross correlation in noise reduced and noise added speech 

respectively. The keyword ‘hello’ which represents the ‘TM’ is matched against the 

continuous speech phrase with the contents of ‘One Two Hello One Two’. These 

figures demonstrate the difference between the performances of the PPM with 

Bhattacharyya, and cross correlation techniques with sharp peaks. It is evident that 

the performance of existing techniques shows dramatic change in the peaks when 

background noise is added (Figure 6-16). Compared to these techniques, the PPM 

remained stable and indicated accurate localisation of keyword.  

 

Figure 6-15: Keyword Localization with Noise Reduced Speech (Khan et al. 2012) 



 

164 

 

 

Figure 6-16: Keyword Localization with Noise Added Speech (Khan et al. 2012) 

Figure 6-17 shows performance of the PPM, Bhattacharyya and cross correlation 

approaches by adding different intensity levels of background noise in the speech 

sentence. The noise added in speech signal is public crowed noise. It is observed in 

Figure 6-17 that the Bhattacharyya and cross correlation techniques produce poor 

results with mixture of very low intensity background noise whereas PPM can 

recognise the target word until speech to background noise ratio is less than 1:4. 

 

Figure 6-17: Performance Evaluation with Noise Added Speech (Khan et al. 2012) 

6.5. Vector Addition Based Similarity Measure 

Another compact but interesting contribution related to similarity metrics is 

introduced in the proposed research work that is based on vector addition (Khan et 

al. 2014). The aim of this study is to compare different similarity metrics in terms of 

their mathematical formulation and prove the concept using isolated word 

identification. Euclidean distance, vector cosine angle distance, Bhattacharyya 
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coefficients, and PPM are used for the analysis and comparison purpose. The results 

show that the proposed similarity measure provides a satisfactory performance in 

terms of keyword matching when compared to aforementioned approaches (Khan et 

al. 2014). This metric uses the concept of vector addition to measure the similarity 

measurement between two vectors of n-dimensions. The resultant vector provides 

the similarity calculation between two vectors which is quite similar to the cosine of 

the angle between the two vectors. As compared to aforementioned algorithms, the 

computational cost of this approach is very low due to the arithmetic operator’s 

simplicity. Mathematically; 

 

     1 1 2 2

 

          = .....

AB

n n

A B
RS

A B

a b a b a b

 

     

      6-21 

Where, ||A|| and ||B|| represents the ‘norm’ of the vectors ‘A’ and ‘B’ respectively, 

‘RS’ is the resultant similarity measure, ai and bi are the ith components of vector ‘A’ 

and ‘B’ respectively.  

6.5.1.  Theoretical Justification and Performance Analysis of RS 

Cosine similarity provides the results that are based on the angular difference 

between the vectors. If we compare the RS with cosine similarity between unit 

vectors, it is clear that there is a direct relation between RS and CAS that implies 

mathematical justification of RS. Taking square of Equation 6-21, we get: 

2 2 2ˆ ˆ ˆˆ ˆ ˆ(| |) = | | | | 2 | || |A B A B A B  
      6-22 

In case of unit vectors (normalised), the above equation can be represented as:  

2  1 1 2cosRS     

2 2(1 cos )RS  
        6-23 
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Above equation provides the mathematical justification of a relationship between 

CAS and RS. A number of aspects can be considered for comparison of ‘RS’ with 

vectors cosine angle and Euclidean distance. Firstly, ‘RS’ provides the degree of 

similarity measure rather than difference or dis-similarity as in Euclidean distance. 

Secondly, it resolves the Euclidean distance normalization issue. In Figure 6-18, ‘RS’ 

indicates a higher similarity between ‘AC’ in terms of direction as compare to ‘AB’ (i.e. 

RAC > RAB) which will not be in the case of Euclidean distance due to un-normalized 

vector lengths. Finally, it provides almost same results as cosine similarity because of 

its linear relationship to CAS. In addition, the computational cost is lower for ‘RS’ as 

compared to CAS because it alters the multiplication operator with addition of unit 

vectors. 

 

Figure 6-18: Vector Addition Based Similarity Measurement 

The similarity performance of RS is compared to most commonly used similarity 

measures including CAS, ED, and Bhattacharyya. The experiments are conducted on 

a small dataset consists of isolated English words, acquired from a number of 

speakers from different age groups and gender. Matlab R2013a is used for 

simulations and experimental results. Table 6-4 shows the overall performance 

comparison of RS with other similarity measure in terms of matching for different 
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length of template speech signals recorded by variety of speakers with different age 

and gender. Speech signal is enhanced before the application of spectral analysis 

and similarity measure. This enhancement improves the speech signal quality in 

terms of noise filtration and silence removal and sample rate conversion.  

Table 6-4: Performance Evaluation of RS, CAS, ED, and Bhattacharya (Khan et al. 2014) 

Target Keyword No. of Template Speech 
Spotting Accuracy (%) 

RS Cosine PPM Bhattacharya 

‘Hello’ 35 74 75 76 69 

‘Computer’ 63 71 70 72 70.5 

‘Five’ 77 69 71 74 68 

It can be observed in Table 6-4 that the similarity matching performance of RS is 

approximately equal to that of CAS because of its linear relation and slightly different 

from others. Theoretically, it performs better than all of these similarity measures in 

terms of time complexity due to the usage of an addition operator instead of 

multiplication while not degrading the similarity matching performance. A test case 

performance of RS, CAS, Bhattacharya, and Euclidean distance for a short speech 

phrase is presented in Figure 6-19. It can be analysed that the performance result of 

all similarity measure is almost equal except Bhattacharyya. These results validate 

the RS as a new similarity metrics that is linearly related to cosine angle based 

similarity measure. 
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Figure 6-19: Similarity Measure of RS, CAS, ED and Bhattacharya (Khan et al. 2014) 

6.6.  Summary 

In this chapter, a comprehensive overview of the research contribution towards the 

keyword spotting in continuous speech is presented. Very first time, Dempster’s 

theory of mass combination is deployed into the area of speech processing and 

keyword spotting. The idea is to combine beliefs of more than one resource (i.e. 

distance metrics/features etc.) in the form of similarity score. This empowers the final 

decision for whether the key-word being matched to a specific frame in the template 

speech or not? A detailed flowchart for sequential processing of keyword spotting is 

presented. Performance of the newly introduced keyword spotting approach is 

evaluated using the gold standards metrics for a binary classifier (i.e. 

match/mismatch). Another contribution in the related area is also addressed in the 

form of a posterior probability measure. A PPM is used for the first time in the current 

research study to localise an isolated keyword in a short speech phrase (e.g. 4 to 5 

words at most) in presence of the background noise. The advantages of PPM are 

discussed over the related distance metrics and experimental results are discussed. 

Finally, a vector addition based similarity measure is introduced that provides an 

alternative to cosine similarity measure with less computational cost.   
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7. CONCLUSION AND FUTURE WORK 

The hypothesis underlying the principal research question as motivated for this 

research study is based on speaker dependent time warped continuous speech 

tracking and similarity measurement. A comprehensive study of the latest advances 

is conducted, as reported by leading researchers in the field of speech signal 

matching approaches. To achieve the research aim defined in first research question 

in terms of TWCST approach, an experimental setup comprising speech 

enhancement, adaptive framing, feature extraction, dynamic state model, feedback 

system, and similarity metrics is build up to conduct the experiments and validate the 

proposed approaches that are presented in Chapter 4 and 5. An efficient keyword 

spotting approach is introduced in Chapter 6 that comprises a number of 

methodologies leading to the achievement of the secondary research aim defined in 

research question 2. The evaluation results using the experimental system with the 

various speech corpuses for benchmarking have established the validity of the 

underlying hypothesis in a replicable fashion, thus providing a positive response to 

the primary research questions. The aforementioned research contributions were 

made following the research methodology defined in Section 1.3. The research 

findings have proved the speech tracking and keyword spotting tasks achievable with 

a performance exceeding the state-of-the-art techniques. As the TWCST and 

keyword spotting approaches comprise of multiple techniques related to different 

areas, research contributions are also presented in diverse areas corresponding to 

research objectives defined in Chapter 1, section 1.3 as follows: 

Dynamic State Model: To achieve the research objective A(e), a dynamic state 

model is introduced for TWCST and similarity measurement approach that considers 

the test speech signal as a linearly moving object along the template speech signal 
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as presented in Chapter 4, section 4.3.  Both signals are analysed frame by frame 

(i.e. time interval) and the best matched position is identified for the current iteration. 

The estimated position is forwarded as an input parameter to a Kalman filter for 

further processing (Khan and Holton 2015), (Khan et al. 2014). 

Kalman Filter and Position Estimation in Continuous Speech Tracking: The use 

of KF is novel for speech template matching and similarity measurement. To achieve 

the research objective addressed in A(g), the TWCST approach presented in 

Chapter 4, uses two position observations from a DSM and similarity measure 

algorithm and forward them to a KF along with the process and measurement noise 

covariance. The KF process these inputs and provides a best position estimate in the 

template signal corresponding to test speech frame at current time step. This position 

estimate is further processed by adaptive framing process to predict the new 

template frame size for next time step. The whole cycle runs recursively until the end 

of test or template speech signal and best estimated positions in the template speech 

relative to input speech frames are recorded along with the similarity scores (Khan 

and Holton 2015), (Khan et al. 2014). 

Dynamic Time Warping and Frame Size Adaptation: To deal with the similarity 

matching of two time warped speech signal, DTW with numerous variations have 

been considered as state-of-the-art that produces accumulated minimum warped 

distance between two speech signals (Cassisi 2012), (Chan and Lee 2010), 

(Thambiratmann and Sridharan 2007), (Zhang and Glass 2011), (Carlin et al. 2011), 

(Zhang and Glass 2010), (Jansen et al. 2010), (Zhang et al. 2012). In relation to 

research objective C, a novel idea of frame size adaptation is introduced (Chapter 4, 

section 4.3) that changes the template speech frame size dynamically at each time 

step with respect to input speech. Initially; the template frame size is kept same as of 
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test frame but it dynamically changes at each time step with respect to the Kalman 

filter’s best position estimate for the current iteration. The iterative frame size 

adaptation implies that rather than finding the overall warped distance as in 

traditional DTW, the warped distance can be minimised recursively by dynamically 

adapting the template frame size relative to spoken utterance length (Khan and 

Holton 2015). 

Dynamic Filtration of Speech Signal Based on Wavelet Decomposition: An 

effective approach is introduced in Chapter 5 using wavelet decomposition that is 

able to filter out unnecessary segments from speech signal dynamically at each time 

step. In Fourier transform, there is a trade-off between time and frequency resolution. 

Therefore, the entire frequency spectrum is needed to be mapped to obtain the 

similarity score between test and template speech frames. However, in case of 

wavelet decomposition, speech signal is presented in simultaneous time frequency 

view. The whole frequency band that doesn’t exist in speech signal is ignored. Also, 

the corresponding time domain segment is also filtered out. The filtered form of 

spectrum is forwarded for the similarity score calculation. Statistical results are 

conducted on a variety of dataset that validated the proposed approach leading to 

the achievement of research objective addressed in D and F (Khan and Holton 

2014). 

Distance Metrics: To address the research objective A(f) and E, a detailed research 

is conducted in relation to distance metrics approaches. Euclidean distance and 

cosine similarity measure has been used extensively for similarity measure and 

probabilistic distribution. An innovative technique for image processing that was 

proposed by (Fing et al. 2008) known as posterior probability measure is deployed for 

the first time in proposed research work (Khan et al. 2012) for the speech signal 
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matching as presented in Chapter 6, section 6.4. The PPM has a unique property of 

differentiating the background noise components from speech components when 

measuring the similarity between target and reference speech models. The 

separation of these features shared by both target and background models produced 

robust results in keyword localisation. It results more reliable and tolerant pattern 

match to varying model scale. Experiments proved that the PPM produces efficiency 

in keyword localisation whereas Bhattacharyya and other pattern matching 

techniques result in mismatch or bias due to interference of background components. 

In addition, a new distance metric is introduced (Chapter 6, section 6.5) based on 

vector addition (Khan et al. 2013). 

Keyword Spotting Approach: Keyword spotting is an emerging research area that 

deals with the speech dynamics. Finding a keyword in a continuous speech signal is 

very useful in practical life. However, the existing approaches are not able to deal 

with speech dynamics to produce a reliable keyword spotter. To address the research 

objective B, an efficient keyword spotting approach is presented in Chapter 6. For the 

first time, Dempster’s theory of mass combination is deployed into the area of speech 

processing and keyword spotting. The idea is to combine beliefs from more than one 

information resources (i.e. distance metrics/features etc.) in the form of similarity 

scores. This empowers the final decision for whether the keyword being matched to a 

specific frame in the template speech or not? Performance of the newly introduced 

keyword spotting approach is evaluated using the gold standards metrics for binary 

classifier (i.e. match/mismatch) that proved the superiority of the proposed approach 

over the existing methodologies (Khan and Holton 2015). 



 

173 

 

7.1.  Future Research Directions 

Statistical results achieved and the experimental setup build and tested in 

attempting to validate the hypothesis posed in this PhD research study, serves as an 

enabler for future research on the following aspects;  

 Adaptive Feature Selection 

The proposed speech tracking approach can be enhanced using an adaptive 

feature selection approach. Feature selection, also known as variable selection is the 

process of selecting a subset of relevant features for use in model construction. The 

central assumption when using a feature selection technique is that many redundant 

or irrelevant features exists in the data which provide no more information than the 

currently selected features. There are various feature selection methods that can be 

utilized. For example, greedy forward selection, correlation feature selection, entropy 

based feature selection, and genetic algorithms to find out the best feature set for 

corresponding speaker. Different feature set may produce different performance 

results depending upon speaker’s linguistic features. Similarly, feature set may vary 

for different language phonemes to efficiently represent the acoustic features for that 

language model. In addition, a hybrid feature selection can also be used that 

combines the MFCC, LPC, and PLP etc., with time domain features. 

 Speaker Independence 

Speaker independence may be an interesting but a challenging task that can be 

considered as a future research direction of the proposed approach. Proposed 

approaches for TWCST and keyword spotting can be more useful in terms of their 

application areas in case of speaker independence. Traditional ASR systems 

produce the functionality of speaker independence with the use of transcribed data 
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and training the system on statistical models. However, the proposed approaches are 

based on acoustic features that do not use the transcribed data. The solution may be 

constructed using the speaker normalization that can be achieved by normalizing 

some of the features of test speech speaker according to the template speech 

speaker. Pitch normalization may be a good example of such directive. Similarly, 

vocal tract normalisation is also a related active research area that can be considered 

to achieve the speaker independence functionality. 

 Combination of the Theory of Evidence and Kalman Filter  

The proposed research work for keyword spotting has validated the advantages of 

using the theory of evidence in speech signal matching area. In the future, it may also 

be combined with Kalman filter in TWCST approach to empower the matching 

decision. For test and template frame similarity measure, the position beliefs of a 

dynamic state model and feature based distance metric can be forwarded to 

combination of masses (Dempster-Shafer is one of the best approach for mass 

combination) and a combined belief of match/mismatch can be calculated (as 

discussed in Chapter 6). This belief along with a dynamic state model output and 

noise variances can be forwarded to Kalman filter to measure the desired position. 
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e-06 

σ 0.0016 0.0079 
1.3315

e-05 

Type II 

Error 

µ 3.1270e-04 0.5258 0.9254 

σ 8.8200e-04 0.3391 0.0862 
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Sensitivity 0.7299 0.7517 0.1399 

Specificity 0.9856 0.9421 0.9998 

Matching Accuracy 0.9415 0.9121 0.8739 

LR+ 0.0182 0.0909 0.0046 

LR- 0.2717 0.2560 0.8603 

F-Score 0.8957 0.8698 0.2587 

Tracking Accuracy 

(%) 
0.6822 0.6991 0.1515 

Type I Error 

µ 0.0011 0.0047 
1.1904

e-06 

σ 0.0016 0.0052 
5.2907

e-06 

Type II 

Error 

µ 3.1270e-04 0.1462 0.7569 

σ 8.8200e-04 0.2237 0.2035 
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Table 2: Statistical Results for Speech Tracking Based on Euclidean Distance and Mean MFCC 

Kalman Filter Based Adaptive Speech Tracking & Similarity Measurement  

(ED+Mean_MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 25 57 0 0 1 1 1 0 0 1 1 

2 17 39 0 0 1 1 1 0 0 1 1 

3 43 92 3 0 1 0.97 0.98 0.03 0 0.97 1 

4 32 71 3 0 1 0.96 0.97 0.04 0 0.96 1 

5 45 59 4 0 1 0.94 0.96 0.06 0 0.96 1 

6 27 66 1 0 1 0.99 0.99 0.01 0 0.98 1 

7 26 54 1 0 1 0.98 0.99 0.02 0 0.98 1 

8 30 64 2 0 1 0.97 0.98 0.03 0 0.97 1 

9 26 78 0 1 0.96 1 0.99 0 0.04 0.98 1 

10 157 140 14 0 1 0.91 0.95 0.09 0 0.96 1 

11 88 139 6 0 1 0.96 0.97 0.04 0 0.97 1 

12 77 140 1 0 1 0.99 1 0.01 0 0.99 1 

13 65 87 1 0 1 0.99 0.99 0.01 0 0.99 1 

14 59 111 2 2 0.97 0.98 0.98 0.02 0.03 0.97 1 

15 93 180 2 0 1 0.99 0.99 0.01 0 0.99 1 

16 71 91 9 1 0.99 0.91 0.94 0.09 0.02 0.93 1 

17 62 131 3 0 1 0.98 0.98 0.02 0 0.98 1 

18 87 160 5 0 1 0.97 0.98 0.03 0 0.97 1 

19 78 118 3 0 1 0.98 0.98 0.02 0 0.98 1 

20 43 87 3 0 1 0.97 0.98 0.03 0 0.97 1 

21 86 215 6 1 0.99 0.97 0.98 0.03 0.01 0.96 1 

22 200 409 8 0 1 0.98 0.99 0.02 0 0.98 1 

23 129 227 13 1 0.99 0.95 0.96 0.05 0.01 0.95 1 

24 119 229 5 1 0.99 0.98 0.98 0.02 0.01 0.98 1 

25 108 245 2 0 1 0.99 0.99 0.01 0 0.99 1 

26 104 154 4 0 1 0.97 0.98 0.03 0 0.98 1 

27 109 265 6 1 0.99 0.98 0.98 0.02 0.01 0.97 1 

28 143 309 8 3 0.98 0.97 0.98 0.03 0.02 0.96 1 
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29 104 262 4 2 0.98 0.98 0.98 0.02 0.02 0.97 1 

30 132 259 5 0 1 0.98 0.99 0.02 0 0.98 1 

31 195 422 7 0 1 0.98 0.99 0.02 0 0.98 1 

32 91 225 2 6 0.94 0.99 0.98 0.01 0.06 0.96 1 

33 65 160 2 0 1 0.99 0.99 0.01 0 0.98 1 

34 108 189 4 4 0.96 0.98 0.97 0.02 0.04 0.96 1 

35 118 265 7 7 0.94 0.97 0.96 0.03 0.06 0.94 1 

36 86 155 7 0 1 0.96 0.97 0.04 0 0.96 1 

37 93 190 2 0 1 0.99 0.99 0.01 0 0.99 1 

38 32 68 0 0 1 1 1 0 0 1 1 

39 127 147 7 1 0.99 0.95 0.97 0.05 0.01 0.97 1 

40 88 136 4 0 1 0.97 0.98 0.03 0 0.98 1 

41 109 184 7 0 1 0.96 0.98 0.04 0 0.97 1 

42 64 104 4 0 1 0.96 0.98 0.04 0 0.97 1 

43 86 191 7 1 0.99 0.96 0.97 0.04 0.01 0.96 1 

44 86 188 5 0 1 0.97 0.98 0.03 0 0.97 1 

45 28 71 4 2 0.93 0.95 0.94 0.06 0.07 0.90 1 

46 121 225 5 2 0.98 0.98 0.98 0.02 0.02 0.97 1 

47 84 178 6 2 0.98 0.97 0.97 0.03 0.02 0.95 1 

48 132 224 5 0 1 0.98 0.99 0.02 0 0.98 1 

49 48 127 3 0 1 0.98 0.98 0.02 0 0.97 1 

50 98 192 4 0 1 0.98 0.99 0.02 0 0.98 1 

51 99 176 6 1 0.99 0.97 0.98 0.03 0.01 0.97 1 

52 29 87 2 0 1 0.98 0.98 0.02 0 0.97 1 

53 127 190 7 0 1 0.96 0.98 0.04 0 0.97 1 

54 101 150 4 0 1 0.97 0.98 0.03 0 0.98 1 

55 127 234 5 0 1 0.98 0.99 0.02 0 0.98 1 

56 87 102 6 0 1 0.94 0.97 0.06 0 0.97 1 

57 119 204 9 0 1 0.96 0.97 0.04 0 0.96 1 

58 80 171 3 2 0.98 0.98 0.98 0.02 0.02 0.97 1 

59 78 118 3 0 1 0.98 0.98 0.02 0 0.98 1 

60 43 87 3 0 1 0.97 0.98 0.03 0 0.97 1 
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Table 3: Statistical Results for Non-Adaptive Speech Tracking Based on Euclidean Distance and Mean MFCC 

Search Region Based Non-Adaptive Tracking & Similarity Measurement 

Performance 

(ED+Mean_MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 24 65 2 0 1 0.97 0.98 0.03 0 0.96 1 

2 19 42 2 0 1 0.95 0.97 0.05 0 0.95 1 

3 20 120 2 12 0.63 0.98 0.91 0.03 0.38 0.74 0.50 

4 33 82 4 0 1 0.95 0.97 0.05 0 0.94 1 

5 34 84 1 0 1 0.99 0.99 0.01 0 0.99 1 

6 30 73 2 0 1 0.97 0.98 0.03 0 0.97 1 

7 24 59 1 0 1 0.98 0.99 0.02 0 0.98 1 

8 14 87 1 10 0.58 0.99 0.90 0.02 0.42 0.72 0.44 

9 14 94 1 10 0.58 0.99 0.91 0.02 0.42 0.72 0.47 

10 102 252 2 1 0.99 0.99 0.99 0.01 0.01 0.99 1 

11 79 181 6 0 1 0.97 0.98 0.03 0 0.96 1 

12 73 169 3 0 1 0.98 0.99 0.02 0 0.98 1 

13 51 123 1 0 1 0.99 0.99 0.01 0 0.99 1 

14 50 136 2 1 0.98 0.99 0.98 0.01 0.02 0.97 1 

15 92 220 3 0 1 0.99 0.99 0.01 0 0.98 1 

16 29 153 3 11 0.72 0.98 0.93 0.03 0.28 0.81 0.71 

17 60 158 6 0 1 0.96 0.97 0.04 0 0.95 1 

18 72 209 4 2 0.97 0.98 0.98 0.02 0.03 0.96 1 

19 74 143 7 0 1 0.95 0.97 0.05 0 0.95 1 

20 42 108 4 0 1 0.96 0.97 0.04 0 0.95 1 

21 99 244 7 0 1 0.97 0.98 0.03 0 0.97 1 

22 115 546 6 47 0.71 0.99 0.93 0.02 0.29 0.81 0.55 

23 19 357 7 51 0.27 0.98 0.87 0.07 0.74 0.40 0.19 

24 49 325 1 31 0.61 1 0.92 0.01 0.39 0.75 0.48 

25 31 337 4 41 0.43 0.99 0.89 0.03 0.58 0.58 0.32 

26 53 238 1 16 0.77 1 0.94 0.01 0.23 0.86 0.66 

27 89 321 7 17 0.84 0.98 0.94 0.03 0.16 0.88 0.74 
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28 4 460 0 75 0.05 1 0.86 0 0.95 0.10 0.04 

29 78 328 6 15 0.84 0.98 0.95 0.02 0.16 0.88 0.77 

30 69 357 7 29 0.70 0.98 0.92 0.03 0.30 0.79 0.58 

31 30 599 7 85 0.26 0.99 0.87 0.04 0.75 0.39 0.18 

32 30 308 1 39 0.43 1 0.89 0.01 0.57 0.60 0.30 

33 15 215 0 29 0.34 1 0.89 0 0.66 0.51 0.24 

34 6 297 0 47 0.11 1 0.87 0 0.89 0.20 0.08 

35 21 393 0 55 0.28 1 0.88 0 0.72 0.43 0.21 

36 22 238 4 30 0.42 0.98 0.88 0.04 0.59 0.56 0.31 

37 5 279 0 45 0.10 1 0.86 0 0.90 0.18 0.06 

38 29 82 1 0 1 0.99 0.99 0.01 0 0.98 1 

39 33 264 2 30 0.52 0.99 0.90 0.01 0.48 0.67 0.38 

40 1 228 0 37 0.03 1 0.86 0 0.97 0.05 0.05 

41 92 249 2 0 1 0.99 0.99 0.01 0 0.99 1 

42 61 135 0 0 1 1 1 0 0 1.00 1 

43 31 272 1 32 0.49 1 0.90 0.01 0.51 0.65 0.35 

44 37 266 0 26 0.59 1 0.92 0 0.41 0.74 0.47 

45 13 101 0 12 0.52 1 0.90 0 0.48 0.68 0.39 

46 23 333 4 46 0.33 0.99 0.88 0.04 0.67 0.48 0.22 

47 37 250 1 27 0.58 1 0.91 0.01 0.42 0.73 0.44 

48 119 290 4 0 1 0.99 0.99 0.01 0 0.98 1 

49 50 145 1 0 1 0.99 0.99 0.01 0 0.99 1 

50 84 242 3 7 0.92 0.99 0.97 0.01 0.08 0.94 0.90 

51 29 268 0 32 0.48 1 0.90 0 0.52 0.64 0.34 

52 38 85 3 0 1 0.97 0.98 0.03 0 0.96 1 

53 99 274 2 3 0.97 0.99 0.99 0.01 0.03 0.98 0.98 

54 86 198 3 0 1 0.99 0.99 0.01 0 0.98 1 

55 115 301 4 0 1 0.99 0.99 0.01 0 0.98 1 

56 64 157 3 0 1 0.98 0.99 0.02 0 0.98 1 

57 101 261 9 0 1 0.97 0.98 0.03 0 0.96 1 

58 13 246 0 35 0.27 1 0.88 0 0.73 0.43 0.19 

59 74 143 7 0 1 0.95 0.97 0.05 0 0.95 1 
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60 42 108 4 0 1 0.96 0.97 0.04 0 0.95 1 

 

Table 4: Statistical Results for Speech Tracking with Traditional Silence Removal Approach 

Kalman Filter with Energy & Spectral Centroid Silence Removal Approach 

(ED+Mean_MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 23 58 1 0 1 0.98 0.99 0.02 0 0.98 1 

2 24 51 0 0 1 1 1 0 0 1 1 

3 69 124 11 0 1 0.92 0.95 0.08 0 0.93 1 

4 75 85 12 0 1 0.88 0.93 0.12 0 0.93 1 

5 57 109 6 1 0.98 0.95 0.96 0.05 0.02 0.94 1 

6 44 99 3 1 0.98 0.97 0.97 0.03 0.02 0.96 1 

7 48 82 4 1 0.98 0.95 0.96 0.05 0.02 0.95 1 

8 41 92 1 1 0.98 0.99 0.99 0.01 0.02 0.98 1 

9 41 77 5 0 1 0.94 0.96 0.06 0 0.94 1 

10 139 255 4 0 1 0.98 0.99 0.02 0 0.99 1 

11 206 217 27 1 1 0.89 0.94 0.11 0.01 0.94 1 

12 112 229 3 2 0.98 0.99 0.99 0.01 0.02 0.98 1 

13 70 141 8 1 0.99 0.95 0.96 0.05 0.01 0.94 1 

14 0 180 28 20 0 0.87 0.79 0.81 0.99 NaN 0.1 

15 138 234 8 0 1 0.97 0.98 0.03 0 0.97 1 

16 99 84 12 0 1 0.88 0.94 0.13 0 0.94 1 

17 129 199 5 0 1 0.98 0.98 0.02 0 0.98 1 

18 134 255 10 1 0.99 0.96 0.97 0.04 0.01 0.96 1 

19 113 203 9 3 0.97 0.96 0.96 0.04 0.03 0.95 1 

20 98 189 5 0 1 0.97 0.98 0.03 0 0.98 1 

21 169 319 19 8 0.95 0.94 0.95 0.06 0.05 0.93 1 

22 342 565 17 4 0.99 0.97 0.98 0.03 0.01 0.97 1 

23 239 391 19 0 1 0.95 0.97 0.05 0 0.96 1 

24 451 116 112 4 0.99 0.51 0.83 0.50 0.02 0.89 0.97 

25 381 50 175 4 0.99 0.22 0.71 0.79 0.05 0.81 0.97 

26 154 289 9 4 0.97 0.97 0.97 0.03 0.03 0.96 1 
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27 217 358 18 2 0.99 0.95 0.97 0.05 0.01 0.96 1 

28 223 395 11 0 1 0.97 0.98 0.03 0 0.98 1 

29 294 380 20 3 0.99 0.95 0.97 0.05 0.01 0.96 1 

30 209 416 7 6 0.97 0.98 0.98 0.02 0.03 0.97 1 

31 401 718 21 5 0.99 0.97 0.98 0.03 0.01 0.97 1 

32 185 315 3 6 0.97 0.99 0.98 0.01 0.03 0.98 1 

33 139 198 11 0 1 0.95 0.97 0.05 0 0.96 1 

34 134 267 32 6 0.96 0.89 0.91 0.11 0.05 0.88 1 

35 262 334 25 8 0.97 0.93 0.95 0.07 0.03 0.94 1 

36 167 223 17 0 1 0.93 0.96 0.07 0 0.95 1 

37 188 280 5 1 0.99 0.98 0.99 0.02 0.01 0.98 1 

38 70 108 5 1 0.99 0.96 0.97 0.04 0.01 0.96 1 

39 133 253 12 0 1 0.95 0.97 0.05 0 0.96 1 

40 182 244 13 0 1 0.95 0.97 0.05 0 0.97 1 

41 209 382 18 2 0.99 0.95 0.97 0.05 0.01 0.95 1 

42 180 166 33 5 0.97 0.83 0.90 0.17 0.03 0.90 1 

43 184 252 16 1 0.99 0.94 0.96 0.06 0.01 0.96 1 

44 155 245 8 0 1 0.97 0.98 0.03 0 0.97 1 

45 48 71 3 0 1 0.96 0.98 0.04 0 0.97 1 

46 60 127 2 0 1 0.98 0.99 0.02 0 0.98 1 

47 190 326 11 2 0.99 0.97 0.98 0.03 0.01 0.97 1 

48 143 321 9 8 0.95 0.97 0.96 0.03 0.05 0.94 1 

49 87 233 3 1 0.99 0.99 0.99 0.01 0.01 0.98 1 

50 240 178 32 0 1 0.85 0.93 0.15 0 0.94 1 

51 170 250 11 1 0.99 0.96 0.97 0.04 0.01 0.97 1 

52 52 140 4 1 0.98 0.97 0.97 0.03 0.02 0.95 1 

53 199 268 12 0 1 0.96 0.97 0.04 0 0.97 1 

54 119 255 6 0 1 0.98 0.98 0.02 0 0.98 1 

55 196 182 25 2 0.99 0.88 0.93 0.12 0.01 0.94 1 

56 112 204 7 0 1 0.97 0.98 0.03 0 0.97 1 

57 333 142 85 0 1 0.63 0.85 0.37 0 0.89 1 

58 139 207 7 0 1 0.97 0.98 0.03 0 0.98 1 
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59 113 203 9 3 0.97 0.96 0.96 0.04 0.03 0.95 1 

60 98 189 5 0 1 0.97 0.98 0.03 0 0.98 1 

 

Table 5: Statistical Results for Speech Tracking Based on DTW and MFCC 

Kalman Filter Based Adaptive Speech Tracking & Similarity Measurement 

(DTW+MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 13.00 55.00 1.00 5.00 0.72 0.98 0.92 0.02 0.28 0.81 1.00 

2 2.00 50.00 0.00 7.00 0.22 1.00 0.88 0.00 0.78 0.36 0.50 

3 42.00 80.00 3.00 3.00 0.93 0.96 0.95 0.04 0.07 0.93 1.00 

4 10.00 83.00 0.00 9.00 0.53 1.00 0.91 0.00 0.47 0.69 1.00 

5 14.00 71.00 3.00 10.00 0.58 0.96 0.87 0.07 0.43 0.68 0.50 

6 22.00 66.00 2.00 4.00 0.85 0.97 0.94 0.03 0.16 0.88 1.00 

7 3.00 58.00 2.00 10.00 0.23 0.97 0.84 0.14 0.80 0.33 0.54 

8 3.00 63.00 1.00 14.00 0.18 0.98 0.81 0.09 0.84 0.29 0.31 

9 0.00 82.00 0.00 8.00 0.00 1.00 0.91 1.00 1.00 NaN 0.13 

10 0.00 227.00 18.00 16.00 0.00 0.93 0.87 1.00 1.08 NaN 0.13 

11 4.00 162.00 0.00 37.00 0.10 1.00 0.82 0.00 0.90 0.18 0.26 

12 7.00 178.00 4.00 26.00 0.21 0.98 0.86 0.10 0.81 0.32 0.40 

13 4.00 117.00 1.00 18.00 0.18 0.99 0.86 0.05 0.83 0.30 0.25 

14 4.00 135.00 1.00 21.00 0.16 0.99 0.86 0.05 0.85 0.27 0.22 

15 60.00 195.00 3.00 19.00 0.76 0.98 0.92 0.02 0.24 0.85 1.00 

16 3.00 132.00 4.00 26.00 0.10 0.97 0.82 0.28 0.92 0.17 0.86 

17 1.00 169.00 0.00 25.00 0.04 1.00 0.87 0.00 0.96 0.07 0.15 

18 49.00 178.00 5.00 18.00 0.73 0.97 0.91 0.04 0.28 0.81 1.00 

19 40.00 141.00 3.00 10.00 0.80 0.98 0.93 0.03 0.20 0.86 1.00 

20 37.00 90.00 4.00 5.00 0.88 0.96 0.93 0.05 0.12 0.89 1.00 

21 3.00 126.00 2.00 48.00 0.06 0.98 0.72 0.27 0.96 0.11 0.06 

22 24.00 536.00 2.00 70.00 0.26 1.00 0.89 0.01 0.75 0.40 0.20 

23 23.00 265.00 1.00 47.00 0.33 1.00 0.86 0.01 0.67 0.49 0.45 

24 5.00 282.00 3.00 42.00 0.11 0.99 0.86 0.10 0.90 0.18 0.61 

25 16.00 199.00 5.00 50.00 0.24 0.98 0.80 0.10 0.78 0.37 0.20 
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26 33.00 203.00 0.00 23.00 0.59 1.00 0.91 0.00 0.41 0.74 0.86 

27 1.00 293.00 23.00 38.00 0.03 0.93 0.83 2.84 1.05 0.03 0.15 

28 4.00 385.00 1.00 53.00 0.07 1.00 0.88 0.04 0.93 0.13 0.16 

29 26.00 277.00 9.00 36.00 0.42 0.97 0.87 0.08 0.60 0.54 0.80 

30 221.00 132.00 43.00 4.00 0.98 0.75 0.88 0.25 0.02 0.90 0.98 

31 8.00 316.00 3.00 99.00 0.07 0.99 0.76 0.13 0.93 0.14 0.07 

32 2.00 268.00 3.00 50.00 0.04 0.99 0.84 0.29 0.97 0.07 0.37 

33 7.00 190.00 1.00 27.00 0.21 0.99 0.88 0.03 0.80 0.33 0.67 

34 2.00 254.00 1.00 37.00 0.05 1.00 0.87 0.08 0.95 0.10 0.16 

35 1.00 341.00 4.00 46.00 0.02 0.99 0.87 0.54 0.99 0.04 0.11 

36 8.00 195.00 4.00 37.00 0.18 0.98 0.83 0.11 0.84 0.28 0.12 

37 1.00 239.00 0.00 36.00 0.03 1.00 0.87 0.00 0.97 0.05 0.11 

38 3.00 80.00 1.00 12.00 0.20 0.99 0.86 0.06 0.81 0.32 0.31 

39 34.00 219.00 2.00 24.00 0.59 0.99 0.91 0.02 0.42 0.72 0.65 

40 75.00 136.00 9.00 5.00 0.94 0.94 0.94 0.07 0.07 0.91 1.00 

41 4.00 244.00 2.00 46.00 0.08 0.99 0.84 0.10 0.93 0.14 0.43 

42 4.00 116.00 0.00 26.00 0.13 1.00 0.82 0.00 0.87 0.24 0.29 

43 3.00 241.00 3.00 33.00 0.08 0.99 0.87 0.15 0.93 0.14 0.15 

44 6.00 231.00 0.00 36.00 0.14 1.00 0.87 0.00 0.86 0.25 0.15 

45 5.00 76.00 2.00 15.00 0.25 0.97 0.83 0.10 0.77 0.37 0.56 

46 2.00 282.00 3.00 54.00 0.04 0.99 0.83 0.29 0.97 0.07 0.32 

47 31.00 181.00 7.00 29.00 0.52 0.96 0.85 0.07 0.50 0.63 0.51 

48 11.00 229.00 6.00 56.00 0.16 0.97 0.79 0.16 0.86 0.26 0.17 

49 27.00 140.00 0.00 8.00 0.77 1.00 0.95 0.00 0.23 0.87 1.00 

50 8.00 121.00 1.00 44.00 0.15 0.99 0.74 0.05 0.85 0.26 0.08 

51 13.00 232.00 4.00 33.00 0.28 0.98 0.87 0.06 0.73 0.41 0.62 

52 12.00 94.00 0.00 9.00 0.57 1.00 0.92 0.00 0.43 0.73 1.00 

53 3.00 223.00 1.00 51.00 0.06 1.00 0.81 0.08 0.95 0.10 0.17 

54 47.00 179.00 5.00 20.00 0.70 0.97 0.90 0.04 0.31 0.79 0.51 

55 78.00 273.00 1.00 16.00 0.83 1.00 0.95 0.00 0.17 0.90 1.00 

56 14.00 123.00 5.00 26.00 0.35 0.96 0.82 0.11 0.68 0.47 0.45 

57 37.00 250.00 0.00 28.00 0.57 1.00 0.91 0.00 0.43 0.73 0.89 
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58 13.00 200.00 3.00 24.00 0.35 0.99 0.89 0.04 0.66 0.49 0.82 

59 40.00 141.00 3.00 10.00 0.80 0.98 0.93 0.03 0.20 0.86 1.00 

60 37.00 90.00 4.00 5.00 0.88 0.96 0.93 0.05 0.12 0.89 1.00 

 

Table 6: Statistical Results for Speech Tracking Using Relative Threshold for DTW 

Effects of Relative Threshold on Performance 

DTW+MFCC 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 22.00 52.00 3.00 3.00 0.88 0.95 0.93 0.06 0.13 0.88 1.00 

2 17.00 38.00 1.00 1.00 0.94 0.97 0.96 0.03 0.06 0.94 1.00 

3 53.00 74.00 2.00 3.00 0.95 0.97 0.96 0.03 0.06 0.95 1.00 

4 33.00 58.00 5.00 4.00 0.89 0.92 0.91 0.09 0.12 0.88 1.00 

5 40.00 53.00 7.00 2.00 0.95 0.88 0.91 0.12 0.05 0.90 1.00 

6 44.00 46.00 5.00 0.00 1.00 0.90 0.95 0.10 0.00 0.95 1.00 

7 19.00 48.00 6.00 3.00 0.86 0.89 0.88 0.13 0.15 0.81 1.00 

8 22.00 66.00 4.00 1.00 0.96 0.94 0.95 0.06 0.05 0.90 1.00 

9 45.00 50.00 5.00 0.00 1.00 0.91 0.95 0.09 0.00 0.95 1.00 

10 142.00 148.00 19.00 4.00 0.97 0.89 0.93 0.12 0.03 0.93 1.00 

11 99.00 129.00 9.00 0.00 1.00 0.93 0.96 0.07 0.00 0.96 1.00 

12 118.00 71.00 26.00 1.00 0.99 0.73 0.88 0.27 0.01 0.90 1.00 

13 52.00 95.00 4.00 3.00 0.95 0.96 0.95 0.04 0.06 0.94 1.00 

14 57.00 105.00 5.00 3.00 0.95 0.95 0.95 0.05 0.05 0.93 1.00 

15 121.00 142.00 13.00 1.00 0.99 0.92 0.95 0.08 0.01 0.95 1.00 

16 22.00 106.00 20.00 12.00 0.65 0.84 0.80 0.25 0.42 0.58 0.83 

17 71.00 115.00 11.00 1.00 0.99 0.91 0.94 0.09 0.02 0.92 1.00 

18 105.00 106.00 33.00 9.00 0.92 0.76 0.83 0.26 0.10 0.83 0.93 

19 66.00 105.00 22.00 7.00 0.90 0.83 0.85 0.19 0.12 0.82 1.00 

20 60.00 59.00 13.00 2.00 0.97 0.82 0.89 0.19 0.04 0.89 1.00 

21 129.00 154.00 21.00 2.00 0.98 0.88 0.92 0.12 0.02 0.92 1.00 

22 277.00 298.00 33.00 3.00 0.99 0.90 0.94 0.10 0.01 0.94 1.00 

23 158.00 199.00 19.00 3.00 0.98 0.91 0.94 0.09 0.02 0.93 1.00 

24 143.00 184.00 24.00 2.00 0.99 0.88 0.93 0.12 0.02 0.92 1.00 
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25 54.00 201.00 32.00 18.00 0.75 0.86 0.84 0.18 0.29 0.68 0.63 

26 98.00 153.00 7.00 5.00 0.95 0.96 0.95 0.05 0.05 0.94 1.00 

27 230.00 22.00 117.00 7.00 0.97 0.16 0.67 0.87 0.19 0.79 0.97 

28 62.00 283.00 51.00 27.00 0.70 0.85 0.82 0.22 0.36 0.61 0.81 

29 141.00 205.00 13.00 5.00 0.97 0.94 0.95 0.06 0.04 0.94 1.00 

30 231.00 95.00 74.00 2.00 0.99 0.56 0.81 0.44 0.02 0.86 1.00 

31 53.00 303.00 166.00 29.00 0.65 0.65 0.65 0.55 0.55 0.35 0.59 

32 98.00 209.00 10.00 8.00 0.92 0.95 0.94 0.05 0.08 0.92 1.00 

33 53.00 162.00 4.00 12.00 0.82 0.98 0.93 0.03 0.19 0.87 1.00 

34 103.00 164.00 21.00 7.00 0.94 0.89 0.91 0.12 0.07 0.88 1.00 

35 18.00 242.00 76.00 40.00 0.31 0.76 0.69 0.77 0.91 0.24 0.54 

36 40.00 179.00 6.00 15.00 0.73 0.97 0.91 0.04 0.28 0.79 0.63 

37 96.00 185.00 3.00 3.00 0.97 0.98 0.98 0.02 0.03 0.97 1.00 

38 37.00 58.00 3.00 0.00 1.00 0.95 0.97 0.05 0.00 0.96 1.00 

39 159.00 110.00 22.00 0.00 1.00 0.83 0.92 0.17 0.00 0.94 1.00 

40 105.00 104.00 16.00 3.00 0.97 0.87 0.92 0.14 0.03 0.92 1.00 

41 80.00 200.00 6.00 4.00 0.95 0.97 0.97 0.03 0.05 0.94 1.00 

42 84.00 75.00 10.00 1.00 0.99 0.88 0.94 0.12 0.01 0.94 1.00 

43 122.00 157.00 8.00 3.00 0.98 0.95 0.96 0.05 0.03 0.96 1.00 

44 35.00 157.00 48.00 25.00 0.58 0.77 0.72 0.40 0.54 0.49 0.88 

45 41.00 55.00 9.00 2.00 0.95 0.86 0.90 0.15 0.05 0.88 1.00 

46 81.00 243.00 5.00 14.00 0.85 0.98 0.94 0.02 0.15 0.90 0.89 

47 96.00 124.00 38.00 9.00 0.91 0.77 0.82 0.26 0.11 0.80 0.90 

48 52.00 95.00 4.00 3.00 0.95 0.96 0.95 0.04 0.06 0.94 1.00 

49 57.00 105.00 5.00 3.00 0.95 0.95 0.95 0.05 0.05 0.93 1.00 

50 121.00 142.00 13.00 1.00 0.99 0.92 0.95 0.08 0.01 0.95 1.00 

51 22.00 106.00 20.00 12.00 0.65 0.84 0.80 0.25 0.42 0.58 0.83 

52 71.00 115.00 11.00 1.00 0.99 0.91 0.94 0.09 0.02 0.92 1.00 

53 105.00 106.00 33.00 9.00 0.92 0.76 0.83 0.26 0.10 0.83 0.93 

54 35.00 157.00 48.00 25.00 0.58 0.77 0.72 0.40 0.54 0.49 0.88 

55 41.00 55.00 9.00 2.00 0.95 0.86 0.90 0.15 0.05 0.88 1.00 

56 81.00 243.00 5.00 14.00 0.85 0.98 0.94 0.02 0.15 0.90 0.89 
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57 96.00 124.00 38.00 9.00 0.91 0.77 0.82 0.26 0.11 0.80 0.90 

58 52.00 95.00 4.00 3.00 0.95 0.96 0.95 0.04 0.06 0.94 1.00 

59 66.00 105.00 22.00 7.00 0.90 0.83 0.85 0.19 0.12 0.82 1.00 

60 60.00 59.00 13.00 2.00 0.97 0.82 0.89 0.19 0.04 0.89 1.00 

 

Table 7: Statistical Results for Non-Adaptive Speech Tracking Based on DTW and MFCC 

Search Region Based Non-Adaptive Tracking & Similarity Measurement 

(DTW+MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 4.00 81.00 1.00 12.00 0.25 0.99 0.87 0.05 0.76 0.38 0.21 

2 5.00 52.00 5.00 8.00 0.38 0.91 0.81 0.23 0.67 0.43 0.30 

3 55.00 87.00 12.00 0.00 1.00 0.88 0.92 0.12 0.00 0.90 1.00 

4 41.00 66.00 12.00 0.00 1.00 0.85 0.90 0.15 0.00 0.87 1.00 

5 19.00 90.00 7.00 10.00 0.66 0.93 0.87 0.11 0.37 0.69 0.50 

6 31.00 67.00 7.00 0.00 1.00 0.91 0.93 0.09 0.00 0.90 1.00 

7 26.00 53.00 5.00 0.00 1.00 0.91 0.94 0.09 0.00 0.91 1.00 

8 10.00 88.00 3.00 11.00 0.48 0.97 0.88 0.07 0.54 0.59 0.44 

9 39.00 69.00 4.00 0.00 1.00 0.95 0.96 0.05 0.00 0.95 1.00 

10 55.00 265.00 7.00 30.00 0.65 0.97 0.90 0.04 0.36 0.75 0.43 

11 85.00 164.00 17.00 0.00 1.00 0.91 0.94 0.09 0.00 0.91 1.00 

12 86.00 142.00 17.00 0.00 1.00 0.89 0.93 0.11 0.00 0.91 1.00 

13 52.00 104.00 11.00 1.00 0.98 0.90 0.93 0.10 0.02 0.90 1.00 

14 48.00 132.00 8.00 1.00 0.98 0.94 0.95 0.06 0.02 0.91 1.00 

15 73.00 215.00 14.00 13.00 0.85 0.94 0.91 0.07 0.16 0.84 0.73 

16 9.00 161.00 3.00 23.00 0.28 0.98 0.87 0.07 0.73 0.41 0.25 

17 68.00 139.00 16.00 1.00 0.99 0.90 0.92 0.10 0.02 0.89 1.00 

18 35.00 229.00 4.00 26.00 0.57 0.98 0.90 0.03 0.43 0.70 0.40 

19 75.00 127.00 22.00 0.00 1.00 0.85 0.90 0.15 0.00 0.87 1.00 

20 42.00 98.00 12.00 2.00 0.95 0.89 0.91 0.11 0.05 0.86 1.00 

21 117.00 215.00 18.00 0.00 1.00 0.92 0.95 0.08 0.00 0.93 1.00 

22 222.00 440.00 41.00 4.00 0.98 0.91 0.94 0.09 0.02 0.91 1.00 

23 120.00 287.00 16.00 4.00 0.97 0.95 0.95 0.05 0.03 0.92 1.00 
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24 52.00 313.00 10.00 31.00 0.63 0.97 0.90 0.05 0.39 0.72 0.48 

25 129.00 242.00 35.00 0.00 1.00 0.87 0.91 0.13 0.00 0.88 1.00 

26 94.00 195.00 11.00 1.00 0.99 0.95 0.96 0.05 0.01 0.94 1.00 

27 3.00 353.00 18.00 60.00 0.05 0.95 0.82 1.02 1.00 0.07 0.05 

28 161.00 344.00 26.00 1.00 0.99 0.93 0.95 0.07 0.01 0.92 1.00 

29 33.00 327.00 21.00 46.00 0.42 0.94 0.84 0.14 0.62 0.50 0.26 

30 83.00 335.00 15.00 29.00 0.74 0.96 0.90 0.06 0.27 0.79 0.58 

31 141.00 492.00 50.00 38.00 0.79 0.91 0.88 0.12 0.23 0.76 0.64 

32 29.00 300.00 6.00 43.00 0.40 0.98 0.87 0.05 0.61 0.54 0.22 

33 4.00 216.00 4.00 35.00 0.10 0.98 0.85 0.18 0.91 0.17 0.08 

34 17.00 287.00 3.00 43.00 0.28 0.99 0.87 0.04 0.72 0.42 0.16 

35 65.00 364.00 10.00 30.00 0.68 0.97 0.91 0.04 0.32 0.76 0.57 

36 71.00 208.00 5.00 3.00 0.96 0.98 0.97 0.02 0.04 0.95 1.00 

37 35.00 263.00 1.00 30.00 0.54 1.00 0.91 0.01 0.46 0.69 0.38 

38 36.00 71.00 4.00 1.00 0.97 0.95 0.96 0.05 0.03 0.94 1.00 

39 109.00 201.00 12.00 0.00 1.00 0.94 0.96 0.06 0.00 0.95 1.00 

40 9.00 224.00 0.00 33.00 0.21 1.00 0.88 0.00 0.79 0.35 0.18 

41 105.00 226.00 12.00 0.00 1.00 0.95 0.97 0.05 0.00 0.95 1.00 

42 60.00 120.00 9.00 0.00 1.00 0.93 0.95 0.07 0.00 0.93 1.00 

43 107.00 207.00 14.00 1.00 0.99 0.94 0.95 0.06 0.01 0.93 1.00 

44 50.00 251.00 6.00 22.00 0.69 0.98 0.91 0.03 0.31 0.78 0.57 

45 38.00 73.00 8.00 0.00 1.00 0.90 0.93 0.10 0.00 0.90 1.00 

46 23.00 335.00 2.00 46.00 0.33 0.99 0.88 0.02 0.67 0.49 0.22 

47 94.00 199.00 15.00 0.00 1.00 0.93 0.95 0.07 0.00 0.93 1.00 

48 133.00 259.00 20.00 1.00 0.99 0.93 0.95 0.07 0.01 0.93 1.00 

49 26.00 153.00 7.00 17.00 0.60 0.96 0.88 0.07 0.41 0.68 0.45 

50 42.00 258.00 7.00 29.00 0.59 0.97 0.89 0.04 0.42 0.70 0.44 

51 94.00 213.00 15.00 0.00 1.00 0.93 0.95 0.07 0.00 0.93 1.00 

52 20.00 101.00 1.00 11.00 0.65 0.99 0.91 0.02 0.36 0.77 0.47 

53 16.00 308.00 8.00 46.00 0.26 0.97 0.86 0.10 0.76 0.37 0.17 

54 93.00 188.00 10.00 3.00 0.97 0.95 0.96 0.05 0.03 0.93 0.95 

55 115.00 281.00 22.00 9.00 0.93 0.93 0.93 0.08 0.08 0.88 0.87 
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56 68.00 146.00 10.00 0.00 1.00 0.94 0.96 0.06 0.00 0.93 1.00 

57 33.00 302.00 2.00 41.00 0.45 0.99 0.89 0.01 0.56 0.61 0.26 

58 23.00 230.00 9.00 32.00 0.42 0.96 0.86 0.09 0.60 0.53 0.26 

59 75.00 127.00 22.00 0.00 1.00 0.85 0.90 0.15 0.00 0.87 1.00 

60 42.00 98.00 12.00 2.00 0.95 0.89 0.91 0.11 0.05 0.86 1.00 

 

Table 8: Statistical Results for Speech Tracking Based on DTW and Energy Based Silence Removal 

Kalman Filter with Energy & Spectral Centroid Silence Removal Approach 

 (DTW+MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 20.00 53.00 5.00 3.00 0.87 0.91 0.90 0.10 0.14 0.83 1.00 

2 22.00 50.00 3.00 1.00 0.96 0.94 0.95 0.06 0.05 0.92 1.00 

3 105.00 65.00 36.00 0.00 1.00 0.64 0.83 0.36 0.00 0.85 1.00 

4 85.00 73.00 7.00 1.00 0.99 0.91 0.95 0.09 0.01 0.96 1.00 

5 64.00 99.00 12.00 1.00 0.98 0.89 0.93 0.11 0.02 0.91 1.00 

6 51.00 72.00 21.00 4.00 0.93 0.77 0.83 0.24 0.09 0.80 0.96 

7 7.00 67.00 28.00 17.00 0.29 0.71 0.62 1.01 1.00 0.24 0.55 

8 71.00 56.00 11.00 0.00 1.00 0.84 0.92 0.16 0.00 0.93 1.00 

9 35.00 77.00 8.00 4.00 0.90 0.91 0.90 0.10 0.11 0.85 1.00 

10 214.00 138.00 42.00 3.00 0.99 0.77 0.89 0.24 0.02 0.90 1.00 

11 265.00 70.00 106.00 5.00 0.98 0.40 0.75 0.61 0.05 0.83 0.97 

12 164.00 161.00 18.00 3.00 0.98 0.90 0.94 0.10 0.02 0.94 1.00 

13 69.00 107.00 28.00 8.00 0.90 0.79 0.83 0.23 0.13 0.79 0.97 

14 97.00 155.00 11.00 3.00 0.97 0.93 0.95 0.07 0.03 0.93 1.00 

15 129.00 207.00 32.00 6.00 0.96 0.87 0.90 0.14 0.05 0.87 1.00 

16 55.00 112.00 17.00 7.00 0.89 0.87 0.87 0.15 0.13 0.82 1.00 

17 122.00 206.00 6.00 4.00 0.97 0.97 0.97 0.03 0.03 0.96 1.00 

18 164.00 172.00 52.00 13.00 0.93 0.77 0.84 0.25 0.10 0.83 1.00 

19 165.00 128.00 34.00 5.00 0.97 0.79 0.88 0.22 0.04 0.89 1.00 

20 92.00 172.00 17.00 6.00 0.94 0.91 0.92 0.10 0.07 0.89 1.00 

21 209.00 244.00 35.00 6.00 0.97 0.87 0.92 0.13 0.03 0.91 1.00 

22 475.00 356.00 90.00 4.00 0.99 0.80 0.90 0.20 0.01 0.91 1.00 
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23 329.00 222.00 83.00 6.00 0.98 0.73 0.86 0.28 0.02 0.88 1.00 

24 224.00 317.00 113.00 22.00 0.91 0.74 0.80 0.29 0.12 0.77 0.91 

25 221.00 325.00 46.00 12.00 0.95 0.88 0.90 0.13 0.06 0.88 1.00 

26 219.00 194.00 44.00 7.00 0.97 0.82 0.89 0.19 0.04 0.90 1.00 

27 283.00 230.00 70.00 9.00 0.97 0.77 0.87 0.24 0.04 0.88 0.98 

28 356.00 166.00 109.00 5.00 0.99 0.60 0.82 0.40 0.02 0.86 1.00 

29 248.00 326.00 100.00 21.00 0.92 0.77 0.83 0.25 0.10 0.80 1.00 

30 319.00 221.00 92.00 10.00 0.97 0.71 0.84 0.30 0.04 0.86 1.00 

31 482.00 608.00 54.00 12.00 0.98 0.92 0.94 0.08 0.03 0.94 1.00 

32 309.00 110.00 86.00 2.00 0.99 0.56 0.83 0.44 0.01 0.88 1.00 

33 139.00 185.00 20.00 6.00 0.96 0.90 0.93 0.10 0.05 0.91 1.00 

34 221.00 156.00 58.00 3.00 0.99 0.73 0.86 0.27 0.02 0.88 1.00 

35 360.00 168.00 99.00 2.00 0.99 0.63 0.84 0.37 0.01 0.88 1.00 

36 153.00 207.00 30.00 9.00 0.94 0.87 0.90 0.13 0.06 0.89 1.00 

37 174.00 276.00 19.00 7.00 0.96 0.94 0.95 0.07 0.04 0.93 1.00 

38 63.00 108.00 12.00 5.00 0.93 0.90 0.91 0.11 0.08 0.88 1.00 

39 205.00 123.00 62.00 5.00 0.98 0.66 0.83 0.34 0.04 0.86 1.00 

40 282.00 107.00 54.00 2.00 0.99 0.66 0.87 0.34 0.01 0.91 1.00 

41 64.00 99.00 12.00 1.00 0.98 0.89 0.93 0.11 0.02 0.91 1.00 

42 51.00 72.00 21.00 4.00 0.93 0.77 0.83 0.24 0.09 0.80 0.96 

43 7.00 67.00 28.00 17.00 0.29 0.71 0.62 1.01 1.00 0.24 0.55 

44 71.00 56.00 11.00 0.00 1.00 0.84 0.92 0.16 0.00 0.93 1.00 

45 35.00 77.00 8.00 4.00 0.90 0.91 0.90 0.10 0.11 0.85 1.00 

46 214.00 138.00 42.00 3.00 0.99 0.77 0.89 0.24 0.02 0.90 1.00 

47 265.00 70.00 106.00 5.00 0.98 0.40 0.75 0.61 0.05 0.83 0.97 

48 164.00 161.00 18.00 3.00 0.98 0.90 0.94 0.10 0.02 0.94 1.00 

49 69.00 107.00 28.00 8.00 0.90 0.79 0.83 0.23 0.13 0.79 0.97 

50 153.00 207.00 30.00 9.00 0.94 0.87 0.90 0.13 0.06 0.89 1.00 

51 174.00 276.00 19.00 7.00 0.96 0.94 0.95 0.07 0.04 0.93 1.00 

52 63.00 108.00 12.00 5.00 0.93 0.90 0.91 0.11 0.08 0.88 1.00 

53 205.00 123.00 62.00 5.00 0.98 0.66 0.83 0.34 0.04 0.86 1.00 

54 282.00 107.00 54.00 2.00 0.99 0.66 0.87 0.34 0.01 0.91 1.00 
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55 153.00 207.00 30.00 9.00 0.94 0.87 0.90 0.13 0.06 0.89 1.00 

56 174.00 276.00 19.00 7.00 0.96 0.94 0.95 0.07 0.04 0.93 1.00 

57 63.00 108.00 12.00 5.00 0.93 0.90 0.91 0.11 0.08 0.88 1.00 

58 205.00 123.00 62.00 5.00 0.98 0.66 0.83 0.34 0.04 0.86 1.00 

59 165.00 128.00 34.00 5.00 0.97 0.79 0.88 0.22 0.04 0.89 1.00 

60 92.00 172.00 17.00 6.00 0.94 0.91 0.92 0.10 0.07 0.89 1.00 

 

Table 9: Statistical Results for Speech Tracking Based on Constrained DTW and MFCC 

Kalman Filter Based Adaptive Speech Tracking & Similarity Measurement 

 (DTW Constrained + MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 1.00 65.00 0.00 9.00 0.10 1.00 0.88 0.00 0.90 0.18 0.40 

2 1.00 51.00 0.00 7.00 0.13 1.00 0.88 0.00 0.88 0.22 0.50 

3 0.00 104.00 0.00 10.00 0.00 1.00 0.91 1.00 1.00 NaN 0.10 

4 0.00 82.00 0.00 8.00 0.00 1.00 0.91 1.00 1.00 NaN 0.13 

5 0.00 82.00 0.00 8.00 0.00 1.00 0.91 1.00 1.00 NaN 0.13 

6 0.00 71.00 0.00 7.00 0.00 1.00 0.91 1.00 1.00 NaN 0.14 

7 1.00 65.00 0.00 9.00 0.10 1.00 0.88 0.00 0.90 0.18 0.40 

8 0.00 71.00 0.00 7.00 0.00 1.00 0.91 1.00 1.00 NaN 0.14 

9 0.00 82.00 0.00 8.00 0.00 1.00 0.91 1.00 1.00 NaN 0.13 

10 0.00 258.00 0.00 24.00 0.00 1.00 0.91 1.00 1.00 NaN 0.04 

11 1.00 194.00 0.00 29.00 0.03 1.00 0.87 0.00 0.97 0.06 0.13 

12 1.00 181.00 0.00 27.00 0.04 1.00 0.87 0.00 0.96 0.07 0.14 

13 0.00 115.00 0.00 11.00 0.00 1.00 0.91 1.00 1.00 NaN 0.09 

14 0.00 137.00 0.00 13.00 0.00 1.00 0.91 1.00 1.00 NaN 0.08 

15 1.00 233.00 0.00 35.00 0.03 1.00 0.87 0.00 0.97 0.05 0.11 

16 1.00 142.00 0.00 21.00 0.05 1.00 0.87 0.00 0.95 0.09 0.18 

17 1.00 169.00 0.00 25.00 0.04 1.00 0.87 0.00 0.96 0.07 0.15 

18 0.00 203.00 0.00 19.00 0.00 1.00 0.91 1.00 1.00 NaN 0.05 

19 1.00 169.00 0.00 25.00 0.04 1.00 0.87 0.00 0.96 0.07 0.15 

20 0.00 104.00 0.00 10.00 0.00 1.00 0.91 1.00 1.00 NaN 0.10 

21 1.00 260.00 0.00 39.00 0.03 1.00 0.87 0.00 0.97 0.05 0.10 
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22 20.00 496.00 1.00 69.00 0.22 1.00 0.88 0.01 0.78 0.36 0.44 

23 2.00 256.00 0.00 60.00 0.03 1.00 0.81 0.00 0.97 0.06 0.16 

24 0.00 291.00 0.00 27.00 0.00 1.00 0.92 1.00 1.00 NaN 0.04 

25 1.00 302.00 0.00 45.00 0.02 1.00 0.87 0.00 0.98 0.04 0.09 

26 1.00 221.00 0.00 33.00 0.03 1.00 0.87 0.00 0.97 0.06 0.12 

27 1.00 323.00 0.00 48.00 0.02 1.00 0.87 0.00 0.98 0.04 0.08 

28 1.00 407.00 0.00 60.00 0.02 1.00 0.87 0.00 0.98 0.03 0.07 

29 1.00 316.00 0.00 47.00 0.02 1.00 0.87 0.00 0.98 0.04 0.08 

30 1.00 344.00 0.00 51.00 0.02 1.00 0.87 0.00 0.98 0.04 0.08 

31 1.00 554.00 0.00 81.00 0.01 1.00 0.87 0.00 0.99 0.02 0.05 

32 1.00 274.00 0.00 41.00 0.02 1.00 0.87 0.00 0.98 0.05 0.10 

33 1.00 187.00 0.00 28.00 0.03 1.00 0.87 0.00 0.97 0.07 0.14 

34 1.00 260.00 0.00 39.00 0.03 1.00 0.87 0.00 0.97 0.05 0.10 

35 0.00 335.00 0.00 31.00 0.00 1.00 0.92 1.00 1.00 NaN 0.03 

36 1.00 215.00 0.00 32.00 0.03 1.00 0.87 0.00 0.97 0.06 0.12 

37 1.00 239.00 0.00 36.00 0.03 1.00 0.87 0.00 0.97 0.05 0.11 

38 1.00 83.00 0.00 12.00 0.08 1.00 0.88 0.00 0.92 0.14 0.31 

39 3.00 195.00 0.00 44.00 0.06 1.00 0.82 0.00 0.94 0.12 0.19 

40 3.00 160.00 0.00 35.00 0.08 1.00 0.82 0.00 0.92 0.15 0.21 

41 1.00 253.00 0.00 38.00 0.03 1.00 0.87 0.00 0.97 0.05 0.10 

42 1.00 142.00 0.00 21.00 0.05 1.00 0.87 0.00 0.95 0.09 0.18 

43 1.00 239.00 0.00 36.00 0.03 1.00 0.87 0.00 0.97 0.05 0.11 

44 1.00 239.00 0.00 36.00 0.03 1.00 0.87 0.00 0.97 0.05 0.11 

45 1.00 90.00 0.00 13.00 0.07 1.00 0.88 0.00 0.93 0.13 0.29 

46 1.00 302.00 0.00 45.00 0.02 1.00 0.87 0.00 0.98 0.04 0.09 

47 2.00 151.00 1.00 43.00 0.04 0.99 0.78 0.15 0.96 0.08 0.11 

48 1.00 309.00 0.00 46.00 0.02 1.00 0.87 0.00 0.98 0.04 0.09 

49 6.00 136.00 1.00 22.00 0.21 0.99 0.86 0.03 0.79 0.34 1.00 

50 1.00 246.00 0.00 37.00 0.03 1.00 0.87 0.00 0.97 0.05 0.11 

51 1.00 239.00 0.00 36.00 0.03 1.00 0.87 0.00 0.97 0.05 0.11 

52 2.00 84.00 0.00 17.00 0.11 1.00 0.83 0.00 0.89 0.19 0.53 

53 0.00 269.00 0.00 25.00 0.00 1.00 0.91 1.00 1.00 NaN 0.04 
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54 3.00 177.00 0.00 39.00 0.07 1.00 0.82 0.00 0.93 0.13 0.24 

55 1.00 316.00 0.00 47.00 0.02 1.00 0.87 0.00 0.98 0.04 0.08 

56 5.00 113.00 1.00 30.00 0.14 0.99 0.79 0.06 0.86 0.24 0.15 

57 1.00 274.00 0.00 41.00 0.02 1.00 0.87 0.00 0.98 0.05 0.10 

58 1.00 215.00 0.00 32.00 0.03 1.00 0.87 0.00 0.97 0.06 0.12 

59 1.00 169.00 0.00 25.00 0.04 1.00 0.87 0.00 0.96 0.07 0.15 

60 0.00 104.00 0.00 10.00 0.00 1.00 0.91 1.00 1.00 NaN 0.10 

 

Table 10: Statistical Results for Speech Tracking Based Relative Threshold for Constrained DTW 

Effects of Relative Threshold on Performance  

DTW Constrained + MFCC 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 12.00 69.00 0.00 4.00 0.75 1.00 0.95 0.00 0.25 0.86 1.00 

2 12.00 39.00 1.00 3.00 0.80 0.97 0.93 0.03 0.21 0.86 1.00 

3 30.00 96.00 1.00 5.00 0.86 0.99 0.95 0.01 0.14 0.91 1.00 

4 25.00 78.00 0.00 4.00 0.86 1.00 0.96 0.00 0.14 0.93 1.00 

5 15.00 85.00 0.00 6.00 0.71 1.00 0.94 0.00 0.29 0.83 1.00 

6 22.00 69.00 1.00 2.00 0.92 0.99 0.97 0.02 0.08 0.94 1.00 

7 16.00 59.00 1.00 4.00 0.80 0.98 0.94 0.02 0.20 0.86 1.00 

8 9.00 81.00 0.00 7.00 0.56 1.00 0.93 0.00 0.44 0.72 1.00 

9 16.00 81.00 0.00 3.00 0.84 1.00 0.97 0.00 0.16 0.91 1.00 

10 0.00 244.00 9.00 22.00 0.00 0.96 0.89 Inf 1.04 NaN 0.09 

11 63.00 163.00 3.00 3.00 0.95 0.98 0.97 0.02 0.05 0.95 1.00 

12 43.00 167.00 0.00 7.00 0.86 1.00 0.97 0.00 0.14 0.92 1.00 

13 30.00 119.00 0.00 4.00 0.88 1.00 0.97 0.00 0.12 0.94 1.00 

14 3.00 140.00 0.00 21.00 0.13 1.00 0.87 0.00 0.88 0.22 0.18 

15 14.00 196.00 0.00 34.00 0.29 1.00 0.86 0.00 0.71 0.45 0.42 

16 1.00 142.00 0.00 21.00 0.05 1.00 0.87 0.00 0.95 0.09 0.18 

17 36.00 152.00 1.00 6.00 0.86 0.99 0.96 0.01 0.14 0.91 1.00 

18 41.00 205.00 1.00 9.00 0.82 1.00 0.96 0.01 0.18 0.89 1.00 

19 45.00 151.00 1.00 5.00 0.90 0.99 0.97 0.01 0.10 0.94 1.00 

20 23.00 106.00 0.00 6.00 0.79 1.00 0.96 0.00 0.21 0.88 1.00 
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21 82.00 226.00 1.00 3.00 0.96 1.00 0.99 0.00 0.04 0.98 1.00 

22 115.00 479.00 4.00 16.00 0.88 0.99 0.97 0.01 0.12 0.92 1.00 

23 78.00 286.00 3.00 6.00 0.93 0.99 0.98 0.01 0.07 0.95 1.00 

24 67.00 270.00 3.00 9.00 0.88 0.99 0.97 0.01 0.12 0.92 1.00 

25 84.00 243.00 7.00 17.00 0.83 0.97 0.93 0.03 0.17 0.87 1.00 

26 50.00 206.00 1.00 7.00 0.88 1.00 0.97 0.01 0.12 0.93 1.00 

27 58.00 304.00 1.00 17.00 0.77 1.00 0.95 0.00 0.23 0.87 1.00 

28 83.00 365.00 1.00 16.00 0.84 1.00 0.96 0.00 0.16 0.91 1.00 

29 73.00 286.00 0.00 12.00 0.86 1.00 0.97 0.00 0.14 0.92 1.00 

30 84.00 305.00 0.00 8.00 0.91 1.00 0.98 0.00 0.09 0.95 1.00 

31 33.00 429.00 3.00 83.00 0.28 0.99 0.84 0.02 0.72 0.43 0.29 

32 40.00 263.00 2.00 21.00 0.66 0.99 0.93 0.01 0.35 0.78 1.00 

33 8.00 171.00 0.00 29.00 0.22 1.00 0.86 0.00 0.78 0.36 0.54 

34 14.00 215.00 0.00 40.00 0.26 1.00 0.85 0.00 0.74 0.41 0.38 

35 83.00 307.00 5.00 8.00 0.91 0.98 0.97 0.02 0.09 0.93 1.00 

36 45.00 203.00 0.00 11.00 0.80 1.00 0.96 0.00 0.20 0.89 1.00 

37 4.00 152.00 1.00 44.00 0.08 0.99 0.78 0.08 0.92 0.15 0.11 

38 15.00 81.00 0.00 5.00 0.75 1.00 0.95 0.00 0.25 0.86 1.00 

39 50.00 224.00 0.00 9.00 0.85 1.00 0.97 0.00 0.15 0.92 1.00 

40 60.00 163.00 1.00 2.00 0.97 0.99 0.99 0.01 0.03 0.98 1.00 

41 46.00 246.00 0.00 9.00 0.84 1.00 0.97 0.00 0.16 0.91 1.00 

42 31.00 136.00 1.00 4.00 0.89 0.99 0.97 0.01 0.12 0.93 1.00 

43 39.00 238.00 0.00 11.00 0.78 1.00 0.96 0.00 0.22 0.88 1.00 

44 21.00 219.00 3.00 31.00 0.40 0.99 0.88 0.03 0.60 0.55 0.51 

45 19.00 92.00 0.00 1.00 0.95 1.00 0.99 0.00 0.05 0.97 1.00 

46 57.00 293.00 0.00 6.00 0.90 1.00 0.98 0.00 0.10 0.95 1.00 

47 45.00 211.00 1.00 12.00 0.79 1.00 0.95 0.01 0.21 0.87 1.00 

48 59.00 286.00 1.00 16.00 0.79 1.00 0.95 0.00 0.21 0.87 1.00 

49 28.00 144.00 0.00 5.00 0.85 1.00 0.97 0.00 0.15 0.92 1.00 

50 53.00 233.00 0.00 9.00 0.85 1.00 0.97 0.00 0.15 0.92 1.00 

51 35.00 235.00 0.00 17.00 0.67 1.00 0.94 0.00 0.33 0.80 1.00 

52 17.00 89.00 0.00 3.00 0.85 1.00 0.97 0.00 0.15 0.92 1.00 
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53 40.00 269.00 0.00 17.00 0.70 1.00 0.95 0.00 0.30 0.82 1.00 

54 37.00 214.00 0.00 8.00 0.82 1.00 0.97 0.00 0.18 0.90 1.00 

55 59.00 294.00 0.00 12.00 0.83 1.00 0.97 0.00 0.17 0.91 1.00 

56 32.00 159.00 0.00 7.00 0.82 1.00 0.96 0.00 0.18 0.90 1.00 

57 42.00 270.00 1.00 16.00 0.72 1.00 0.95 0.01 0.28 0.83 1.00 

58 53.00 198.00 2.00 5.00 0.91 0.99 0.97 0.01 0.09 0.94 1.00 

59 45.00 151.00 1.00 5.00 0.90 0.99 0.97 0.01 0.10 0.94 1.00 

60 23.00 106.00 0.00 6.00 0.79 1.00 0.96 0.00 0.21 0.88 1.00 

 

Table 11: Statistical Results for Non-Adaptive Speech Tracking Based on Constrained DTW 

Search Region Based Non-Adaptive Tracking & Similarity Measurement 

 (DTW Constrained + MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 2.00 83.00 0.00 13.00 0.13 1.00 0.87 0.00 0.87 0.24 0.14 

2 4.00 58.00 0.00 8.00 0.33 1.00 0.89 0.00 0.67 0.50 0.30 

3 1.00 132.00 0.00 21.00 0.05 1.00 0.86 0.00 0.95 0.09 0.09 

4 2.00 108.00 0.00 16.00 0.11 1.00 0.87 0.00 0.89 0.20 0.17 

5 1.00 108.00 0.00 17.00 0.06 1.00 0.87 0.00 0.94 0.11 0.11 

6 1.00 96.00 0.00 15.00 0.06 1.00 0.87 0.00 0.94 0.12 0.13 

7 1.00 78.00 0.00 12.00 0.08 1.00 0.87 0.00 0.92 0.14 0.15 

8 1.00 96.00 0.00 15.00 0.06 1.00 0.87 0.00 0.94 0.12 0.13 

9 5.00 102.00 0.00 12.00 0.29 1.00 0.90 0.00 0.71 0.45 0.35 

10 9.00 303.00 0.00 45.00 0.17 1.00 0.87 0.00 0.83 0.29 0.16 

11 7.00 232.00 0.00 34.00 0.17 1.00 0.88 0.00 0.83 0.29 0.18 

12 15.00 212.00 0.00 25.00 0.38 1.00 0.90 0.00 0.63 0.55 0.33 

13 7.00 154.00 0.00 21.00 0.25 1.00 0.88 0.00 0.75 0.40 0.23 

14 3.00 166.00 0.00 27.00 0.10 1.00 0.86 0.00 0.90 0.18 0.07 

15 2.00 270.00 0.00 43.00 0.04 1.00 0.86 0.00 0.96 0.09 0.07 

16 4.00 168.00 0.00 24.00 0.14 1.00 0.88 0.00 0.86 0.25 0.21 

17 20.00 194.00 0.00 17.00 0.54 1.00 0.93 0.00 0.46 0.70 0.52 

18 1.00 252.00 0.00 41.00 0.02 1.00 0.86 0.00 0.98 0.05 0.05 

19 3.00 197.00 0.00 31.00 0.09 1.00 0.87 0.00 0.91 0.16 0.09 
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20 10.00 135.00 0.00 16.00 0.38 1.00 0.90 0.00 0.62 0.56 0.35 

21 6.00 306.00 0.00 45.00 0.12 1.00 0.87 0.00 0.88 0.21 0.14 

22 4.00 608.00 3.00 99.00 0.04 1.00 0.86 0.13 0.97 0.07 0.04 

23 3.00 369.00 2.00 60.00 0.05 0.99 0.86 0.11 0.96 0.09 0.05 

24 2.00 348.00 0.00 56.00 0.03 1.00 0.86 0.00 0.97 0.07 0.05 

25 5.00 354.00 0.00 54.00 0.08 1.00 0.87 0.00 0.92 0.16 0.10 

26 5.00 264.00 0.00 39.00 0.11 1.00 0.87 0.00 0.89 0.20 0.14 

27 2.00 372.00 0.00 60.00 0.03 1.00 0.86 0.00 0.97 0.06 0.05 

28 1.00 462.00 0.00 76.00 0.01 1.00 0.86 0.00 0.99 0.03 0.03 

29 2.00 366.00 0.00 59.00 0.03 1.00 0.86 0.00 0.97 0.06 0.05 

30 1.00 396.00 0.00 65.00 0.02 1.00 0.86 0.00 0.98 0.03 0.03 

31 5.00 618.00 0.00 98.00 0.05 1.00 0.86 0.00 0.95 0.09 0.06 

32 1.00 324.00 0.00 53.00 0.02 1.00 0.86 0.00 0.98 0.04 0.04 

33 2.00 222.00 0.00 35.00 0.05 1.00 0.86 0.00 0.95 0.10 0.08 

34 1.00 300.00 0.00 49.00 0.02 1.00 0.86 0.00 0.98 0.04 0.04 

35 1.00 402.00 0.00 66.00 0.01 1.00 0.86 0.00 0.99 0.03 0.03 

36 3.00 251.00 0.00 40.00 0.07 1.00 0.86 0.00 0.93 0.13 0.07 

37 1.00 282.00 0.00 46.00 0.02 1.00 0.86 0.00 0.98 0.04 0.04 

38 8.00 100.00 0.00 11.00 0.42 1.00 0.91 0.00 0.58 0.59 0.41 

39 16.00 277.00 0.00 36.00 0.31 1.00 0.89 0.00 0.69 0.47 0.28 

40 1.00 228.00 0.00 37.00 0.03 1.00 0.86 0.00 0.97 0.05 0.05 

41 8.00 299.00 0.00 43.00 0.16 1.00 0.88 0.00 0.84 0.27 0.18 

42 2.00 168.00 0.00 26.00 0.07 1.00 0.87 0.00 0.93 0.13 0.11 

43 3.00 288.00 0.00 45.00 0.06 1.00 0.87 0.00 0.94 0.12 0.08 

44 14.00 280.00 0.00 35.00 0.29 1.00 0.89 0.00 0.71 0.44 0.28 

45 11.00 106.00 0.00 9.00 0.55 1.00 0.93 0.00 0.45 0.71 0.56 

46 14.00 345.00 0.00 47.00 0.23 1.00 0.88 0.00 0.77 0.37 0.21 

47 10.00 267.00 0.00 38.00 0.21 1.00 0.88 0.00 0.79 0.34 0.18 

48 23.00 355.00 0.00 42.00 0.35 1.00 0.90 0.00 0.65 0.52 0.32 

49 7.00 173.00 0.00 23.00 0.23 1.00 0.89 0.00 0.77 0.38 0.24 

50 6.00 286.00 0.00 44.00 0.12 1.00 0.87 0.00 0.88 0.21 0.10 

51 2.00 281.00 0.00 46.00 0.04 1.00 0.86 0.00 0.96 0.08 0.04 



 

214 

 

52 2.00 114.00 0.00 17.00 0.11 1.00 0.87 0.00 0.89 0.19 0.16 

53 5.00 322.00 0.00 51.00 0.09 1.00 0.87 0.00 0.91 0.16 0.07 

54 7.00 250.00 1.00 36.00 0.16 1.00 0.87 0.02 0.84 0.27 0.17 

55 2.00 366.00 0.00 59.00 0.03 1.00 0.86 0.00 0.97 0.06 0.05 

56 4.00 198.00 0.00 29.00 0.12 1.00 0.87 0.00 0.88 0.22 0.15 

57 10.00 323.00 0.00 45.00 0.18 1.00 0.88 0.00 0.82 0.31 0.19 

58 5.00 251.00 0.00 38.00 0.12 1.00 0.87 0.00 0.88 0.21 0.12 

59 3.00 197.00 0.00 31.00 0.09 1.00 0.87 0.00 0.91 0.16 0.09 

60 10.00 135.00 0.00 16.00 0.38 1.00 0.90 0.00 0.62 0.56 0.35 

 

Table 12: Statistical Results for Speech Tracking Based Constrained DTW and Traditional Silence Removal 

Kalman Filter with Energy & Spectral Centroid Silence Removal Approach 

 (DTW Constrained + MFCC) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- 

F-

Score 

Tracking 

Accuracy 

1 23.00 58.00 2.00 0.00 1.00 0.97 0.98 0.03 0.00 0.96 1.00 

2 13.00 59.00 0.00 2.00 0.87 1.00 0.97 0.00 0.13 0.93 1.00 

3 38.00 158.00 2.00 4.00 0.90 0.99 0.97 0.01 0.10 0.93 1.00 

4 40.00 124.00 1.00 1.00 0.98 0.99 0.99 0.01 0.02 0.98 1.00 

5 29.00 138.00 1.00 6.00 0.83 0.99 0.96 0.01 0.17 0.89 1.00 

6 25.00 116.00 0.00 5.00 0.83 1.00 0.97 0.00 0.17 0.91 1.00 

7 5.00 98.00 2.00 18.00 0.22 0.98 0.84 0.09 0.80 0.33 0.50 

8 8.00 75.00 1.00 18.00 0.31 0.99 0.81 0.04 0.70 0.46 0.32 

9 6.00 97.00 1.00 17.00 0.26 0.99 0.85 0.04 0.75 0.40 0.38 

10 76.00 308.00 0.00 13.00 0.85 1.00 0.97 0.00 0.15 0.92 1.00 

11 104.00 330.00 6.00 9.00 0.92 0.98 0.97 0.02 0.08 0.93 1.00 

12 94.00 214.00 19.00 15.00 0.86 0.92 0.90 0.09 0.15 0.85 1.00 

13 41.00 159.00 2.00 10.00 0.80 0.99 0.94 0.02 0.20 0.87 0.94 

14 49.00 205.00 3.00 8.00 0.86 0.99 0.96 0.02 0.14 0.90 1.00 

15 85.00 281.00 4.00 11.00 0.89 0.99 0.96 0.02 0.12 0.92 1.00 

16 42.00 141.00 3.00 9.00 0.82 0.98 0.94 0.03 0.18 0.87 1.00 

17 50.00 267.00 1.00 15.00 0.77 1.00 0.95 0.00 0.23 0.86 1.00 

18 88.00 305.00 2.00 9.00 0.91 0.99 0.97 0.01 0.09 0.94 1.00 
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19 51.00 245.00 1.00 20.00 0.72 1.00 0.93 0.01 0.28 0.83 0.71 

20 4.00 155.00 2.00 46.00 0.08 0.99 0.77 0.16 0.93 0.14 0.15 

21 110.00 377.00 5.00 15.00 0.88 0.99 0.96 0.01 0.12 0.92 1.00 

22 485.00 324.00 99.00 19.00 0.96 0.77 0.87 0.24 0.05 0.89 0.97 

23 93.00 501.00 3.00 41.00 0.69 0.99 0.93 0.01 0.31 0.81 0.78 

24 122.00 536.00 3.00 31.00 0.80 0.99 0.95 0.01 0.20 0.88 1.00 

25 96.00 491.00 2.00 19.00 0.83 1.00 0.97 0.00 0.17 0.90 1.00 

26 126.00 324.00 6.00 3.00 0.98 0.98 0.98 0.02 0.02 0.97 1.00 

27 94.00 472.00 2.00 25.00 0.79 1.00 0.95 0.01 0.21 0.87 1.00 

28 92.00 476.00 1.00 40.00 0.70 1.00 0.93 0.00 0.30 0.82 0.75 

29 302.00 317.00 53.00 20.00 0.94 0.86 0.89 0.15 0.07 0.89 0.96 

30 24.00 508.00 1.00 59.00 0.29 1.00 0.90 0.01 0.71 0.44 0.39 

31 26.00 927.00 2.00 173.00 0.13 1.00 0.84 0.02 0.87 0.23 0.12 

32 49.00 389.00 1.00 51.00 0.49 1.00 0.89 0.01 0.51 0.65 0.55 

33 81.00 248.00 5.00 10.00 0.89 0.98 0.96 0.02 0.11 0.92 1.00 

34 82.00 349.00 1.00 15.00 0.85 1.00 0.96 0.00 0.16 0.91 1.00 

35 109.00 484.00 7.00 36.00 0.75 0.99 0.93 0.02 0.25 0.84 0.91 

36 68.00 311.00 5.00 23.00 0.75 0.98 0.93 0.02 0.26 0.83 0.97 

37 99.00 369.00 2.00 8.00 0.93 0.99 0.98 0.01 0.08 0.95 1.00 

38 33.00 149.00 0.00 3.00 0.92 1.00 0.98 0.00 0.08 0.96 1.00 

39 74.00 311.00 0.00 13.00 0.85 1.00 0.97 0.00 0.15 0.92 1.00 

40 6.00 297.00 0.00 69.00 0.08 1.00 0.81 0.00 0.92 0.15 0.11 

41 98.00 483.00 1.00 24.00 0.80 1.00 0.96 0.00 0.20 0.89 1.00 

42 4.00 260.00 1.00 59.00 0.06 1.00 0.81 0.06 0.94 0.12 0.16 

43 71.00 371.00 1.00 11.00 0.87 1.00 0.97 0.00 0.13 0.92 1.00 

44 59.00 330.00 2.00 19.00 0.76 0.99 0.95 0.01 0.25 0.85 1.00 

45 23.00 92.00 0.00 2.00 0.92 1.00 0.98 0.00 0.08 0.96 1.00 

46 41.00 143.00 1.00 7.00 0.85 0.99 0.96 0.01 0.15 0.91 1.00 

47 101.00 398.00 3.00 27.00 0.79 0.99 0.94 0.01 0.21 0.87 0.94 

48 99.00 370.00 3.00 7.00 0.93 0.99 0.98 0.01 0.07 0.95 1.00 

49 47.00 260.00 1.00 14.00 0.77 1.00 0.95 0.00 0.23 0.86 1.00 

50 142.00 302.00 7.00 4.00 0.97 0.98 0.98 0.02 0.03 0.96 1.00 
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51 56.00 354.00 0.00 20.00 0.74 1.00 0.95 0.00 0.26 0.85 1.00 

52 34.00 156.00 1.00 5.00 0.87 0.99 0.97 0.01 0.13 0.92 1.00 

53 62.00 395.00 0.00 27.00 0.70 1.00 0.94 0.00 0.30 0.82 1.00 

54 56.00 311.00 0.00 14.00 0.80 1.00 0.96 0.00 0.20 0.89 1.00 

55 125.00 249.00 20.00 17.00 0.88 0.93 0.91 0.08 0.13 0.87 0.85 

56 41.00 274.00 0.00 16.00 0.72 1.00 0.95 0.00 0.28 0.84 1.00 

57 59.00 438.00 8.00 43.00 0.58 0.98 0.91 0.03 0.43 0.70 0.41 

58 65.00 275.00 1.00 13.00 0.83 1.00 0.96 0.00 0.17 0.90 1.00 

59 51.00 245.00 1.00 20.00 0.72 1.00 0.93 0.01 0.28 0.83 0.71 

60 4.00 155.00 2.00 46.00 0.08 0.99 0.77 0.16 0.93 0.14 0.15 

 

Table 13: Statistical Results for Speech Tracking Using Wavelet Based Dynamic Filter 

Wavelet Based Adaptive Speech Tracking & Similarity Measurement Performance 

Evaluation Metrics 
Wavelet +  

Adaptive KF 

Wavelet +  

Non-Adaptive SR 

Wavelet + Adaptive KF  

(E & Spectral Centroid) 

Sensitivity 0.9907 0.9721 0.9951 

Specificity 0.9841 0.9893 0.9654 

Matching Accuracy 0.9869 0.9877 0.9764 

1/LR+ 0.0106 0.0108 0.0349 

LR- 0.0107 0.0280 0.0052 

F-Score 0.9833 0.9676 0.9683 

Tracking Accuracy (%) 0.9983 98.8506 1 

Type I Error 
µ 0.0019 0.0010 0.0040 

σ 0.0070 0.0053 0.0104 

Type II Error 
µ 0.0086 0.0157 2.7232e-04 

σ 0.0460 0.0817 0.0011 

 

Table 14: Statistical Results for Adaptive Speech Tracking Using Wavelet Based Dynamic Filter 

Kalman Filter Based Adaptive Speech Tracking & Similarity Measurement performance 

(Wavelets) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- F-Score 

Tracking 

Accuracy 

1 1.00 6.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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2 1.00 12.00 0.00 1.00 0.50 1.00 0.93 0.00 0.50 0.67 1.00 

3 4.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

4 3.00 11.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

5 1.00 12.00 0.00 1.00 0.50 1.00 0.93 0.00 0.50 0.67 1.00 

6 2.00 4.00 1.00 0.00 1.00 0.80 0.86 0.20 0.00 0.80 1.00 

7 2.00 5.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

8 1.00 6.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

9 3.00 11.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

10 12.00 38.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

11 11.00 26.00 2.00 0.00 1.00 0.93 0.95 0.07 0.00 0.92 1.00 

12 9.00 21.00 2.00 0.00 1.00 0.91 0.94 0.09 0.00 0.90 1.00 

13 4.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

14 9.00 18.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

15 13.00 31.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

16 10.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

17 8.00 23.00 1.00 0.00 1.00 0.96 0.97 0.04 0.00 0.94 1.00 

18 11.00 28.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

19 9.00 23.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

20 3.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

21 13.00 35.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.96 1.00 

22 38.00 60.00 1.00 0.00 1.00 0.98 0.99 0.02 0.00 0.99 1.00 

23 19.00 37.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

24 19.00 37.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

25 18.00 39.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

26 12.00 26.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

27 16.00 39.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

28 21.00 53.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

29 18.00 39.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

30 26.00 36.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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31 33.00 65.00 0.00 1.00 0.97 1.00 0.99 0.00 0.03 0.99 1.00 

32 15.00 35.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

33 11.00 21.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

34 18.00 32.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

35 18.00 42.00 2.00 0.00 1.00 0.95 0.97 0.05 0.00 0.95 1.00 

36 13.00 26.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

37 13.00 31.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

38 5.00 9.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

39 14.00 30.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

40 9.00 19.00 4.00 0.00 1.00 0.83 0.88 0.17 0.00 0.82 1.00 

41 17.00 32.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.97 1.00 

42 8.00 19.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

43 16.00 27.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

44 16.00 28.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

45 4.00 10.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

46 20.00 34.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

47 19.00 24.00 1.00 0.00 1.00 0.96 0.98 0.04 0.00 0.97 1.00 

48 23.00 32.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.98 1.00 

49 6.00 21.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

50 22.00 27.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

51 16.00 28.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

52 4.00 10.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

53 15.00 35.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

54 17.00 21.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

55 30.00 24.00 4.00 0.00 1.00 0.86 0.93 0.14 0.00 0.94 0.90 

56 10.00 22.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

57 15.00 35.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

58 18.00 21.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

59 9.00 23.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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60 3.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

 

Table 15: Statistical Results for Static Framing Based Speech Tracking Using Dynamic Filter 

Search Region Based Non-Adaptive Tracking & Similarity Measurement Performance 

(Wavelets) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- F-Score 

Tracking 

Accuracy 

1 1.00 6.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

2 1.00 18.00 0.00 2.00 0.33 1.00 0.90 0.00 0.67 0.50 0.67 

3 4.00 17.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

4 3.00 11.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

5 1.00 18.00 0.00 2.00 0.33 1.00 0.90 0.00 0.67 0.50 0.67 

6 2.00 4.00 1.00 0.00 1.00 0.80 0.86 0.20 0.00 0.80 1.00 

7 2.00 5.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

8 1.00 6.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

9 3.00 11.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

10 13.00 36.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

11 9.00 26.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

12 8.00 25.00 2.00 0.00 1.00 0.93 0.94 0.07 0.00 0.89 1.00 

13 4.00 17.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

14 6.00 15.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

15 10.00 31.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.95 1.00 

16 7.00 14.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

17 7.00 21.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

18 12.00 30.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

19 6.00 22.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

20 3.00 18.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

21 10.00 39.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

22 33.00 78.00 1.00 0.00 1.00 0.99 0.99 0.01 0.00 0.99 1.00 

23 17.00 46.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

24 16.00 40.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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25 18.00 45.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

26 12.00 30.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

27 16.00 47.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

28 22.00 62.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

29 18.00 44.00 1.00 0.00 1.00 0.98 0.98 0.02 0.00 0.97 1.00 

30 17.00 52.00 0.00 1.00 0.94 1.00 0.99 0.00 0.06 0.97 1.00 

31 31.00 81.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

32 18.00 38.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

33 10.00 31.00 0.00 1.00 0.91 1.00 0.98 0.00 0.09 0.95 1.00 

34 14.00 34.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.97 1.00 

35 19.00 51.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

36 11.00 31.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

37 13.00 36.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

38 5.00 9.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

39 15.00 33.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.97 1.00 

40 9.00 25.00 1.00 0.00 1.00 0.96 0.97 0.04 0.00 0.95 1.00 

41 11.00 37.00 0.00 1.00 0.92 1.00 0.98 0.00 0.08 0.96 1.00 

42 8.00 20.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

43 16.00 31.00 2.00 0.00 1.00 0.94 0.96 0.06 0.00 0.94 1.00 

44 13.00 36.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

45 4.00 10.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

46 16.00 40.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

47 12.00 29.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.96 1.00 

48 20.00 42.00 1.00 0.00 1.00 0.98 0.98 0.02 0.00 0.98 1.00 

49 6.00 22.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

50 21.00 28.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

51 14.00 35.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

52 4.00 10.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

53 14.00 41.00 1.00 0.00 1.00 0.98 0.98 0.02 0.00 0.97 1.00 
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54 17.00 25.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

55 17.00 43.00 2.00 1.00 0.94 0.96 0.95 0.05 0.06 0.92 1.00 

56 8.00 20.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

57 16.00 40.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

58 14.00 28.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

59 6.00 22.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

60 3.00 18.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

 

Table 16: Statistical Results Speech Tracking Using Dynamic Filter & Traditional Silence Removal  

Adaptive Kalman Filter with Energy & Spectral Centroid Silence Removal Approach 

(Wavelets) 

Test 

Cases 
TP TN FP FN Sen Spec Acc LR+ LR- F-Score 

Tracking 

Accuracy 

1 1.00 6.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

2 2.00 5.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

3 10.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

4 7.00 20.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

5 10.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

6 5.00 15.00 1.00 0.00 1.00 0.94 0.95 0.06 0.00 0.91 1.00 

7 4.00 16.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

8 5.00 15.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

9 5.00 9.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

10 21.00 41.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

11 27.00 42.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

12 24.00 25.00 1.00 0.00 1.00 0.96 0.98 0.04 0.00 0.98 1.00 

13 13.00 19.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

14 15.00 29.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

15 23.00 33.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

16 10.00 22.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

17 15.00 35.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

18 33.00 28.00 2.00 0.00 1.00 0.93 0.97 0.07 0.00 0.97 1.00 



 

222 

 

19 17.00 33.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

20 15.00 29.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

21 25.00 44.00 10.00 1.00 0.96 0.81 0.86 0.19 0.05 0.82 1.00 

22 47.00 97.00 1.00 1.00 0.98 0.99 0.99 0.01 0.02 0.98 1.00 

23 60.00 42.00 2.00 0.00 1.00 0.95 0.98 0.05 0.00 0.98 1.00 

24 55.00 52.00 3.00 0.00 1.00 0.95 0.97 0.05 0.00 0.97 1.00 

25 30.00 63.00 5.00 0.00 1.00 0.93 0.95 0.07 0.00 0.92 1.00 

26 23.00 50.00 1.00 0.00 1.00 0.98 0.99 0.02 0.00 0.98 1.00 

27 30.00 56.00 6.00 0.00 1.00 0.90 0.93 0.10 0.00 0.91 1.00 

28 31.00 66.00 0.00 1.00 0.97 1.00 0.99 0.00 0.03 0.98 1.00 

29 47.00 62.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

30 40.00 62.00 2.00 0.00 1.00 0.97 0.98 0.03 0.00 0.98 1.00 

31 72.00 116.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

32 29.00 51.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

33 16.00 36.00 3.00 1.00 0.94 0.92 0.93 0.08 0.06 0.89 1.00 

34 25.00 41.00 2.00 0.00 1.00 0.95 0.97 0.05 0.00 0.96 1.00 

35 44.00 53.00 1.00 0.00 1.00 0.98 0.99 0.02 0.00 0.99 1.00 

36 21.00 41.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

37 36.00 38.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

38 7.00 15.00 4.00 0.00 1.00 0.79 0.85 0.21 0.00 0.78 1.00 

39 20.00 40.00 2.00 0.00 1.00 0.95 0.97 0.05 0.00 0.95 1.00 

40 33.00 34.00 1.00 0.00 1.00 0.97 0.99 0.03 0.00 0.99 1.00 

41 44.00 52.00 2.00 0.00 1.00 0.96 0.98 0.04 0.00 0.98 1.00 

42 25.00 36.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.98 1.00 

43 27.00 45.00 2.00 0.00 1.00 0.96 0.97 0.04 0.00 0.96 1.00 

44 25.00 30.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.98 1.00 

45 5.00 8.00 1.00 0.00 1.00 0.89 0.93 0.11 0.00 0.91 1.00 

46 15.00 11.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

47 38.00 46.00 2.00 0.00 1.00 0.96 0.98 0.04 0.00 0.97 1.00 
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48 29.00 41.00 5.00 0.00 1.00 0.89 0.93 0.11 0.00 0.92 1.00 

49 19.00 30.00 0.00 1.00 0.95 1.00 0.98 0.00 0.05 0.97 1.00 

50 35.00 39.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

51 20.00 48.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

52 11.00 16.00 5.00 0.00 1.00 0.76 0.84 0.24 0.00 0.81 1.00 

53 27.00 46.00 1.00 0.00 1.00 0.98 0.99 0.02 0.00 0.98 1.00 

54 24.00 28.00 4.00 0.00 1.00 0.88 0.93 0.13 0.00 0.92 1.00 

55 23.00 39.00 1.00 0.00 1.00 0.97 0.98 0.03 0.00 0.98 1.00 

56 11.00 35.00 2.00 1.00 0.92 0.95 0.94 0.06 0.09 0.88 1.00 

57 26.00 64.00 2.00 0.00 1.00 0.97 0.98 0.03 0.00 0.96 1.00 

58 21.00 35.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

59 17.00 33.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

60 15.00 29.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

 

Appendix C:  Simulation Tools 

1. PRAAT 

PRAAT (Resource: http://www.fon.hum.uva.nl/paul/praat.html) is a special tool that 

has been used for speech annotations, speech analysis, speech synthesis, speech 

manipulation, labelling and segmentation, and for learning the algorithms. PRAAT 

has the ability to analyse different speech features including formant frequency 

analysis, pitch tracking, speech intensity and spectrogram. Moreover, it provides a 

user friendly interface for graphical representation of these features. Figures below 

demonstrate the use of PRAAT for analysing speech signal for different purpose. 
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Figure 1: Pitch, Formants, Frequency Spectrum, and Energy Analysis using PRAAT 
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Figure 2: Pitch Track Analysis Using PRAAT For Speech Utterance ‘Short’ 

 

Figure 3: Formants Analysis Using PRAAT For Speech Utterance ‘Short’ 
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Figure 4: Intensity Distrubution Analysis Using PRAAT For Speech Utterance ‘Short’ 

2. Audacity 

Audacity (Resource: http://sourceforge.net/projects/audacity/) is a free, open 

source, cross-platform that is normally used for recording and editing sounds. It may 

be utilized for speech editing in terms of sample rate conversion, noise reduction, 

silence removal, speech effects, tempo editing, channel manipulation and much 

more. Figure below provides a sketch of the user interface for Audacity. 
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Figure 5: Exporting Multiple Outputs From Audacity Platform 
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Figure 6: Analysing Frequency Spectrum of a Signal using Audacity Platform 

3. Sppech Filing System (SFS) 

Speech filing system (https://www.phon.ucl.ac.uk/resource/sfs/download.php) has 

been used as a research tool for speech processing that is developed by University 

College. The SFS provides a large functionality set in the form of executable files that 

can be export easily for the reusability in cross platforms.  It is an open resource 

platform to conduct the speech processing related research that include software 

tools, file and data formats, subroutine libraries, graphics, special programming 

languages and tutorial documentation. Operations like acquisition, replay, display and 

labelling, spectrographic and formant analysis and fundamental frequency estimation 

are the most common examples of the SFS functionalities. Except analysing of 
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speech signal, it provides a large body of libraries for signal processing, synthesis 

and recognition that can be reused in cross platforms for personal software 

development. 

 

Figure 7: SFS GUI for Speech Analysis 
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Figure 8: Formants Analysis using SFS Platform 
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Figure 9: Formants Analysis using SFS Platform 

Appendix D:  Matlab Scripts 

CD consisting Matlab scripts for following functionalities: 

 Time Warped Continuous Speech Tracking (TWCST) 

 Key-word Spotting 

 Silence Removal 

 Feature Extraction 

 Dynamic Time Warping 

 Dynamic State Model and Kalman Filter 
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