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Hair fibers show wide diversity across and within all human populations 

suggesting that hair fiber form and its coloration has been subject to much 

adaptive pressure over many thousands of years. Human hair fibers typically 

have the same basic structure in all human hair types. However, the three 

dimensional shape of the entire fiber varies considerably depending on ethnicity 

and geography, with examples from very straight hair with no rotational turn 

about the long axis, to the tightly sprung coils of some African races. This review 

will introduce the reader to hair follicle formation, the hair growth cycle and 

basic hair follicle structure and will review the current understanding on how 

hair fibers are formed by follicles into a non-linear coiled form and which genetic 

and biological factors are thought to be responsible for hair shape. The creation 

of the highly complex biomaterials in hair fibre and follicle and how these confer 

mechanical functions on the fibre so formed is a topic that remains relatively 

unexplained thus far. We focus here on the links between genetics and protein 

expression and function in order to understand some of the molecular controls 

on formation of curly hair. 

 

While it is true that across all mammals, the basic structure of the fiber is the 

same –a cuticle, cortex and medulla (in some)- how these structures are built by 

the hair follicle and shaped into the functional hair fiber for both an individual 

member of a species and the relevant body site, suggests that there is a level of 

‘fine control’ on the process of hair fiber formation by the hair follicle.  

Page 1 of 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

The distribution of forms of curly hair is shown in Figure 1 and a closer 

inspection reveals that curly hair fibers are rarely a true coil but exhibit 

heterogeneity in the direction of the curl in all but the mildest cases. Curly hairs 

have an elliptical or ‘D’ shape in cross section. This enables bi-directional 

bending stiffness with fibres tending to bend most easily in the direction of the 

flattened axis. The relationship of the long and short diameter to the direction of 

hair growth also changes (unlike the eyelash where this relationship is 

maintained [1]. Therefore, at the level of the follicle, we need to understand how 

the arrangement of cells results in a fibre that is elliptical with the orientation of 

the ellipse changing with time during hair growth. 

 

Hair fibres across all races and geographies show degrees of curl that are readily 

measurable [2-4]. Previous studies examining the classification of hair 

phenotypes reveal potentially important information about the biology of curly 

hair formation and the evolutionary and environmental drivers behind curly hair 

as a human trait. Both Hrdy and de la Mettrie [2, 5] studied various hair types 

sampled from countries and cultures across the world. The degree of curvature 

of a fiber in its natural state appears to account for most of the variation (87% 

[5]), which is as expected. The presence of a medulla is chiefly correlated with 

hair diameter. However ‘twist’ (as defined by the sudden natural constrictions in 

the fibre that produce a discontinuity in curvature and curvature variability); 

‘crimp’ (change in direction of curvature); ‘wave’ – (the number of 

oscillations/coils per unit length) and ‘kink’ – (a sharp twist or bend) are also 

important in differentiating ethnicity and maybe also helpful in defining the 

genetic and functional origins of curly hair. Hrdy 1973 [2] showed that kinking 

and crimp was not always correlated with curvatures, and irregular curvature 

caused by kinking separated a population in the Solomon Islands (Melanesian) 

from African. Interestingly, the adaptation of highly curled hair separately in 

these two very distant populations achieved the same functional attribute of an 

intensely curled hair, suggesting the result of environmental pressures related to 

evaporation of sweat and scalp cooling.  
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The hair follicle is a self-sufficient and highly organized structure within the skin 

that has both proliferating (dividing) and differentiating (functional/specialized) 

cell compartments. The hair follicle comprises cells of epithelial, mesenchymal 

and neuronal (melanocyte) origin and is intimately connected to the surrounding 

dermis through blood and nerve supply and the interchange of individual cells 

associated with the follicle, including cells from the immune system such as mast 

cells. The hair follicle is an autonomous mini-organ in the skin, thus when 

considering how hair shape is controlled by the hair follicle, we must consider 

what is know about the first embryonic hair follicles, the diversity of hair shape 

within and between individuals and then drill down to investigate how the 

component parts of the follicle are arranged in order to make a fiber with low, 

moderate or high curl. Because the shapes of cells in the developing hair shaft 

are grossly altered during differentiation of the newly forming hair, it is also 

necessary to consider some of the biomechanical aspects that govern hair fiber 

shape. A global study of hair shape variability and racial classification reported 

no gender-based differences [5], suggesting that sex hormone influences are 

minimal in hair shape and curl determination. 

 

Follicle anatomy, structure, size and relationship to hair shape 

Hair follicles have a multi-layered structure with seven layers of specialized 

epithelial cells arranged in a concentric pattern (like an onion), with the hair 

fiber at the centre, (Figure 2). These concentric layers of epithelial cells all have 

unique differentiation pathways and properties. Most cells of the follicle are 

epithelial, however, a group of mesenchymal (fibroblast-like) cells lie right inside 

the lower follicle bulb called the dermal papilla (DP) and is continuous with the 

very outer layer of the follicle, the connective tissue sheath. The dermal papilla 

plays an essential role in directing the regulation of hair growth and the hair 

cycle.  

In terms of the formation of the hair fiber inside the curly hair follicle, it is useful 

to consider activity in two compartments:-   
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i). The mitotic region, where cells of the lower bulb are undergoing rapid cell 

division and generating the ‘force’ behind hair formation. In curly hair the 

mitotic zone can be imagined as being organized in an asymmetrical 

arrangement around the dermal papilla. Studies in mice on zigzag hairs reveals a 

relationship between an asymmetric location of dermal papilla cells which 

results in the change in direction of hair growth generating the zig-zag [6]. More 

recent studies show that curved hair follicles emerge from wool follicles with 

asymmetric distribution of mitotic cells [7]. In human curly hair follicles there is 

some asymmetry in the proliferating pool of cells and this is described later.  

ii). The zone of differentiation, where cells in the follicle inner root sheath and 

hair fiber become fully keratinized and confer rigidity to these structures. Both 

the mitotic ‘force’ and the subsequent hardening of the fiber and root sheath 

cells are considered important factors in establishing ultimate fiber shape, as 

described below. 

In order to envision this arrangement of cells, it is helpful to view the hair follicle 

from a three dimensional viewpoint (Figure 3), in which the relationship of the 

fibre growth axis to the orientation of the dermal papilla is depicted. In Figure 3a 

there is full symmetry around the long axis of the follicle in a straight hair. In 

Figure 3b the axis is symmetrical through the bisected dermal papilla, however 

this does not match the long axis of hair growth and in Figure 3c the curved 

nature of the lower hair follicle bulb is shown as out of plane with the long axis of 

hair growth. The principle is now established that a curly follicle makes a curly 

hair [8] [9] and that some form of asymmetry in the follicle drives the formation 

of the coiled/curly hair. It has been shown in several studies that the shape and 

size of the follicle determines the shape and size of the hair and that curved/bent 

follicles produce curly hair fibers in all ethnicities [8-12] [13]. Thus while it is 

perhaps correct to assume that hair shape is defined in the follicle, the 

considered question for the hair biologist and biophysicist is how the follicle 

shape and associated cell distribution can set up a fixed or variable curl 

phenotype and generate features such as crimp (change in curl direction) and 

kink (discontinuity in curl) and also why these features may have been usefully 

inherited? 
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Hair follicle development and the hair cycle 

Given that hair follicle structure is basically the same in human populations, we 

can propose that the development of the follicle structure is also very similar, 

even though this is poorly studied in embryonic tissues for reasons of ethics. The 

hair follicle forms as an organized involution of the epidermis during the early 

weeks of gestation in human scalp [14]. Firstly a hair placode forms that 

responds to the signals derived from the mesenchymal (dermal) cells 

immediately below the placode, which will eventually become the dermal papilla 

[15]. The epithelial cells expand in number and the epithelial hair peg extends 

into the dermis and cells of the newly forming hair matrix and upper hair canal 

start to differentiate [16]. Melanocytes, which are derived from the 

neuroectoderm (neuronal tissues of the embryo), arrive in the follicle during 

embryogenesis to provide hair with a source of melanin and so its colour. It is 

assumed that this process is identical for the formation of curly hair; however, 

this has not been studied in any detail. Children of African Negroid descent are 

born with loose ’silky’ curls and that they may not attain the tight curls for 

another 12 months or so [17]. This suggests that the first hair cycle, or possibly 

the embryonic ‘lanugo’ hair has a different shape to subsequent hair cycles. The 

first hair cycle can be considered as somewhat different to subsequent hair 

cycles, given that it is governed by embryonic development processes, which are 

not all required in the post-natal hair cycles.  Lanugo hair is normally shed very 

early in a child’s life, much of it inter-uterine. Interestingly, when interrogating 

the internet for information on this topic, most African American or mixed race 

babies are reported to have rather straight hair at birth which curls a little more 

when wet and is replaced by very curly hair over the coming months and early 

years.  

The cyclic behavior of hair follicles as the regulation of the hair cycle has led to 

an impressive amount of research into the molecular factors responsible for hair 

growth. Furthermore, because hair shape is reasonably fixed parameter in the 

adult (save for exogenous influences), the factors that control the re-growth of 

hair in each hair cycle must also maintain the shape characteristics of each new 

hair follicle formed during a lifetime. We understand that the hair follicle cycle 
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retains an element of developmental dynamics reflected in the interactions 

between the mesenchymal and epithelial elements as originally proposed by Sun 

et al [18] and Hardy (Hardy 1992) so each time a hair follicle goes through this 

‘re-birth’ in the hair cycle, all the factors that govern curl have to be re-

established. The adult hair cycle has a growth phase (anagen) which also 

encompasses the very early stages of follicle re-formation, recently termed 

‘neogen’ [19], a regression phase where the lower two thirds of the follicle 

undergoes programmed deletion (catagen) [20-22] and the resting and shedding 

phases telogen and exogen. [23] [24] [25]. These events occur in all hair-bearing 

species and the molecular dynamics of progression through the hair cycle has 

been the subject of much study [19, 26-29]. The factors controlling the 

progression through the cycle include genetic and epigenetic factors [30], [31] 

and the so-called hair follicle clock [32-34]. Anagen is maintained by growth 

factors such as VEGF and IGF1[35-37], which help maintain cell proliferation in 

the bulb matrix over several years in the case of scalp hair, but only just a few 

weeks in the case of eyebrow and eyelash. The signaling pathways that have 

been shown to be important in early anagen include Wnt/beta-catenin, bone 

morphogenic proteins (BMPs) and Sonic hedgehog (Shh) pathways and are all 

involved in hair follicle initiation in embryogenesis [38, 39] [40] and are 

governed by Hairless (HR) protein, the product of the hairless gene (HR) [41]. 

This strongly suggests that the program for hair shape is present in the hair 

follicle stem/progenitor cells and these may also govern follicle variation in size 

and function across the body. It is believed that the size of the hair follicle and 

subsequent fiber diameter is determined by the size (number of cells), and 

especially the maximum width of the dermal papilla [42] [43]. However the 

factors affecting the relationship between follicle size (fiber diameter), anagen 

duration (hair length), and curl are not, so far, understood.  

 

We know that the follicle of curly hairs is also curved, but in two directions – 

retro-curvature, suggesting curl is set in the follicle [8, 9]. Key questions on 

formation of curly hair include ‘what factors control the shape of the follicle?’ 

‘what is the driving force for asymmetry?’ does the follicle bend because of pre-

Page 6 of 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

determined strain placed within the fibre owing to asymmetrical fixed protein 

structure, or, does the asymmetrical protein distribution arise because the 

follicle is curved? The retro-curved nature of the hair follicle in African scalp skin 

is shown in Figure 4 where both the bulb and the hair shaft shows curvature in 

the skin as indicated by the double bisection of the hair shaft (Figure 4b).   

Studies (described in more detail below) suggest five sources of molecular 

control in conferring fibre shape:- 1) asymmetric expression of structural 

keratins in the pre-cortex; 2) variable cortical cell shape and keratin filament 

orientation in relation to the axis of hair growth; 3) asymmetric rates of 

proliferation in cells forming the inner and outer root sheaths, 4) polymorphic 

variation in the proteins of the IRS which (presumably) alters its ability to form a 

specific shape in the keratinizing zone of the hair shaft and 5) the asymmetry of 

the dermal papilla within the central ‘core’ of the hair bulb. The translation of 

these molecular ‘settings’ into curl also requires appreciation of biomechanics as 

the curvature of the fibre inside the follicle during growth and then outside when 

released, is very different. 

Some of the most instructive studies on molecular factors for curl have come 

from examining the expression of a range of proteins in the asymmetric 

compartments of the curly hair follicle in relation to the structure and 

orientation of cells in the cortex. [1, 9, 12, 44]. These are summarised in Table1. 

Notable examples are hair keratin Ha8/K38 which is expressed earlier on the 

concave side of the follicle [12], insulin like growth factor binding protein 5 

(IGFBP5) which shows elevated expression in the convex side of the outer root 

sheath (ORS) in curly hair follicles [44], keratin 71 which is only expressed in the 

inner root sheath, but when polymorphic leads to woolly hair syndromes, and 

the relationship between the cells of the DP and the bulb matrix. Ki67, which 

marks the proliferating compartment, shows asymmetric expression around the 

dermal papilla, [1].  

So, how can compartmentalized expression of different proteins and protein 

functions influence curl? There are five possible mechanisms that are introduced 

below and will be referred to when discussing the genetic and developmental 
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origins of variation in hair fibre shape and curl identified through whole genomic 

screening studies of the curly hair trait. 

1) Asymmetric expression of structural keratins in the pre-cortex. 

The cortex of the hair fibre is most likely to structurally support curly hair 

characteristics (Figure 2). Thus, we would expect variation in the expression of 

the cortical keratins and keratin associate proteins. hHa8, K38 (gene KRT38) is a 

Type I acidic member of the hair keratins [45] and the only member of the 

complement of cortical hair keratins described as being asymmetrically 

distributed in the curly hair follicle [46]. There is no further research on the 

regulation of hHa8/K38 expression; this will be needed to help understand why 

this particular type I keratin associates with curly hair through its uneven 

expression. The cuticle keratin K82 (hHb1), was also shown to be expressed 

slightly later on the convex side of the follicle [9]. It is not yet known what 

regulates this differential expression pattern.  

2) The cortex comprises three different types of cell (as judged microscopically); 

para-, ortho- and meso-cortex. Within the cortical cells, keratin filaments are 

formed in dense, almost crystalline arrays. Cortical cells are very long and 

aligned with the long axis of the hair. The main variation within these cells is the 

orientation of the long axis of the keratin filaments in relation to the long axis of 

the hair fibre and the ratio of keratin to keratin-associated-proteins. The 

distribution of these different cell types within the hair fibre cortex has been 

studied in wool follicles where a distinct microscopical arrangement into ortho- 

and para-cortex was originally thought to be associated with crimp [47], 

however, more recent studies looking at the orientation of the keratin filaments 

in human hair have failed to find such a relationship [48]. In human hair fibers, 

three different cortical cell types have been observed and it has been proposed 

that the distribution in the different cell types may be related to curl [11, 46]. 

 

3) Asymmetric proliferation in cells forming the inner and outer root sheaths. 

Limited data exists to understand the role of asymmetric proliferation rates but 

it is likely that this is linked to the asymmetry in the shape and activity of the DP. 
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Ki67, a marker of proliferating cells, is distributed in an asymmetric pattern in 

both curly hair follicles and human eyelash follicles [1, 46]. The proliferating 

compartment extended higher up in the bulb on the convex side of the hair 

follicle. IFGBP5 is involved in the action of the growth factor IGF1 that is known 

to be required for hair growth [22, 35, 49] and the increased expression of 

IGFBP5 on the convex side of the follicle was also shown to impart asymmetric 

hair growth. This suggests that asymmetrical growth rate of cells forming the 

hair cortex influence curl degree.  It should be considered whether the 

proliferating zone itself is mobile about the long axis of the follicle generating 

some form of curl force? 

 

4) Inner Root Sheath links to variation on fibre shape 

Perhaps the most compelling evidence for control on hair fibre shape supports 

the role of the IRS. Genetic studies (further described below) and hair diseases 

that give rise to Woolly hair, have revealed polymorphic variation in several 

proteins of the IRS and this is presumed to alter its ability to form specific shapes 

in the keratinizing zone of the hair shaft. The importance of the IRS was 

demonstrated by the namesakes for the two key layered structures; Jacob Henle 

and Thomas Huxley [50] and much molecular genetic evidence is emerging to 

support this view with several IRS protein polymorphisms associated with 

curliness. The inner root sheath in mammals is comprised of three layers; the 

cuticle that directly abuts the hair shaft cuticle; Huxley’s layer and Henle’s layer 

(Birbeck and Mercer 1957) Figure 2. Studies on monotremes reveal a simpler 

structure without a distinguishable Henle layer which could be the forbear of the 

more complex mammalian IRS and give a clue to how hairs arose from reptilian 

scales during evolution [51][52]. Henle’s layer keratins are the first to fully 

keratinise or ‘harden’ in the follicle to support hair shape.  Cells in Huxley’s layer 

produce keratins that interact with the protein trichohyalin, the latter also 

specific to Huxleys layer. The cells of Huxley’s layer are fully differentiated more 

distal to the bulb than Henle’s layer and the interaction between these two layers 

forms the bulk of the IRS. Trichohyalin expression is only found where a 

hardened keratin structure is needed, such as hair, nail and the filiform papillae 
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on the tongue [53-56]. The interaction of trichohyalin with keratin is preceded 

by the enzymatic conversion of arginine to citrulline within the trichohyalin by 

the enzyme peptidyl arginine deiminase (PAD) that reduces its overall charge so 

facilitating stable interaction with the IRS keratins [57-60]. So it was very 

interesting to note that mutations in the trichohyalin gene were described for 

uncombable hair syndrome, which includes a curly hair phenotype [61]. In 

addition to TCHH, the genes for PAD (PADI3) and transglutaminase 3 (TGM3), 

both involved in the transformation of the IRS from ‘soft’ to ‘hard’ were also 

mutated in this rare genetic condition.  On the inner side of the IRS, the IRS 

cuticle cells form a ‘mirror’ of the cuticle cells of the hair shaft holding the shaft 

very firmly into the follicle. Outside Henle’s layer there is the companion layer 

(or innermost layer of the outer root sheath). These cells are intimately 

connected to the IRS and migrate with the shaft as it grows. Of special mention 

are so called flügelzellen, structures in Huxley’s layer which project through 

Henle’s layer to the companion layer. These structures are predicted to 

strengthen and stabilise the IRS [62, 63] with the latter already known to be 

highly influential on hair curl formation.  Flügelzellen may be visualised by 

staining with antibodies to K74, directly linking this keratin with Flügelzellen.  

Further study of the spatial disposition of Flügelzellen in relation to hair curl is 

warranted. Thus, the current thinking is that the IRS is not merely a scaffold 

holding the shaft but is able to be programmed to confer properties on the shaft 

including shape. 

5) Dermal Papilla asymmetry and links to curl 

Little or no attention has been paid to whether the size and shape of the papilla 

contributes to the shape of the hair fiber and subsequent curliness in human 

hair, although the role of the DP generally in contributing to fibre type and shape 

was recently reviewed [64] and the links between DP size and fibre size are 

known [65]. Differences in DP shape are observed animals in relation to types of 

fibre produced [66] with the spiny mouse (Acomys dimidiatus) being a good 

example of how development of a crescent shaped DP influences the follicle 

proliferation and differentiation programs [67] to generate an unusually shaped 

fibre. A possible theory has been proposed in which the asymmetrical 
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distribution of proliferating cells in the hair follicle bulb matrix leads to a 

flattened hair fiber shape [68] and the asymmetrical control on matrix cell 

proliferation is assumed to be controlled by the dermal papilla, suggesting that it 

too has an asymmetry in relation to interactions with the surrounding hair 

matrix cells which could lead to the formation of a curly hair. Nissimov 2014 

further hypothesized that the construction of certain features of curly hair had 

explanations within the construction of the hair follicle, proposing multiple 

papillary centres each autonomously influencing growth of adjacent bulb matrix 

cells, so building asymmetry [69]. 

 

Curly hair as a genetic trait: Identification of candidate genes and links to 

mechanistic factors involved in curly hair formation 

Curly hair traits are straightforward if rather tedious to measure given that hair 

is easily sampled and good methods to quantify curl have been developed [3]. 

This has aided genetic studies (so called genome wide association studies 

(GWAS)) to try to identify the causative genes for hair traits and to explain their 

role in hair shape [70, 71].  

Factors such as ethnicity and geographic variation must be controlled in these 

studies to minimise false positives. The advantage of GWAS investigations lies in 

the complete survey of the genome without prior hypothesis and the potential 

ability to identify unsuspected, novel genetic links to hair curl and shape. The 

most recent data to emerge from such studies is from the CANDELA cohort, a 

large (6630) admixed South American population with European, Native 

American and African ancestry [71]. In this study, hair shape was scored on a 

fairly simple four-point scale (straight, wavy, curly or frizzy) and was found to be 

associated with polymorphic variation in known curl associated genes (EDAR, 

Trichohyalin) and as yet unknown genes. PRSS53, Protease Serine S1 family 

member 53a is a serine protease expressed in the IRS and was shown by the 

authors to have a variant Q30R substitution causing a change in enzyme activity 

with recent evolutionary selection in East Asian populations. Its expression in 

the IRS adds weight to the hypothesis that shape of hair fibre is governed by the 

construction of the IRS; mechanism 4 as described above. 
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In a separate GWAS, designed to examine the curl variation only within South 

African populations, Unilever R&D studied 3 separate language (ethnic) groups; 

the black African Sotho/Tswana, Xhosa and Zulu peoples, for genetic links to hair 

curl variation within what is a largely similar African ancestral population. Prior 

observations in South Africa revealed wide variation in curl type and degree, 

lending weight to the hypothesis that curl was under polymorphic control; the 

key question was which proteins might be variable? The degree of curliness of 

hair samples from 2417 volunteers was measured accurately using a flat bed 

scanner and image analysis, with the overall curl variation observed shown in 

Figure 5. No significant differences in curl variation were seen between language 

groups; there was a trend for the Zulu language group to have less curly hair.    

DNA from the 25% highest curl and lowest curl subjects was compared using a 

DNA pooling strategy and assessing 1.6M single nucleotide polymorphic variants 

(SNPs). For general methods used see Stokowski RP et al [72]. A substantial 

genetic signal was detected comparing the two hair curl groups but overall there 

were no specific associations that passed a strict genome wide statistical test (5 

X 10-8 after a Bonferroni multiple testing correction). These data suggest that 

black African hair curl variation is ‘complex’ in that many genes are involved 

each having a modest effect on hair curl.   Never the less, 3 candidate genes were 

selected having suggestive links to curl based on a less strict statistical tests, 

follicle location and literature data (Table 2). 

Two of the 3 genes listed in table 2 (KRT74 and TCHH) are located in the IRS, 

which again supports the hypothesis that the IRS strongly influences hair shape. 

(see also [73], [74], [7, 75], [76], [77] [61].  K74 (keratin 74 the protein product 

of KRT74) is found in Huxley’s layer (Figure 2) and is also linked to woolly hair 

syndromes [76] a disorder manifest by fine curly hair.  The role for the IRS in 

shaping hair curl is also supported by animal studies, for example Cadieu et al 

[78] demonstrated using pure bred dogs, that just three genes control the major 

coat attributes of length, curliness and facial hair such as long eyebrows and 

beard. In humans polymorphic variation in KRT71 also gives rise to woolly hair 

[79]. Thus both KRT71 and KRT74 variants underpin a curly hair phenotype 

most likely by altered structural behaviour (e.g. capacity to bend, flex or twist) of 

the K71 and K74 proteins.  
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Trichohyalin (the protein product of TCHH) is also expressed in Huxley’s layer of 

the IRS and in the medulla. Trichohyalin is responsible for condensing the 

intermediate filaments as they change and harden. Electrostatic links to 

intermediate filaments are further stabilised by the action of peptide cross-

linking enzymes called transglutaminases (TGase) [80] and, in particular, 

TGase3, appears to be very important in formation of important cross linkages in 

the hair fibre [81]; mouse TGase3 gene (TGM3) knock out studies show hair 

abnormalities as the major phenotype [82] and TGM3 gene is mutated in 

uncombable hair syndrome [61]. In terms of function, it is proposed that 

trichohyalin mechanically strengthens the hair follicle inner root sheath to 

subsequently contain and permit shape to be set into the hair fibre [59, 83]. 

Interestingly an independent study in people of western European descent living 

in Australia [84] suggests that trichohyalin polymorphisms are linked to the 

straightness of hair and therefore that, when combined with the observations 

reported here, trichohyalin might influence hair shape across more than one 

human population.  

All 3 genes highlighted by the GWAS; KRT71, KRT74 and TCHH, are members of 

the so-called epidermal differentiation complex (EDC), a cluster of about 20 

genes in chr1q21.  A subset of EDC genes is therefore clearly involved in 

coordinating hair shape.  It is known that the EDC is under epigenetic control in 

the epidermis [85, 86] with chromatin organisers key to epidermal 

differentiation. It is interesting to speculate that similar factors may also control 

genes in the EDC within the IRS, opening up the possibility for epigenetic 

regulation of hair shape. 

The third gene listed in table 2 is CUTC (cutC copper transporter) with members 

of the family associated with copper homeostasis, namely the uptake, storage, 

delivery and efflux of copper. From animal studies copper is known to be 

associated with hair conditions including hair curl [87]. For example copper 

deficiency in lambs leads to poor quality wool that lacks crimp, an effect linked 

to the delayed differentiation of the IRS [7]. Menkes disease, which is associated 

with defects in hair traits including hair kinks, [88] is linked to another copper 
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transporter ATP7A, further supporting a role for copper homeostasis in affecting 

hair curl.  

 

Curly hair follicle development is under the control of major 

developmental programmes 

Genome-wide searches have also uncovered evidence that developmental genes 

are involved in shaping hair curl. The ectodysplasin receptor family (EDAR) are 

cell surface receptors of the tumour necrosis factor family (TNF) expressed in 

skin and hair follicles during hair follicle development, again at puberty and 

during the hair cycle [89]. Recently EDAR has been implicated in the control of 

hair shape and fibre thickness [90] [91]. Positive selection of a polymorphism in 

east Asian and native American populations about 10,000 years ago is believed 

to have affected both follicle size and fibre thickness as well as shovel-shaped 

incisor teeth and increased secretions of sebum and meiobian lipids in the eye 

and saliva [92] [93]. As indicated earlier, the shape of the hair follicle is set 

through embryogenesis and then curl manifests during childhood. Thus it is not 

surprising that factors involved in embryogenesis affect hair shape. The 

interesting question is why East Asians developed straight hair?  One 

explanation is that the glandular changes may have been the driving force behind 

the penetrance of the new gene variant in East Asians, with straighter hair being 

a non-selective consequence of advantageous changes in tooth shape and gland 

activity. The hair phenotype maybe linked to higher Edar function which, 

through signalling via sonic hedgehog [94] may have led to greater symmetry in 

growth rates in the follicle bulb with straighter hair arising as a result.   

A second developmental gene associated with hair morphology is suspected to 

be WNT10A (wingless-type MMTV integration site family, member 10A; [70]. 

WNT10A is upregulated at the beginning of the hair growth cycle and mutations 

in this gene are known to cause misformed hair [95] and appendage 

abnormalities in Hypohidrotic Ectodermal Dysplasia patients [96]. However, a 

known mutation in Wnt10A (rs7349332) in combination with mutations in 

TCHH (rs11803731and FRAS 1 (rs1268789) form a potential signature for 

straight hair of potential use in forensics [97]. 
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In summary, the shape, type and colour of hair are determined not just during 

embryogenesis but also repeatedly in each hair growth cycle.  Aside from pattern 

baldness, characteristic hair types are maintained in bodily patterns throughout 

life. Natural population variance in hair curl appears to have a largely genetic 

basis and environmental pressure selecting for specialised hair morphology may 

well have arisen when humans migrated out of Africa.  There is evidence that 

trichohyalin (TCHH) may affect hair curl in most/all world populations and that 

other genes such as EDAR, WNT10A only affect specific populations.  Hair curl 

variation in native Africans is very likely a complex trait with multiple genes 

influencing curl.  The strongest evidence for the control of shape comes from the 

evidence of the role of the inner root sheath which appears to structurally mould 

hair fibre shape, including curl - but we are still a very long way from 

understanding the complete biological/biophysical mechanisms that produce 

such a wide range of curled, coiled, kinked and wavy hair fibres.  
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Figures and Tables 

 

Figure 1. Variation in degree of curl in human hair fibres. Hair fibres were 

sampled from populations in South Africa (a) showing a range from high curl 

(left) to low curl (right). Magnified images of fibre samples from low (b) and high 

(c) curl reveal that both degree of curliness (tightness of the curl) and the change 

in direction of the curl contribute to overall curliness.  

 

Figure 2. Diagrammatic representation of the lower hair follicle bulb. This figure 

shows the distribution of the 7 layers that comprise the fundamental hair follicle 

structure as well as the dermal papilla and connective tissue sheath. This 

diagram has been kindly provided by Dr. Claire Higgins. 

 

Figure 3. Representation of the curly hair follicle in three dimensions. Figure 3a 

shows the line of symmetry around the long axis of the hair in a straight hair 

follicle. Figure 3b the long axis is shown as symmetrical through the dermal 

papilla of a curly hair follicle. Note that the hair shaft is no-longer in plane with 

the dermal papilla, Figure 3c shows the section through the bulb depicting the 

curved shape of the lower follicle.  

 

Figure 4. A series of images showing the retrocurvature of the hair follicle when 

sectioning through a sample of scalp skin from an individual with very curly hair. 

The curly hair follicle is curved in two directions – left to right and fore and back. 

a) the upper bulb is out of the image, yet the shaft is sectioned through. b) the 

follicle curves twice (arrows). c) the bulb is sectioned through the mid dermal 

papilla d) the dermal papilla is almost out of section and e) the bend in the upper 

follicle reveals connective tissue sheath (arrow). 

 

Figure 5.  Population distribution of South African hair curl covering the main 

language groups (Sotho/Tswana, Xhosa and Zulu). Average Mean Curvature 
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(1/radius, AMC) was mathematically averaged over each fibre separately, before 

the mean value for 20 hairs from each volunteer was calculated.  The range of 

hair AMC sampled was from 0.14 to 1.545.  As illustrated in the figure, more 

curly hair has a higher AMC. 
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Table 1 
Biomarkers associated with curl in the hair follicle 

 

Biomarker Localisation Asymmetry Reference 

K38 Cortex Earlier expression on concave 
side  

[46] 

K82 Cuticle Later expression on convex side [9] 

Ki67 Bulb matrix Proliferation is above the line of 
‘Auber’ on the convex side 

[9] [1] 

K14 ORS ORS is thicker on the concave 
side 

[1, 9] 

IGFBP-5 ORS Greater expression on convex 
side 

[44] 

K74 IRS  Mutations give rise to wooly hair [76] 

K71 IRS Mutations give rise to wooly hair 
and curly hair in dogs 

[78, 79] 

Trichohyalin IRS  SNP associates with straighter 
hair in caucasians 

[84] 

Fibronectin CTS CTS is thicker on the concave 
side 

[9] 
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Table 2 

Candidate genetic associations influencing black African hair curl 
 

Gene region Possible function SNPs  p-value 

KRT74 IRS keratin linked to woolly 
hair syndrome. Adjacent to 
KRT71 which strongly 
affects hair curl in dogs 

rs3912631  <3x10-05 

TCHH Hair follicle specific protein 
also found in the IRS.  
Linked to hair curve in 
peoples of western 
European descent 

Afd_1108920* <1x10-6 

CUTC Copper transport 
homologue. Copper 
changes linked to wool 
crimp in sheep and ‘kinky 
hair’ in Menkes disease  

rs4919394 
rs978554 
rs7078602 

<5x10-7 
<9x10-7 
<1x10-6 

 
p-values include a genome wide Bonferroni correction  
* Afd_1108920 is a SNP used on the Perlegen genotyping platform, 7kb from 
rs11803731 identified by Medland et al [84]. The rs11803731 alternate allele 
is found only in populations of European descent and therefore is not 
informative for black African hair.   
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Figure 1. Variation in degree of curl in human hair fibres. Hair fibres were sampled from populations in 
South Africa (a) showing a range from high curl (left) to low curl (right). Magnified images of fibre samples 
from low (b) and high (c) curl reveal that both degree of curliness (tightness of the curl) and the change in 

direction of the curl contribute to overall curliness.  
Figure 1  

214x92mm (72 x 72 DPI)  
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Figure 2. Diagrammatic representation of the lower hair follicle bulb. This figure shows the distribution of the 
7 layers that comprise the fundamental hair follicle structure as well as the dermal papilla and connective 

tissue sheath. This diagram has been kindly provided by Dr. Claire Higgins.  

 
Figure 2  

103x97mm (72 x 72 DPI)  

 

 

Page 29 of 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

  

 

 

Figure 3. Representation of the curly hair follicle in three dimensions. Figure 3a shows the line of symmetry 
around the long axis of the hair in a straight hair follicle. Figure 3b the long axis is shown as symmetrical 
through the dermal papilla of a curly hair follicle. Note that the hair shaft is no-longer in plane with the 

dermal papilla, Figure 3c shows the section through the bulb depicting the curved shape of the lower follicle. 
 

Figure 3  
191x91mm (72 x 72 DPI)  
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Figure 4. A series of images showing the retrocurvature of the hair follicle when sectioning through a sample 
of scalp skin from an individual with very curly hair. The curly hair follicle is curved in two directions – left to 

right and fore and back. a) the upper bulb is out of the image, yet the shaft is sectioned through. b) the 
follicle curves twice (arrows). c) the bulb is sectioned through the mid dermal papilla d) the dermal papilla is 

almost out of section and e) the bend in the upper follicle reveals connective tissue sheath (arrow).  
 

Figure 4  
130x68mm (72 x 72 DPI)  
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Figure 5.  Population distribution of South African hair curl covering the main language groups 
(Sotho/Tswana, Xhosa and Zulu). Average Mean Curvature (1/radius, AMC) was mathematically averaged 
over each fibre separately, before the mean value for 20 hairs from each volunteer was calculated.  The 

range of hair AMC sampled was from 0.14 to 1.545.  As illustrated in the figure, more curly hair has a higher 
AMC.  

Figure 5  
235x104mm (120 x 120 DPI)  
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