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Abstract 

Objective: To develop a logistic regression model to predict the risk of sepsis following emergency 

medical admission using the patient’s first, routinely collected, electronically recorded vital signs and 

blood test results; and to validate this novel computer aided risk of sepsis (CARS) model, using data 

from another hospital. 

Design: Cross-sectional model development and external validation study reporting the c-statistic 

based on a validated optimised algorithm to identify sepsis and severe sepsis (including septic shock) 

from administrative hospital databases using ICD-10 codes. 

Setting: Two acute hospitals (YH – development data; NH – external validation data).  

Participants: Adult emergency medical admissions discharged over a 24-month period with vital 

signs and blood test results recorded on admission. 

Interventions: None. 

Main Results: The prevalence of sepsis and severe sepsis was lower in YH (18.5%=4861/26247, 

5.3%=1387/26247) than NH (25.1%=7773/30996, 9.2%=2864/30996). The mortality for sepsis 

(YH:14.5%=704/4861; NH:11.6%=899/7773) was lower than the mortality for severe sepsis (YH:  

29.0%=402/1387; NH:21.4%=612/2864). The c-statistic for CARS in YH (all sepsis 0.78; sepsis: 0.73; 

severe sepsis: 0.80) was similar in an external hospital setting (NH: all sepsis 0.79; sepsis:0.70; severe 

sepsis: 0.81).  

Conclusions: We have developed a novel, externally validated CARS, with reasonably good 

performance for estimating the risk of sepsis for emergency medical admissions using the patient’s 

first, electronically recorded, vital signs and blood tests results. Since CARS places no additional data 

collection burden on clinicians and is readily automated it may now be carefully introduced and 

evaluated in hospitals with sufficient informatics infrastructure. 

 

Key words:  vital signs, sepsis, national early warning score, blood tests, emergency admission, 
external validation, risk prediction, computer aided risk score, 
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Introduction 

Sepsis is a life-threatening condition which arises when the body’s response to an infection injures 

its own tissues and organs. (1). Internationally, sepsis is highlighted as a leading cause of avoidable 

mortality and morbidity incurring significant healthcare resource use (2–5). For example, in the USA, 

sepsis affects about 1 million patients a year accounting for 5.2% ($20 billion) of the total US hospital 

costs in 2011 (6).  In the UK, sepsis affects about 260,000 patients annually with direct costs of £2 

billion per year (7). Sepsis is known to be difficult to diagnose because the signs and symptoms of 

sepsis can be non-specific. Nonetheless, to reduce avoidable mortality and morbidity, patients with 

sepsis need to be recognised and treated as early as possible (8–10).  

In this paper, we investigate the extent to which the vital signs and blood test results of acutely ill 

patients can be used to predict the risk of sepsis following emergency admission to hospital. Our aim 

is to develop an automated, Computer Aided Risk of Sepsis (CARS) model, using the patient’s first, 

electronically recorded, vital signs and blood tests results which are usually available within a few 

hours of emergency admission. 

In National Health Service (NHS) hospitals in England, the patient’s vital signs are monitored and 

summarised into a National Early Warning Score(s) (NEWS). NEWS is derived from seven 

physiological variables or vital signs – respiration rate, oxygen saturations, any supplemental oxygen, 

temperature, systolic blood pressure, heart rate and level of consciousness (Alert, Voice, Pain, 

Unresponsive) – which are routinely collected by nursing staff as an integral part of the process of 

care. Studies have shown that electronically collected NEWSs (11) are highly reliable and accurate 

when compared with paper based methods (12–14). 

Blood tests are an integral part of clinical medicine, and are routinely undertaken during a patient’s 

stay in hospital. Typically, routine blood tests consist of a core list of seven biochemical and 

haematological tests, (albumin, creatinine, potassium, sodium, urea, haemoglobin, white blood cell 

count) and, in the absence of contraindications and subject to patient consent, almost all patients 

admitted to hospital undergo these tests on admission. Furthermore, in the NHS, creatinine blood 

test results are now used to identify patients at risk of Acute Kidney Injury (AKI) (15) which is also an 

important cause of avoidable patient harm (16). 

There exist several criteria to identify patients at risk of sepsis, such as the systemic inflammatory 

response syndrome (SIRS) (17), standardised early warning system (SEWS) score (18), the Sequential 

Organ Failure Assessment (SOFA) score (19), quick SOFA (qSOFA) (1), the predisposition, infection, 

response and organ dysfunction (PIRO) sepsis staging (20), Institute for Healthcare Improvement 

Sepsis tool (21), Surviving Sepsis Campaign guidelines 2016 (22) and the Survive Sepsis™ approach 
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(23).  Whilst these approaches are primarily designed to be used at the bedside for patients in whom 

sepsis is suspected, our proposed approach is aimed at providing estimates of the risk of sepsis, 

which is automatically available for all emergency medical admissions who have routinely collected, 

electronically recorded, NEWS and blood test results. CARS, therefore, is not designed for use in 

hospitals with insufficient informatics infrastructure, nor is it targeting only those patients in whom 

sepsis is suspected. Rather, we are seeking to raise situational awareness of sepsis in respect of all 

emergency medical admissions as early as possible, without requiring any additional data items or 

prompts from clinicians. 

Methods 

Setting & data  

Our cohorts of emergency medical admissions are from three acute hospitals which are 

approximately 100 kilometres apart in the Yorkshire & Humberside region of England– the Diana, 

Princess of Wales Hospital (n~400 beds) and Scunthorpe General Hospital (n~400 beds) managed by 

the Northern Lincolnshire and Goole NHS Foundation Trust (NLAG), and York Hospital (YH) (n~700 

beds), managed by York Teaching Hospitals NHS Foundation Trust.  For the purposes of this study, 

the two acute hospitals in NLAG are combined into a single dataset and collectively referred to as 

NLAG Hospitals (NH) because this reflects how the hospitals are managed. So, in essence, our study 

is based on data from two hospitals – NH and YH respectively, which have been exclusively using 

electronic NEWS scoring since at least 2013 as part of their in-house electronic patient record 

systems. We selected these hospitals because they had electronic NEWS which are collected as part 

of the patient’s process of care, and were agreeable to the study. 

We considered all adult (age≥16 years) emergency medical admissions, discharged during a 24-

month period (1 January 2014 to 31 December 2015), with blood test results and NEWS. For each 

emergency admission, we obtained a pseudonymised patient identifier, patient’s age (years), gender 

(male/female), discharge status (alive/dead), admission and discharge date and time, and electronic 

NEWS.  The NEWS ranges from 0 (indicating the lowest severity of illness) to 19 (the maximum NEWS 

value possible is 20) (see Supplemental Digital Content for further details). The admission/discharge 

date and NEWS were date and time stamped and the index NEWS was defined as the first score 

recorded within ±24 hours of the admission time. The first blood test results were defined as the 

first full set of blood tests results recorded within 4 days of admission, although the majority of 

blood test results were available within hours of admission (see below).  

We define sepsis (without organ failure) or severe sepsis (with at least one organ failure or septic 

shock) based on 84 selected ICD-10 codes identified by an optimised validated method reported by 
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Jolley et al in Canada (24) (which we adapted to our study by excluding six Canadian specific ICD-10 

codes and three procedure codes). We used this optimised approach for identifying sepsis using ICD-

10 codes because other methods are known to underestimate sepsis from administrative data (24, 

25). 

For model development purposes, we were unable to consider emergency admissions without blood 

tests results and NEWS recorded – which constituted 16.5% (6104/37100) of records in NH and 

28.6% (10504/36751) of records in YH. We excluded records for the following reasons. (1) Records 

where the first NEWS was after 24 hours of admission and/or (2) where the first blood test was after 

4 days of admission, because these “delayed” data were less likely to reflect the sickness profile of 

patients on admission. Nonetheless, the time from admission to first blood test results was usually 

several hours (h) earlier than the actual time of admission because blood tests can be ordered in the 

emergency department before formal admission (YH: median=-13.48h, lower quartile=-17.83h, 

upper quartile=-3.86h; NH: median=-2.93h, lower quartile=-4.13h, upper quartile=-1.33h). Likewise, 

for the time from admission to first electronically recorded NEWS (YH: median=-0.58h, lower 

quartile=-3.35h, upper quartile=-0.60h; NH: median=0.53h, lower quartile=-0.20h, upper 

quartile=1.25h). 

Development of CARS 

Our response variable is sepsis (yes/no) where sepsis includes sepsis (without organ failure) and 

severe sepsis (with at least one organ failure or septic shock). We began with exploratory analyses, 

including scatter plots and box plots that showed the relationship between covariates and sepsis in 

our hospitals. We developed a logistic regression model, known as CARS, to predict the risk of sepsis 

with the following covariates. Age (years), sex, NEWS (including its components), blood test results 

(albumin, creatinine, haemoglobin, potassium, sodium, urea, and white cell count), AKI score 

(0,1,2,3). We used the qladder function (STATA (26)), which displays the quantiles of transformed 

variable against the quantiles of a normal distribution according to the powers 

(𝑥3, 𝑥2, 𝑥1, 𝑥, √𝑥, log(𝑥) , 𝑥−1, 𝑥−2, 𝑥−3)  for each continuous covariate, and chose the following 

transformations:- (creatinine)
-1/2

, loge(potassium), loge(white cell count), loge(urea), loge (respiratory 

rate), loge(pulse rate), loge(systolic blood pressure), and loge(diastolic blood pressure). We searched 

for all two-way interactions and incorporated statistically significant (p<0.0001) interactions using 

the stepAIC function in the MASS library (27) in R (28). 

We developed the CARS model using data from YH (the development dataset) and externally 

validated it using data from another hospital (NH), reporting discrimination and calibration 

characteristics (29), after adjusting for differences in the baseline risk of sepsis (30). Discrimination 

relates to how well a model can separate (or discriminate) between cases with and without sepsis. 
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The concordance statistic (c-statistic) is a commonly used measure of discrimination. For a binary 

outcome (sepsis yes/no), the c-statistic is the area under the Receiver Operating Characteristics 

(ROC) curve. The ROC curve is a plot of the sensitivity, (true positive rate), versus 1-specificty, (false 

positive rate), for consecutive predicted risks. A c-statistic of 0.5 is no better than tossing a coin, 

whilst a perfect model has a c-statistic of 1. In general, values less than 0.7 are considered to show 

poor discrimination, values of 0.7 to 0.8 can be described as reasonable, and values above 0.8 

suggest good discrimination (31). The 95% confidence interval for the c-statistic was derived using 

DeLong’s method as implemented in the pROC library (32) in R (28). Box plots showing the predicted 

risk of sepsis in those with and without sepsis is a simple way to visualise the discrimination. The 

difference in the mean predicted risk of sepsis in those with and without sepsis is a measure of the 

discrimination slope. The higher the slope the better the discrimination (33).  Internal validation is 

assessed using discrimination (c-statistic) via bootstrapping methods implemented in the rms library 

(34) in R (28). Bootstrapping involves taking samples of between 100 to 200 in each run with 

replacement (35). Each sample can be considered as repeating the data collection with the same 

number of patients and under identical circumstances as the original. In each of the 500 bootstrap 

samples, a regression model was estimated and evaluated on the original sample to estimate 

statistical optimism (29, 34). Calibration relates to the agreement between observed and predicted 

risk of sepsis, which we assess using a scatter plot. 

We report the performance of CARS for all sepsis, sepsis (without organ failure) and severe sepsis 

(with at least one organ failure or septic shock) in the development and external validation data sets. 

We also report the performance of CARS on emergency medical admissions which were excluded 

because of missing blood test results. We imputed missing blood test results with median blood test 

results based on age and sex only. We further investigated the sensitivity, specificity and positive 

predictive values using different model predicted thresholds for sepsis using the ROCR (36) package 

in R.  All analyses were carried using R (28) and STATA (26). 

Ethical Approval 

We obtained ethical approval for the main research project of which this is a sub study from 

Yorkshire & The Humber - Leeds West Research Ethics Committee (reference number 15/YH/0348). 
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Results 

Cohort description 

Table 1 shows the number (development dataset: n=36751 validation dataset: n=37100) of 

emergency medical admissions in each hospital over the 24-month period. Of these, 28.6% 

(10504/36751) in development dataset and 16.5% (6104/37100) validation dataset, did not have 

both NEWS and a full complement of blood test results and so were excluded. Further exclusions are 

shown in Table 1. 

The age, sex, NEWS and blood test results profile are shown in Supplemental Table S1.  Emergency 

admissions in the development dataset were slightly older, with slightly higher NEWS, higher AKI 

scores (AKI stage 3 is more common than stage 2 in development dataset), higher albumin blood 

test results, lower percentages of patients with septic shock and higher mortality than seen in the 

validation dataset. However, unlike the validation dataset, the development dataset is from a 

hospital with a renal unit. The prevalence of sepsis (Supplemental Table S1) was lower in the 

development dataset (all sepsis: 18.5% (4861/26247); sepsis: 13.2% (3474/26247); severe sepsis: 

5.3% (1387/26247)) compared to the validation data set (all sepsis: 25.1% (7773/30996); sepsis: 

15.8% (4909/30996); severe sepsis: 9.2% (2864/30996)). Hospital mortality rates (Supplemental 

Table S1) increased with sepsis status in the development dataset (no sepsis: 4.7% (999/21386); all 

sepsis 14.5% (704/4861); sepsis: 8.7% (302/3474); severe sepsis: 29.0% (402/1387)) and the 

validation dataset (no sepsis: 3.7% (867/23223); all sepsis 11.6% (899/7773); sepsis: 5.9% 

(287/4909); severe sepsis: 21.4% (612/2864)). 

Figures S1 to S4 (see Supplemental Digital Content) show box plots and scatter plots for each 

continuous (untransformed) covariate that was included in the CARS model. The box plots (figures 

S1 & S2) show that in each hospital each covariate, to a lesser or greater extent, appears to change 

with sepsis status.  The scatter plots in figures S3 & S4 show that there is a similar relationship 

between a given continuous covariate and the risk of sepsis in the development and validation 

datasets. 

 

Statistical Modelling of CARS 

 

We developed CARS to predict the risk of sepsis which includes sepsis (without organ failure) and 

severe sepsis (with at least one organ failure or septic shock). The CARS equation, discrimination box 

plots, and external validation plots are shown in the Supplemental Digital Content. Table 2 shows 

the performance of CARS in the development and validation datasets and figure 1 shows the 



8 
 

accompanying ROC plots. The c-statistic for CARS (all sepsis: 0.78; sepsis: 0.73; severe sepsis: 0.80) 

was similar in an external hospital setting (all sepsis: 0.79; sepsis: 0.70; severe sepsis: 0.81).  

We excluded 24.2% (YH) and 10.0% (NH) of emergency admissions from the development and 

external validation datasets respectively, because of missing blood tests results (see Supplemental 

Table S2). We examined the performance of CARS in these excluded cases by first imputing age- and 

sex-specific median blood test results and then applying the CARS model to these admissions only. 

The last column in Table 2 shows the subsequent c-statistics in these imputed cases only and figure 

S8 (Supplemental Digital Content), shows the corresponding ROC plots. The c-statistics for these 

imputed records were not markedly different in the development and validation datasets.  

Table 3 shows the sensitivity, specificity and positive predictive value for a selected range of cut-off 

values of the predicted risk of sepsis, which tentatively suggests that a threshold risk of 0.20 

provides reasonable sensitivity (development data set: 67.76%, external validation data set: 83.24%) 

and specificity (development data set: 68.00%, external validation data set: 53.06%). See Table 3 and 

figure S7 (Supplemental Digital Content). 

Discussion  

We have shown that it is feasible to use the first electronically recorded vital signs and blood test 

results of an emergency medical patient to predict the risk of sepsis following emergency admission. 

We developed our CARS model for sepsis in one hospital and externally validated in data from 

another hospital. We found that CARS has reasonably good performance for predicting sepsis and 

our findings tentatively suggest that a cut-off of 20% predicted risk of sepsis appears to strike a 

reasonable balance between sensitivity and specificity. 

There are a number of reported risk prediction models for sepsis (see introduction) (37). Whilst 

some of the models use vital signs data and others use blood test results (38, 39), few have 

combined both in the manner used in CARS. Nonetheless it is important to note that CARS is not 

intended to replace existing scoring systems because most of the existing approaches are designed 

for bedside use in patients in whom sepsis is already suspected, whereas CARS is designed to 

provide an automated estimate of the risk of sepsis in emergency medical admissions as soon as 

their vital signs and blood test results become available – usually within a few hours of admission. 

This is an attractive feature of CARS given the importance of early recognition and treatment for 

sepsis (8–10). 

There are a number of limitations in our study which merit further study. Although we identified 

sepsis based on a validated optimised algorithm using ICD-10 codes (24), the extent to which 



9 
 

differences between this approach to identifying sepsis and consensus clinical definitions of sepsis 

(1) undermine the evaluation of CARS remains unclear (38, 39). We found that up to about ¼ of 

emergency medical admissions had no recorded blood test results for whom we tested a simple 

median imputation strategy without knowing why such data was missing. We found that the 

performance of CARS did not materially deteriorate in these admissions. We do not suggest that our 

imputation method is an optimal imputation strategy. Rather we offer it as a simple, pragmatic, 

preliminary imputation strategy, which is akin to the AKI detection algorithm which also imputes the 

median creatinine value where required (40). We did not undertake an imputation exercise for 

patients with no recorded NEWS because they constituted a much smaller proportion of missing 

data (<5%) and NEWS is not recommended in patients requiring immediate resuscitation, direct 

admission to intensive care, and patients with end-stage renal failure or with acute intracranial 

conditions (41). 

We have designed CARS to be used in hospitals with sufficient informatics infrastructure (eg 

electronic health records) (42, 43). We have shown that CARS has potential but we have yet to test 

its use in routine clinical practice. This is important because we need to demonstrate that CARS does 

more “good” than “harm” in practice. So, the next phase of this work is to field test CARS by 

carefully engineering it into routine clinical practice (42, 43) to see if it does support earlier detection 

and treatment of sepsis in emergency medical patients. 

Conclusions 

We have developed a novel, externally validated CARS, with reasonably good performance for 

estimating the risk of sepsis for emergency medical admissions using the patient’s first, electronically 

recorded, vital signs and blood tests results. Since CARS places no additional data collection burden 

on clinicians and is readily automated, it may now be carefully introduced and evaluated in hospitals 

with electronic health records. 
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Characteristic 
Development 
dataset (YH) 

N (%) 

Validation 
dataset (NH) 

N (%) 

Total emergency medical admissions 36751 37100 

Excluded: No NEWS recorded (%) 772 (2.1) 1305 (3.5) 

Excluded: First NEWS recorded after 24 hours of admission (%) 172 (0.5) 634 (1.7) 

Excluded: First blood test results recorded after 4 days of admission (%) 673 (1.8) 464 (1.3) 

Excluded: No blood test results recorded (%) 8887 (24.2) 3701 (10.0) 

Total excluded (%) 10504 (28.6) 6104 (16.5) 

Total included (%) 26247 (71.4) 30996 (83.5) 

 

Table 1 Number of emergency medical admissions included/excluded in development dataset and 

the external validation dataset (%) 

 

Table 2 Performance of the CARS model in predicting the risk of sepsis in each category of sepsis in 

the development dataset and external validation dataset. 

 

  

Dataset Sepsis type 

Mean 

predicted 

risk:  

no sepsis 

Mean 

predicted risk: 

sepsis 

Discrimination 
AUC 

[95% CI] 

Median Imputed 

data only: 

AUC 

[95%CI] 

Development 

dataset 

N=26247 

All Sepsis 

(n=4861, 18.52%) 
0.155 0.317 0.162 

0.779 

[0.772 to 0.786] 

0.800 

[0.785 to 0.816] 

 
Sepsis 

(n=3474, 13.24%) 
0.168 0.298 0.130 

0.734 

[0.726 to 0.743] 

0.780 

[0.762 to 0.797] 

 
Severe Sepsis 

(n=1387, 5.28%) 
0.175 0.366 0.191 

0.804 

[0.794 to 0.814] 

0.846 

[0.818 to 0.874] 

Validation 

dataset 

N=30996 

All Sepsis 

(n=7773, 25.08%) 
0.204 0.390 0.186 

0.788 

[0.782 to 0.793] 

0.778 

[0.752 to 0.803] 

 
Sepsis 

(n=4909, 15.84%) 
0.231 0.356 0.126 

0.704 

[0.711 to 0.718] 

0.743 

[0.714 to 0.772] 

 
Severe Sepsis 

(n=2864, 9.24%) 
0.230 0.447 0.217 

0.809 

[0.802 to 0.816] 

0.880 

[0.844 to 0.917] 
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Sepsis type Cut-off Development dataset Validation dataset 

%Prev. %Sens. %Spec. %PPV %Prev. %Sens. %Spec. %PPV 

All Sepsis 0.05 18.52 97.74 20.63 21.87 25.08 99.06 11.29 27.21 

 
0.10 

 
90.15 44.24 26.87 

 
95.84 31.24 31.81 

  0.20 
 

67.76 73.15 36.45 
 

83.24 59.85 40.97 

  0.40 
 

30.12 93.68 52.01 
 

44.83 87.68 54.93 

Sepsis 0.05 13.24 97.12 19.42 15.53 15.84 98.57 10.06 17.10 

 0.10  88.08 41.83 18.77  94.11 27.94 19.73 

 0.20  63.70 70.03 24.49  79.08 54.34 24.58 

 0.40  26.66 91.71 32.90  37.10 82.66 28.70 

Severe Sepsis 0.05 5.28 99.28 18.15 6.34 9.24 99.90 9.57 10.11 

  0.10 
 

95.31 39.73 8.11 
 

98.81 26.82 12.08 

 
0.20 

 
77.94 68.00 11.96 

 
90.36 53.06 16.39 

 
0.40 

 
38.79 90.84 19.11 

 
58.10 83.36 26.23 

Table 3 Sensitivity analysis of CARS model to predict the risk of sepsis at various risk thresholds 

(0.05, 0.10, 0.20, and 0.40) in the development and external validation datasets. 

Prev = Prevalence. Sens=Sensitivity. Spec=Specificity. PPV=Positive Predictive Value 

 

 

 

Figure 1 Receiver Operating Characteristic curve for the CARS model for different types of sepsis in 
the development dataset and external validation dataset.  
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