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The complementary value of vibrational spectroscopy and mass 
spectrometry in obtaining structural information on a range of tricyclic indoles 
with various ring patterns has been investigated, focusing particularly on 
whether these heterocycles with a functional group containing oxygen in the 
third ring should be described as ketoindoles or hydroxindolenines. Parallels 
between certain fragmentations of ionised indoles and electrophilic 
substitution in solution have been identified. 

A mechanistically interesting and analytically useful interesting 
dimerisation, leading to the formation of [2M-H]+ ions, has been discovered in 
the positive ion electrospray mass spectra of 3-alkylindoles. This 
dimerisation, which occurs in the nebuliser of the instrument, offers a 
potential new route to bisindoles under milder conditions than those 
employed in classical solution chemistry. Facile formation of C=N bonds by 
condensation of C=O and H2N has been shown to provide a means of 
preparing protonated imines and protonated quinoxalines from mixtures of 
the requisite (di)carbonyl compounds and (di)amines, thus further illustrating 
how organic synthesis is possible in the droplets in the nebuliser of the 
instrument. 

Possible metal catalysed coupling reaction routes to bisindoles have 
been explored. Acyl transfer reactions from nitrogen to carbon have been 
investigated in 1-acyl-2-methylindoles and orthogonally protected 
sulphonamides. These processes have been shown to be intermolecular and 
intramolecular, respectively. The latter rearrangement, which may be 
prevented when necessary by choosing the nitrophenylsulphonamide 
protecting group, offers a route to acyl, carboalkoxy and carboaryloxy 
aromatic compounds, some of which are difficult to prepare. 
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1. INTRODUCTION 

1.1. Background 
 

 
 

 

The multidisciplinary research described in this thesis arose from the 

discovery that the octacyclic compound, scytonemin, 1, is produced by 

extremophiles, apparently as a means of providing protection against the 

harmful effects of ultraviolet radiation in harsh terrestrial environments.1, 2  

Since scytonemin appears to have enormous potential as a biomarker for 

extant and extinct life,1, 3-11 both on Earth and perhaps elsewhere in the Solar 

System, the development of spectroscopic protocols for detecting it and 

related compounds is clearly of fundamental significance in the search for 

extraterrestrial life. However, scytonemin itself is a large molecule, which 

would be expected to exhibit complex spectra that might be difficult to obtain 

and interpret. Consequently, it was logical to initiate this investigation by 

devising and studying simpler model compounds that contain the key 

features of the heterocyclic nuclei in scytonemin. Tricyclic species comprising 

a benzenoid ring fused to a five membered ring containing a nitrogen atom, 
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with a third rings attached to the heterocyclic ring were obvious candidates 

for suitable model compounds see Figure (1) below. This preliminary 

conclusion is reinforced by the fact that the relevant bicyclic compound, 

indole, 2, derived by fusing a benzene ring to a five membered ring nitrogen 

heterocycle is one of the most important compounds in the natural world.  

Indoles are widely distributed in the form of alkaloids, including strychnine,12 

3, the first indole alkaloid to be identified and to have its structure 

elucidated.13 Other important examples of the occurrence of the indole 

nucleus in living systems include the amino acid tryptophan, 4, and 5-

hydroxytryptamine (5, a monoamine alkaloid that is believed to play an 

important role as a neurotransmitter in the brain).14 

 

 

1.1.1. Molecular structure of Indole and Indolenine 

 

 
 

Indole was first isolated in 1866 from the reduction using zinc dust of 

oxindole which was in turn obtained as one of the two products from the 

reduction of isatin, 6.15, 16 The structure that has long been accepted for 

indole consists of a benzene ring fused to a pyrrole ring, with the two rings 
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sharing a carbon-carbon linkage that is usually depicted as a double bond. It 

is an aromatic system, with 5 pairs of -electrons; 4 pairs from the double 

bonds and 1 pair of electrons from the nitrogen lone pair. Indole has one 

interesting and important tautomer, indolenine, 7, in which there is a C=N 

bond in the heterocyclic ring, which is not aromatic (in contrast to indole 

itself). The greater aromatic character of indole, in which both rings are 

aromatic, is reflected in its greater stability compared to indolenine, and the 

position of the tautomeric equilibrium (which strongly favours indole). As a 

result, indoles are widespread in nature, whereas indolenines are much less 

common (it is, therefore, interesting that the two heterocyclic entities in 

scytonemin have the C=N double bond in the heterocyclic ring). 

 

Scheme (1) 

 

1.1.2 Reactivity of Indole 

 

 

The characteristic reaction of aromatic compounds is electrophilic 

substitution,17 18, 19 which may be described in mechanistic terms as a two-

step process, involving an intermediate arenium ion, in which the first step is 

usually rate-determining.17 In bicyclic systems such as Indole, the 

electrophile may become attached to an atom in either ring.20 The relative 

electron density in each ring, and at each atom in the more electron rich ring, 

normally controls the position at which the electrophile first becomes 
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attached, thereby determining the nature of the substituted product. The 

electron density at the carbon atoms in the parent monocyclic heterocycle, 

pyrrole, 8, is greater than that in benzene; in addition, the resonance energy 

of pyrrole is much less than that of benzene. These two factors influence the 

relative reactivity of benzene and pyrrole in electrophilic substitution; pyrrole 

reacts perhaps as much as 108-1010 times faster than benzene with a given 

electrophile. Therefore, indole undergoes electrophilic substitution in the 

heterocyclic ring, rather than in the carbocyclic ring, which may be 

considered to be relatively unreactive. Hence, halogenation,21 Friedel-Crafts 

acylation and alkylation,22, 23 and other electrophilic substitutions of indole 

and its derivatives almost always occur in the heterocyclic ring.24  

Although the same factors, including the effect of the lone pair of 

electrons on nitrogen in activating the heterocyclic ring, may be considered to 

operate in indole as in the pyrrole, these two heterocycles do not undergo 

electrophilic substitution of at the same position in the five membered ring. 

The electrophile normally becomes attached to the 2-position in pyrrole, 

whereas attack at the 3-position of indole occurs instead.25  This contrast, 

which is at first sight surprising, can be explained in two distinct ways. 

Firstly, analysis of the stability of the intermediate arenium ion reveals 

that attachment of the electrophile to the 3-position does not disturb the 

aromaticity of the carbocyclic ring, Scheme (2), but rather merely disrupts 

that of the heterocyclic ring, in which the resonance energy is in any case 

less than that of the carboxyclic ring. This effect overrides the situation for 

pyrrole, in which electrophilic attack at the 2-position forms an arenium ion in 
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which there is an extra canonical form that is not available if the reaction 

occurred at the 3-position, Scheme (3).   

 

Scheme (2): Mechanism proposed for the electrophilic substitution of indole; 

a) attack at the 2-position; b) attack at the 3-position. 

 

Scheme (3): Proposed mechanism for the electrophilic substitution of pyrrole; 

a) attack at the 3-position; b) attack at the 2-position. 

 

An alternative explanation, which is more profound in so far as it 

addresses the initial interaction between the aromatic compound and the 

electrophile, is to consider the electron density in the highest occupied 

molecular orbital (HOMO) in the set of -orbitals. In the case of pyrrole, the 

coefficient on the 2- and the 3-positions is 0.600 and 0.371, respectively.  On 

the other hand, in indole, the corresponding coefficients are 0.219 and 
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0.595,26 respectively. A larger numerical value corresponds to a greater 

electron density, which increases the probability of the electrophile becoming 

attached to the relevant position.26  

 

1.1.2. Occurrence of Indoles and related Compounds 

 

The bicyclic indole nucleus provides the skeleton for numerous biologically 

active molecules such as indole alkaloids,27-33 plant-growth regulators34-36 

and a wide range of pharmaceutical compounds.37-41 The occurrence and 

utility of some illustrative examples in these disciplines is briefly reviewed in 

this section. 

 

1.1.2.1. Indole Acetic Acid (IAA) 
 

 

Indole acetic acid, 9, which was discovered in 1933,35 is the most 

important auxin (plant growth hormone) that is widely distributed in 

monocots, dicots, vascular plants (gymnosperms and ferns).15, 34 The related 

indole derivatives, indoleacetaldehyde and indoleacetonitrile, also are plant 

growth hormones. Indole acetic acid consists of an indole nucleus with a 

simple monofunctional side chain attached to the 3-position. It influences 

almost all the aspects of plant growth, including the development of the 

embryo, the inhibition of bud growth, the maturation of flowers into fruits, and 
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the induction of cell division.42 The action of indole acetic acid is inhibited by 

many synthetic compounds generally called anti auxins.  

1.1.2.2. Tryptophan and Serotonin 
 

 

 
 

 

As with indole acetic acid, Tryptophan, 4 and 5-hydroxytryptamine, 5, 

both contain the indole nucleus with a side chain at the 3-position. These 

compounds are vital to life: tryptophan is an essential amino acid43 and 5-

hydroxytryptamine commonly known as seretonin is a  neurotransmitter 

involved in the transmission of nerve impulses.44 Trytophan is obtained from 

plant and animal sources45 such as cheese, turkey, banana, nuts and other 

protein rich foods.46 It is a protein building block and it the precursor of 

niacin47 48(vitamin B3), melatonin49-53 and 5-hydroxytryptamine.45, 54-59 

In the brain, 5-hydroxytryptamine is biosynthesised in two chemical 

steps from tryptophan;60 hydroxylation at the 5-position of tryptophan by the 

enzyme tryptophan 5-hydroxylase55, 61 give 5-hydroxytryptophan, 10, 56 which 

then decarboxylated to yield a molecule of 5-hydroxytryptamine, 5, which is 

commonly known as serotonin, Scheme (4). Apart from the brain, serotonin 

can be found mainly in blood platelets and in the bowel Serotonin plays an 

important part in regulating mood,58, 62-65 sleep and it is a powerful 

vasoconstrictor59, 66, 67 in the blood serum and is the precursor in synthesis of 

melatonin (a hormone that helps control sleep).68 
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Scheme (4): Biosynthesis of serotonin 

 

1.1.2.3. Indole Alkaloids 

          
Indole alkaloids comprise one of the largest and most important 

classes of naturally occurring nitrogenous compounds. As mentioned in the 

introduction, strychnine is a seminal example; it was once widely applied as a 

poison; in addition, it was once administered to humans in trace doses on the 

basis that anything that tasted so awful was bound to be beneficial.13, 69  

Fortunately, modern medicine has long since discarded such misguided 

notions.  

Many indole alkaloids do not contain an intact indole nucleus. 

However, they are obviously derived from indole by elaboration of the 

skeleton, often by attachment of substituents or rings to the 3-position and/or 

the 2-position (as is the case in strychnine itself). Many of these compounds 

have highly complex structures; typically with several rings (strychnine itself 

has six rings, seven chiral centres and at least five functional groups). 

 

1.1.2.4. Scytonemin 
 

 

Scytonemin,70 1, is a yellow-brown solid71 located in the extracellular 

polysaccharide sheath71-74 found exclusively in cyanobacteria71, 73, 75 (blue-
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green algae). Therefore, Scytonemin can act as a biomarker only for 

cyanobacteria.70, 73, 76  The trivial name “sytonema skeleton” reflects the fact 

that there are 8 rings in its skeleton.74, 77 Its structure comprises two 

symmetrical monomer subunits, each consisting of an indolic and 4-

hydroxybenzylidene component.77 Since scytonemin possesses a basic 

nitrogen atom (in fact, it has two), it may be considered to be an alkaloid. 

Scytonemin appears to play an important role as an ultraviolet (UV) 

protectant1, 75, 78, 79 especially in lower organisms exposed to high solar 

radiation, playing a similar role to melanin in higher animals (including 

humans) and phenylpropanoids in plants.73, 74 This pigment is synthesised 

upon exposure to UV A light to protect the organisms from the damaging 

effect of the harmful UV radiation. It has been reported that the presence of 

scytonemin reduces by up to 90% the proportion of incident UV radiation that 

reaches the cell. Scytonemin shows strong absorbance in the UV with the 

absorbance maxima at 385,78 300, 278 and 252 nm.71, 77 The effectiveness of 

this indole alkaloid as a UV protectant is mainly due to its ability to absorb in 

the UV A (315–400) region as well as UV B (280–315).71 Even though no 

direct link has so far been established between the scytonemin produced and 

rate of photosynthesis, the occurrence of this pigment in 300 species70 

ranging from cyanobacterial lichens (collema) to terrestrial cyanobacterium 

chlorogloeopsis sp77 indicates that it is essential for their survival. 

Cyanobacteria existed on Earth for several billion years, from well before the 

oxygen (and its allotrope, ozone, which is the key component of the ozone 

layer, which itself provides protection against certain forms of UV radiation) 

was present in the atmosphere. Consequently, the ability of early forms of life 
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to synthesise molecules such as scytonemin might have protected them 

against high UV radiation,80 thus facilitating their survival and reproduction.   

 

1.3.1. Model Compounds 
 

1.3.1.1. Selection of Model Compounds 
 

 

The process of deciding which simpler compounds would be the best 

models for scytonemin can be divided into three conceptual parts. Firstly, the 

molecular structure comprises two identical tetracyclic entities; this symmetry 

can be exploited by considering only one of the two subunits. Secondly, the 

benzylidine (ArCH=) side chain may be considered to be of secondary 

importance on the basis that the tricyclic heterocyclic part contains the crucial 

structural features. It should be noted, however, that the hydroxybenzylidine 

units are undoubtedly important in at least two respects: they significantly 

increase the extent of conjugation in the subunits; in addition, the slightly 

acidic nature of the phenolic hydroxyl groups may impart an advantageous 

solubility in alkaline environments. Thirdly, the presence of a carbonyl group 

in the third ring of the tricyclic subunit may or may not be required; both 

generic systems appear to be worth investigation. In summary, these 

considerations lead to the idea of investigating tricyclic indoles with varying 

ring patterns and the corresponding ketoindoles. 
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Figure (1): Model compounds  

 

1.3.1.2. Nomenclature of Model Compounds 
 

 

It is useful to use abbreviations to define the ring pattern (and, in some 

cases, other features) of the structure of the model compounds. For simpler 

bicyclic indoles, which became worthy of further investigation once certain 

interesting dimerisation reactions were discovered in their electrospray mass 

spectra, the conventional numbering system is used. Thus, in 1-methylindole, 

37, 2-methylindole, 38 and 3-methylindole, 39, the number simply indicates 

the position of the methyl substituent in the indole, Figure (2). 
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Figure (2): Structures showing the naming and numbering system; a) acyclic 

indoles; b) 6,5,5; c)  6,5,6. 

 

A set of numbers (“6,5,n” and “6,5,n,m”) indicates the sizes of the fused 

rings in the indoles; the “6,5” part refers to the carbocyclic and heterocyclic 

rings, which must have six and five atoms, respectively, in any indole. Thus, 

for instance, the “6,5,5” system, 17, refers to tricyclic indoles comprising a 

indole fused to a carbocyclic 5-membered third ring. In the case of the 

important “6,5,6” tricycles, which are tetrahydrocarbazoles, the numbering 

system is shown in Scheme (3). Many of these “6,5’6” tricycles are readily 

prepared, with and without a carbonyl group in the third ring, and have 

informative spectroscopic properties.  

 

1.4. Summary of Earlier Research  

1.4.1.  Mass Spectrometry of Indoles  
 

 

As is the case with many other classes of organic compounds, the use 

of mass spectrometry in elucidating the structure of indoles was established 

during the 1960s, when mass spectrometers were commercially available, 

thus permitting many pioneering studies to be made. Thus, the value of mass 
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spectrometry in analysing indole alkaloids is well-illustrated by the 

determination of the nature of sarpagine, 40.81 The insight obtained by this 

seminal study allows the presence of a sarpagine base unit30 to be 

recognised, typically by exploiting the “shift rule”, which can be extremely 

valuable when dealing with a new derivative that has common structural 

features with those of a parent compound which has previously been 

investigated. Unlike other important N-heterocycles, such as pyrroles, which 

have attracted extensive attention, relatively few studies of the mass spectra 

of indoles have been reported, especially in tricyclic systems. Only two 

significant papers on the fragmentation patterns of tricyclic indoles under 

Electron Ionisation (EI, formerly referred to as “Electron Impact) appear to 

have been published.82, 83  

                                  

 

1.4.1.2. Mass Spectra of n-cycloalkan[b]indoles 
 

 

 

One of the two published mass spectrometric studies on unsubstituted 

tricyclic indoles, the principal fragment ion at m/z 157 in the EI mass 

spectrum of tetrahydrocarbazole, 26, was found to correspond to loss of 
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ethylene84 from the ionised molecule. This primary fragment ion was 

interpreted a retro Diels-Alder (RDA, process), resulting in the fission of the 

bond(s) connecting C(2) and C(3), with the formation of a very stable ion, 

route a Scheme (5).82  

 

 

Scheme (5): Proposed mechanism for the fragmentation of 26, 31-14. 84, 85 

 

Deuterium labelling experiments were consistent with this interpretation, 

but it would be more accurate to refer to the process as a cycloreversion. 

This study was extended to the encompass cycloalkan[b]indoles with a 5-, 7-, 

8- and 9-membered83 third ring; the tendency of the molecular ion derived 

from these “6,5,5”, 31, “6,5,7”, 32, “6,5,8”, 33,  and “6,5,8”, 34, to eliminate a 

neutral species having the constitution CnH2n suggests strongly that this 
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fragmentation need not always occur with concerted cleavage of the two 

bonds, as is formally the case in a cycloreversion. 

The base peak (that is, the most intense signal, to which the intensity of 

other signals in the mass spectrum are conventionally normalised) in the EI 

spectra of all of these tricyclic indoles, with the exception of 

tetrahydrocarbazole, corresponds to the molecular ion signal (M+.). This 

result is expected as intense M+. peaks often appear in the spectra of 

aromatic compounds86 because their extensive conjugation and cyclic nature 

means that dissociation is energetically less favourable than would be the 

case for saturated acyclic radical-cations, which frequently undergo extensive 

fragmentation.87, 88   

In contrast to the spectra of its homologues with smaller and larger 

third rings, the base peak in the spectrum of tetrahydrocarbazole is [M-

C2H4]
+., corresponding to loss of ethylene, as has been previously reported82. 

This fragmentation may be more favourable starting from the ionised tricyclic 

indole 26 because it may proceed by a simple cycloreversion, whereas a 

two-step process, perhaps involving a relatively unstable intermediate cation, 

must be involved in the corresponding mechanism for eliminating ethylene 

from the higher homologues. It is also interesting that these higher 

homologues lose a larger CnH2n neutral species (n = 3 and 4, respectively, 

from the radical-cations formed from the “6,5,7”, “6,5,8” and “6,5,9” 

heterocycles), as well as smaller amounts of C2H4. These dissociations may 

be understood in terms of a unified mechanism Scheme (5), but it is not 

necessarily the case that an alkene is eliminated in every instance. 
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If these fragmentations proceed by complete cleavage of a bond 

connecting one of the two carbons atoms to the rest of indole entity, whilst 

the other remains intact, two possibilities may be considered. Route (b) gives 

a delocalised cation in which the aromatic nature of both the remaining rings 

is disrupted; this possibility resembles in some ways electrophilic substitution 

of indole by attachment of the electrophile to the 2-position of the ring, which 

is less favourable than the corresponding reaction in which the electrophile is 

attached to the 3-position. However, the alternative, route (c), corresponds 

conceptually to electrophilic substitution at the 3-position, in which the 

resultant cation can be delocalised without disturbing the aromatic character 

or the carbocyclic ring. By analogy with conventional solution chemistry, this 

second route would be expected to be favoured. A more detailed analysis, as 

presented later in Chapter 3, supports this view. 

 

Table (1): Previously reported fragmentation patterns of n-cycloalkan[b]indoles.84, 85   

 

26 31 32 33 34  

Assignment m/z RI m/z RI m/z RI m/z RI m/z RI 

171 55 157 100 185 100 199 100 213 100 M+. 

170 23 156 100 184 67 198 25 212 16 [M-H]+. 

143 100 129 14 157 37 171 32 185 24 [M-C2H4]
+. 

    143 45 157 20 171 22 [M-C3H6]
+. 

    129 14 143 78 157 25 [M-C4H8]
+. 

      129 13 143 45 [M-C5H10]
+. 

        129 18 [M-C6H12]
+. 
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In the case of the “6,5’5” system, 31, elimination of an alkene from the 

third ring of ionised tricyclic indoles is not possible because there are 

insufficient carbon atoms in this ring to permit the formation of a stable 

product ion. Under these circumstances, loss of a hydrogen atom often 

occurs, as has been observed in this case. This interpretation was confirmed 

by deuterium labelling: [1,1-2H2]-1,2,3,4-tetrahydropent[b]indole and [3,3-

2H2]-1,2,3,4-tetrahydropent[b]indole both showed intense signals for the loss 

of a hydrogen and a deuterium atom, thus establishing that [M-H]+ originates 

by expulsion of a hydrogen (or deuterium, in the case of the labelled species) 

atom from the third ring of these tricyclic indoles.  

 

1.4.1.3. Mass Spectra of n-oxo-cycloalkan[b]indoles 

 

 

 

Tricyclic indoles with a carbonyl group in the third ring are obviously 

worthy of investigation because of their resemblance to the tricyclic core of 

scytonemin. As is generally the case for aromatic compounds, and as has 

been summarised above for the corresponding unfunctionalised tricyclic 

indoles, strong M+. signals have been reported in the mass spectra of these 

ketoindoles. Indeed, in many cases, the molecular ions produce the base 

peak.  The two main fragmentations of the radical-cations derived from these 

ketoindoles with the carbonyl group in the 1- or 4-position are [M-28]+. and 

[M-56]+..83 These processes are primary and secondary fragmentations, 
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respectively, producing fragment ions that are formed in one and two steps 

from the ionised molecule. The primary fragment ion could be either [M-CO]+. 

or [M-C2H4]
+.; similarly, the secondary fragment ion could be either [M-CO-

C2H4]
+. or [M-C2H4-CO]+. (assuming, as is very likely, that the species arises 

by consecutive loss of two different molecules, in either possible order). 

Accurate mass measurements at high resolution confirmed that the 

elemental composition of the primary fragment ion of 17 at m/z 143 was 

C10H9N. It was concluded, therefore, that CO is lost preferentially in the 

primary fragmentation, which may be followed by elimination of C2H4. When 

other homologous species were subjected to mass spectrometry during the 

course of the research reported in Chapter 3 of this thesis, further evidence 

to support this view was acquired from the fragmentation of ionised tricyclic 

ketoindoles with one or two methyl groups in the third ring. 

When the carbonyl group is in the 3-position, 25, loss of CO followed 

by C2H4 still occurs from the ionised molecule. However, a new pathway, 

elimination of a neutral species with a mass of 42 amu, competes. This new 

fragmentation, which has been interpreted as loss of ketene (CH2=C=O) via 

RDA, allows tetrahydrocarbazoles with a carbonyl group in the 3-position to 

be distinguished from their isomers with a carbonyl group in the 1 or 4 

position.  The new work reported in Chapter 3 confirms the generality of 

these conclusions, as well as extending them to include the case of 

tetrahydrocarbazoles with a carbonyl group in the 2 position and/or one or 

two methyl group(s) in the third ring. 
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1.4.1.4. Vibrational and Mass Spectroscopy  
 

 
Any spectroscopic protocol for detecting and characterising model 

tricyclic indoles would be enhanced if it includes at least two different 

methods. In this connection, vibrational spectroscopy has many advantages 

that complement those of mass spectrometry (which is exceedingly sensitive, 

highly versatile and rapid).89-93 Vibrational spectroscopy is neither destructive 

nor invasive; Raman spectroscopy offers another advantage in so far as it 

arises from scattering of electromagnetic radiation from the surface of the 

analyte, thereby circumventing any requirement for sample preparation or 

transmission of the radiation through the body of the sample. In addition, 

vibrational spectroscopy is especially well suited to detecting important 

functional groups (especially N-H, C=N, C=O and C=C bonds).94 Infrared (IR) 

spectroscopy is normally employed by organic chemists because it is well-

suited for establishing the presence of functional groups that contain a high 

degree of electrical polarity; this feature of IR spectroscopy reflects the fact 

that vibrations that cause a change in the permanent electric dipole moment 

of the molecule under investigation couple efficiently with the incident 

radiation.95 Since O-H and C=O bond fall into this category, IR is often 

employed in studying keto-enol tautomerism.96 On the other hand, in Raman 

spectroscopy, efficient coupling of the incident radiation occurs when the 

molecular vibration causes a change in the dimensions of the polarisability 

ellipsoid of the molecule.97, 98 In general, vibrations that are strongly active in 

IR spectroscopy are less active in Raman spectroscopy; C=O, O-H and N-H 

vibrations usually fall into this category. Conversely, vibrations that are less 
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active in IR spectroscopy are sometimes strongly active in Raman 

spectroscopy (C=C vibrations are an important case in point). 

If a molecule possesses a centre of symmetry (which necessarily 

means that it cannot have a permanent electric dipole moment), the contrast 

between IR and Raman spectroscopy assumes a “black and white” nature, 

with no shade of grey: any vibration of such a molecule that is active in the IR 

will be inactive in the Raman, and vice versa. This rule of mutual exclusion 

can be a most useful guide in comparing IR and Raman spectra of 

centrosymmetric molecules.99   

These considerations reveal that the vibrational spectroscopy (which 

is non-destructive and non-invasive)100, 101 is highly complementary to mass 

spectrometry (which is destructive, but exceptionally sensitive and easily 

combined with chromatographic methodology to analyse mixtures)89-91.  

Moreover, the two main types of vibrational spectroscopy are complementary 

to each other, thus further enhancing the power of a spectroscopic protocol 

based on a combination either or both with mass spectrometry.  

  In early work on the preparation of tricyclic ketoindoles with a “6,5’6” 

ring pattern, 11, obtained from cyclohexan-1,3-diones, it was proposed on 

the basis of the colour of the relevant phenylhydrazone derivative and other 

considerations that the carbonyl group was in the 4-position (rather than the 

2-position).102 This study was performed before modern spectroscopic 

methods were routinely utilised by organic chemists for structure elucidation.  

When this early work was repeated at the outset of the current investigation, 

the IR spectrum of the supposed ketoindole showed neither of the expected 

bands at about 3330 cm-1 (the strongly active N-H stretch that occurs in the 
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spectrum of most indoles) or 1700 cm-1 (the strongly active C=O stretch that 

appears in the spectrum of practically every carbonyl compound). These 

preliminary observations suggested that the vibrational spectra of these 

heterocycles could be more interesting than might have been anticipated. 

Indeed, the possibility that the compounds were actually hydroxyindolenines 

had to be seriously considered.   

 

 

 A search of the requisite literature in the Cambridge crystallographic 

database revealed that molecular structure of 1,2-dihydrocarbazol-4(3H)-one, 

11, in the crystalline state consists of strongly associated molecular 

aggregates with intermolecular nitrogen-hydrogen-oxygen bridges between 

the NH of the indole and the carbonyl groups in the anti-form.103, 104 This 

finding is consistent with the conclusions reached many years ago on the 

basis of evidence that might now be considered rather speculative.102 

Nevertheless, a more detailed analysis of various spectroscopic data, as 

presented in Chapter 3 of this thesis, indicates that these ketoindoles are not 

typical of compounds containing an indole N-H and a C=O functional group, 

particularly in the solid state. Considerable care is needed in interpreting their 

IR spectra, which could easily confuse an unwary interpreter.  
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1.5. Aim and Hypothesis 
 

 

The initial objective of the research presented in this thesis was to 

examine the potential of tricyclic indoles as model compounds for 

establishing a spectroscopic protocol for detecting the presence of potential 

biomarkers for extant and extinct life. It was envisaged that a combination of 

mass spectrometry and vibrational spectroscopy, both of which can be done 

with miniaturised instrumentation capable of being deployed remotely in 

extreme environments on Earth and elsewhere, would form the basis of the 

analytical techniques in this approach.   

In order to maximise the power of such an approach, it was necessary 

to study in more detail the mass and vibrational spectra of the chosen model 

compounds. Several ionisation methods, particularly electrospray (ESI), 

which is readily combined with chromatographic methods to permit the direct 

analysis of mixtures, have been devised and applied since the earlier studies 

of the EI mass spectra of tricyclic indoles were reported.82, 83 Consequently, 

one aspect of the mass spectrometric part of the proposed investigation was 

to extend the range of ionisation methods that have been applied in studying 

heterocycles of this general structure. In addition, the fragmentation of the 

relevant M+. radical-cations (formed under EI conditions) and MH+ ions 

(generated by ESI) should be investigated in more detail, ideally by studying 

the behaviour of deuterium labelled analogues. The required labelled tricyclic 

indoles could be prepared by a variety of routes, including subjecting 

cycloalkanones to exchange of the protium (H) atoms on the α-carbon atoms 

with D2O (deuterium, D, oxide, alias “heavy water”, which is the cheapest 

source of deuterium). The resultant deuteriated ketones could then be 



23 

 

elaborated by the Fischer indole synthesis to produce tricyclic model 

compounds with a CD2 group. Another option would be to reduce with LiAlD4 

the n-oxocycloalkan[b]indole to give deuterium labelled tricyclic indoles.  

These labelled species would also serve as internal calibrants (“spikes”) in 

further investigations designed to establish the detection limits for the 

unlabelled compounds alone or in admixture with other materials.  

Determining the threshold above which it would be possible to detect and 

characterise the model compounds would obviously be important in devising 

a robust spectroscopic protocol. 

 

Scheme (6) Reagents and conditions: i) D2O, NaOD, PhCH2N(C2H5)3
+Cl-; repeat  

twice; ii) PhNDND2, CD3CO2D, ∆; iii) D2O, repeat twice 

 

The secondary objective was be to study in greater depth the 

vibrational spectroscopy of suitable tricyclic indoles with a carbonyl functional 

group in the 4-position, in order to ascertain whether these heterocycles 

really are ketoindoles. As indicated above, a cursory inspection of the IR 

spectrum of “4-oxotetrahydrocarbazole” suggests that this compound may 

actually be the corresponding indolenine, at least in the solid state. A range of 

tricyclic indoles with various ring patterns (not only “6,5,6”, but “6,5,7”, “6,5,8” 

and, if possible, “6,5,5”, which bears the strongest resemblance to the 
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tricyclic core of scytonemin) with and without a carbonyl group in the third 

ring will be prepared for investigation by mass spectrometry. It would logical 

to study their vibrational spectra in detail whilst seeking to devise the 

spectroscopic protocol for detecting these species. Furthermore, establishing 

whether these species exist predominantly or exclusively as the “carbonyl” 

(ketoindole) or “enol” (hydroxyindolenine) tautomer would be an integral part 

of this aspect of the investigation. It would also be of intrinsic interest 

because indolenines are normally much less stable than indoles. 

These and related considerations indicated that the starting point for 

the project should be to prepare and investigate a range of tricyclic indoles by 

a combination of mass spectrometry and vibrational spectroscopy. 
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2. SYNTHESIS OF INDOLES  

      Since the discovery of indole, a wide variety of classical techniques have 

been developed.105-109 The suitability of a specific method is dictated by 

several factors including functional group tolerance and availability of the 

starting materials. Reissert,110, 111 Madelung,107 Bartoli,109, 112 Gassman,113 

Heck coupling,108 Mori Ban114, 115 and Fischer indole methods116, 117 are 

examples of methods for synthesising indoles. 

         The Reissert indole method involved the base-catalysed condensation 

of o-nitrotoulene, 41, with diethyl oxalate 42 in the presence of NaOEt, 

Scheme (7).118 This is followed by hydrolysis of the ester functional group to 

give the corresponding acid, 43, and the reduction of the nitro moiety with 

zinc in acetic acid to give the amino functionality, o-aminophenylpyruvic acid, 

44. This reduction step can be effected by a variety of reagents including 

Zn/AcOH, Zn/AcOH/Co(NO2)2, Zn-Hg/HCl, Fe/HCl, Fe/HOAc or Na2S2O4. 
111 

This is followed by nucleophilic attack of the amino group on the electrophilic 

carbonyl group to furnish the cyclized intermediate, 45. The final step 

involves the decarboxylation to give the desired indole, 2. 

 

Scheme (7): Reissert indole synthesis  
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2.1.  The Fischer Indole Synthesis  

2.1.1  Overview, Scope and Limitations of the Process 
 

Amongst the wide range of methods available, the Fischer method 

was employed to synthesise the model compounds. This method involves the 

preliminary condensation of a carbonyl compound (usually a ketone, but 

occasionally an aldehyde) with an arylhydrazine to form an arylhydrazone, 

which is then rearranged to give the desired indole in a step that is often 

described as “indolisation”. The overall process may, therefore, be regarded 

as occurring in two stages, namely formation of the arylhydrazone, followed 

by indolisation to form the bicyclic indole nucleus, Scheme (8). 

 

 

Scheme (8): Fischer indole synthesis 

 

 Although the Fischer indole synthesis is very general in scope, it does 

have some limitations: the most important restriction is that the carbonyl 

compound must be able to enolise. Moreover, if the intermediate 

arylhydrazone is not symmetrical, either because the parent ketone has two 

different alkyl groups attached to the carbonyl carbon atom or because the 

arylhydrazine has a substituent in the 2 or 3 position, but does not have the 

same substituent in the corresponding 6 or 5 position, more than one indole 

(or indolenine, if a non-aromatic product is formed) may be produced.  

Fortunately, even in such cases where an unsymmetrical arylhydrazone can 
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give two or more products, it is often possible to secure preferential formation 

of just one indole. In order to appreciate the significance of these potential 

complications, it is necessary to review briefly the mechanism of the Fischer 

indole synthesis. 

 

2.1.2. The Mechanism of the Fischer Indole Synthesis  
 

 
The first part of the synthesis is the formation of the arylhydrazone. 

This condensation occurs by a series of elementary steps, including 

nucleophilic addition of the lone pair on nitrogen to the carbonyl carbon atom 

of the ketone, proton transfers and elimination of either water or hydroxide 

anion. Scheme (9) illustrates the reaction of cyclohexanone, 46, and 

phenylhydrazine, 47, to give the corresponding phenylhydrazone, 48. 

 

Scheme (9): Formation of the intermediate arylhydrazone. 

 

 The second part of the Fischer indole synthesis, the indolisation of the 

arylhydrazone, is clearly much more complicated. Since the overall 
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consequences of the overall process include the formation of a new ring and 

the loss of one of the two nitrogen atoms, early workers devoted 

considerable attention to elucidating a satisfactory mechanism.119-121  Various 

pathways were proposed. At least some of these pioneering investigations 

took place when the concept of organic reaction mechanism was in its 

infancy. After extensive study, a mechanism that is consistent with the 

experimental findings and which is now generally accepted was proposed in 

1918.122, 123 This mechanism involves three distinct steps in the indolisation 

of the arylhydrazone: firstly, tautomerisation to the less stable isomeric ene-

aryhydrazine; secondly, formation of a new C-C bond via a pericyclic process 

that may be described as a [3,3]-sigmatropic rearrangement; and, thirdly, 

loss of ammonia to form an indole nucleus.16, 43, 123-125 An illustrative example 

of these steps is shown in Scheme (10) for the synthesis of 

tetrahydrocarbazole from the arylhydrazone derived from phenylhydrazine 

and cyclohexanone. Certain aspects of some of these steps are explained in 

greater detail when discussing the indolisation of the monophenylhydrazones 

formed from cyclohexan-1,3-diones. 

 

Scheme (10): Indolisation of the cyclohexanonephenylhydrazone. 
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2.1.3. Regiochemistry of Indolisation 

 

 
As noted in section 2.1.1., one potential limitation of the Fischer indole 

synthesis is that the indolisation of arylhydrazones derived from many 

unsymmetrical ketones may result in the formation of two or more isomeric 

indoles and/or indolenines.43, 126, 127 For example, the cyclisation of the 

phenylhydrazone of 2-substituted cyclohexanones, 49, was found to give a 

mixture of indolenine, 52 and indole, 53, Scheme (11).126 Preliminary studies 

showed that the direction of indolisation and the ratio of the product are 

greatly affected by the reaction conditions (i.e. the solvents and the 

catalysts);126-128 under weakly acidic conditions, such as with glacial acetic 

acid as the solvent without the addition of stronger acids, the more 

substituted ene-arylhydrazines, 50, predominated. Conversely, under 

strongly acidic conditions, such with added sulphuric acid, the less 

substituted ene-arylhydrazines, 51, were formed. This contrasting behaviour 

may be attributed to the relative stabilities of the two possible ene-

arylhydrazine intermediates.  

 

Scheme (11): Indolisation of 2-akylcyclohexanone monophenylhydrazones; a) 

indolisation with a weak acid; b) indolisation with a strong acid.   
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2.1.4 Experimental aspects of the Fischer Indole Synthesis 

  
In a typical procedure, the arylhydrazone is obtained by treating the 

requisite ketone (or aldehyde) with an equimolar quantity of the appropriate 

arylhydrazine. The key indolisation sequence may then effected by moderate 

heat under thermal conditions, normally with acid catalysis.16, 124, 125 Many 

different catalysts may be used, including mineral acids (sulphuric acid or 

hydrogen chloride), organic acids (trifluoroacetic acid and various sulphonic 

acids) and Lewis acids. A particularly convenient method involves the use of 

an acidic organic solvent, such as formic or acetic acid (or a homologue if a 

higher temperature than the boiling point of acetic acid is needed). In many 

instances, isolation of the intermediate arylhydrazone is unnecessary; the 

reaction can be conducted as a “one-pot” procedure starting from equimolar 

quantities of the ketone or aldehyde and the arylhydrazine, so that 

indolisation of the arylhydrazone occurs in situ. This advantageous method 

was discovered as long ago as 1883 by Emil Fischer himself while treating 

pyruvic acid 1-methylphenylhydrazone, 54, with alcoholic hydrogen chloride 

which gave 1-methyl indole-2-carboxylic acid, 55, Scheme (12).16, 43 

 

 

Scheme (12) Reagents and conditions: i) alcoholic hydrogen chloride, 5 %. 

 

In the context of the work reported in thesis, the formation of 

tetrahydrocarbazole was readily achieved by this “one pot” method, simply by 

dropwise addition during a period of 30 min one equivalent of 
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phenylhydrazine to a refluxing solution of cyclohexanone in acetic acid. The 

mixture was then refluxed for a further hour, and poured while still hot into a 

beaker and allowed to solidify; after isolating and washing the crude product 

by filtration, recrystallisation gave pure tetrahydrocarbazole in high yield. This 

example is, of course, particularly straightforward because of the symmetry 

of both starting materials, which means that only one indole may be 

produced. It was effectively employed in the preparation of many of the 

tricyclic indoles, with and without a substituent in the third ring, that were 

required in this work.  In other cases, however, thought must be given to the 

possibility that more than one product may be formed. 

 

2.2. Synthesis of Indoles 

 

 The following sections summarise how the indoles required in this 

research were prepared.  Further details are shown in the experimental 

section (9.2.1.–9.2.4.). All these heterocyclic compounds were characterised 

by spectroscopic methods (1H NMR, 13C NMR, IR and mass spectrometry). 

High-resolution mass spectrometry was applied to establish their molecular 

formulae. 

 

2.2.1 Synthesis of Unlabelled Tricyclic Indoles 

2.2.1.1. Unsubstituted Tricyclic Indoles and Tricyclic Indoles with one or 
more alkyl groups in the third ring 
 

 These indoles were synthesised without difficulty by condensation of 

phenylhydrazine, 47, and the appropriate cycloalkanone, 46, 56-58, in a “one 

pot” procedure in refluxing acetic acid. The published procedure129 was 

significantly improved by performing the reaction under a nitrogen 



32 

 

atmosphere, which greatly reduced the colour of the crude product, thereby 

removing the need for the use of decolourising charcoal in the final 

recrystallisation.  Illustrative examples are summarised in Scheme (13). 

 

Scheme (13) Reagents and conditions: AcOH, 120 ˚C, N2, 60-120 mins, 36-54 %. 

 

2.2.1.2. Synthesis of n-oxocycloalkan[b]indoles 
 

 The tricyclic indoles with a carbonyl group in the third ring were 

prepared by two different routes; firstly, by condensation of phenylhydrazine 

with cyclohexandiones (the Fischer indole synthesis, with isolation of the 

intermediate monophenylhydrazone);102 and, secondly, by oxidation of the 

corresponding tricyclic species without a carbonyl group.   

 

2.2.2.1. Method 1: Fischer Indole Method  
 

Compounds 11, 13 and 14, were synthesised from phenylhydrazine 

and the requisite 1,3-cyclohexanedione, followed by the acid-catalysed 

indolisation of the intermediate phenylhydrazone, Scheme (14) and (16), 
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respectively. Some aspects of this process deserve more detailed 

consideration.   

 

 

Condensation of 1,3-cyclohexanediones with Phenylhydrazine  

 

The first step of the synthetic pathway involved condensing an equimolar 

mixture of the appropriate 1,3-cyclohexanedione, 61-63, with 

phenylhydrazine, 47, in dilute acetic acid solution to give a good yield the 

corresponding monophenylhydrazone, 64–66,102 Scheme (14). 

 

Scheme (14) Reagents and conditions: i) AcOH, H2O, 100 ˚C, 5 mins, 60–73 %.  

 

The isolation of these monophenylhydrazones, rather than the 

diphenylhydrazones produced by attack of two different molecules of 

phenylhydrazine on each of the two carbonyl groups, reflected their structure 

and stability, as well as the stoichiometry of the reactants. Extensive 

conjugation of the C=C -bond of the enol tautomer of the 
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monophenylhydrazone with the C=N -bond and with the aromatic ring if the 

nitrogen atom attached to the aromatic ring is sp2 hybridised, strongly 

stabilises this product. One mechanism for the formation of the 

monophenylhydrazone is shown in Scheme (15). An alternative would be for 

the phenylhydrazine to attack the carbonyl group of the enol tautomer of the 

cyclohexan-1,3-dione, thus forming the enol tautomer of the 

monophenylhydrazone directly, perhaps with additional stabilisation of some 

of the intermediates by conjugation of the (developing) C=N -bond with the 

C=C -bond in the enol tautomer. 

 

 

Scheme (15): Proposed mechanism for the formation monophenylhydrazones. 

 

The following elementary steps are involved in the mechanism 

depicted in Scheme (15). Initial protonation (step a) of the carbonyl oxygen 

atom by the solvent (acetic acid), which also acts as a catalyst, makes the 

ketone more electrophilic, thereby accelerating the nucleophilic addition of 

phenylhydrazine (step b). There are at least two reasons why the lone pair of 

electrons on the β-nitrogen is more nucleophilic than that of the α-nitrogen 
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atom; firstly, because it is less hindered; and, secondly, because the lone 

pair of electrons on the sp2 hybridised α-nitrogen atom is delocalised with the 

aromatic ring, thereby making it less available to donate to a proton or to act 

as a nucleophile. This nucleophilic addition leads to a tetrahedral 

intermediate. Proton transfer (almost certainly via the protic solvent, acetic 

acid, rather than directly between the two heteroatoms attached to the same 

carbon atom) from the positively charged nitrogen atom to the oxygen atom 

creates a very good leaving group (water, step c). Elimination of water is 

favoured by the participation of the lone pair of electrons on the β-nitrogen 

atom with concomitant formation of the new C=N -bond (step d). This 

addition-elimination reaction is followed by deprotonation of the second 

nitrogen atom to give the keto tautomer of the desired 

monophenylhydrazone, (step e), which may isomerise to the corresponding 

enol tautomer. Exactly parallel steps starting from the enol tautomer of the 

cyclohexan-1,3-dione would give the enol tautomer of the 

monophenylhydrazole directly, without the final tautomerisation. However, 

the original nucleophilic addition would be expected to be slower than that on 

the diketone because the electrophilicity of the carbonyl component would be 

reduced by conjugation of the C=C and C=O π-bonds of the enol tautomer.  

 

Cyclisation of Monophenylhydrazone to form the Indole Nucleus  

 

The indolisation of the intermediate monophenylhydrazone was first 

demonstrated in 1923 in the synthesis of 11 by boiling  cyclohexane-1,2-

dione monophenylhydrazone in HCl and AcOH.130 However, in the synthesis 

of the ketoindoles in this project, a later variant that gave better yields was 
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adopted: treatment of the monophenylhydrazones of cyclohexanediones, 64-

66, with dilute sulphuric acid (typically 40%) at 100 °C, Scheme (16). The 

proposed mechanism for this indolisation process is summarised in Scheme 

(17).   

 

 

Scheme (16): Reagents and conditions: H2SO4, H2O, 100 °C, 90-120 min, 35-73%. 

 

 

 

Scheme (17): Proposed mechanism for the indolisation of monophenylhydrazones. 
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A tautomeric shift of an acidic α-proton to the nitrogen atom gives the 

ene-phenyhydrazine, (step f); this ene-phenylhydrazine which contains a 

basic sp3 nitrogen atom, may undergo protonation on this basic nitrogen 

atom (step g), as in the case of the related o-benzidine rearrangement. The 

resultant ene-phenylhydrazine may then undergo the [3,3]-sigmatropic 

rearrangement, which is the key step (h) in the indolisation process. This 

pericyclic process, which may be facilitated by the positive charge on the 

nitrogen atom, results in cleavage of the weak N–N σ-bond and the formation 

of a stronger C–C σ-bond. Re-aromatisation of the six membered carbocyclic 

ring by loss of a proton from the carbon atom to which the new C-C bond 

was formed, with protonation of the nitrogen atom of the intermediate imine, 

produces an aromatic amine, (step k). This step corresponds to tautomerism 

of the imine functional group to the more stable enamine (which is stabilised 

because the double bond completes the aromatic sextet). Although 

hydrolysis of the protonated imine containing the original β-nitrogen atom 

could give the corresponding carbonyl compound, this step is much less 

favourable than nucleophilic attack of the lone pair of electrons on the other 

nitrogen atom (step l). This step completes the formation of the central five-

membered ring.  Further proton transfers between the nitrogen atoms (again, 

almost certainly via the protic solvent, rather than directly between these 

heteroatoms, step m) results in the formation of an intermediate from which 

ammonia may be expelled with aromatisation of the heterocyclic ring (step 

n). This last step is depicted in Scheme (17) as occurring by loss of a proton 

from the carbon atom that is attached to the carbonyl group of the product; 

however, it is perfectly possible, if not likely, that the lone pair of electrons on 
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the nitrogen atom in the indole nucleus assists in the elimination of ammonia, 

with aromatisation of the heterocyclic ring occurring in a subsequent step.43 

  

Ring closure of 64, 65 and 66 can give two products rising from the 

two different ene-phenylhydrazines that could be formed from the 

tautomerisation of the phenylhydrazone, Scheme (18). However, the 

formation of the ene-phenylhydrazine (via Route 1) is favoured;16, 104 the 

most acidic proton located between the two electron withdrawing groups 

(C=O and C=N), is lost in the enolisation. In addition, enolisation by Route 1 

is more favourable because it results in the formation of conjugated ene-

phenylhydrazine, whereas the corresponding species formed by Route 2 

does not have the stabilising conjugation of the C=C and C=N -bonds. 

 

 

Scheme (18): Phenylhydrazone to ene-phenylhydrazine tautomerism resulting in the 

possibility of forming isomeric products. 
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After successfully converting the monophenylhydrazones formed from 

the cyclohexan-1,3-diones into their corresponding indoles, attempts were 

made to extend this methodology to synthesising tricyclic indoles with five- 

and seven-membered third rings, 17 and 18, Scheme (19). Unfortunately, 

several efforts to prepare the monophenylhydrazone of cyclopentan-1,3-

dione, 70, by reacting cyclopentan-1-3-dione, 71, with phenylhydrazine 

Scheme (20), gave only intractable red tarry material. Furthermore, it was 

known that 1,3-cycloheptandione is not commercially available and its 

synthesis requires challenging and potentially hazardous work.131, 132 

Consequently, another method for the synthesis of these n-

oxocycloalkan[b]indoles was required. Fortunately, the required ketoindoles 

were accessible by alternative routes involving oxidation of tricyclic indoles 

that had been prepared by the Fischer indole method. 

 

 

 

Scheme (19) Reagents and conditions: i) H2SO4, H2O, 100 °C, 90-120 mins. 

 

 

 

Scheme (20) Reagents and conditions: i) AcOH, H2O, 30 mins. 
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2.2.2.2. Method 2: Oxidation of Unfunctionalised Tricyclic Indoles 

 
The successful synthesis of the desired ketoindoles, 17, 18 and 19, is 

outlined in Scheme (21) and is based on the selective oxidation of indoles 

using 2,3-dichloro-5,6-dicyanoquinone (DDQ). This method has been 

reported for the synthesis of a series of other acyclic and tricyclic indoles, 

including indoles derived from cyclopentanone to cyclooctanone, in good 

yield.133 In addition, 3-methyl-1,2,3,9-tetrahydro-4H-carbazol-4-one, 12, 

which could not be directly prepared via the Fischer indole synthesis, was 

obtained in moderate yield via this oxidative procedure, Scheme (21).  

 

 

Scheme (21) Reagents and conditions: i) THF, 0 °C, DDQ, THF, RT, 1 hr, 36-61%. 

 

2.1.3. Synthesis of 1-, 2- and 3-oxocyclohexan[b]indoles 

 

 

These tricyclic indoles were prepared by condensing the requisite 

parent cycloalkanone with phenylhydrazine (either directly in “one pot” or by 

isolating and indolising the intermediate phenylhydrazone), Scheme (22). 

Controlled oxidation of the unfunctionalised tricyclic indole, 26, with diiodine 
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pentoxide (I2O5)
134 provided a convenient means of preparing ketoindoles 

with a carbonyl group in the 1-position, 23, (route A). In routes (B and C), 

acid catalysed deprotonation of the ketal protecting groups, afforded 

compounds 24 and 25, respectively, Scheme (22). Although this synthetic 

approach does not entail oxidation of intermediate unfunctionalised tricyclic 

indoles, it is included here because of the generic similarity of these isomeric 

ketoindoles with a carbonyl group in various positions in the third ring.  

 

 

 

Scheme (22) Reaction conditions: i) CH3CO2H, reflux, N2, 60 mins; ii) I2O5,THF, 
H2O, RT; 51%;  iii) C6H5CH3, HOCH2CH2OH, p-CH3C6H4SO3H, reflux; iv) CH3OH, 
H2SO4 (10%), RT, 45%; v) C2H5OH, HOCH2CH2OH, 190 °C; vi)  THF, HCl (15%), rt, 
62%. 
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2.3.  Synthesis of Deuterium Labelled Indoles 
 

In order to obtain more insight into the fragmentation of M+. and MH+ 

ions formed in the mass spectrometer from selected tricyclic indoles, their 

deuterium labelled analogues, 29, 30, 35 and 36, were synthesised. 

 

2.3.1 Unfunctionalised Tricyclic Indoles 

2.3.1. Method 1: Fischer Indole Synthesis 

 

 

Retrosynthetic analysis of the unfunctionalised tricyclic indoles via the 

retro-Fischer indole synthesis reveals phenylhydrazine and the 

corresponding tetradeuteriocycloalkanones, 29, 30, 35 and 36, Scheme (23), 

as starting materials. Further analysis of the required 

tetradeuteriocycloalkanones by functional group interconversion (FGI, of C-D 

to C-H bonds) reveals the parent cycloalkanones, which would be expected 

to undergo exchange of the protium (H) atoms on the α-carbon atoms for 

deuterium (D) atoms when subjected to base-catalysed exchange with 

sodium deuterioxide in deuterium oxide (NaOD/D2O).135  It should be noted 

that two of the four deuterium atoms in the labelled cycloalkanone are lost 

during the forward reaction sequence because one of the -carbon atoms 

and the original carbonyl carbon atom become the quaternary carbon atoms 

that form the C=C bond where the second and third ring are fused in the 

tricyclic indole. This apparent inefficiency of introducing deuterium atoms that 

are then removed is offset by the ease of the exchange process and the low 

cost of deuterium oxide.  
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Scheme (23): Retrosynthetic analysis of 52–55. 

 

 

Three successive exchanges of cyclohexanone with sodium 

deuterioxide in deuterium oxide in the presence of a phase transfer catalyst 

gave tetradeuteriocyclohexanone, 74, with a very high level of deuterium 

incorporation (at least 97 %), as indicated by 1H NMR, Scheme (24).   

 

 

Scheme (24) Reagents and conditions: i) D2O, NaOD, PhCH2N(C2H5)3
+Cl-; repeat  

twice; ii) PhNDND2, CD3CO2D, ∆; iii) D2O, repeat twice. 

. 

However, when 74 was reacted with phenylhydrazine in a one pot 

Fischer indole method in the presence of CH3CO2H as solvent and catalyst, 

1H NMR analysis of the product revealed that the labelled 

tetrahydrocarbazole, 29, had been formed with only a relatively low level 

(40%) of deuterium incorporation. In order to obtain the labelled product with 

a higher level of deuterium incorporation (ideally greater than 95%), it was 

necessary to ascertain how the loss of D occurred. After considering the 

reaction mechanism, it appeared that there are two obvious types of protium 
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(H) atoms attached to a heteroatom that could easily have exchanged with 

the deuterium (D) atoms in the tetradeuteriocyclohexanone, 74, during the 

synthesis of the tetrahydrocarbazole: firstly, the three protium atoms on the 

nitrogen atoms in the phenylhydrazine; and, secondly, the acidic proton on 

the oxygen atom of the unlabelled acetic acid solvent.  It is also possible, but 

less likely, that certain protium atoms attached to carbon atoms could 

participate in the “back exchange” process(es) that erode the positional 

integrity of the CD2 group that becomes incorporated in the third ring.  At 

least four possibilities exist: firstly, the four protium atoms in the carbocyclic 

aromatic ring in the tricyclic indole (provided that exchange of these ring 

protons can occur during or after the formation of the product); secondly, a 

pair of protium atoms in the CH2 group in position 4 of the third ring (the 

methylene group in position 1 of the third ring is derived from one of the two 

CD2 groups in the tetradeuteriocyclohexanone; thirdly, the three protium 

atoms of the methyl group of the unlabelled acetic acid (CH3CO2H) solvent; 

and, fourthly, one of the protium atoms in an ortho position in the 

phenylhydrazine is eventually lost in the aromatisation step in the indolisation 

[see step k in Scheme (17)].  Any of these carbon-bound protons could, in 

principle, contribute to the undesirable “back exchange” process(es). 

In general, hydrogen atoms attached to a heteroatom, especially 

oxygen and nitrogen, participate much more rapidly in exchange processes 

than those attached to carbon atoms, especially in protic solvents and under 

acidic conditions. These considerations suggest that the origin of the protium 

atoms that erode the positional integrity of the CD2 group in the labelled 

tetrahydrocarbazole is likely to be the four atoms that are attached to the 
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oxygen and nitrogen atoms, respectively, of the acetic acid and 

phenylhydrazine. 

There are convincing reasons for discounting the possibility that the 

protium atoms of the aromatic ring of the indole nucleus do participate in the 

exchange processes, especially the fact that there is no change in the 

relative integration of the signals for these aromatic protons and those of the 

two methylene groups of the third ring that resonate at highest field. Similar 

remarks apply to the protons of the tetradeuteriocyclohexanone that 

eventually become part of the methylene group in position 4 of the 

tetrahydrocarbazole. It is, however, perfectly possible that reversible 

enolisation of the unlabelled acetic acid [to form CH2=C(OH)2] under acidic 

conditions might contribute to the “back exchange” of the deuterium atoms in 

the CD2 groups of the tetradeuteriocyclohexanone, particularly since the 

acetic acid is present in excess as the solvent.  Nevertheless, it is intuitively 

more likely that the major causes of the low level of incorporation of 

deuterium in the labelled tetrahydrocarbazole are the more acidic protons 

attached to oxygen and nitrogen in the reactants and solvent. It must also be 

remembered that this reaction was done on a 12 mM scale. Consequently, 

the relative proportions of protium and deuterium atoms on the various sites 

in the reagents and the solvent can be estimated, at least approximately. 

There should be up to 50 mM of protium atoms on the nitrogen atoms and 

one of the ortho positions of the phenylhydrazine (four per molecule of 

reagent), 50 mM of deuterium atoms on the α-positions of the labelled 

cyclohexanone (four per molecule of starting material) and roughly 75 mM of 

protium atoms on the oxygen atoms of the acetic acid solvent (one per 
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molecule of solvent, but it is present in great excess). If these protium and 

deuterium atoms were to become randomly distributed in the exchange 

processes (so that any two them were to end up in the methylene group of 

the non-aromatic ring), level of deuterium incorporation would be 

approximately 30% (that is, 100 x 50/175). This figure is quite close to the 

observed value. The deviation from the experimental value could reflect 

either incomplete exchange (which would mean that the erosion of the 

positional integrity of the CD2 group was less extensive than the theoretical 

maximum) or ineffective participation by some protium atoms (most probably 

that in the ortho position of the phenylhydrazine (which would reduce the 

number of participating protium atoms, thus lowering the maximum possible 

erosion of the positional integrity). On the assumption that this analysis is 

reasonably accurate, one of the main potential sources of “exchangeable” 

protium atoms was eliminated by and substituting CD3CO2D for CH3CO2H as 

solvent. This modification raised the level of deuterium incorporation to 

approximately 65%. 

The next step was to remove the other source of readily exchangeable 

protium atoms by shaking the phenylhydrazine with D2O to introduce NDs 

instead of NHs.  A high level of incorporation (exceeding 92%) of deuterium 

(to form trideuteriophenylhydrazine, C6H5NDND2, 47-D3) was achieved by 

repeating the shaking three times with fresh portions of D2O. When 

tetradeuteriocyclohexanone was condensed with trideuteriophenylhydrazine 

in tetradeuterioacetic acid (CD3CO2D) as the solvent, the desired labelled 

tetrahydrocarbazole was obtained with a deuterium incorporation that 

exceeded 92%. Similar results were secured when other 
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tetradeutriocycloalkanones, 29, 30, 35 and 36, were treated with C6H5NDND2 

in the presence of CD3CO2D as the solvent. This method eventually 

permitted the preparation in moderate to good yield of the desired tricyclic 

indoles, 29, 30, 35 and 36, with a CD2 group in the 1-position of the third ring, 

Scheme (25).  

 

 

Scheme (25) Reagents and conditions: i) CD3CO2D, 120 ˚C, N2, 30-120 min, 42-

63%.  

 

2.3.2. Method 2: Oxidation of Unfunctionalised Tricyclic Indoles 
followed by Reduction 

 

 

An alternative retrosynthetic analysis of labelled tricyclic indoles 

entails functional group addition (FGA) to reveal a ketoindole, which itself 

may be further analysed by functional group removal (FGR) to the 

corresponding unlabelled indole, Scheme (26).   

 

 

 

Scheme (26): Retrosynthetic analysis of labelled tricyclic indoles via functional group 

addition and removal. 
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Although this analytical sequence may seem illogical in so far as a 

carbonyl group is introduced only to be removed, the facile reduction of 

certain ketoindoles by lithium aluminium hydride (LiAlH4) to the 

corresponding unfunctionalised indoles made the forward route to the 

analogous labelled indoles very attractive for three reasons. Firstly, the 

starting materials, the unfunctionalised tricyclic indoles, had already been 

prepared, usually by the Fischer indole synthesis; secondly, the forward 

sequence involves only two further steps, the oxidation and the subsequent 

reduction with LiAlD4; and, thirdly, it appeared that the two deuterium atoms 

could be introduced in the chosen position with high selectivity and in good 

yield, without any complications arising from the exchange processes that 

complicated the Fischer indole synthesis starting from 

tetradeuteriocycloalkanones.  

In practice, the first step in the forward sequence, the oxidation of the 

n-cycloalkan[b]indoles with DDQ to form the n-oxocycloalkan[b]indoles 

worked well. Unfortunately, however, the subsequent reduction with LiAlD4 

reduction did not always furnish the desired product, even after the 

intermediate ketoindole had been purified by chromatography. 

On the other hand, one positive outcome of the analysis shown in 

Scheme (26) was the realisation that the deuterium labelled n-oxo-

cyclohexan[b]indoles, 15, 16, 20 and 21, could be prepared by oxidation of 

their labelled unfunctionalised counterparts, 29, 30, 35 and 36, which had 

already been prepared.  Oxidation of the unfunctionalised labelled indoles 

with DDQ in tetrahydrofuran (THF) at 0 °C under an inert nitrogen 

atmosphere gave the desired labelled ketoindoles, Scheme (27). Integration 
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of the requisite signals in their 1H NMR spectra revealed that the 

incorporation of deuterium in the relevant CD2 group of compounds , 29, 30, 

35 and 36, was essentially the same (in excess of 92%) as that in the 

unfunctionalised species. 

 

 

 

 

Scheme (27) Reaction conditions; i) THF, 0 °C then DDQ, THF, RT, 1 hr, 36-61%. 

 

 
 

2.4. Conclusion  

 
      In summary, a total of 24 model compounds were synthesised by Fischer 

indole methodology; 10 unfunctionalised tricyclic indoles and 14 tricyclic 

indoles with a carbonyl group in different position of the third ring. The 

tricyclic indoles with a carbonyl group included all four isomers of the 6,5,6 

with a carbonyl group in each of the positions of the third rings. The 

compounds were prepared in order to investigate whether the position of the 

carbonyl group could be determined by a combination of mass spectrometry 

and vibrational spectroscopy see Chapter 3. In addition, four unfunctionalised 

deuterium labelled indoles were synthesised  to be used as internal 

standards to establish the detection thresholds of indoles and related 

compounds in a mixture, Chapter 4. 
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3.0. MASS AND VIBRATIONAL SPECTRA OF TRICYLIC 
INDOLES  

3.1. Introduction 
 

The pervious chapter described the synthesis of the model compounds 

using the Fischer indole method. The next step is to use a combination of 

mass and vibrational spectroscopy (IR and Raman) for detecting and 

determining the presence of carbonyl and/or methyl group(s) in these model 

tricyclic indoles.  

The complementary nature of these spectroscopic methods [vibrational 

spectroscopy [(which is non-destructive and, in the case of Raman 

spectroscopy, a surface technique) and mass spectrometry (which is 

versatile and extremely sensitive)] are great choices. For instance, the 

presence and position methyl group in 1,4-diarylbutadienes has been 

determined by a combination of mass and Raman spectroscopy.  

For the n-cycloalkan[b]indoles, particular attention is focused on the use 

of infrared spectroscopy to determine whether these compounds may best be 

described as ketoindoles or hydroxyindolenines. Computational modelling 

has been applied to shed further light on this interesting question. In the 

electron impact spectrum of these indoles, the fragment ions will be used to 

distinguish between the tricyclic indoles with various ring patterns and 

variations in the position of the carbonyl group in the non aromatic third ring. 

Eight deuterium labelled analogues will be investigated, in the hope of 

making more detailed assignments of the vibrational spectra and/or the 

fragmentation patterns in the mass spectra of these heterocycles. 
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3.2. Mass Spectra of Tricyclic and Tetracyclic Indoles 

3.2.1. EI spectra of Tricyclic Indoles 

 

 

The fragmentation patterns of some ionised n-oxocycloalkan[b]indoles 

(Section 3.2.1.1 and 3.2.1.2) and n-cycloalkan[b]indoles (Section 3.2.1.3) are 

summarised in this section. The size of the fused rings in polycyclic systems 

are denoted by numbers; thus, “6,5,6” denotes a system such as a 

tetrahydrocarbazole in which the indole is fused to a six membered third ring.  

All these compounds showed intense molecular ion (M+.) signals, as is the 

case with most polycyclic aromatic compounds. The relative molecular mass 

(RMM) and molecular formula (MF) were easily determined from these M+. 

signals. 

 

3.2.1.1. EI Mass spectra of n-oxocycloalkan[b]indoles 
 

 
 
 

       A total of eleven oxo-cycloalkan[b]indoles were studied, four of which 

have been previously investigated under EI conditions, and their 

fragmentation established.82, 83 As expected, these spectra show strong M+. 

signals with a relative intensity (RI) over 80%. In the case of tricyclic indoles 

where the third ring is smaller (“6,5,5”; 17) or bigger (“6,5,7”, 18) than in the 

“6,5,6” series, the M+. signals is the base peak, Tables (2) and (3).  
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Table (2): Important signals in the EI spectra of 11-14 
 
 

Compound  

Assignment 11 12 13 14 

m/z RI a m/z RI a m/z RI a m/z RI a 

185 92 199 85 199 88 213 98 M+. 

184 3 198 3 198 1 212 1 [M-H]+. 

- - 184 9 184 4 198 3 [M-CH3]
+. 

157 100 - - - - - - [M-C2H4]
+. 

- - 157 100 157 100 - - [M-C3H6]
+. 

- - - - - - 157 100 [M-C4H8]
+. 

129 75 - - - - - - [M-C2H4-CO]+. 

- - 129 65 129 71 - - [M-C3H6-CO]+. 

102 16 - - - - - - [M-C2H4-CO-HNC]+. 

- - - - - - 129 65 [M-C4H8-CO]+. 

- - 102 15 102 18 - - [M-C3H6-CO-HNC]+. 

- - - - - - 102 16 [M-C4H8-CO-HNC]+. 

 

a 
RI: relative intensity, measured by peak height and normalised to a value of 100 units for 

the most intense signal. 

 

          In each case, the EI spectrum is very clean, being dominated by M+., 

[M-CnH2n]
+. and/or [M-CnH2n+1]

+. peaks. The spectra of tricyclic indoles with a 

five or six membered third ring contain strong [M-CnH2n]
+. signals; in contrast, 

the homologues with a 6,5,7 and 6,5,8 ring pattern show [M-CnH2n+1]
+. 

peak(s). These diagnostic differences permit indoles with a 6,5,7 ring pattern, 

18, to be distinguished from their 6,5,6 isomers with a methyl group in the 

third ring (12 and 13). 
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In contrast to the spectra of 17, 18 and 19, the base peak in the 

spectra of 11-14 appears at m/z 157. The spectrum of 11 shows peaks at 

m/z 157 (RI = 100) and 129 (RI = 74); these peaks could be interpreted either 

as [M-CO]+. or [M-C2H4]
+. and [M-CO-C2H4]

+. or [M-C2H4-CO]+., respectively. 

However, the introduction of a methyl group on either carbon 2 or 3 in the 

third ring (as in the case of 12 and 13, respectively) does not induce a shift 

from m/z 157 to 171, as would be the case if this ion was correctly assigned 

to be [M-CO]+., but instead leads to loss of the larger alkene, C3H6. 

Furthermore, the spectrum of 14 (a “6,5,6” species, with two methyl groups 

on carbon 2 in the third ring) shows a peak at m/z 157, corresponding to loss 

of C4H8. The fragmentation of these ionised methyl analogues of “6,5,6”, 12-

14, clearly shows that the correct interpretation of the signals at m/z 157 and 

129 is [M-C2H4]
+. and [M-C2H4-CO]+., respectively. The loss of ethylene in the 

spectrum of 11 may be explained as a cycloreversion (sometimes loosely 

described as a “Retro Diels Alder” (RDA) reaction) producing the stable 

product ion (p), Scheme (28).   

 

 

 

Scheme (28): Proposed mechanism for fragmentation of ionised 6,5,6 n-
oxocyclohexan[b]indoles, 11–14. 
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This interpretation is broadly in agreement with earlier work.82, 83 The 

spectra of 12 and 13 show a peak at [M-42]+.; similarly, the spectrum of 14 

shows a signal at [M-56]+.; as in the case in the fragmentation of 11+., the 

ions corresponding to these peaks may be represented as (p), Scheme (28) 

and Figure (3). Hence these compounds with R1, R2 or R3 = CH3 provide new 

and additional support for the cycloreversion. These characteristic 

fragmentations of ionised homologues of 11 allow the presence of one or two 

methyl group(s) in the third ring to be detected because extra methyl group(s) 

result(s) in the loss of a larger alkene than C2H4. After the loss of an alkene, 

a secondary fragmentation by loss of carbon monoxide (CO) may take place 

by simple cleavage to give a bicyclic distonic ion (q) at m/z 129. Another 

fragmentation which is seen in the spectra of 12-14 is loss of a neutral 

species with 15 mass units from M+., resulting in a peak at m/z 184 and m/z 

198 in the respective spectra of 12 and 13, and 14. This signal could be 

interpreted as loss of (R1). or (R2). from 12+. and 13+. via simple cleavage 

where R1 and R2 are both methyl groups. In the spectrum of 14, [M-CH3]
+.

 

could correspond to simple cleavage with loss of either R2 or R3. The loss of 

an alkene by the cycloreversion is also supported by the behaviour of 

deuterium labelled counterparts of 11+. and 15+.. The primary fragment ions 

in the spectra of 15 and 16 at m/z 159 in both cases could be interpreted as 

[M-C2H4]
+. and [M-C3H6]

+., respectively. These ions can also be formulated by 

ion (p) as their unlabelled counterparts in Scheme (28) above. In the 

spectrum of 15, the loss of C2H4 (to give m/z 159; RI 92) (rather than C2H2D2 

(to give m/z 158; RI 15) and C2H3D (to give m/z 157; RI 7) with reasonably 

high selectivity is consistent with the predominant loss of C2H4 from 11+., 
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without prior rearrangement that might erode the positional integrity of the 

CD2 group and lead to incorporation of deuterium in the eliminated ethylene.   

 

 
 

 

Figure (3):  Electron ionisation mass spectra of oxocycloalkan[b]indoles with a 6,5,6 
ring pattern (11, 12, 13 and 14, top to bottom)  
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           However, a limited amount of exchange, presumably by reversible 

1,2-H/D shifts, does precede ethylene loss.  Nevertheless, these labelling 

experiments provide additional confirmation that the C2H4 lost from 11+. 

originates from the methylene groups containing C(2) and C(3). This 

conclusion is in agreement with earlier work.82, 83 In comparison with the 

spectra of their unlabelled counterparts, the major peaks in the spectra of 15 

and 16 are shifted up by 2 m/z units, which is due to the incorporation of 

deuterium from the relevant CD2 group. 

The secondary fragment ions in the spectra of 15 and 16 can be 

interpreted as [M-C2H4-CO]+. and [M-C3H6-CO]+. respectively. As expected, 

given the relatively fast rate of the cycloreversion compared to hydrogen 

exchange in these ionised tricyclic indoles, this fragmentation pattern is 

similar to that found in the spectra of their unlabelled counterparts, 11 and 

12. 

           In contrast to the situation in the “6,5,6” series, when the third ring is 

seven or eight membered, alkyl radical loss becomes important; the spectra 

of 18 and 19 are dominated by [M-29]+. (RI 75) and [M-43]+. (RI 100), 

respectively. These ions can be explained in terms of a 1,4 and 1,5 H-shift to 

the radical site in the distonic ion formed by cleavage of the third ring. These 

H-shifts may result in the loss of C2H5
. and C3H7

. from 18+. and 19+. 

respectively, to form a highly delocalised product ion (t), Scheme (29) and 

Figure (4).  
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Scheme (29): Proposed mechanism for fragmentation of ionised 
oxocycloalkan[b]indoles with 6,5,5, 6,5,7 and 6,5,8 ring pattern; a) 6,5,5; b) 6,5,8. 
 

The analogous process is not possible for the distonic ions formed 

from the ionised indoles with a 6,5,6 ring pattern because the required 1,3-H 

shift is geometrically and energetically unfavourable. Similarly, this 

mechanism cannot operate for the ionised indoles with a 6,5,5 ring pattern 

because loss of C2H4 leads to an ion with no residual hydrocarbon chain. 

Although these [M-CnH2n+1]
+ signals complicate the spectra of the indoles 

with larger third rings, these tricyclic heterocycles are easily distinguished 

from their isomers with a 6,5,6 pattern. In addition, the spectrum of 19 

showed a peak at m/z 184 (RI 13) which could be interpreted as [M-C2H5]
+.. 

However, loss of a larger alkyl radical (C3H7
.) is more favourable as shown by 

the ratio (~ 1:10) of the intensity of the peaks at m/z 184 and m/z 170. 
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Figure (4): Electron ionisation mass spectra of oxocycloalkan[b]indoles with 6,5,5, 
6,5,7 and 6,5,8 ring pattern (17, 18 and 19, top to bottom) 

 

Another characteristic feature of the spectra of 17-19 is the peak at 

m/z 143 which can be formulated as reflecting the formation of (r), Scheme 

(29). These peaks could be interpreted as [M-C2H4]
+., [M-C4H8]

+. and [M-

C5H10]
+. in the respective spectra of 17-19; this signal corresponds to fission 

of two C-C bonds in the original third ring. As with the ionised 6,5,6 tricyclic 

indoles, 11, 12, 15 and 16 the loss of the relevant alkene is followed by a 

secondary fragmentation by loss of CO, almost certainly by simple cleavage.  
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Table (3): Important signals in the EI spectra of 17-19 
 

Compound  

Assignments 17 18 19 

m/z RIa m/z RIa m/z RIa 

171 100 199 100 213 84 M+. 

170 29 198 5 212 3 [M-H]+. 

- - 184 7 - - [M-CH3]
+. 

143 65 - - - - [M-C2H4]
+. 

- - 170 75 184 13 [M-C2H5]
+. 

- - - - 170 100 [M-C3H7]
+. 

- - 143 36 - - [M-C4H8]
+. 

115 43 - - - - [M-C2H4-CO]+. 

- - - - 143 9 [M-C5H10]
+. 

88 6 - - - - [M-C2H4-CO-HNC]+. 

- - 115 20 - - [M-C4H8-CO]+. 

- - - - 115 10 [M-C5H10-CO]+. 

- - 88 3 - - [M-C4H8-CO-HNC]+. 

- - - - 88 1 [M-C5H10-CO-HNC]+. 

 

 

a 
RI: relative intensity, measured by peak height and normalised to a value of 100 units for the most intense signal. 

 
 

Loss of a hydrogen atom (to form [M-H]+ at m/z 170, 198 and 212, 

respectively, from 17+., 18+. and 19+.) occurs to some extent, especially in the 

6,5,5 system (RI 29%). This relatively unusual fragmentation is more 

noticeable for 17+., in which few other dissociations are geometrically 

feasible. Once the third ring is larger, however, other processes dominate, 

including loss of an alkyl radical, as discussed above. A tertiary 
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fragmentation which is common in the spectra of all these ionised 

compounds, 11–21 is elimination of HCN after the successive loss of CnH2n 

and CO. Loss of HCN is common for ionised nitrogen heterocycles.136, 137 

Finally, in this connection, ionised 20 and 21 (the deuterium labelled 

counterparts of 18 and 19, respectively) also show a preference for the loss 

of C3H6 (to give m/z 159; RI 93) and C4H8 (to form m/z 159; RI 16) rather 

than C3H4D2 (to form m/z 157; RI 3) and C4H6D2 (to give m/z 157; RI 9) 

respectively.  

 

 

3.2.1.2. Fragmentation of ionised 1-, 2- and 3-oxocyclohexan[b]indoles 

 

Each of these three isomeric ketoindoles has a characteristically 

distinctive spectrum, which differs from that of 11; a common feature, 

however, is that the M+. signal is the base peak in each case. The M+. ion 

formed from 24 and 25 loses CO, followed by expulsion of C2H4, to give 

peaks at m/z 157 and 129, respectively, Table (4) and Figure (5). The second 

most abundant ion in the spectrum of 24, [M-42]+. (RI 97) may be attributed 

to loss of ketene (CH2=C=O) from M+. via a cycloreversion. Similarly, the 

spectrum of 25 also contains a peak at m/z 143 (RI 22) which could also be 

interpreted as loss of ketene. However this process is less pronounced for 

25+. than for 24+.. One explanation for this contrast is that loss of CH2CO via 

a two-step mechanism would disturb the aromaticity of the benzenoid ring 

starting from 25+., whereas the aromaticity of only the heterocyclic ring is 
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disrupted in the corresponding mechanism starting from 24+., Scheme (30). 

Regardless of the precise mechanism, these distinctive fragmentations 

permit 24 and 25 to be distinguished from one other and isomers with a 

carbonyl group in the 1 or 4 position.  

 

 

Scheme (30): Proposed mechanism for the loss of ketene from 25+. and 34+. 

 

            The spectrum of 23 is quite similar to that of 11. The peaks at m/z 

157 and 129 in the spectrum of 23 may be interpreted as [M-C2H4]
+. and [M-

C2H4-CO]+., respectively, as is the case in the spectrum of 11. However, the 

[M-C2H4]
+.  signal is stronger in the spectrum of 11. This contrast can be 

explained if the cycloreversion is stepwise, Scheme (31).  

 

 

Scheme (31): Proposed mechanism for loss of CO from ionised 23. 



62 

 

 

 

 

Figure (5): Electron ionisation mass spectra of (top to bottom) 23-25. 
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Table (4): Important signals in the EI spectra of 23-25 
 

Compounds  
Assignments 23 24 25 

m/z RIa m/z RIa 

 
m/z RIa 

185 100 185 100 185 100 M+. 

184 2 184 17 184 18 [M-H]+ 

157 16     [M-C2H4]
+. 

- - 157 17 157 68 [M-CO]+. 

- - 143 97 143 22 [M-CH2CO]+. 

129 70 - -   [M-C2H4-CO]+. 

  129 12 129 19 [M-CO-C2H4]
+. 

102 13     [M-C2H4-CO-HNC]+. 

  102 3 107 7 [M-CO-C2H4-HNC]+. 

 

 

a  
RI: relative intensity, measured by peak height and normalised to a value of 100 units for the most intense signal. 

 

3.2.1.3. Fragmentation of Ionised n-cycloalkan[b]indoles     

     
 

The mass spectra of a set of 10 tricyclic indoles, 26-36, with various 

ring patterns have been studied.  Each of these compounds shows an 

intense M+. signal in its mass spectrum (RI ≥ 50%, with M+. giving rise to the 

base peak in the spectrum of 31-33. The most intense peak in the spectra of 

26-28 is at m/z 143. In general, these unfunctionalised ionised tricyclic 

indoles fragment in similar ways to their functionalised counterparts (11+.-

21+.) with a carbonyl group in the third ring.  



64 

 

One significant difference between the spectra of the functionalised 

and unfunctionalised tricyclic indoles is the presence in the spectra of 26-33, 

35-36 of peaks corresponding to [M-1]+ ions which were either not seen or 

else were of minor importance in the spectra of the 11-14 and 17-19, Tables 

(5) and (6). As indicated in the brief statement concerning this peak in the 

spectrum of the 6,5,5 ketoindole, where it is of moderate intensity, the 

corresponding ion may be attributed to loss of hydrogen atom from the third 

ring to give a stable delocalised cation shown as ion (u), Scheme (32).  

The base peak in the spectra of 26–28, occurring at m/z 143, may be 

attributed to loss of alkene by a cycloreversion.  In the spectrum of 26, this 

results in the loss of C2H4, whereas 27+. and 28+. lose C3H6 to give the 

homologous ion (v), Scheme (32). 

 

Table (5): EI mass spectra of n-cycloalkan[b]indoles, 26–28 
 

26 27 28  

Assignment m/z RIa m/z RIa m/z RIa 

171 64 185 52 185 62 M+. 

170 19 184 6 184 13 [M-H]+. 

143 100 - - - - [M-C2H4]
+. 

- - 143 100 143 100 [M-C3H6]
+. 

 

 

a 
RI: relative intensity, measured by peak height and normalised to a value of 100 units for the most intense signal 
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Scheme (32): Proposed mechanism for fragmentation of ionised  
n-cycloalkan[b]indoles, 26-33, 35-36. 

 

The spectra of 31–33 exhibit peaks corresponding to [M-28]+., [M-42]+. 

and [M-56] +., respectively; these signals correspond to an ion of m/z 143 that 

can be depicted as (w). In the case of 31, C2H4 is lost, whereas C3H6 and 

C4H8, respectively, are eliminated from 32+. and 33+.. In addition, the spectra 

of the “6,5,7” and “6,5,8” tricycles contain major peaks corresponding to the 

loss of an alkyl radical (.C2H5 and/or .C3H7). These important peaks can be 

interpreted by mechanisms involving fission of the third ring in the ionised 

indole, followed by a 1,4 and 1,5 H-shift in the resultant alkyl chain, with 

eventual loss of an alkyl radical from this incomplete hydrocarbon chain to 
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give ion (x), Scheme (32), at m/z 156. A parallel process, with eventual 

retention of an extra carbon atom in the fragment ion, accounts for the 

formation of a similar ion at m/z 170 by loss of a smaller alkyl radical, Table 

(6).  

 

Table (6): EI mass spectra of n-cycloalkan[b]indoles, 31–33 
 

31 32 33  

Assignment m/z RIa m/z RIa m/z RIa 

157 100 185 100 199 100 M+. 

156 97 184 61 198 23 [M-H]+. 

129 23 - - - - [M-C2H4]
+. 

- - 156 73 170 46 [M-C2H5]
+. 

 - 143 33 - - [M-C3H6]
+. 

- - - - 156 72 [M-C3H7]
+. 

- - - - 143 62 [M-C4H8]
+. 

 

a 
RI: relative intensity, measured by peak height and normalised to a value of 100 units for the most intense signal 

 
 

         As is the case with the ionised 4-oxocyclohexan[b]indoles, the 

analogous 1,3-H-shift is not possible for the ring-opened isomers of the 

ionised tetrahydrocarbazoles, 26–28, because it would entail undesirable 

geometric constraints which are energetically unfavourable. Thus the spectra 

of these 6,5,6 heterocycles do not show appreciable signals corresponding to 

loss of an alkyl radical. 
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3.3. Vibrational spectra of Tricyclic Indoles 

3.3.1. Infrared and Raman Spectra of n-oxocycloalkan[b]indoles 

 

 

 

C=O, N-H, O-H and C=N vibrations 

 

          It has been well-known for many years that compounds containing a 

carbonyl functional group show a characteristic and strong C=O absorption in 

their IR spectra in the range 1850–1550 cm-1.138-140 Moreover, the 

wavenumber of the C=O stretching band is systematically influenced by the 

substituent(s) attached to the carbonyl group and the size of the ring if the 

compound is cyclic. Electron donating groups and conjugation lowers this 

wavenumber; in contrast, electron withdrawing groups increase the 

wavenumber, as does ring strain (in a five- or four-membered ring);11 these 

points have been reiterated more recently. The band corresponding to this 

vibrational mode is stronger in the IR than Raman owing to the strong dipole 

moment of the C=O group. Similarly, the IR spectrum of an alcohol or phenol 

usually shows a band in the 3650–2500 cm-1 region that may be assigned to 

the O-H stretching mode; moreover, hydrogen bonding usually reduces the 

wavenumber and increases the width of this band, which is typically strong.  
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In the case of the parent tricyclic indole, 11, which was described in 

the early literature as a ketoindole,102 the absence of a strong band around 

1700 cm-1 in the IR spectrum is at first sight rather surprising. A band is 

present in the FT-IR spectrum of 12 at 1603 cm-1; however, this wavenumber 

is extremely low for a C=O stretching mode of a six-membered ring ketone.  

Furthermore, the higher wavenumber region of the spectrum of 11 does not 

contain the diagnostic strong and sharp band above 3200 cm-1 that is typical 

for the N-H stretching vibration of an indole N-H group;139, 141-143 instead, a 

very broad band is present at 3280-2800 cm-1. It appears natural to deduce 

from these aspects of the IR spectrum that 11 exists as the 

hydroxyindolenine tautomer (with the bands at 3280-2800 and 1603 cm-1 

ascribed to the O-H (H-bonded) and C=N stretching vibrations, respectively).  

The production of 11 as a hydroxyindolenine, instead of the apparently more 

stable ketoindole tautomer, might be favoured by the more extensive 

conjugation of the monophenylhydrazone enol intermediate that is involved in 

the synthesis of 11 from the precursor cyclohexane-1,3-dione. On the other 

hand, the solid state IR spectra of 3-acetylindole and indole-3-

carboxaldehyde contain C=O stretching bands at unusually low wavenumber 

at 1614 and 1631 cm-1, respectively; in addition, abnormally broad N-H 

stretching bands are present in these spectra.144 Parallel trends have been 

observed for a number of pyrroles, in which a C=O group directly attached to 

the heteroaromatic nucleus does not display either the chemical or 

spectroscopic properties that are normally associated with a simple carbonyl 

compound.145 
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The appearance of IR spectra sometimes varies drastically with the 

conditions (solid state or solution) under which they are recorded. Therefore, 

the spectra of 11 and related compounds were recorded both in the solid 

state and in solution. In order to obtain further insight into this intriguing 

aspect of the tautomerism of these heterocycles, computational modelling 

was carried out to determine the stability of the ketoindole and 

hydroxyindolenine tautomers. These computational data have the advantage 

of replicating the structures and energetics of the tautomers free from the 

influence of solvent effects or intermolecular hydrogen bonding. 

Before presenting a survey of the IR spectra of these heterocycles, it is 

necessary to address the issue of whether these compounds are ketoindoles 

or hydroxyindolenines, Figure (6) shows the IR spectrum of 11 recorded in 

solution in chloroform and in the solid state. 

 

a) b) 
 

 
 
Figure (6): IR spectrum of 11; a) in solution in CHCl3, b) solid.  

 

 
The differences between these two spectra are striking. In the solid 

state, hydrogen bonding (between the N-H and the C=O, to form strong N-H-

N-H 

C=O 

N-H 

C=O 
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---O=C linkages) is extremely important, leading to a great reduction in the 

wavenumber of both the N-H and C=O stretching bands. Indeed, this 

spectrum gives the impression that the compounds are hydroxyindolenines, 

which show broad O-H and relatively strong C=N vibrational stretching 

bands.  However, in chloroform solution, where intermolecular hydrogen 

bonding is broken down by intervening solvent molecules, the usual sharp N-

H and strong C=O stretching bands at 3456 and 1646 cm-1, respectively, are 

clearly seen (admittedly at rather low wavenumber for the heavily conjugated 

“vinylogous” carbonyl group). These results and interpretation are in good 

agreement with previous studies on 11 and related systems.104  

The divergent appearance of these two spectra raises a further issue: if 

the hydrogen bonding is a powerful as it appears to be, the distinction 

between a ketoindole (in which the bridging hydrogen is more closely 

associated with the C=O group) and the tautomeric hydroxyindolenine (in 

which it is nearer to the N-H group) has been blurred. This point must be kept 

clearly in mind when analysing the vibrational spectra of these interesting 

heterocycles, especially if the spectra are recorded in the solid state, rather 

than in solution. The ketoindole nature of 11 and related heterocycles is 

much more easily discerned if their IR spectra are recorded in solution. 

Table (8) shows the relative energies of the ketoindole and 

hydroxyindolenine tautomers of 11 as calculated by computational 

methodology at two levels of theory (PBE and B3LYP) in the absence of 

solvent and in chloroform. The results presented do not incorporate thermal, 

zero-point or entropic corrections as they were found to be small.  
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Table (8): Calculated total and relative energies of the tautomers and their 
conformers  

 

Solvent Method Total Energy (Hartree) Relative Energy 

of Tautomer 

11b/c to 

Tautomer 11a 

(kJ/mol)
a
 

Relative 

Energy of 

Tautomer 

11c to 

Tautomer 

11b (kJ/mol) 

Tautomer 

11a 

Tautomer 11b Tautomer 11c 

No Solvent PBE -593.3715349 -593.3472577 -593.3443215 63.7 7.7 

 B3LYP -593.7471889 -593.7219985 -593.7194108 66.1 6.8 

Chloroform PBE -593.3851621 -593.3591019 -593.3590604 68.4 0.1 

 B3LYP -593.7610463 -593.7340077 -593.7342118 70.4 -0.5 

 

a
The relative energy is the energy of the lowest energy conformer of Tautomers 11b and 11c above 

the energy of Tautomer 11a. 

 
 

These computational data indicate that the ketoindole tautomer, 11a, is 

more stable than the lowest energy conformer of the hydroxyindolenine 

tautomer, 11c, by at least 63 kJ mol-1, Table (8). Moreover, the data also 

reveal that the greater stability of the ketoindole tautomer is enhanced in 

solution (chloroform). The predicted IR spectrum of keto indole tautomer in 

the gas phase shows a strong band at 1657 cm-1 which corresponds to the 

C=O stretch and is in good agreement with the wavenumber of the 

experimental band in the solution spectrum reported in this study and in 

previous work.104 The spectra of three conformers of 11 as predicted from 

computational modelling are shown in Figure (7).   
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Figure (7): Computationally modelled IR spectra of three tautomers of 11  

 

            Important bands in the IR spectra (recorded in the solid state) of the 

set of indoles, 11-16, are summarised in Table (9). The following points are 

evident. Firstly, the IR spectra of 12, 13 and 14, which are higher 

homologues of 11 containing one or two methyl groups in positions 3 or 2 of 

the third ring, closely resemble that of the parent 11 in showing a very broad 

N-H stretching band in the range 3300-2400 cm-1 and an extremely low 

wavenumber C=O stretching band in the range 1625-1603 cm-1. Parallel 

trends are apparent in the spectra of 15 and 16, which are analogues of 11 

and 12, respectively, with a CD2 group instead of a CH2 group in position 1 of 

the third ring. Thus, the strong absorption bands observed at 1625, 1625, 

1606, 1603 and 1616 cm-1 in the FT-IR spectra of 12, 13, 14, 15 and 16, 
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respectively were assigned to the C=O (conjugated) stretching vibration 

mode. The corresponding C=O stretches appeared in the FT-Raman at the 

same region but of much lower intensities, Table (9) and (10) and Figure (8) 

and (9), as would be expected because this vibrational mode is far less 

active in Raman than in IR spectroscopy. 

 

Table (9): Important bands in the FT-IR spectraa of 11-16 
 

 

a 
Spectra were recorded in the solid state.

b
Qualitative classification of the intensity as follows: w 

(weak), m (medium), s (strong), v (very), br (broad); ѵ (stretch), δ (deformation). 
c 
Some assignments 

are necessarily tentative, particularly in the low wavenumber region of the spectra.
d
 very broad bands. 

e 

very strong bands 
 

  

Wavenumber (cm-1) and intensityb Proposed 
Assignmentc 11 12 13 14 15 16 

3260-
2800(b)d 

 

3280-
2400(b)d 

 

3260-
2800(b)d 

 

3240-
2800(b)d 

3200-
2800(b)d 

 

3280-
2800(b)d 

 

ѵ(N-H) 

3056(w) 3081(w) 3066(w) 3056(w) 3056(m) 3054(s) ѵ(C-H) sp2 

2953(w) 2990(w) 
2923(m) 
2858(m) 

2954(w) 
2927(w) 
2870(w) 

2956(m) 2953(m) 
2926(m) 
2862(m) 

2927(m) 
 

2853(m) 

ѵ(C-H) sp3 

- - - - 1937(w) 
1900(w) 

2183(w) 
2044(w) 

ѵ(C-D) sp3 

1603(s) 
 

1625(s) 
 

1625(s) 
 

1606(s) 
 

1603(s) 
 

1617(s) 
 

ѵ(C=O) 

1577(s) 1615(s) 1614(s) 1576(m) 1575(s) 1582(m) δ(N-H) 

1542(m) 1581(s) 1583(s) 1539(m) 1539(m) - ѵ(C=C) 
benzene 

ring 

1454(s) 
 

1450(s)e 1465(s)e 1465(s) 
 

1451(s) 
 

1449(s) 
 

ѵ(C=C) 5-
membered 

ring of 
indole 

1428(m) 
1411(s) 

1393(w) 
1380(m) 

1445(s) 
1405(w) 

1408(m) 
1370(m) 

- 1371(m) 
1353(m) 

 

δ(CH2) 

 1371(s) 1384(s) 1328(s) - 1319(m) δ(CH3) 

1326(m) 1328(s) 1323(m) 1350(m) 1317(m) 1298(m) ѵ(C-N) 
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Table (10): Important bands in the Raman spectraa of 11-13, 15-16 

 

 

Wavenumber(cm-1) and intensityc Proposed 
Assignmentf 

11 12 13 15 16  

3379(w) 3348(w)d - 3377(w)d - ѵ(N-H) 

3061(m) 3062(m) 3072(m)  3051(s) 3060(m) ѵ(C-H) sp2 

2946(s) 
2884(s) 
2863(m) 

2933(m) 
2902(m) 
2963(m) 

2933(s) 
2902(m) 
2863(m) 

2936 (s) 
2907(m) 
2884(m) 
2852(m) 

 

2956(w) 
2930(m) 
2860(m) 

 

ѵ(C-H) sp3 

- - - 2186(m) 
2146(m) 
2126(m) 
2097(m) 
2058(m) 

2142(m) ѵ(C-D) sp3 

1664(w) 1688(w) 1620(m)  1610(w) 1629(m) ѵ(C=O) 

1605(s)e 

 
1628(s)e 1599(s)e  1584(s)  ѵ(C=C) benzene 

ring 

1490(m) 1493(m) 1487(m) 1467(m) 1460(s) ѵ(C=C) 5-
membered ring of 

indole 

1576(m) 1542(s) 1579(m) 1563(m) 1542(m) δ(N-H) 

1459(s) 
 

1461(s) 
1422(m) 

1446(s) 
1425(s) 

1446(m) 
1422(w) 

1384(m) δ(CH2) 

- 1383(m) 1391(m) - 1333(m) δ(CH3) 

1328(m) 1339(m) 1342(m) 1360(m) 1364(w) ѵ(C-N) 
 

a 
Spectra were recorded in the solid state.

b
Discolouration of 24 occurred so rapidly that it was not 

possible to secure a high-quality Raman spectrum.
 c
 Qualitative classification of the intensity as follows: 

w (weak), m (medium), s (strong), v (very), br (broad); ѵ (stretch), δ (deformation). 
d 

very weak bands. 
e
 

very strong bands. 
f
Some assignments are necessarily tentative, particularly in the low wavenumber 

region of the spectra. 
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(a) 
 

 
 

 
 

 

 
 

 
 

 

(b) 
 

 
 
Figure (8): Raman spectra of 4-oxocyclohexan[b]indoles, 11, 12 and 13 (top to 
bottom); (a) 3400–2600 cm-1 and (b) 1800–200 cm-1 region.  
 
 

These trends show that the powerful conjugation of the NH-C=C-C=O 

entity in these compounds, coupled with strong intermolecular hydrogen 

bonding involving the C=O and N-H groups of adjacent molecules, 
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profoundly affects the structure and vibrational spectroscopic properties of 

these compounds. 

(a) 
 

 

(b) 
 

 

Figure (9): Raman spectra of deuterium labelled 4-oxocyclohexan[b]indoles 15 and 
16 (top to bottom); (a) 3400–2600 cm-1 and (b) 1800–200 cm-1 region. 
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Table (11): Important bands in the Infrared spectraa of 17-21 

 

Wavenumber  (cm-1) and intensityb Proposed 

Assignmentc 17 18 19 20 21 

3260–

2800(b)d 

3200–

2800(b)d 

3200–

2740(b)d 

3280–

2800(b)d 

3280–

2800(b)d 

ѵ(N-H) 

3033(w) 3045(w) 3089(m) 3097(m) 

3042(m) 

- ѵ(C-H) sp2 

     

2934(w) 

 

 2971(m) 

2931(m) 

2862(m) 

2942(m) 

2925(m) 

2851(m) 

2931(m) 

2863(m) 

2943(m) 

2926(m) 

2852(m) 

ѵ(C-H) sp3 

- - - 2163(w)f 2200(w)f ѵ(C-D) sp3 

1650(s) 1596(s) 1603(s) 1596(s) 1602(s) ѵ(C=O) 

1614(s) 1573(s) 1576(s) 1572(s)e 1575(s) ѵ(C=C) benzene ring 

1450(s) 

 

1423(s)e 1443(s)e 1425(s)e 1437(s)e ѵ(C=C) 5-membered 

ring of indole 

- 1486(m) 1487(m) - - δ(N-H) 

1451(s) 

1429(s) 

 1404(s) 1476(m) 1486(m) 

1406(s)e 

1486(w) 

1376(m) 

δ(CH2) 

- 1367(s) 1375(s) 1178(s) 1040(s) ѵ(C-N) 

 

a 
Spectra were recorded in the solid state.

  b
 Qualitative classification of the intensity as follows: w 

(weak), m (medium), s (strong), v (very), b (broad); ѵ (stretch), δ (deformation). 
c
 Some assignments 

are necessarily tentative, particularly in the low wavenumber region of the spectra. 
d 

very broad bands. 
e
 very strong bands.

 f 
very weak bands 

 

       A few case have been reported where the normally less stable 

indolenine tautomer has been shown to be the dominant form at equilibrium 

(for instance 2-piperidinoindole).146 However, despite the absence of obvious 

bands at the usual wavenumber associated with the normally strong C=O 

and N-H stretching vibrations in solid state IR spectra, the superficially 

attractive deduction that these tricyclic heterocycles exist as 

hydroxyindolenines is, at best, an oversimplification. A careful analysis of the 

spectroscopic and computational data indicates that 11-14 and 18-21 exist 

mainly as ketoindoles rather than the corresponding hydroxyindolenines, as 
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is revealed by their IR spectra obtained in solution.  Nevertheless, it is also 

clear that the distinction between ketoindoles and hydroxyindolenines is less 

obvious than may appear at first sight. 

 

3.3.2. Infrared and Raman of 1-, 2- and 3-oxocyclohexan[b]indoles 

 

The three isomers of compound 11 with a keto group in a different 

position in the third ring may now be discussed in more detail; relevant 

spectra are summarised in Table (13) and illustrated in Figure (10). The 

spectra of 24 and 25, in which the carbonyl group is in position 3 and 2, 

respectively, of the third ring, differ substantially from those of their isomer, 

11. The high wavenumber regions of the FT-IR spectra of 24 and 25 are 

dominated by the strong and sharp N-H stretching band at 3382 and 3391 

cm-1, respectively, that is typically found for indoles. Similarly, a strong and 

quite sharp C=O stretching band appears at a wavenumber of 1704 and 

1708 cm-1, respectively, which differs only slightly from that (1716 cm-1) 

associated with the C=O stretching mode of cyclohexanone (recorded as a 

liquid film). These diagnostic changes, which may be logically attributed to 

the absence of the powerful conjugation between the NH and C=O groups 

that is present in 11, permit indoles with a carbonyl group in position 3 or 2 to 

be readily distinguished from their isomers in which the carbonyl group is in 

position 4. 
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Table (13): Important bands in the Infrared and Raman spectraa of 23-25 
 

Wavenumber(cm-1) and intensityb Proposed 

Assignmentc 23 24 25 

IR Raman IR Raman IR Raman 

3270(s) 3368(w) 3391(s) 3359 (w) 3382(s) 3382(w) ѵ(N-H) 

 3057(w) 3058(w) 3052 (s) 3054(w) 3057(s) ѵ(C-H) sp2 

2931(m) 

2861(w) 

2939(m) 

2901(m) 

2958(w) 

2927(w) 

2889(w) 

2862(w) 

2942(s) 

2927(s) 

2827(s) 

2860(s) 

2966(w) 

2918(w) 

2965(s) 

2947(s) 

2918(s) 

2895(s) 

2860(s) 

ѵ(C-H) sp3 

1636(s) 1704(w) 1708 (s) 1704(m) 1704(s) 1701(m) ѵ(C=O) 

1616(s) 1629(s) 1622(m) 1591(s) 1624(w) 1594(vs) 

 

ѵ(C=C) 

benzene ring 

1473(m) 1493(m) 1465(m) 1495(m) 1456(w) 1466(m) ѵ(C=C) 5-

membered ring 

of indole 

1571(m) 1574(w) 1590(m) 1568(m) 1584(w) 1571(m) δ(N-H) 

1441(m) 

1408(m) 

1475(m) 

1437(m) 

1448(s) 

1423(m) 

1464(m) 1436(m) 

1409(m) 

1455(m) 

1408(m) 

δ(CH2) 

1327(m) 1374(m) 1363(m) 1374(m) 1329(s) 1371(m) ѵ(C-N) 

 

a 
Spectra were recorded in the solid state.

  b
 Qualitative classification of the intensity as follows: w 

(weak), m (medium), s (strong), v (very), br (broad); ѵ (stretch), δ (deformation). 
c
 Some assignments 

are necessarily tentative, particularly in the low wavenumber region of the spectra.
 
 

 

The high wavenumber regions of the FT-IR spectra of 24 and 25 also 

contain rather weak bands at 3058 and 3054 cm-1, corresponding to sp2 C-H 



80 

 

stretching vibrations.  A number of weak bands between 2966 and 2860 cm-1 

were similarly assigned to the sp3 C-H stretches.  

(a) 
 

 
 

(b) 
 

 

Figure (10): Raman spectra of 1, 2 and 3-oxocyclohexan[b]indoles, 23, 24 and 25 
(top to bottom); (a) 3400–2600 cm-1 and (b) 1800–200 cm-1 region.  

 

Four significant bands of medium intensity are present at 1622, 1590, 

1465 and 1363 cm-1 in the IR spectrum of 24. These bands could be 

assigned to ѵ(C=C) benzene ring quadrant, δ(N-H), ѵ(C=C) of the 5-



81 

 

membered ring of indole and ν(C-N), respectively, Table (13). In addition, the 

spectrum of 25 shows bands at similar positions, which were interpreted in 

the same fashion.  

In comparison with the other isomers with a 6,5,6 ring pattern, the IR 

spectrum of 23, in which the carbonyl group is in position 1, differs from that 

of either 11 or 24 and 25. There is a distinctive strong and sharp N-H 

stretching band at 3270 cm-1, but it appears at a significantly lower 

wavenumber than the corresponding band in the spectrum of 24 and 25. In 

this respect, the spectrum of 17 appears to resemble those of 24 and 25 

more closely than that of 11 (or 12-16) in showing a band attributable to the 

normal N-H stretching mode of indoles. On the other hand, the appearance 

of the C=O stretching band, which is broad and at rather low wavenumber 

(1636 cm-1), suggests that conjugation between the NH and C=O, although 

not quite as effective as is the case in 11, remains very powerful, thus 

weakening the C=O bond and reducing its vibrational wavenumber. This 

somewhat less effective conjugation in 23, compared to that in 11, 

presumably arises because it entails formal disruption of the aromatic 

character of the carbocyclic aromatic ring, as well as that of the heterocyclic 

entity, whereas conjugation through the NH-C=C-C=O “vinylogous” 

substructure in 11 affects only the aromatic nature of the “pyrrole” ring.  

As with the spectra of its isomers, 24 and 25, the band in the FT-

Raman spectrum of 23 at 3057 cm-1 may be assigned to one or more sp2 C-

H stretching vibration(s); the corresponding band in the FT-IR was too weak 

to be detected with confidence. At slightly lower wavenumber, the medium 

and weak bands at 2931 and 2861 cm-1 in the FT-IR spectrum of 23 may be 
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attributed to sp3 C-H stretching vibrations, as may the bands of medium 

intensity in the FT-Raman at 2939 and 2901 cm-1. The strong or medium 

bands in the FT-Raman spectrum of 23 at 1629, 1493, 1574 and 1374 were 

identified as C=C benzene ring quadrant stretch, C=C stretch of 5-membered 

ring of indole, N-H bend and C-N stretch respectively, see above Table (13) 

and Figure (10). 

 

3.3.3. Infrared and Raman of n-cycloalkan[b]indoles Indoles 

 

 

The major bands in the vibrational spectra of the tricyclic and 

tetracyclic indoles (26–33 and 35–36) without additional functionalization 

other than one or two alkyl substituents in the third ring are discussed below. 

A total of 14 indoles of this kind were investigated in this part of the 

investigation, including four deuterium labelled analogues, Tables (14)–(19). 

 

 

N-H vibrations 

 

The band corresponding to the N-H stretching vibration appears 

between 3500 and 3300 cm-1 at the extreme high wavenumber region of the 

usual range for lactams (cyclic amides, which bear a superficial resemblance 

to indoles).138, 139, 141-143 The assignment of this N-H band is complicated by 

the fact that O-H vibrations give rise to absorption in this wavenumber range, 

especially in IR spectra.11 However, these two categories of bands can be 
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distinguished by their intensity and general appearance; bands associated 

with N-H stretching vibrations are usually sharper and weaker than those of 

the corresponding to O-H stretching vibrations.11 The vibrational spectra of 

primary amines contain two bands corresponding to the asymmetric and 

symmetric N-H stretching vibrations of the triatomic NH2 group. The 

occurrence of the “extra” band in the spectra of primary amines makes it 

easier to differentiate them from secondary amines which usually only show 

a single N-H band. In the present context, the observation of only one band 

around 3400 cm-1 indicates that these tricyclic compounds, 26–33 and 35–

36, Table (14-17) contain an N-H, rather than an NH2, functional group.   

 

Table (13): Important bands in the Infrared spectraa of 26–30 

 

Wavenumber(cm-1) and intensityb Proposed 
Assignmentc 26 27 28 29 30 

 

3397(s) 3390(s) 3386(s) 3396(s) 3393(s) 
 

ѵ(N-H) 

3050(w) 3051(w) 3053(w) 3051(w) 3049(w) ѵ(C-H) sp2 

2926(s) 
2847(m) 

2953(m) 
2924(m) 
2901(m) 
2879(m) 
2866(m) 
2828(m) 

2949(m) 
2920(m) 
2865(m) 
2831(m) 

2927(s) 
2849(m) 

2922(s) 
2848(m) 

 

ѵ(C-H) sp3 

- - - 2184(vw) 
2093(w) 

2173(vw) 
2096(w) 

 

ѵ(C-D) sp3 

1619(w) 1620(w) 1621(w) 1618(w) 
 

1616(w) 
 

ѵ(C=C) benzene ring 

1439(s) 1452(m) 1450(m) 1439(s) 1456(s) ѵ(C=C) 5-membered 
ring of indole 

1588(m) 1586(w) 1587(m) 1587 (m) 1581(m) 
 

δ (N-H) 

1466(m) 1467(m) 1466(m) 1467 (s) 
1357 (m) 

1464(m) 
1425(m) 

δ (CH2) 

- 1365(m) 1371(m) - 1352(m) δ (CH3) 

1233(m) 1233(m) 1234(m) 1226(m) 1228(s) ѵ(C-N) 
 

 

 

a 
Spectra were recorded in the solid state.

  b
 Qualitative classification of the intensity as follows: w 

(weak), m (medium), s (strong), v (very), br (broad); ѵ (stretch), δ (deformation). 
c
 Some assignments 

are necessarily tentative, particularly in the low wavenumber region of the spectra. 
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           The band in an IR spectrum associated with stretching the N-H bond 

of indoles is usually reported to be strong and sharp, appearing between 

3500 and 3350 cm-1. 138, 140, 147 The strong sharp bands at 3397, 3390, 3386, 

3394, 3387 and 3382 cm-1 observed in FT-IR spectra of 26, 27, 28, 31, 32 

and 33, respectively, were readily assigned to the indole N-H stretching 

vibration. Without the presence of the carbonyl group, which complicates the 

spectra of the ketoindoles, this band is of characteristic value in revealing 

that the heterocycles contain the indole substructure.   

 

Table (15): Important bands in the Raman spectraa of 26-29 

 

Wavenumber(cm-1) and intensityb  Proposed Assignmentc 

26 27 28 29 

3401(w) 3397(w) 3384(w) 3401(w)d ѵ(N-H) 

3051(m) 3059(s) 3059(m) 3054 (s) ѵ(C-H) sp2 

2932(s) 

2883(m) 

2851(m) 

2953(m) 

2924(s) 

2867(s) 

2831(m) 

2949(m) 

2920(s) 

2867(s) 

2843(m) 

2938(s) 

2883(m) 

2847(s) 

ѵ(C-H) sp3 

   2192(w) 

2142(w) 

2126(w) 

2089(w) 

ѵ(C-D) sp3 

1584(m) 1592(s) 1584(s) 1588(s) 

 

ѵ(C=C) benzene ring 

1470(m) 1466(s) 1466(s) 1446(m) ѵ(C=C) 5-membered ring of 

indole 

1564(m) 1572(s) 1564(s) 1568(m) δ (N-H) 

1474(m) 

1437(w) 

1470(m) 

1429(m) 

1474(m) 

1421(m) 

1474(m) 

1368(w) 

δ (CH2) 

- 1376(m) 1371(m) - δ (CH3) 

1299(m) 1287(m) 1299(m) 1291(s) ѵ(C-N) 

 

a 
Spectra were recorded in the solid state.

  b
 Qualitative classification of the intensity as follows: w 

(weak), m (medium), s (strong), v (very), br (broad); ѵ (stretch), δ (deformation). 
c
 Some assignments 

are necessarily tentative, particularly in the low wavenumber region of the spectra.
d 

very weak band. 
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            In addition, weak N-H stretching bands are found in the FT-Raman 

spectra at 3401, 3397, 3384, 3397, 3392 and 3389 cm-1 in 26, 27, 28, 31, 32 

and 33, respectively. The strongly polar nature of the N-H bond in indoles 

makes this N-H stretching vibration strongly active in the IR because it 

induces a large change in the dipole moment of the molecule.  In contrast, 

this mode is only weakly active in the Raman, because the vibration causes 

relatively little change in the shape of the polarisability ellipsoid. These 

factors account for the difference in the intensity of the N-H stretching band in 

the two complementary types of vibrational spectra. 

 

      Similarly, the strong N-H stretching band at 3396, 3393, 3387 and 3384 

cm-1, respectively, in the FT-IR spectra of the deuterium labelled analogues, 

29, 30, 35 and 36, is also characteristic of the indole entity, Table (4).  As with 

the unlabelled parent heterocycles, the corresponding bands in the FT-

Raman spectra appear at similar wavenumbers, but are very much weaker. 

However, for compound 24, this band was missing from the Raman 

spectrum, presumably because it was too weak to be identified. These 

differences between the IR and Raman spectra indicate that the former kind 

of vibrational spectroscopy is more useful in an analytical context for 

polycyclic indoles with little or no additional functionality. 

 

C-H vibrations 

 

Generally, as noted previously in section 3.3.2, the bands arising from 

sp2 C-H stretching vibrations in compounds containing an aromatic ring or an 

alkenyl group appear between about 3100 and 3000 cm-1; in contrast, the 

corresponding bands associated with sp3 C-H stretching vibrations appear 
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just below 3000 cm-1.138-141, 148, 149 These assignments reflect the degree of s-

character ins these bonds: a higher proportion of s-character results in a 

stronger bond, which has a greater vibrational quantum, thus increasing the 

wavenumber of the associated band in the vibrational spectrum. On this 

basis, the characteristic weak or medium bands in the region between 3059 

and 3020 cm-1 in both the FT-IR and FT-Raman of the tricyclic indoles, 26-33 

and 35–36, were interpreted as sp2 C-H stretches.  On the other hand the 

rather larger number of bands between 2953 and 2802 cm-1 of varying 

intensity (from weak to quite strong in a few cases) were assigned to sp3 C-H 

stretching vibrations. In the spectrum of 27, the sp3 region showed additional 

bands arising from the extra CH3 (and CH) group(s) in this compound; the 

bands at 2953 and 2879 cm-1 were assigned to CH3 C–H stretching 

vibrations (asymmetric and symmetric). The absorption bands at slightly 

lower wavenumber (2924 and 2828 cm-1) were attributed to sp3 C–H 

stretching vibrations of CH2 groups. The single sp3 C–H stretching vibration 

of the CH group was associated with the band at 2901 cm-1. As expected, the 

spectrum of 29, which contains sp3 C-H bonds only in its CH2 groups, shows 

two absorption bands at 2927 and 2849 cm-1 corresponding to the associated 

asymmetric and symmetric C-H stretching vibrations of these CH2 groups. 

      As is the case with many functional groups, confirmatory information to 

support deductions made on the basis of assignment of bands associated 

with stretching vibrations can be made by detecting the corresponding bands 

associated with deformation modes. Unfortunately, these deformation bands 

tend to appear in the high wavenumber end of the fingerprint region (below 

about 1500 cm-1). Since all these heterocycles contain one or more CH2 
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group(s), the medium bands observed at approximately 1476 cm-1 in both the 

FT-IR and FT-Raman spectra can be assigned to CH2 bending vibrations. A 

parallel methodology may be applied for the deformation bands for CH3 

groups in the spectra of 27, 28 and 30, each of which contains a methyl 

group. The medium intensity bands at 1365, 1371 and 1352 cm-1 in the FT-IR 

spectra of 27, 28 and 30, respectively, were assigned to CH3 bending 

vibrations, thus providing additional confirmatory information.  

 

Table (16): Important bands in the FT-IR spectraa of 31–33 and 35–36 

 

Wavenumber(cm-1) and intensityb Proposed 

Assignmentc 31 32 33 35 36 

3394(vs) 3387(s) 3382(s) 3387(s) 3384(s) ѵ(N-H) 

3046(w) 3054(w) 3055(w) 3054(w) 3054(w) ѵ(C-H) sp2 

3028(w) 

2931(m) 

2849(m) 

2911(s) 

2844(m) 

2918(s) 

2846(s) 

2911(s) 

2843(m) 

2920(s) 

2847 (s) 

ѵ(C-H) sp3 

- - - 2162(w)d 2162(w)d ѵ(C-D) sp3 

1617(w) 1618(w) 1619(w) 1616(m) 1616(w) ѵ(C=C) benzene 

ring 

1444(s) 1425(s) 1438(s) 1433(m) 

 

1437(s) 

 

ѵ(C=C) 5-

membered ring of 

indole 

1579(m) 1577(w) 1580(w) 1575(m) 1579(w) δ (N-H) 

1462(m) 1465(s) 

1367(m) 

1465(s) 

1448(s) 

1463(s) 1467(s) δ (CH2) 

1212(m) 1232(m) 1235(m) 1215(m) 1236(m) ѵ(C-N) 

 

a 
Spectra were recorded in the solid state (ATIR).

  b
 Qualitative classification of the intensity as follows: 

w (weak), m (medium), s (strong), v (very), br (broad); ѵ (stretch), δ (deformation). 
c
 Some assignments 

are necessarily tentative, particularly in the low wavenumber region of the spectra.
d
 very weak bands. 
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C-D vibrations 

 

As a result of isotope effects, which reflect an increase in the reduced 

mass of the C-D bond compared to that of the C-H bond, the bands 

attributable to C-D stretching vibrations are usually in the region of 2300-

2100 cm-1. The ratio of the wavenumber of the C-H to the C-D band is 

usually approximately 1.35-1.38, corresponding to an isotopic shift of roughly 

700 cm-1.150 In the spectra of compounds containing a C≡C, C≡N, C=C=C or 

related functional group, which also vibrate at wavenumbers in a similar 

range to those for C-D stretching modes, the unequivocal identification of C-

D bands may be complicated. However, none of the indoles under 

investigation contains a triple bond or a pair of cumulated double bonds, thus 

facilitating the unambiguous assignment of the C-D stretching bands. 

Furthermore, the absence of the characteristic strong and sharp band at 

approximately 3300 cm-1 associated with the sp C-H stretching vibration of 

terminal acetylenes in the spectra of 29-30 and 35-36 confirms that no C≡C 

bonds of that kind are present in these heterocycles. In addition, the band at 

approximately 2200 cm-1 associated with the C≡C stretching vibration is 

normally strong in Raman spectra because of the large change that it 

produces in the polarisability ellipsoid. Consequently, the absence of this 

band in the FT-Raman spectra is further evidence that the bands observed in 

this region are due to C-D stretching vibrations (rather than associated with 

C≡C stretching modes). Accordingly, in both the FT-IR and FT-Raman 

spectra of 29-30 and 35-36, the fairly weak absorption bands observed 

between 2200 and 2080 cm-1 may be assigned with confidence to sp3 C-D 

stretches of CD2 groups. 
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C=C vibrations 

Bands that may be ascribed to C=C stretching vibrations are normally 

observed at wavenumbers between 1650 and 1450 cm-1 in both IR and 

Raman spectra.139 This band is usually of medium intensity but is 

occasionally made stronger by the effect of conjugation, especially with C=O 

bonds in IR spectroscopy.   

 

Table (17): Important bands in the FT-Raman spectraa of 31-33, 35-36. 

 

Wavenumber(cm-1) and intensityb Proposed 

Assignmentc 31 32 33 35 36 

3397(w) 3392(w) 3389(w) - 3384(w)d ѵ(N-H) 

3053(w) 3054(w) 3054(m) 3054(w) 3058 (w) ѵ(C-H) sp2 

2936(s) 

2887(m) 

2847(m) 

2928(s) 

2900(m) 

2887(m) 

2847(m) 

2932(s) 

2912(s) 

2855(s) 

2920(w) 

2904(w) 

2847(w) 

2919(s) 

2905(s) 

2805(s) 

ѵ(C-H) sp3 

- - - 2122(w)d 2183(w)d 

2150(w)d 

2128(w)d 

2095(w)d 

ѵ(C-D) sp3 

1584(m) 1576(s) 1584(s) 1576(m) 

 

1583(s) 

 

ѵ(C=C) benzene ring 

1470(m) 1462(m) 1437(m) 1441(w) 1436(m) ѵ(C=C) 5-membered 

ring of indole 

1564(m) 1560(s) 1568(s) 1560 (m) 1561(s) δ (N-H) 

1474(m) 

1446(m) 

1462(m) 

1437(w) 

1462(m) 

1372(m) 

1466 (m) 

1364 (w) 

1467(m) 

1363(w) 

δ (CH2) 

1287(m) 1291(m) 1307(m) 1299(m) 1301(m) ѵ(C-N) 

 

a 
Spectra were recorded in the solid state (ATIR).

  b
 Qualitative classification of the intensity as follows: 

w (weak), m (medium), s (strong), v (very), br (broad); ѵ (stretch), δ (deformation). 
c
 Some assignments 

are necessarily tentative, particularly in the low wavenumber region of the spectra.
d
 very weak bands. 
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The C=C stretching bands are stronger in Raman than IR spectra 

owing to the polarisability of this bond, which does not usually possess the 

large electric dipole moment that is associated with bonds which give rise to 

strong bands in the IR when they vibrate. In both the FT-IR and FT-Raman 

spectra, the two bands at approximately 1600 and 1430 cm-1 are assigned to 

the stretching vibrations of C=C bonds. The former are logically ascribed to 

the C=C bonds of the benzenoid ring (technically an aromatic ring quadrant 

vibration); the latter may be associated with stretching of the C=C bond 

contained only in the heterocyclic ring. Thus, in the Raman spectra of 26, 27, 

28, 31, 32 and 33, the strong or medium band at 1584, 1592, 1584, 1584, 

1576 and 1584 cm-1 may be assigned to stretching vibrations of the C=C 

bonds in the benzenoid ring.143
 All the corresponding bands in the IR spectra 

that may be associated with the C=C bonds of the carbocyclic ring were of 

either medium or weak intensity, occurring at 1619, 1620, 1621, 1617, 1618 

and 1619 cm-1 in the spectrum of 26, 27, 28, 31, 32 and 33,respectively.   

The band associated with stretching the C=C bond in only the 

heterocyclic ring of the indole entity was seen at approximately 1450 cm-1 in 

both the Raman and IR spectra; the bands in the Raman spectra were 

usually stronger than their counterparts in the IR spectra. For instance, in the 

FT-IR and FT-Raman spectra of 30, 35 and 36, this vibration mode was 

assigned to the bands at 1439/1446, 1433/1441 and 1437/1436 cm-1, 

respectively. Signals were present at similar wavenumber in the Raman 

spectra of the unlabelled species 26, 27, 28, 31, 32 and 33. On the whole, 

Raman spectroscopy appears to offer a better means of detecting C=C 

bonds than IR spectroscopy in these heterocyclic systems. 
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3.4. Conclusion 
 

 
In this chapter, the mass and vibrational spectra of a representative set 

of n-oxocycloalkan[b]indoles and n-cycloalkan[b]indoles have been 

discussed. For the n-cycloalkan[b]indoles, particular attention is focused on 

the use of infrared spectroscopy to determine whether n-

oxocycloalkan[b]indoles may best be described as ketoindoles or 

hydroxyindolenines. When the carbonyl group is conjugated with the C=C of 

the pyrrole ring as in the case of when the carbonyl group is in the 4 position 

of the third ring, the bands in the solid state infrared spectra associated with 

stretching the N-H and C=O bonds appear at unusually low wavenumbers. 

Hence, these compounds were initially interpreted to be hydroxyindolenines 

rather than the more stable and common ketoindole tautomers, owing to the 

strong intermolecular hydrogen bonding between the N-H and C=O in the 

solid state; however, in solution, the that fact these compounds were 

ketoindoles was obvious. In contrast, isomeric 2- and 3-

oxocyclohexan[b]indoles showed the typical N-H and C=O stretching 

vibrations even in solid state. These isomers are easily identified as 

ketoindoles even in the solid state. The 1-oxocyclohexan[b]indoles resemble 

their isomeric 4-oxocyclohexan[b]indoles more than the corresponding 2- and 

3-oxocyclohexan[b]indoles because the C=O is also conjugated to the C=C 

of the pyrrole ring but the conjugation is less effective. Consequently, these 

compounds showed a C=O stretching band at low wavenumber and a normal 

N-H stretching vibration in their spectra.  

     Significant fragment ions that were present in the  mass spectra of all the 

indoles allow valuable structural information to be obtained. The fragment 
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ions allowed the n-oxocyclohexan[b]indoles to be distinguished from each 

other. Additionally, ionised 6,5,6 tricycles lost an alkene while the 

homologous ionised indoles with a 6,5,7 or 6,5,8 ring pattern eliminated an 

alkyl radical. These fragment ions also help to differentiate tricyclic indoles 

with a 6,5,7 ring pattern from their 6,5,6 isomers containing an extra methyl 

group; similar remarks apply to distinguishing 6,5,8 tricyclic indoles from their 

6,5,6 homologue(s) with two methyl groups in the third ring. Parallel trends 

are found for the corresponding n-cycloalkan[b]indoles: the ionised 6,5,6 

tricycles fragment by loss of an alkene, whereas their analogues with a 6,5,7 

and 6,5,8 ring pattern tend to eliminate one or more alkyl radical(s).  Finally, 

the presence of one or two methyl group(s) in the appropriate position(s) in 

the third ring is revealed by loss of a larger alkene (C3H6 or C4H8), rather than 

C2H4, from the ionised tricyclic indole. 
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4.0. FORMATION OF COVALENTLY BOUND DIMERS FROM 

INDOLES IN THE POSITIVE ION ELECTROSPRAY MASS 

SPECTROMETRY 

4.1. Background 

 

The previous chapter describes how a combination of mass 

spectrometry and vibrational spectroscopy permits a range of tricyclic indoles 

to be detected. In addition, careful analysis of the spectroscopic properties of 

tricyclic model compounds allows the presence and position of a carbonyl 

group in the non-aromatic third ring to be established. The next step in 

evaluating the potential of these model heterocycles in a spectroscopic 

protocol for detecting scytonemin and related compounds is to determine 

how little substrate can be detected, both when pure samples are 

investigated and when other materials are present in a mixture. In 

determining these detection limits, mass spectrometry was used mainly 

because of its exceptional sensitivity.  Certain ionisation methods, particularly 

electrospray (ESI),151 have clear advantages in producing ions from involatile 

analytes. In addition, electrospray is readily combined with chromoatography, 

thus facilitating the analysis of mixtures. Consequently, liquid 

chromatography mass spectrometry (LC-MS) in combination with positive ion 

electrospray ionisation (ESI+) was chosen for this part of the investigation. 

The combination of LCMS and ESI+ appeared to be ideal because it 

circumvented the need to volatilise the analyte, which could instead be 

introduced into the mass spectrometer during the LC process. It was 

anticipated that the deuterium labelled analogues, which had already been 
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synthesised, would serve as internal calibrants for quantification of the 

analysis of model tricyclic heterocycles that had commons structural features 

with scytonemin. The addition of a known quantity (a “spike”) of the requisite 

labelled analogue into a mixture containing an unknown quantity of the 

unlabelled tricyclic heterocycle was expected to allow the amount of the 

unlabelled compound to be determined by direct comparison of the 

intensities of the MH+ signal (from the unlabelled material) and the 

corresponding M’H+ signal (produced by protonation of the labelled 

analogue) two m/z units above the MH+ signal. 

The invention of new ionisation methods during the last four decades 

has revolutionised mass spectrometry, especially in biological, medicinal and 

environmental contexts. The development of ESI in combination with liquid 

chromatography has had a major impact in the analysis of biopolymers since 

this technique was first applied to ionise biologically important compounds of 

high molecular mass.152 Furthermore, advances in instrumentation, 

particularly the development of hybrid and multistage mass spectrometers, in 

which the dissociation of fragment ions can be routinely studied, permits the 

structure of fragment ions formed by several consecutive fragmentations of 

the precursor ions to be probed in great detail. These MSn experiments, 

where n denotes the number of stages in the mass spectrometry 

investigation, can furnish all manner of useful information on the structure 

and reactivity of the ion under investigation.  In favourable cases, n may be 

as large as five or six. 

 Not only is ESI a “soft” ionisation method (which tends to produce few 

fragment ions), thus allowing molecular mass information to be obtained, but 
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it also permits the study of interactions between proteins.153, 154 Recent 

studies have shown the formation of non-covalently bound “dimer” ions in 

ESI mass spectra155-158 For example, multiple hydrogen bonding over one or 

more proton bridge(s) has been reported to facilitate the formation of non-

covalently bound “dimers”. These “dimers” have been found to undergo 

fragmentations up to the level of MS5.156, 159  

The production of [2M+H]+ “dimers” and [3M+H]+ “trimers” and even 

higher order “polymers” is relatively common in positive ion ESI (ESI+), 

especially if the concentration of analyte is relatively high.  These species are 

generally agreed to be non-covalently bound (that is, the monomeric 

components are held together by binding to the proton by means of a 

combination of forces, including hydrogen bonding, but without the formation 

of a covalent bond between specific atoms in the components). The 

formation of covalently bound dimers (such as [2M-H]+, in which a new 

covalent bond between the original monomeric units has been made, is far 

less commonly encountered). The production of these species corresponds 

formally to an ”oxidative dimerisation”, which could be envisaged to occur by 

loss of molecular hydrogen (H2) from the corresponding [2M+H]+ non-

covalently bound dimer.   

The formation of covalently bound [2M-H]+ species has been found to 

be amplified by the use of on-line electrochemical cells.160 The application of 

voltage promotes the formation of these dimeric species either in an 

electrochemical cell or during the negative ion (ESI-) ionisation process; in 

addition, the production of these dimers is concentration dependent. 
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When work to determine the detection limits for LCMS analysis of 

tricyclic indoles was initiated, it was found that the analyte (the unlabelled 

model compound) and the internal calibrant (the labelled analogue) reacted 

to form a heterodimer [M+M’-H]+. Although this unexpected complication 

made quantification by this approach very difficult, if not impossible, it led to 

an interesting investigation of the mechanism of this process and valuable 

conclusions about the analytical and synthetic utility of the reactions that can 

occur under ESI+ conditions. These experiments are summarised in this 

chapter. 

 

 

4.2. Experimental 

 

LC-MS analysis was carried out on a hybrid Linear Ion-Trap-OrbiTrap 

mass spectrometer system (Thermo Scientific LTQ OrbiTrap XL) fitted with a 

Ultra High Performance Liquid Chromatography (UHPLC) system consisting 

of a binary pump, an autosampler and a photodiode array detector (Acquity: 

Binary Solvent Manager, Sample Manager and PDA Detector respectively, 

Waters Ltd., Elstree, UK). The chromatography system and mass 

spectrometer were controlled by the software Xcalibur v1.4 (Thermo 

Scientific Ltd., Hemel Hempstead, UK). The LC column was a Waters 

Acquity UPLC BEH C18, 1.7 μm, 2.1 mm x 100 mm. The sample was 

dissolved in methanol at ~ 0.01 mg mL-1 concentration and 10 μL was 

injected. The mobile phase flow rate was 0.45 mL min-1. Mobile phase A was 

0.05% aq. formic acid; mobile phase B was acetonitrile. The UHPLC gradient 

was T = 0.0, A = 95%, B = 5%, T = 9.0, A = 20%, B = 80%, T = 9.01, A = 2%, 

B = 98%, T = 11.0, A = 2%, B = 98%. At T = 11.01 min the system reverted 

to the starting conditions and was held for 4 mins to allow the column to re-
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equilibrate.  The PDA was scanned from 210 to 350 nm at 2 nm steps during 

the run. ESI+ was performed with a capillary voltage of 3 kV, a sheath gas 

flow of 50 and an auxiliary flow of 20 (arbitrary units) at a source capillary 

temperature of 250 °C. The mass spectrometer collected data every ~0.25 

secs alternatively recording a mass spectrum over the mass range 100 to 

800 amu and a product ion mass spectrum from the most intense ion 

detected in the mass spectrum. The resolution was 7.5 k (full width at half 

maximum) for both scan modes; the collision energy was 35 eV in the 

product ion experiments.  

 

4.3. Results and Discussion 

 

This section focused on attempts to use tricyclic indole, 32, with a “6,5,7” ring 

pattern, as a model compound for syctonemin and related species. Exactly 

parallel effects were observed when the analogous “6,5,6” and “6,5,8” 

tricycles were studied. As outlined above, the detection limit was probed by 

using labelled internal calibrant as a means of quantifying the proportion of 

14 in admixture with other compounds in methanol solution. These attempts 

to establish the detection threshold were hampered by the appearance of 

unexpected peaks at higher m/z (m/z 369, 371 and 373) corresponding to the 

formation of covalently bound dimer ions. The peak at m/z 369 was 

considered to arise from the interaction of two unlabelled analyte molecules 

(M) to form ions of general formula [M+M-H]+. Similarly, the interaction of two 

labelled analytes (M’) results in ion at m/z 373. Finally the signal at m/z 371 

corresponds to a “heterodimer” [M+M’-H]+ formed by interaction of the 

labelled standard (M’) and the unlabelled analyte (M), Figure (11). In addition, 
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the expected [M+H]+ and [M’+H]+ signals were observed at m/z 186 and 188 

corresponding to protonated unlabelled and labelled monomers, respectively.  

 

 

 

 
                                                                                                                   

       

  

 

 

 

 

Figure (11): top: [2M-H]+, [M+M’-H]+ and [2M’-H]+ experimentally observed signals in 
the ESI+ ion mass spectrum of an approximately equimolar mixture of 32 and 35; 
below: theoretical isotope distributions for [2M-H]+, [M+M’-H]+ and [2M’-H]+. 
 

The elemental composition of these [2M-H]+ ions was confirmed by 

accurate mass MSn experiments at high resolution. The high resolution mass 

spectrum of the mixture showed that the experimentally measured values 

and the proposed theoretical values were within approximately ±1 mDa, 

Table (18).  These data establish unequivocally that the formulae of the ions 

correspond to those expected for [2M-H]+, [M+M’-H]+ and [2M’-H]+. 

 

Table (18): Difference in experimental and theoretical m/z values for the [2M-H]+ 
species derived from tricyclic indoles 32 and 35 

 

 

Ion Formula 
Experimental 

value 
Theoretical 

value 
Error 

(mDa) 

[2M-H]+ C26H29N2 369.2336 369.2325 1.055 

[M+M'+H]+ C26H27D2N2 371.2458 371.2451 0.681 

[2M'-H]+ C26H25D4N2 373.2572 373.2576 -0.312 
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4.3.1. Structure of the Dimeric Species 
 

 
 
 

Further attempts to elucidate the structure of dimeric [2M-H]+ species 

were made by investigating simpler indoles without a third fused ring but with 

one or two alkly substituents instead. In particular, 3-methylindole, 39, and its 

trideutriomethyl analogue, 83, were analysed; 3-methylindole was chosen 

because the relevant dimeric species (81 and 82) formed by dimerisation in 

solution are well known from earlier work. This information allowed the 

behaviour of [2M-H]+ formed from 39 to be compared those of [M+H]+ ions 

formed from 81 and 82. Authentic samples of dimeric compounds, 81 and 82, 

were synthesised from 3-methylindole, 39, Scheme (33). 

 

 

Scheme (33) Reagent and conditions: i) TFA, RT, 3 hr; ii) PIFA/TMSBr, DCM, -78 
°C – 40 °C, 3hr, 50%.   
 

When the separate ESI+ spectra of 3-methylindole, 39 [M], and 3-

(methyl-d3)indole, 83 [M’], were obtained, the base peak in each spectrum 

corresponded to the [2M-H]+ and [2M’-H]+ ion, respectively, derived from 
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each individual analyte. Furthermore, when a solution of an approximately 

equimolar mixture of 39 and 83 was analysed under the same conditions, 

[2M-H]+, [M+M’-H]+ and [2M’-H]+ signals were observed at m/z 261, 264 and 

267, respectively, Figure (12).   

 

 

 

 

Figure (12): ESI+ mass spectrum of a mixture of 39 and 83. 

 

      These results indicate that the formation of the covalently bound dimer, 

which was first detected for tricyclic indoles, also occurs for 3-methylindole; 

moreover, as is the case with the tricyclic species, homodimers and 

heterodimers are formed when a mixture of labelled and unlabelled analytes 

is subjected to ESI+. 

 

4.3.1.1. Where is the Dimer Forming? 
 

 

        The formation of the [2M-H]+ species could occur in three different 

places in the LCMS instrument used in this work: firstly, in the LC column; 

secondly in the nebuliser (spray droplets); and, thirdly, in the mass 

spectrometer itself.  
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Nebuliser Synthesis 

 

The possibility of the dimers forming in the nebuliser was investigated 

by taking the nebuliser “offline” from the instrument housing. A methanol 

solution of the 39 was infused into the nebuliser over 30 seconds. The 

resultant spray was collected in a conical flask and injected back into the 

online instrument (see illustration in Figure (13)).  

 

 

Figure (13): Spraying of the sample through the nebuliser.  

 

When the mass spectrum of the effluent collected was obtained, two 

peaks with different retention times were detected in the LC part of the 

instrument. The first component had the same retention time as 3-

methylindole, 39; it gave a spectrum that showed signals corresponding to 

[MH]+ formed from 39 and the expected [2M-H]+ dimer. The second 

component had the same retention time as authentic 82; it produced a mass 
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spectrum that showed only ions corresponding to [2M-H]+ formed from 39. 

This experiment shows that dimerisation occurs in the nebuliser section of 

the LC/ESI system. Furthermore, this result is evidence that a covalently 

bound species is responsible for the [2M-H]+ signal. A non-covalently bound 

adduct would not be expected to survive passage through the LC system. 

 

4.3.2. Scope of the Reaction 

 

 
 
 

     To probe how general the formation of these [2M-H]+ dimers is, a wide 

range of other indoles, including tricyclic species with “6,5,6” and “6,5,8” ring 

patterns, were investigated under the same conditions. The results revealed 

that the novel [2M-H]+ signals that appeared in the ESI+ spectrum of 32, are 

also seen in 26 (m/z 341) and 33 (m/z 397), Table (19). As indicated in the 

introductory part of this chapter, when the dideuteriated analogues of 26 and 

33 were analysed, signals appeared at 2 and 4 m/z units above that 

observed in the spectrum of the requisite unlabelled parent compound. 
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       Parallel trends were found in the ESI+ spectrum of an approximately 

equimolar mixture of 26 [M] and 29 [M’]. The spectrum was dominated by 

signals corresponding to [2M-H]+, [M+M’-H]+ and [2M’-H]+ at m/z 341, 343 

and 345, respectively). Furthermore, exactly analogous results were obtained 

when an approximately equimolar amount of 33 [M] and 36 [M’] was 

analysed: the two expected [M+H]+ and [M’+H]+ signals were observed at m/z 

200 and 202, respectively, together with three dimer peaks at m/z 397, 399 

and 401, corresponding to [2M-H]+, [M+M’-H]+ and [2M’-H]+, respectively. 

 

Table (19): Important signals in ESI+ spectra of tricyclic and substituted indoles 

Compound 
Signals and Relative Intensity (RI)a 

[M+H]+ [2M+H]+ [2M-H]+ 

2 100 > 2 - 

26 100 3 47 

32 96 4 100 

33 100 < 0.01 9 

37 9 100 > 4 

38 100 - - 

39 100 - 10 

84 100 - 31 

85 100 > 4 61 

86 60 9 100 

87 55 6 100 
 

a
 RI = Relative intensity, measured by peak height and normalised to a value of 100 for the most intense signal. 

 

     Dimers with the general formula [2M-H]+  were also observed in the ESI+ 

spectra of a range of 3-alkyl and 2,3-dialkylindoles, including 2-ethyl-3-

methylindole, 84, 3-ethyl-2-propylindole, 85, 2-butyl-3-propylindole, 86, and 

2-isobutyl-3-isopropylindole, 87. All these spectra contained peaks 

corresponding to [2M-H]+. Thus, the ESI+ spectrum of 85 showed peaks at 
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m/z 188 and 373, corresponding to [M+H]+ and [2M-H]+, respectively, Table 

(19). In addition, when an approximately equimolar solution of 6,5,8”, 33 [M], 

39 [M’], was analysed, the ESI+ spectrum showed only one peak at m/z 329 

(RI 100) corresponding to the “cross” or heterodimer, Figure (14).   

 

                                                                               

       

 
 

Figure (14): ESI+ mass spectrum of a mixture of 33 and 39. 

 

 

The novel [2M-H]+ species are either not formed at all or else are 

produced in very low abundance from indoles with a substituent only in the 1 

and/or 2 position. Thus, indole itself, 2, 1-methylindole, 37, and 2-

methylindole, 38, do not show significant signals corresponding to [2M-H]+, 

Figure (15). This trends reveals that the production of the [2M-H]+ ions is 

 
[M+M’-H]+ 
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preferentially associated with indoles that have an alkyl substituent (or its 

equivalent) in the 3 position.  

 

                                                                        

       

 

Figure (15): Positive ion electrospray ionisation mass spectra; top 1-methylindole, 

37; bottom 2-methylindole, 39. 

 

MH+ 

MH+ 
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4.3.3. Origin of [2M-H]+ Signal 

 

As noted in the introductory part of this Chapter, [2M+H]+ signals are 

often observed in ESI+ spectra, especially when the concentration of the 

analyte is high; in contrast, the appearance of [2M-H]+ signals is much rarer. 

These [2M+H]+ dimeric species are examples of proton bound dimers (PBDs)  

which have been studied over many years and well documented in gas 

phase ion chemistry.161-164 It is possible, if not likely, that the two components 

of the PBD may react together, with one (the protonated monomer) behaving 

as an electrophile and the other (the unprotonated monomer) acting as a 

nucleophile. Such “recombination” processes also feature in the reactions of 

another well-known general class of “unconventional” ion structures, ion 

neutral complexes (INCs) in which ionic and neutral partners are held 

together by non-covalent forces.165-168 In contrast, the novel [2M-H]+ ions 

observed in this work formally correspond to dehydrogenation of [2M+H]+, by 

an overall process that could be broadly described as an oxidative 

dimerisation of M in the presence of a proton. The resultant [2M-H]+ ion, 

which presumably contains a new bond between the two original monomers, 

must be a covalently bound “dimer”. Support for this interpretation is provided 

by more sophisticated gas-phase experiments in which the [2M-H]+, ions are 

made to dissociate by being energised by collision. 

These collision-induced dissociation169 mass spectra of the [2M-H]+ 

and [M+M’-H]+ ions formed from the tricyclic indoles, 26, 32 and 33 all 

contain signals that may be attributed to elimination of a small neutral 

species (especially Cn+1H2n+2 and Cn+1H2nD2) from the third ring to form ions 

at higher m/z than [M+H]+ or [M’+H]+. It is highly unlikely that non-covalently 
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bound [2M-H]+ or [M+M’-H]+ species, in which the two components were held 

together only by relatively weak forces, would fragment in this manner, 

instead of simply separating to form [M-H]+ and M (or M’) and/or [M+H]+ and 

[M-H2]
+ (or [M’-H2]

+).  

Recent related studies have shown certain well-documented reactions 

can take place at an enhanced rate in the nebuliser section of the ESI+ 

instrument. For instance, Knovenagel-type condensation has been reported 

to occur in the nebuliser by infusing an acidic solution of two reactants.170 

This discovery indicates that the formation of covalent bonds in the nebuliser 

of a mass spectrometer can occur, sometimes under far milder conditions 

than are required in conventional solution chemistry, thus providing 

circumstantial support for the proposal that the [2M-H]+ ions formed from 

indoles are covalently bound. This possibility, which clearly has synthetic 

potential, will be emphasised later in this Chapter. 

 

 

4.3.4. Mechanism of Formation of the Dimer 

4.3.4.1. Oxidative Dimerisation 

 

Further support for the interpretation that these [2M-H]+ species are 

covalently bound dimers may be obtained by considering the known 

mechanisms for dimerisation of indoles in solution.  

Under strongly acidic conditions in solution (typically treatment with 

neat trifluoroacetic acid, TFA), 3-methylindole (which has the trivial name 

“skatole”), 39, is protonated at the 3 position171, 172 to give an electrophilic 

immonium ion, 88, Scheme (34). Another molecule of skatole acts as a 

nucleophile and attacks 88 resulting in a [2M+H]+ species, 89. Re-
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aromatisation of the ring by loss of a proton from the 2-position gives 

diskatole, 81. This dimeric species consists of an indole and an indoline 

entity, which are linked by a new covalent bond connecting the carbons in the 

2-position of each original monomeric unit. The key protonation step leads to 

the formation of a reactive secondary cation, which no longer possesses an 

aromatic heterocyclic ring. Consequently, nucleophilic attack by another 

molecule of 39, in which the 2-position is not occupied by a methyl 

substituent, which might hinder the reaction, would be expected to be 

relatively straightforward. In contrast, the analogous protonation of 2-

methylindole, 38, would give rise to a more stable tertiary cation, which would 

be less reactive, thus slowing  the nucleophilic attack by a second molecule 

of 38, particularly since the methyl group in the 2-position of this nucleophile 

carries a methyl substituent, thus imposing further steric hindrance to the 

“dimerisation”. Although this contrast might explain why 38 does not show an 

[2M+H]+ or [2M-H]+ signal in its ESI+ spectrum, perhaps because the 

resulting immonium ion is too substituted to be reactive, it cannot explain the 

oxidation (or dehydrogenation) that would be required to convert 81 to 82.  

 

 

 

Scheme (34): Proposed mechanism for the formation of diskatole via oxidative 

dimerization.  

 

 Conclusive evidence that the [2M-H]+ ions are not formed by 

dehydrogenation of the relevant [2M+H]+ species under ESI+ conditions was 
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obtained by comparing the spectrum of authentic diskatole, 81, with [2M-H]+ 

ion formed from 39. The ESI+ spectrum of the authentic 39 shows a strong 

[M+H]+ signal (corresponding to [2M+H]+ formed from 39), but no [2M-H]+ 

signal (corresponding to [2M-H]+ generated from 39). Therefore, the [2M-H]+ 

ions are not formed from 39 by acid catalysed dimerisation, followed by 

elimination of H2, because the relevant [2M+H]+ ions obtained by direct 

protonation of 81, do not eliminate H2 under the same conditions as those 

required to generate [2M-H]+ from 39. Furthermore, the formation of [2M-H]+ 

ions from 39 in the spray produced in the nebuliser of mass spectrometer 

occurred under neutral pH conditions, without the introduction of a Bronsted 

acid (such as the highly acidic TFA) to catalyse the dimerisation that occurs 

in solution. 

 

4.3.4.2. Electrochemical Process 

 

The instrumentation for ESI+ includes a nebuliser, through which the 

solution of analyte is transmitted to produce an aerosol, usually with an 

electric voltage applied to the nozzle. Consequently, the effect of electrical 

potential running across the nebuliser on the dimerisation was investigated. 

Although the formation of the [2M-H]+ ions occurred when a voltage was 

applied, the ratio of [2M-H]+ to [M+H]+ ions actually increased when the 

nozzle was earthed, Figure (16). This unexpected finding suggests that 

dimerisation of certain indoles may be induced without the application of a 

voltage. Therefore, the mechanism does not involve an electrochemical 

process. 
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Figure (16): Variation in the relative abundance of [2M-H]+ to [M+H]+ with nebuliser 

voltage,V. 

 

4.3.4.3. Radical Mediated Mechanism 

 

After ruling out both an acid catalysed and an electrochemically 

induced mechanism for the dimerisation, the most likely alternative 

mechanism by which the [2M-H]+ species are formed from 39 is by a radical 

initiated process.  This mechanism proceeds via an indolyl radical, 90, which 

may either couple with a second radical or react with a molecule of the parent 

indole to give an intermediate that may lose a hydrogen atom to restore the 

aromatic ring. Thus, coupling of the radical derived from 39 may give species 

corresponding to [2M-H2], as illustrated in Scheme (35).173 This radical 

mechanism begins with loss of the hydrogen atom attached to nitrogen; 

consequently, it cannot occur for 37, which has no N-H. Furthermore, the 

formation of the intermediate is unfavourable for 38 because the radical has 

only a secondary structure.  In contrast, more stable tertiary radicals are 

formed by loss of the N-H from indoles with a 3-substituent, which do form 
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[2M-H2] dimers by this radical mechanism, thus explaining the formation of 

[2M-H]+ (relative to the monomeric indole, which corresponds to [2M-H2+H]+, 

relative to the species derived by this radical dimerisation process) ions 

under ESI+ conditions.  

 

 

Scheme (35): Proposed radical mechanism.  

 

The ESI+ spectra of the labelled indoles, 29, 35 and 36 contain [2M-

H]+ signals (corresponding to the protonated “dehydrodimer” ion) in which all 

four deuteria are retained. This finding is consistent with the radical 

mechanism illustrated in Scheme (35). A mechanism involving coupling of 

two indole species via the 2 or 4 positions of 39 or its labelled analogues, 

followed by elimination of molecular hydrogen, would lead in some cases to a 

protonated “dehydrodimer” ion in which one or more deuterium atom(s) had 

been lost. 

The ESI+ spectrum of “dehydrodiskatole”, 81, prepared independently 

by a radical coupling process, showed a strong [M+H]+ signal at m/z 261. 

Moreover, the CID spectrum of this ion was essentially identical to that of the 

[2M-H]+ ion obtained when 39 was subjected to ESI+ conditions. This result 

is further evidence that the [2M-H]+ species (relative to 39) arise by a 

coupling process of a radical derived by loss of the N-H in 3-substituted 

indoles. Although 39 could undergo acid-catalysed dimerisation (which would 



112 

 

result in the appearance of the corresponding [2M+H]+ signal, rather than the 

associated [2M-H]+ peak, in its ESI+ spectrum), the radical mechanism 

(which leads to the production of a [2M-H]+ signal, as is observed) takes 

place instead.  

The 2-deuterioanalogue of 39 was prepared and analysed in the hope 

that it might show a [2M+H-D2]
+ signal formed by loss of D2 to determine the 

position of the dimerisation, Scheme (36). The spectrum showed the 

expected protonated monomer signal at m/z 133 as the base peak. However, 

only the ‘normal’ [2M-H]+ signal was detected; no significant peak 

corresponding to the [2M+H-D2]
+ ion was detected, Figure (17). One 

explanation for this observation is that isotope effects slow the rate of 

cleavage of the C-D bond(s), perhaps leading to coupling at another site. 

 

 

 

Scheme (36) Reagents and condition: i) LiAlD4, THF, 30 hr, 57%. 

 

      The coupling of the tricyclic indoles (26-33 and 35-36) and 2,3-

disubstituted indoles (84-87) must occur by a different mechanism because 

these heterocycles do not have a hydrogen atom at the ‘2-position’ that can 

be lost during the “oxidative dimerization”. In the hope of probing the 

mechanism by which these tricyclic indoles form [2M-H]+ ions, a selection of 

tetrahydrocarbazole derivatives of 39 with a halogen atom (F, Cl or Br) or a 

methyl or methoxy group (CH3 or CH3O, respectively) in the carbocyclic 

aromatic ring were prepared and subjected to ESI+ mass spectrometry.   
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Figure (17): a) ESI+ spectrum of 2-deutero-3-methylindole, 92; b) expanded 
spectrum to show the isotope pattern. 

 

Unfortunately, however, none of these derivatives showed appreciable 

[2M+H-X2]
+ or [2M+H-HX]+ signals, but most formed significant [2M-H]+ ions.  

Nevertheless, the relative abundance of the [2M-H]+ ions varied with the 
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nature of the halogen atom and its position in the ring. These results appear 

to indicate that the coupling of the tetrahydrocarbazoles is subject to both 

steric and electronic effects, which are themes for further investigation.  

Unfortunately, the preparation of the corresponding skatoles with a halogeno, 

methyl or methoxysubstituent is far more challenging than the synthesis of 

the substituted tetrahydrocarbazoles. Ultimately, however, the behaviour of 

these substituted skatoles under ESI+ conditions may provide valuable 

further information on the site of the dimerisation, which currently cannot be 

unequivocally defined. It seems possible, if not likely, from the behaviour of 

the dideuterioanalogue of 80 that more than one site may be involved in the 

covalent bonding that leads ultimately to the production of [2M-H]+ ions under 

ESI+ conditions. Moreover, the site at which the bonding occurs appears to 

be influenced by isotope effects (which would discriminate against any 

process in which cleavage of a C-D bond was the rate-limiting step) and 

steric and electronic factors. Further work is required to delineate these 

points with greater precision.  

 

4.4. Conclusion 
 

 

 Although the site(s) at which the coupling that leads to the formation of 

[2M-H]+ dimers from indoles has not so far been established in each case, 

the novelty of the overall process remains clear. Furthermore, it is highly 

likely that the formation of these dimers involves a radical-initiated or 

mediated pathway. It does not entail either an acid-catalysed or an 

electrochemically induced process. In addition, the analytical value of the 

[2M-H]+ signals offers a means of distinguishing at a high level of sensitivity 
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indoles with a substituent in the 3-position from their isomers with the same 

substituent in the 1- or 2-position.  
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5.0. ACCELERATED FORMATION OF C=N IN POSITIVE ION 

ELECTROSPRAY SPECTROMETRY 

5.1. Background 

 As noted in the previous chapter, very recent work has established 

that important organic reactions may be replicated and accelerated in ESI+ 

mass spectrometry.170 This novel possibility, which occurs under 

comparatively mild conditions (approximately neutral pH and low 

temperatures) in a nebuliser, even without applying a voltage to the nozzle, 

has obvious synthetic potential. 

In view of the ease with which certain indoles may be made to 

undergo coupling reactions to form [2M-H]+ ions under ESI+, compared to 

the harsh conditions needed to effect similar processes in conventional 

solution methodology, the possibility of forming other covalent bonds under 

ESI+ conditions was explored. Since the formation of C=N bonds (as in 

imines and many nitrogen heterocycles) is very important in synthetic organic 

chemistry, systems of this general type were chosen for investigation.  

 

 

5.2. Experimental 

Essentially the same experimental procedure was adopted as for the 

analysis of the indoles summarised in the previous Chapter, Section 4.2.   

 

5.3. Results and Discussion 

5.3.1. Formation of Imines under Positive ESI Conditions  

 

 

When the ESI+ spectrum of a mixture of an aryl aldehyde, ArCHO, 

with a slight excess of an arylamine, Ar’NH2, was recorded, the anticipated 
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signals corresponding to the protonated amine were formed, together with 

almost equally strong signals for the protonated imine, ArCH=NAr’, but no 

signals for the potonated aldehyde or the tetrahedral adduct, 

ArCH(OH)NHAr’, were detected.  For example, when the ESI+ spectrum of a 

mixture of benzaldehyde, 93, and 2-bromoaniline, 94, was obtained, the 

spectrum showed pairs of peaks of nearly equal intensities at m/z 172 and 

174 ([MH]+ and its 81Br isotope satellite formed by protonation of 94) and m/z 

260 and 262 (corresponding to [MH]+ formed by protonation of 2-

(bromophenyl)-1-phenylmethanimine 95), Scheme  (37) and Figure (18).  

 

 

Scheme (37): Formation of imine, 95, under ESI+ condition in the nebuliser. 

 

 

 

Figure (18): LC-MS of a nebulised mixture of 93 and 94. 

 

 
 

95H+ 

94H+ 
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The ions at m/z 260 and 262 may be explained in terms nucleophilic 

attack of aniline on protonated benzaldehyde, to form a protonated 

tetrahedral adduct, which then undergoes proton transfer, followed by 

elimination of water, to generate the protonated imine. This proposed 

mechanism, see Scheme (38), corresponds precisely to the well-documented 

means by which aldehydes condense with amines to form imines in solution, 

under either acid- or base-catalysed conditions. Alternatively, a radical 

mechanism may operate, as is appears to be probable in the dimerisation of 

indoles discussed in the previous chapter.  

 

 

 

Scheme (38): Mechanism for the formation of the imine. 

 

Although imine formation in solution is rather more easily achieved 

than many organic chemists realise, the rate at which the signals 

corresponding to the protonated imine are formed under ESI+ conditions was 

exceptionally rapid. Indeed, attempts to make a more detailed study of this 

reaction and to exploit its synthetic potential by spraying mixtures of 

aldehydes and amines in solution through an “offline” nebuliser were 

thwarted by persistent blockages in the capillary inlet system. Provided that 

these technical problems can be overcome, the synthesis of imines in 

droplets, such as those produced in a nebuliser, has obvious potential, 

particularly in cases in which the corresponding condensation in conventional 
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“condensed phase” conditions are slow or in which one reactant or the 

product is acid sensitive.  

 

5.3.2. Formation of Quinoxalines under positive Electrospray conditions 
 

 

In order to explore the scope of forming covalent bonds under ESI+ 

condition in the nebuliser, the formation of quinoxalines, 97, was 

investigated. Quinoxalines were chosen for two reason, firstly like indoles, 

they are formally derived by fusing a benzene ring with an aromatic nitrogen 

heterocycle (in this case, pyrazine, as opposed to pyrrole) to produce a 

bicyclic aromatic nucleus. Secondly, the formation of quinoxalines under 

ESI+ will involve the formnation of two C=N bonds as opposed to imines 

which only requires the formation of one C=N bonds. Furthermore, 

quinoxalines are used as precusors in organic synthesis and they also have 

biological relevance. For instance, the peptide antibiotic echinomycin, 96, 

contains two quinoxaline subunits. Owing to their applications in many fields, 

there is a constant search for better methods of synthesising quinoxalines. 

The most common method entails condensing the requisite starting 

materials, in this case the 1,2-dicarbonyl compound, 98, with 1,2-

phenyldiamine, 99, at elevated temperature in the presence of a catalyst. 

Retrosynthetic analysis by disconnection of both the C=N bonds 

reveals an o-phenylenediamine and a benzil, Scheme (39). The 

corresponding forward reaction, condensation of the requisite o-

phenylenediamine and the appropriate benzil, offers a general synthetic route 

to quinoxalines. Consequently, a study of the possibility of effecting the 

condensation of phenylenediamines and benzils under ESI+ conditions is a 
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logical extension of the themes explored in the dimerisation of indoles and 

the synthesis of imines. 

 

 

Scheme (39): Retrosynthetic analysis.  

 

In practice, a range of 2,3-diphenylquinoxalines could be formed by 

infusing an equilimolar amount of o-phenylenediamine and benzil in solution 

in methanol, through the nebuliser, collecting the eluent and analysing it by 

LC-MS.  In addition, the protonated quinoxaline was directly observed in the 

ESI+ spectrum of a solution of the two starting materials, Figure (19).  

 

 

 

Figure (19): LC-MS of a nebulised solution of a mixture of 98 and 99. 
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          Thus, the ESI+ spectrum of a mixture of benzil and o-

phenylenediamine, showed a peak at m/z 283 corresponding to protonated 

2,3-diphenylquinoxaline, 97, which was produced by condensation of the 

diketone, 98, and the diamine, 99, with elimination of two water molecules, 

Scheme (40).  

 

 

Scheme (40): Formation of 97 under ESI+. 

 

        Further investigation revealed that the formation of protonated 

quinoxalines, QH+, in the mass spectrometer by this method is general, Table 

(20). The following abbreviation defines the structure of starting materials and 

the product; for the starting materials “B” denotes benzil and “P” denotes 

phenylenediamine; a suffix attached to either B or P indicates which 

substituents, if any, are present in either component.  Thus P and B(OMe)2 

corresponded to the parent o-phenylenediamine, 99, and 4,4'-

dimethoxybenzil, 100, respectively. Similarly, QH+, denotes the 

corresponding protonated quinoxaline, 101, Scheme (41). 

 

 

 

Scheme (41): Formation of quinoxaline, Q(OMe)2. 



122 

 

        When P and B components react to form QH+ under ESI+ conditions, 

adducts corresponding to the intermediate stages of condensation 

([Q(OMe)2H+2H2O]+ and [QH+H2O]+ were also detected. Thus, when 99 

condenses with B(OMe)2, 100, the [Q(OMe)2H+2H2O]+ and 

[Q(OMe)2H+H2O]+ adducts, 103 and 102, appear at m/z 379 and 361, 

respectively, with Q(OMe)2H
+, 101, itself at m/z 343, see Figure (20). Parallel 

trends were observed in the ESI+ spectra of a mixture of a range of o-

phenylenediamines and benzils, see Table (20). 

 

 

 

 

 

Figure (20): ESI+ spectrum of a mixture of P and B(OMe)2. 
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Table (20): Summary of the important signals in the ESI+ spectra of mixtures of 
phenylenediamine, P, and benzil, B(OMe)2. 
 

PCl + B(OMe)2 PBr + B(OMe)2 PCl + B 

m/z Assignment m/z Assignment m/z Assignment 

377 Q(OMe)2ClH
+
 421 Q(OMe)2BrH

+
 317 QClH

+
 

395 [Q(OMe)2ClH+H2O]
+
 439 [Q(OMe)2BrH+H2O]

+
 335 [QClH+H2O]

+
 

413 [Q(OMe)2ClH+2H2O]
+
 457 [Q(OMe)2BrH+2H2O]

+
 353 [QClH+2H2O]

+
 

 

 

Further evidence to support a mechanism involving nucleophilic attack 

of the phenylenediamine on the protonated benzil was provided by high 

resolution mass spectrometry and analysis of collision-induced dissociation 

(CID) spectra. For example, in the condensation of 99 with 100 under ESI+ 

conditions, the ions at m/z 343, 361, and 379 had the formulae C22H19N2O2, 

C22H21N2O3, and C22H23N2O4 which precisely matched those expected for 

Q(OMe)2H
+, [Q(OMe)2H+H2O]+ and [Q(OMe)2H+2H2O]+, respectively.  

Moreover, the CID spectrum of the ion at m/z 343 was a good match for that 

generated by protonation of an authentic sample of Q(OMe)2, 101, obtained 

by the conventional condensation of P, 99, and B(OMe)2, 100, in solution. 

Finally, in this connection, the CID spectra of both the intermediate ions, 

[Q(OMe)2H+2H2O]+, 99, and [Q(OMe)2H+H2O]+, 100, formed under ESI+ 

conditions showed a strong tendency to fragment by eliminating water, thus 

supporting the proposal that these species were genuine intermediates in the 

condensation of P, 99, and B(OMe)2, 100. 
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Scheme (42): Formation of quinoxalines under ESI+ condition.  

 

Attempts to probe the influence of substituents on either P or B on the 

efficiency of the condensation under ESI+ conditions gave interesting, if only 

qualitative, results. The presence of an electron attracting fluoro or chloro 

substituent (usually in the 4-position) in the phenylenediamine ring appeared 

to have a detrimental effect on the condensation; conversely, the 

condensation appeared to be favoured by an electron donating methoxy 

substituent in this component. Similarly, the presence of an electron 

attracting fluoro or chloro substituent in the benzil (typically at the 4-position) 

appeared to favour the condensation, which perhaps proceeded less 

effectively if there was an electron donating methoxy group in this 

component. These effects are consistent with a mechanism involving 

nucleophilic attack of the phenylenediamine on the protonated benzil 

because electron attracting or releasing substituents would be expected to 

reduce and increase, respectively, the nucleophilic properties of the 

phenylenediamine. Similarly, electron attracting and releasing substituents in 

the benzil would be expected to reduce and increase, respectively, the 

electrophilicity of the protonated benzil. Unfortunately, however, other factors, 

including the varying solubility of the components, complicate this analysis. 
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Thus, the solubility of 4,4’-dibromobenzil in methanol was so low that 

condensations with this benzil derivative were very difficult to study. In 

addition, when assessing the electrophilic properties of the benzil, it is 

necessary to consider the possibility that protonation of 4,4’-dimethoxybenzil 

would be favoured by the electron releasing methoxy groups, thus making it 

easier to generate a reactive intermediate that would be the case for the 

parent benzil. This factor might offset, or even override, the effect of the 

methoxy groups in reducing the electrophilicity of the protonated benzil.   

Despite the complications in reaching firm conclusions about the role 

of substituents on the phenylenediamine and benzil on the efficiency of the 

condensation to produce the protonated quinoxalines under ESI+ conditions, 

it is clear that the formation of C=N bonds is greatly accelerated compared to 

the situation in solution. Whereas condensation of phenylene diamine with 

benzil in solution typically requires heating and time (up to several hours in 

some cases, partly because of low solubility in protic solvents such as 

ethanol), the corresponding process under ESI+ conditions appears to occur 

almost instantaneously. Provided that certain technical challenges can be 

overcome, the potential for synthesising nitrogen heterocycles by accelerated 

formation of C=N bonds in droplets such as those formed in the nebuliser is 

obvious.  

 

5.6. Conclusion  
 

 

The effects uncovered when studying the novel dimerisation of indoles 

that is discussed in the previous chapter have more general application, 

especially in the formation of C=N bonds, both in acyclic systems (imines) 
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and in creating rings (as illustrated in the formation of protonated 

quinoxalines from the constituent components, phenylenediamines and 

benzils). At least some of these condensations appear to bear a significant 

resemblance to the corresponding processes in solution, as illustrated by the 

influence of substituents on each component. Not only are these discoveries 

mechanistically interesting, they also have clear synthetic potential.  
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6. SYNTHESIS OF 1,1’-BISINDOLES 

6.1. Background 
 

In view of the potential of preparing covalent bound dimers from 

indoles under ESI+ conditions, the natural occurrence, biological activity and 

the synthesis of bisindoles by conventional routes were briefly considered. 

The range of these dimeric species includes “open” and “fused” (macrocyclic) 

systems; moreover, much attention has been focused on certain bisindoles 

because of their biological activity.174, 175 176  

For example, Topsentin, 104, an open system bisindole alkaloid with a 

keto and an imidazole entity forming a link between the two indole rings 

connected through their 3-positions.176, 177 It was isolated from a class of 

marine sponges; its biological properties encompass antitumor,178 antiviral, 

antifungal, antibacterial, and antiflammatory activity.174 Other open bisindoles 

include caulepin, hamacantins179 and Hyrtiosin B, Figure (21). 

 

Figure (21): Examples of bisindoles and 1-1’-bisindoles.  

 

Schischkiniin, 105, which was isolated from Centaurea schischkinii 

and first reported in 2005,180 is an interesting case of a fused bisindole, 

Figure (21). It contains an usual 1,1’-bisindole group embedded in a 14-

membered macrocycle.115 The 1,1'-bisindoles, 106, are heterocyclic 
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compounds containing two indole units linked through the two nitrogen 

atoms. This class of bisindoles would be particularly attractive for synthesis 

under ESI+ conditions if it were possible to induce dimerisation by bonding of 

the two nitrogen atoms in monocyclic indoles. 

 

Numerous methods are available for the preparation of topsentin, 104, 

and other related open ring systems such as notopsentins, including cross 

coupling,181, 182 rearrangements183, 184 and the use of 3-aminoacetylindole as 

a precursor (synthesised in three step from indole).176 However, practical 

synthetic methods are quite limited for the 1,1’-bisindole ring system: there 

appears to be only one general method115 for the preparation of this class of 

compound. This approach, which entails the introduction of the key nitrogen 

atom(s) in the early stage of the synthesis, involves two simultaneous Mori-

Ban cyclisations (intramolecular Heck) of hydrazobenzenes. The precursor 

hydrazobenzenes, 107, are obtained from two dialkylation steps.185, 186 

Unfortunately, there is a serious problem with this method: poor yields 

(typically less than 35%) occur because two products (that arising from the 

normal Heck coupling, 108 and another resulting from N-N cleavage, 109) 

may be formed, Scheme (43). Consequently, the invention of a method that 

would lead mainly or exclusively to the desired product will be of significant 

practical value.  
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Scheme (43) Reagents and conditions: i) Zn, aq.NaOH, 54 % ii) LDA (1.2 equ.), 
THF, (CH3)2CHCHCH2Br iii) KOH (2 equ.), DMSO,(CH3)2CHCHCH2Br, 99 % iv) 
Pd(OAc)2,TBACl. HCO2NA, NMP, 16 hr. 

 

6.2. Synthetic strategy  

 

The initial retrosynthetic analysis is shown in Scheme (44): 

disconnection of both C-N bonds to the carbocyclic ring of 106 revealed the 

dibrominated azine derivative, 110.  Further disconnection (C=N) revealed 

two molecules of the corresponding aryl ketones, 111, 115 and 120. 

 

Scheme (44):  Retrosynthetic analysis of 1,1’-bisindole. 

 

It was envisaged that the proposed synthetic sequence would involve 

intramolecular copper mediated C-N arylation of the bromoazine derivative, 
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110.  It was anticipated that 110 itself would be accessible by condensing the 

requisitie o-bromoketone, 111, with hydrazine monohydrate (NH2NH2.H2O).  

These 2-bromoarylketones, which are readily accessible via various routes, 

such as palladium coupling,187, 188 have previously been used as starting 

materials in the synthesis of 2-substituted indoles by copper catalysed 

reactions with ammonia or alkyl amines.189 This “one pot” methodology 

involved formation of the intermediate imine-enehydrazine, 113 (derived from 

treatment of the aryl ketone, 112 with the appropriate amine), which is 

reacted with cuprous iodide (CuI) to give the desired indole, 114.189, 190 

Furthermore, palladium catalysed intramolecular O-arylation of 2-bromoaryl 

ketones has been reported to form the corresponding benzofuran. For 

example, when α-(o-bromophenyl)cyclohexanone, 115, was treated with 

bis(dibenzylideneacetone)palladium(0), (Pd(dba)2) in the presence of 

DPEphos and caesium carbonate in toluene, the tricyclic product, 1,2,3,4-

tetrahydro-dibenzofuran, 116, was obtained in 95% yield, Scheme (45).187 

 
 

 

 
Scheme (45) Reagents and conditions: i) 2-MeOPhNH2, Ti(OtBu)4, 60-140 °C, 10 hr; 
ii) CuI (10 mol%), Cs2CO3 (2 equ.), DMA, 125 °C, 10 hr, 86%; iii) Cs2CO3, Pd(dba)3, 
DPEphos, toulene, 110 °C, 95%. 
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6.2.1. Synthesis of 2-bromo substituted Ketone 

 

 
The synthetic work described in this chapter began with the reaction of 

o-bromophenylacetic acid, 117, with thionyl chloride (SOCl2) to give the 

corresponding acid chloride, 118, which was not isolated but treated directly 

with N,O-dimethylhydroxylamine in the presence of an acid scavenger 

(pyridine) to provide the corresponding Weinreb amide, 119. The reaction of 

119 with phenylmagnesium bromide (PhMgBr) in THF resulted in the 

formation of a chelated adduct which is stable under the reaction conditions, 

thus preventing elimination of [MeO(Me)N]- to regenerate the carbonyl group, 

which would permit nucleophilic addition of a second mole of PhMgBr; 

however, this tetrahedral adduct collapsed to the desired ketone, 112, during 

the standard aqueous workup, Scheme (46). 

 

 

Scheme (46) Reagents and conditions: i) SOCl2; ii) CH3NHOCH3.HCl, pyridine, 

CH2Cl2, 0 °C; iii) PhMgBr, THF, 0 °C, 40 mins; iv) MeLi, THF, 0 °C. 
 

In an analogous manner to the formation of 112, the synthesis 1-(2-

bromophenyl)-propan-2-one, 120, was attempted by treating the Weinreb 

amide, 119, with the organometallic reagent, methyl lithium (MeLi), in THF at 
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0 °C, Scheme (46). It was hoped that the initial adduct formed by addition of 

one mole of MeLi would also be sufficiently stable to prevent elimination of 

[MeO(Me)N]- and prevent the regeneration of an electrophilic carbonyl group, 

so that an aqueous workup would afford the desired ketone, 120. However, 

NMR analysis of the yellow oil obtained from this synthesis showed a mixture 

of products which could not be successfully separated. It was, therefore, 

concluded that the synthesis of 120 via this method might prove difficult. 

In order to investigate other routes to 120, o-bromophenylacetic acid, 

117, was treated with acetic ahydride, 121, in the presence of a suitable salt 

of acetic acid (sodium acetate) in a process that bears a superficial 

resemblance to the Perkin reaction. Acetic ahydride was used in excess to 

avoid the formation of 1,3-bis(2-bromophenyl)-2-propanone, 122. This 

method gave a moderate yield of the desired product, Scheme (47).  

 

 

 

Scheme (47) Reagents and conditions: i) NaOAc, 140 °C, 40 hr, N2, 35%. 

 

Palladium coupling of 1-bromo-2-iodobenzene, 123, with 

cyclohexanone, 46, resulted in the C-C bond formation to give the related 2-

bromaryl ketone, α-(o-bromophenyl)cyclohexanone, 115, in moderate yield, 

Scheme (48). 
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Scheme (48) Reagents and conditions: Cs2CO3, Pd(dba)3, 1,4-dioxane, 80 °C, 24 
hr, 71%. 

 

 

6.2.2. Synthesis of the requisite Azines  
 

The availability of these three o-bromoaryl ketones with various 

substituents (simple alkyl or aryl, represented by methyl, cycloalkyl or phenyl) 

permitted the next step in this synthetic route to be attempted. The diaryl 

species 112, which was chosen as a model compound to optimise this route, 

was refluxed for several hours with NH2NH2.H2O in ethanol in the presence 

of p-toluenesulphonic acid (TsOH) as a catalyst, Scheme (49).  

 

 

 

Scheme (49) Reagents and conditions: NH2NH2.H2O, EtOH, pTsOH, 80 °C, 32%. 

 

After monitoring the reaction by TLC, the resultant yellow oil obtained 

upon completion was analysed: 1H NMR showed a broad singlet at 5.4 ppm 

integrating for 2 protons that could be assigned to the exchangeable protons 

of the NH2 group; the IR spectrum also confirmed the presences of an NH2 

group (3378 and 3285 cm-1). These data showed that the intermediate 
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enehydrazine, 124, was obtained. In order to obtain the desired azine, 115, 

this enehydrazine was refluxed in ethanol with an equimolar quantity of the 

parent ketone, 112.  The IR spectrum of the product obtained by this means 

showed the disappearance of the N-H signal that was associated with the 

amino group in 124. The ESI+ mass spectrum, Figure (22), showed an MH+ 

peak at m/z 545, accompanied by the expected signals at m/z 547 and 549 

(the 81Br1 and 81Br2 isotope satellites, respectively, of MH+) with relative 

intensities in the ratio 1:2:1, thus confirming the presence of two bromine 

atoms in the molecule. Furthermore, similar signals with intensities in the 

ratio 1:2:1, corresponding to [M+Na]+, were present at m/z 567, 569 and 571, 

thus corroborating the deduction that the product contained two bromine 

atoms, Figure (22).  

 

Figure (22): ESI+ Mass spectrum of 124. 
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In addition, high resolution data confirmed that molecular formula of 

this compound was C28H22N2Br2. The 1H NMR spectrum showed a singlet at 

4.5 ppm, together with a series of signals for the aromatic protons in the 

region 6.9-8.0 ppm. The integration of the signals for aromatic protons in this 

region corresponded to 9 protons, which reflects the symmetry of the azine, 

125, Figure (23). 

 

 

 

Figure (23): 1H NMR spectrum of 125. 

 

6.2.3. Copper mediated N-Arylation 

 

 
Careful thought was given to choosing the most appropriate source of 

copper(I) and the associated base to maximise the prospects of facilitating 

the copper catalysed N-arylation. The chosen base was K3PO4 because it 
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had been reported to have been used successfully in the cyclisation of 

indoles; CuI was used as the source of copper. The reaction was attempted 

by refluxing 125 with CuI in dimethylformamide (DMF) with CuI and the base 

under N2, Scheme (50).  

 

 

 

Scheme (50) Reagents and conditions: i) CuI, K3PO4, DMF, 110 °C, N2, 90 min. 

 

Unfortunately, the 1H NMR spectrum of the reaction mixture indicated 

that it was composed mainly of starting material; thus, the signal at 4.5 ppm, 

which had been assigned to the methylene protons in the starting material, 

remained present. Although this outcome was disappointing, especially since 

time restraints prevented more extensive attempts to vary the reaction 

conditions, this exploratory work does show that there is potential to prepare 

novel bisindoles by this general route, provided that the final cyclisation can 

be effected in decent yield in comparatively mild conditions. 
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6.3. Conclusion 

 

In summary, using this protocol the precursor dibrominated azine was 

synthesised in moderate yield in two steps via the intermediate hydrazone 

from the o-bromoaryl ketone. However, conditions for the final cylisation step 

to form the bisindole are yet to be developed. In order to explore this 

methodology, a wide range of intermediate azines need to be synthesised. 
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7. BASE MEDIATED REARRANGEMENT OF 1-ACYLATED 2-
METHYLINDOLES 
 

7.1. Background  

Following the exploratory work on synthesising bisindoles reported in 

the previous chapter, the possibility of preparing 2-substituted indoles by 

rearrangement of the corresponding 1-substituted isomers was considered.  

This idea was a logical extension of the overall scope of the project, which 

encompassed indoles in general. In addition, it was hoped that insight could 

be obtained that might be useful in future work on the synthesis of bisindoles. 

Treatment with lithium diisopropylamine (LDA) had been reported to 

be an effective method for deprotecting 1-pivaloylindoles to give the parent 

heterocycles in excellent yield, Scheme (51).191  

 

 

Scheme (51) Reagents and conditions: LDA (2 eq.), THF, 40–45 ˚C, 83–100%. 

 

 

This procedure worked well not only for 1-pivaloylindole itself, but also 

for a variety of homologous species (127, 128, 129, 130 and 131, 

respectively) derived from 2-methylindole, 2-phenylindole, 3-formylindole, 4-

bromoindole, and 5-carbomethoxyindole. The compatibility of this 

deprotection with the presence of various substituents, including a bromine 
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atom and a formyl group, seemed to be quite promising. However, when the 

substituent was in the 2-position of the indole, thus increasing the steric 

hindrance towards nucleophilic attack on the carbonyl group of the pivaloyl 

substituent, only a moderate yield of the desired deprotected indole was 

obtained. Thus, treatment of 2-methyl-1-pivaloylindole, 127, with LDA at 40–

45 ˚C, produced only 33% of 2-methylindole, 37, Scheme (52).  

 

 

 

Scheme (52) Reagents and conditions: LDA (2 eq.), 40–45 ˚C. 

 

This reduced yield reflects the competition between deprotection 

(arising by nucleophilic attack of the amide anion on the carbonyl group) and 

intramolecular pivaloyl transfer from nitrogen to position 2 [via the new 

possibility of deprotonation by the amide anion of the 2-methyl group to give 

a nucleophilic species that could attack the carbonyl group, to give 2-(3,3-

dimethyl-2-oxopropyl)indole, 136, Scheme (52)]. This observation, though 

unhelpful in the context of the original work,105 offered a potential means of 

preparing indoles in which the methyl group in the 2-position has been 

elaborated by transfer of an acyl substituent that had originally been attached 

to the nitrogen atom. 
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7.2. Results  

7.2.1. Preparation N-protected 2-methylindoles 

 

A range of 2-methyl-1-alkoxycarbonylindoles, 137-141, was prepared 

as starting materials to probe the viability of exploiting the rearrangement to 

prepare novel 2-substituted indoles. 2-methyl-1-(t-butoxycarbonyl)indole, 

137, was synthesised by treating 2-methylindole, 37, with Boc2O in THF in the 

presence of a catalytic amount of DMAP,192 Scheme (53). The desired N-

protected indole was obtained in good yield. The spectroscopic data obtained 

for this product were identical to those previously reported.193   

 

Scheme (53) Reagents and conditions: Boc2O, THF, DMAP, RT, 90%. 

 

The other N-protected 2-methylindoles (R1 = OMe, OEt, Ph and 

CH2Ph) were prepared via the reaction of 2-methylindole, 37, with lithium 

hexamethyldisilazide (LiHMDS) as the base in THF, followed treatment with 

the appropriate chloroformate.194 The desired compounds were obtained in 

excellent yield, Scheme (54).  

 

 

Scheme (54) Reagents and conditions: i) LiHMDS, THF, R1OCOCl, -78 °C– rt, 93–
99%. 
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7.2.2. Rearrangement 
 

Preliminary studies established that the starting material that was 

accessible in the highest yield was 1-ethoxycarbonyl-2-methylindole, 139; 

consequently, it was used for the initial exploratory work.  Therefore, 139, 

was treated with 2 equivalents of LDA in THF at -78 °C, in the hope of 

obtaining exclusively the 2-(carboethoxymethyl)indole, 142, Scheme (55).  

 

 

Scheme (55): Proposed route for the synthesis of 142.  

 

The reaction was monitored over 6 hr by TLC, which showed mainly 

the presence of starting material. The 1H NMR spectrum of the product 

showed that some decomposition had also occurred. Decreasing the reaction 

time to an hour resulted in the formation of a mixture that was shown by NMR 

to consist predominantly of the starting material, 139, the deprotected 

species, 2-methylindole, 37, and the desired rearranged product, 142. In 

order to ensure that the reaction proceeded to completion, the amount of 

LDA was increased to 4 equivalents. In the 1H NMR spectrum of the material 

obtained in this manner, three singlet peaks were observed between 7.8 and 

6.1 ppm: a broad singlet at 7.76 ppm was assigned to the N-H in 2-

methylindole, 37, whereas the two peaks at 6.42 and 6.13 ppm were 

ascribed to H-3 of the desired product, 142 and 2-methylindole, 37,  

respectively. The presence of the two quartet signals (centred at 4.39 and 

4.12 ppm) and two triplet peaks (centred at 1.39 and 0.87 ppm) showed the 
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presence of two ethyl groups, which possibly suggested the presence of the 

starting material. The spectrum also contained two singlet signals at 3.95 and 

2.36 ppm; these peaks were assigned to CH2 (H-9 of the product) and CH3 

(H-2 of 2-methylindole). Based on this analysis of the NMR spectrum, it was 

deduced that the material obtained in this reaction possibly consisted of three 

components: unreacted starting material, 139, 2-methyl indole, 37 and the 

rearranged product, 142. This interpretation was investigated by TLC, in 

which the material that had been analysed by NMR was run against 2-

methylindole, 37, and the starting material, 139: only two spots were 

detected, corresponding to 37 and possibly 142, but there was no trace of the 

starting material. The IR spectrum of the mixture showed two C=O stretching 

bands at 1729 and 1704 cm-1, which is consistent with the presence of two 

carboethoxy groups. These results suggested that this reaction resulted in 

the formation of 2-methylindole and ethyl-2-(2-ethoxy-2-oxoethyl)-1H-indole-

1-carboxylate, 143. Based on the integration of the signals for H-3 at 6.42 

and 6.13 ppm, only 33% of the mixture was 143, Scheme (56). 

 

Scheme (56) Reagents and conditions: LDA (4 equ), THF, - 78 °C, N2, 10 mins.  

 

In the hope of increasing the yield of 143, the base was added at a 

slower rate over a longer period of time (20 mins). The idea behind the 

slower addition was to ensure that only a small amount of LDA was available 

to induce the deprotection. This refinement, together with allowing the 
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temperature of the LDA to rise, increased the proportion of 143 in the product 

to approximately 50%, Figure (24 and 25). However, it did not prove possible 

to obtain a yield in excess of 50%. 

 

Figure (24): 1H NMR spectrum of reaction mixture when the LDA was added fast. 

 

Figure (25): 1H NMR spectrum for the reaction when the LDA was added slowly.  
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7.2.3. Attempts to optimise the Base 

 

In order to attempt to optimise the reaction to improve the yield, 

alternative bases for the investigation were considered; eventually, 

tertbutyllithium (tBuLi) was chosen, partly because it was assumed that this 

species would be more likely to function as a base (by deprotonation of the 

methyl group) than as a nucleophile. When 1-ethoxycarbonyl-2-methylindole, 

139, was treated with 2 equ of tBuLi in THF at -78 ˚C under an inert 

atmosphere, Scheme (57), and the reaction was monitored by TLC over a 

period of one hour, it was discovered that only one product was formed. 

Spectroscopic analysis of this product was informative. The presence in the 

IR spectrum of a sharp N-H band at 3378 cm-1 indicated that the product 

contained a indole N-H (in other words, the N-carboethoxy group had been 

successfully removed), which strongly suggested the formation of either 2-

methylindole, 37, or the desired rearranged product, 142, both of which 

contain an indole N-H. The 1H NMR spectrum showed a broad singlet at 7.72 

ppm, confirming the presence of an indole N-H, together with two doublet 

peaks, each of which integrated for one proton, and other peaks at 7.01, 6.11 

and 2.30 ppm, which integrated for two, one and three proton(s), 

respectively. When the spectrum of the material obtained by treatment of 139 

with tBuLi was compared with that of commercial 2-methylindole, the spectra 

were identical, Figure (26).  
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Figure (26): 1H NMR spectra of 2-methylindole; top: commercial; bottom: obtained 
from reaction. 
 

In summary, the spectroscopic data led to the conclusion that the 

reaction had been formed 2-methylindole in 92% yield. This result was 

completely unexpected: it had been anticipated that the use of tBuLi would 

decrease the percentage of deprotected material that was formed, whilst 
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raising the percentage of the desired product from the rearrangement; 

instead, the use of the stronger and more hindered base actually increased 

the proportion of deprotected material to such an extent that the undesired 

rearrangement that had been previously observed could now be effectively 

prevented.  Although this finding was the opposite of the outcome required to 

secure the desired rearrangement, it did solve the problem encountered by 

the earlier workers who merely wished to deprotect the derivatives of 2-

methyl indole. 

 

 

Scheme (57) Reagents and conditions: tBuli (2 equ), THF, - 78 °C, N2, 92%. 

 

 

Having established that optimisation of the conditions to induce the 

rearrangement at the expense of the deprotection would be more difficult 

than had been expected, attention was turned to why the yield obtained by 

using LDA could not be raised above 50%. Intramolecular transfer of the 

carboalkoxy group from the nitrogen atom to the carbon atom that was 

originally incorporated into the methyl group would entail the unfavourable 

formation of a four membered ring in the stepwise “addition-elimination” 

reaction. This process appears to be intuitively improbable. If it were to be 
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pre-empted by an intermolecular alternative, only half of the molecules of the 

2-methylindole derivative would be converted into the rearranged species in 

which the 2-methyl group had been elaborated in the desired manner. The 

other half would merely be deprotected, thus limiting the maximum yield to 

50%. In view of this consideration, no further attempts were made to optimise 

the yield of rearranged product.  

     Experiments in which a mixture of two different 1-acyl-2-methylindoles 

were treated with LDA resulted in the formation of “crossover products”, 

formed by transfer of the acyl group from one starting material to the anion 

derived by deprotonation of the methyl group of the other starting material. 

These “crossover” experiments confirmed that the rearrangement is 

intermolecular, rather than intramolecular. In view of these findings, no 

further attempts were made to optimise the yield of rearranged product. 
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8. NOVEL REARRANGEMENT OF SULPHONAMIDES 

8.1. Introduction  

Following the partial success in studying the transfer of a carboalkoxy 

group from the nitrogen atom of N-carboalkoxy indoles to the carbon atom 

the 2-position, via a rearrangement that proved to be intermolecular in 

nature, other potentially useful synthetic transformations of a similar kind 

were sought in order to extend the theme of acyl transfers in heterocyclic 

systems.  It quickly became apparent that protection of certain substituents, 

including those such as an amino group with acidic hydrogen atoms, would 

be necessary in this part of the investigation.  

Protecting group tactics play a vital role in organic synthesis. 

Protecting groups are required to prevent the occurrence of undesired side 

reactions. A good protecting group is easy to introduce, easy to remove and 

is stable to conditions of any reaction required for the elaboration of other 

parts of the molecule. 195 

 One particularly common method of protecting an amine is to convert 

it into the corresponding sulphonamide,196 which is generally thought to be 

stable to many reagents,197 including most strong bases.198 The p-

toluenesulphonyl (tosyl) derivatives are frequently used as a protecting group 

for amines and similar nitrogenous species, partly because of the crystalline 

nature of many of these sulphonamides (in contrast, a fair number of the 

corresponding benzenesulphonamides have much lower melting points, 

which makes them less easy to purify, characterise and manipulate). This 

approach is particularly common in synthetic routes to derivatives of 

arylamines, but it is also employed in the preparation of their aliphatic 
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counterparts. Arylamines have many applications in chemistry, including the 

production of diazo dyes199-201 and the synthesis, via the corresponding 

diazonium salts, of a huge range of aromatic compounds with a wide range 

of functional groups in a specific position. 202, 203 

 

 
 

Figure (27): Examples of biologically active compounds containing the 

sulphonamide entity: (a) Prontosil; (b) sulphanilamide; (c) sulphathiazole; (d) 

glibenclamide; (e) argatroban and (f) sulphapyridine. 

 

Heterocyclic compounds with one or more nitrogen atoms, especially 

those containing pyridine such as nicotinic acid derivatives, play important 

roles in biochemistry and biology.204-212 Moreover, sulphonamides derived 

from nitrogenous parent compounds are sometimes valuable in medicinal 

and pharmaceutical contexts.213-217  Thus Prontosil, 144, which was originally 

developed as a diazo dye, became (one of) the first commercially available 

antibiotics.218-221 Prontosil breaks down in the body to p-

aminobenzenesulphonamide (sulphanilamide)221, 145, a less complex 

sulphonamide. This finding led to the development of “sulpha-drugs”. 

Illustrative examples of sulfa-drugs222 include sulphathiazole, 146, (an 
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antibacterial agent),223 glibenclamide, 147, (a hypoglycaemic agent),224 

argatroban, 148 (an agent thromobin inhibitor)225 and sulphapyridine, 149, 

(which was used in treatment of pneumonia,226, 227 see Figure (27) above.  

 

 

 

8.2. Background  

8.1.1. The Chan Rearrangement  

 

 

         The base mediated isomerisation of α-acyloxyacetate esters is known 

as the Chan rearrangement. The α-acyloxyacetate ester was obtained by 

treating a halogeno ester with a carboxylic acid. Treatment of the archetypal 

-acyloxyester 150 with  LDA (2 eq.) at 0 °C, followed by quenching with 

dilute hydrochloric acid (HCl), gave the corresponding 2-hydroxy-3-ketoester, 

151. If the reaction was quenched with Ac2O or TMSCl instead of HCl, other 

interesting compounds 152A and 152B, and 153 (via the intermediate, 

154),228 respectively, were obtained instead, Scheme (58). 

 

Scheme (58) Reagents and conditions: i) LDA, THF, 0 °C, 30 mins; ii) HCl (0.1 N); 
iii) Ac2O; iv) TMSCl. 
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Subsequently, an analogous based-mediated rearrangement of imides 

to form α-aminoketones was reported.  Thus, when 155 was treated with 3 

equivalents of LDA in tetrahydrofuran (THF) in the presence of N,N-

dimethylpropyleneurea (DMPU), the corresponding α-aminoketone, 156 was 

obtained,229 Scheme (59). The driving force for this reaction is the stability of 

the anion with the negative charge formally localised on nitrogen compared 

to that when the negative charge is located on carbon.  This process may be 

considered to exemplify an “amino-Chan” rearrangement.  

 

Scheme (59) Reagents and conditions: i) LDA, THF, DMPU, -78 °C, 91%. 

 

 

This Chan methodology, in which a rearrangement is exploited to 

produce a skeleton that might otherwise be difficult to form, has been utilised 

in the synthesis of the indole-bisaxazole subunits of diazoamide A, 157, (a 

cytotoxic marine metabolite).230 This approach has also found application in 

the first total synthesis of taxol, 158,231 which permitted a product to be 

prepared with a high diastereoselectivity, Figure (27). 

 

 

 

 

Figure (27): Examples of natural products synthesised by the chan method; a) 
Diazoamide; b) Taxol. 
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8.1.2. Asymmetric Alkylation of α-Amino Acids 

 
Amino acids, which are the building blocks of proteins,232-234 make up 

a large portion of mammalian and human bodies.235-238 One function of amino 

acids is to assist in the transport and storage of nutrients. As mentioned in 

Chapter 1.1.2.2, tryptophan, 4, is an example of an essential amino acid that 

contains the indole nucleus. Apart from glycine, which is not chiral, all natural 

amino acids exist as the L-stereoisomer. The extensive interest in finding 

effective methods for synthesising amino acids, preferably in one 

enantiomeric form, reflects their biological importance. The most common 

and efficient general method is via enolate chemistry using a chiral source239. 

However, when a single enantiomer of a reagent reacts with a base in the 

absence of a chiral source (an electrophile, ligand or auxiliary), the reaction 

leads to a racemic mixture.229, 240 This loss of stereochemical integrity occurs 

because the intermediate enolate is achiral (all four substituents, R1, R2, R3 

and S, are in the same plane), Scheme (60). 

 

 

 

Scheme (60): Reaction of a single enantiomer of a precursor carbonyl compound via 
the corresponding achiral enolate in the absence of a chiral source. 
 

 

However, it has recently been discovered that on a specific timescale 

reactions of this kind involving an enolate do not always lead to loss of the 

original stereochemistry. If the enolate possesses an appropriate symmetry 

element, particularly axial chilarity, at least some of the stereochemical 

information in a single enantiomer of the starting material can be 
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preserved.229, 241-243 This concept suggests that the reaction of a suitable 

enolate need not necessarily result in the formation of a racemic product, 

even when it is done in a non chiral environment. This idea is known as 

Memory of Chirality (MoC).229, 239, 244, 245 The requirement for MoC has 

recently been shown to include three criteria: firstly, a chiral enolate 

intermediate must be formed from a single enantiomer of the starting 

material; secondly, racemisation of the chiral intermediate must take place at 

a slow rate; and, thirdly, the conversion of the chiral intermediate must occur 

at an enhanced rate. If all three criteria are met, it is possible to make use of 

enolate chemistry without losing the stereochemical properties of the starting 

material, even in achiral environments.246 

Although the idea of axial chirality appears at first sight to contradict 

the normal understanding of the structure and reactivity of enolates, which 

are generally considered to be planar species,247 it has been recognised for 

many decades that compounds may be optically active even if they do not 

possess a chiral centre. For example, certain allenes248-250 and 

spirocompounds251, 252 exist in two enantiomeric forms, as do biaryl 

compounds in which rotation about the C-C bond connecting the aryl groups 

is restricted because it entails unfavourable steric interactions between ortho 

substituents.240, 253-255 Similarly, the two forms of fused polyaromatic 

hydrocarbons such as hexahelicene256, 257 and heptahelicene258, 259 show 

very high specific rotations, even though there is no chiral centre in the 

molecule.260-264 All these classes of compounds can be considered to 

illustrate the principle of axial chirality. These species show stereoisomerism 

because chirality is a molecular property, arising because the two 
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enantiomeric forms are not superimposable. A parallel argument indicates 

that the transition state involved in elaboration of an apparently achiral 

enolate may also have axial chirality, provided that the time taken for the 

elaboration (in this case, an alkylation) is substantially shorter than that 

required for interconversion of the enantiomers (racemisation for enolates). 

It is important to appreciate that the conservation of stereochemical 

information depends on the timescale of the competing processes 

(elaboration versus racemisation for enolates) as well as temperature at 

which the elaboration is performed. The concept of asymmetric induction was 

demonstrated by the treatment of  the phenylalanine derivative, 159, with 

potassium hexamethyldisilazide (KHMDS) at -78 °C in toluene/THF (4:1), 

followed by quenching with methyl iodide (MeI), Scheme (61). The reaction 

resulted in the formation of the methylated product, 160, in 96 % yield with an 

enantiomeric excess of 81%.239 This reaction retains stereochemical 

information because the intermediate enolate has a dynamic axial chirality229 

along the C-N bond with different groups around the nitrogen atom.  

Moreover, the corresponding α-methylated phenylalanine derivatives with 

aromatic and aliphatic substituents were also obtained in a good yield with 

high enantiomeric excess. 

 

 

Scheme (61) Reaction and Conditions: i) KHMDS, toluene/THF, -78 °C, 30 mins; ii) 
MeI, 96%. 
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8.2. Aim 
 

In the context of this research, the principal original aim was to 

synthesise novel amino acids by combining the amino-Chan rearrangement 

with asymmetric alkylation methodology. The amino-Chan method would be 

used to attempt to transfer acyl groups or other substituents from nitrogen to 

carbon; amino acid derivatives be alkylated, ideally exploiting axial chirality to 

prepare unusual amino acids, preferably in high enantiomeric excess.  

 

8.3. Results and Discussion 

 

The starting point in the series of experiments designed to combine 

the idea of incorporating rearrangements with the synthesis of amino acids, 

was the tert-butoxycarbonylation of glycine ethyl ester, 161, with di-tert-butyl 

dicarbonate to give the Boc protected glycine ethyl ester derivative, 162. This 

initial step took place in good yield. Aryl amination of 162 with 4-

bromopyridine or 2-bromopyrimidine in the presence of palladium(II)acetate 

[Pd(OAc)2], xantphos and caesium carbonate (Cs2CO3] afforded 163 and 164 

respectively, Scheme (62). Although these archetypal derivatives of -

deficient heterocycles were successfully prepared, they did not undergo the 

anticipated rearrangement when treated with LDA, Thin Layer 

Chromatography (TLC) showed that no reaction took place. 
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Scheme (62) Reagents and conditions: i) Boc2O, DMAP, CH2Cl2, 90%, ii) 4-
bromopyridine, Pd(OAc)2, xantphos, Cs2CO3, 60%; iii) 2-bromo-pyrimidine, 
Pd(OAc)2, xantphos, Cs2CO3, 65%.  

 

            In response to this negative result, the substrate that was to be 

subjected to the rearrangement was carefully reconsidered. It was thought 

that the rearrangement might be promoted if an electron withdrawing 

substituent was attached to the nitrogen atom, effectively functioning as a 

“protecting group” that would confer specific electronic properties on the 

substrate. These deliberations led to the idea of attempting the amino-Chan 

rearrangement on carbamates derived from pyridine sulphonamides, in which 

the two groups on nitrogen might help to establish axial chirality along the C-

N bond, which might in turn permit unnatural and novel amino acids and their 

derivatives to be synthesised, Scheme (63).  

  



157 

 

 

 

Scheme (63) Reaction and conditions: i) LDA, THF, -78 °C, N2. 

 

 

The revised synthetic sequence involved treating 2-mercaptopyridine, 

165, with sodium hypochlorite and hydrochloric acid to give 2-

pyridinesulphonylchloride, 166.  This acid chloride is air sensitive; therefore, 

the crude material was not isolated, but was instead reacted directly with the 

tert-butyl ester of valine. The resultant sulfonamide, 167, was Boc protected 

in the standard way to afford the corresponding carbamate, 168, which was 

obtained in excellent yield.  This protected species was then was treated with 

LDA at -78 °C in the hope of deprotonating and alkylating of the derived 

anion with MeI to give 169, Scheme (60). 

 

 

 

Scheme (64) Reagents and conditions: i) HCl, NaOCl, CH2Cl2, 58%; ii) tert-butyl 
ester of valine, Et3N, CH2Cl2, 87%; iii) Boc2O, DMAP, CH2Cl2, 86%; iv) LDA, THF, -
78 °C, N2, 90%. 
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However, TLC obtained 2 minutes after the LDA was added showed a 

new spot, before any MeI was added.  This new material had a lower Rf value 

than the starting material; consequently, it was more polar than 168.  

Subsequent TLC analysis 5 mins afterwards showed that all the starting 

material had been consumed before any methyl iodide was added.  This 

finding indicated that α-methylated amino acid derivative, 169, cannot be 

obtained by this proposed method, Scheme (64), because a new and 

unexpected product was preferentially formed. The unexpected product was 

investigated by spectroscopic analysis (IR, 1D NMR, 2D NMR and mass 

spectrometry) in order to establish its structure. The FT-IR spectrum was 

dominated by strong bands at 1727 cm-1, corresponding to a C=O stretching 

vibration (typical of a conjugated ester or carbamate), and 1307 and 1138 

cm-1, arising from the asymmetric and symmetric S=O stretching vibrations 

(typical of a conjugated sulfonamide). In addition, the spectrum also showed 

a band of medium intensity at 3200 cm-1 (typical of the N-H or an amide or 

sulphonamide), which was not present in the spectrum of the starting 

material, 168. The 8.57-7.42 ppm region of the 1H NMR spectrum contained 

3 doublets of doublets signals, which integrated for 1 proton each, thus 

revealing the presence of only three aromatic protons on adjacent positions 

in the heterocyclic ring. A comparison of the 1H NMR spectrum of the starting 

material with that of the unexpected product showed that the signal for the 

proton in the 3 position of 168 had disappeared. The spectrum of the 

unexpected product also showed a broad signal at 5.98 ppm, which was 

assigned to N-H which was not present in the spectrum of 168. The aliphatic 
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region showed a singlet peak at 1.22 ppm, which integrated for 9 hydrogens, 

and which was assigned to the t-butyl group, Figure (29).  

 

 

 

 

Figure (29): 1H NMR spectra (CDCl3; 400 MHz); top: starting N-acylated derivative; 
bottom: rearranged product, 170. 
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         The Heteronuclear Multiple Bond Correlation (HMBC) spectrum 

showed a correlation between the carbon atom of the carbonyl atom of ester 

group and H-4 of the pyridine ring, Figure (30), thus establishing that the 

carbon atom of the carbonyl group lies in close proximity to the hydrogen 

atom attached to the carbon atom in position 4 of the pyridine ring. 

 

 
 
Figure (30): HMBC spectrum of the unexpected product, 170. 
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The ESI+ spectrum of the unexpected compound contained a peak at 

m/z 415, corresponding to MH+. This result confirmed that the unexpected 

product has the same relative molecular mass the starting material, 168. 

Furthermore, accurate mass measurements at high resolution under ESI+ 

conditions confirmed that both compounds have the same molecular formula 

(C12H30N2O6S). Based on these spectroscopic data, it was concluded that the 

desired asymmetric methylation of N-tert-butyl carbamate, 168, had been 

pre-empted by an isomerisation, in which the carbonyl group on nitrogen had 

migrated to the 3 position of the pyridine ring, thus forming the ester, 170, 

Scheme (65). 

 

 

Scheme (65) Reagents and conditions: i) LDA, THF, -78 °C, N2, 90%. 

 
 

8.3.1. The Mechanism of the Rearrangement 
 

This base mediated rearrangement presumably begins with 

deprotonation of the pyridine ring, followed by intramolecular attack of the 

resultant anion on the carbonyl carbon atom of the carbamate. It is 

interesting that only one regioisomer is formed, corresponding to formation of 

the initial anion on the 3-position of the pyridine ring. Furthermore, the fact 

that a simple pyridine ring cannot be deprotonated by LDA suggests that the 

mechanism for the formation of the anion possibly involves directed ortho 

metallation. Two postulates may be made on the basis of these observations, 
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namely that the deprotonation step and/or the stabilisation of the intermediate 

anion, 171, (or transition state) is facilitated by coordination of the lithium 

counterion with either the sulphonamide or the carbamate, which involves a 

5- or 7-membered ring, 172 or 173, respectively, Scheme (66).  

 

Scheme (66): Stabilisation of the intermediate anion by co-ordination of the lithium 
cation with the sulphonamide, 172, or the carbamate, 173. 

 

 

8.3.2. The Scope of the Reaction 

8.2.2.1. Synthesis of Nicotonic Acid Sulphonamides 

 

To investigate the generality of this synthetic route, a range of N-

substituted pyridine sulfonamides were synthesised, Scheme (67).  

 

 

 

Scheme (67) Reagents and conditions: i) PhCH2NH2, Et3N, CH2Cl2, 98%; ii) NaH, 
THF, R1COCl, 0 °C to rt or R1CO2COR1, DMAP, py. 
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Table (21): Formation of N-acyl sulphonamides. 

 

Entry R1 Product Yield (%) 

1 Me 

 

95 

2 MeO 

 

99 

3 nC5H11 

 

82 

4 (CH3)CHCl 

 

78 

5 tBu 

 

75 

6 tBuO 

 

95 

7 Ph 

 

81 

8 (CH3CH2)CHPh 

 

77 
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A suitable parent sulphonamide was readily prepared by treating 

benzylamine (chosen as a representative primary amine) with pyridine 

sulphonyl chloride, 166, in dichloromethane solution in the presence of 

triethylamine (which acts as a catalyst and acid scavenger). When this 

sulphonamide, 174, was treated with sodium hydride, followed by an acyl 

chloride, anhydride, chloroformate or carbonate, the corresponding N-

substituted pyridine sulfonamides, 175-182 were isolated in good to excellent 

yield, see Table (21) above.  

       Having prepared a range of carbamates (R1 = alkoxyl or aryloxy) and 

amides (R = alkyl or aryl), the rearrangement was attempted by reacting the 

substrate with 1.5 equivalents of LDA at -78 °C in THF. In most cases, TLC 

obtained 5 minutes after the addition of the LDA showed new spots and the 

disappearance of all the starting material. When the reactions were worked 

up by quenching with citric acid solution, followed by extraction of the organic 

material with CH2Cl2, the corresponding nicotinic acid sulfonamides, 183-

189, were obtained in good to excellent yield, see Scheme (68) and Table 

(22). However, the N-acetyl, entry 1 in Table (21); did not give the desired 

nicotinic acid. The acetyl derivative gave a mixture of products, possibly 

because the ease of deprotonating the methyl group of the acetyl substituent 

pre-empts the rearrangement.  

 

 

Scheme (68): Reagents and conditions: i) LDA, THF, -78 °C, N2, 76-96%. 
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Table (22): Synthesis of nicotinic acid sulfonamides 

 

 

 

 

 

8.3.2.2. Formation of Isopropyl Sulphonamide Derivatives 

 

Since this unexpected rearrangement had been successfully applied 

to synthesise a library of nicotinic acid sulphonamides, it was decided to 

explore the potential of this methodology by investigating whether it occurred 

in systems with other aryl groups that might undergo directed ortho 

Entry Substrate Product Yielda 

1 176 

 

82 

3 177 

 

96 

4 178 

 

76 

5 179 

 

88 

6 180 

 

86 

7 181 

 

78 

9 182 

 

90 
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metallation. The obvious series of compounds to study contained a 

paratoluenesulphonyl group, which is commonly employed to protect amines. 

The first step in this part of the investigation was to prepare a suitable 

carbamate derived from a representative sulphonamide. Treatment of valine 

t-butyl ester, 191 (itself accessible by reacting valine with t-butyl acetate), 

with p-toluenesulphonyl chloride, 190, in the presence of triethylamine, gave 

the representative sulphonamide, 192, containing an amino acid. This 

sulphonamide was “Boc” protected under standard conditions to give the 

carbamate, 194, which was treated with LDA in THF at -78 °C in the usual 

way, Scheme (69). 

 

Scheme (65) Reagents and condition; i) t-butyl ester of valine, Et3N, CH2Cl2, 95%;  
ii) Boc2O, DMAP, CH2Cl2, 78%; iv) LDA, THF, -78 °C. 

 

 

When the reaction was monitored by TLC, it was observed that all the 

starting material has been consumed 10 mins after the LDA had been added. 

Consequently, the reaction was worked up in the standard manner and the 

product obtained was analysed. The FT-IR spectrum contained a band of 

medium intensity at 3292 cm-1 and a strong band at 1714 cm-1; these bands 

were attributed to the N-H stretch (of a secondary sulphonamide) and the 
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C=O stretch (of an aromatic or conjugated ester). In addition, strong bands 

that were assigned to the asymmetric and symmetric S=O stretches of the 

sulphonamide group were observed at 1256 and 1137 cm-1, respectively. 

The 1H NMR spectrum showed one singlet and two doublet peaks in the 

region between 7-8 ppm, each integrating for a single proton, corresponding 

to a total of three aromatic protons. The singlet at 7.49 ppm was assigned to 

the proton between the methyl group and the carbonyl group. This signal is 

the only peak for a proton ortho the carbonyl group. As had been observed in 

the HMBC spectrum of compound 171, the analogous spectrum of 194 

showed a correlation between the carbon atom of the ester and the isolated 

proton on the benzene ring next to the methyl group. Further analysis by 

mass spectrometry under ESI+ conditions, including accurate mass 

measurements at high resolution, revealed that 194 had the same molecular 

mass and molecular formula as 193. These spectral data established 

unequivocally that tert-butyl and 3-methyl-2-(4-

methylphenylsulphonamido)butanoate, 193 rearranged to 194 in the same 

manner as 168 isomerised to 170.  

In view of this success, a range of orthogonally protected isopropyl 

amines were synthesised to explore the scope of this base mediated N-C 

rearrangement. Isopropylamine was chosen as the parent amine for two 

reasons: firstly, the parent sulphonamides were expected to be crystalline 

solids in most cases; secondly, it was anticipated that the isopropyl group 

would give rise to characteristic signals (a doublet integrating for six protons 

and a septet integrating for one proton) in the 1H NMR, thus facilitating 

spectroscopic analysis. The required sulphonamides were synthesised by 
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reacting isopropylamine, 195, with various sulphonyl chlorides, 196-199. The 

corresponding sulphonamides, 200-203 were treated with boc anhydride, and 

methyl and ethyl chloroformates, to give the desired carbamates, in good 

yield, Scheme (70) and Table (23). Varying the nature of the substituent, X, 

in the 4-X-C6H4SO2Cl sulphonyl chlorides allowed the influence of X on the 

rearrangement to be explored: when X = H, the electron density distribution 

in the aromatic ring in the sulphonamide would not be perturbed by the 

substituent; in contrast if X = CH3 (slightly electron donating), CH3O (strongly 

electron donating) or NO2 (strongly electron withdrawing), significant effects 

on the electron density distribution (and, perhaps, on the viability of the  

rearrangement) would be expected.  

 

Table (23): Formation of the parent sulphonamides 

 

Entry Sulphonyl Chloride Sulphonamide  Yield (%) 

1 

 

 

 92 

2 

 
 

 95 

3 

 
 

 91 

4 

  

 84 
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Scheme (70) Reagents and condition; i) Et3N, CH2Cl2, 98%; ii) NaH, THF, R1COCl, 
0 °C to rt or R1CO2COR1, DMAP, py. 

 

Table (24): Synthesis of the carbamates 

 

   

 
  

   

   
 

   
 

 

In order to determine whether the migration of an carboalkoxy (CO2R
1) 

group from the nitrogen to carbon is general, regardless of the nature of the 

substituent, R, in the aryl ring of the sulphonamide, the members of the 

series of carbamates, 204-215, were treated with LDA under the standard 
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conditions to investigate whether migration would occur, Scheme (71) and 

Table (25).  When R = Me, H and MeO, 204-212, the acyloxy group migrated 

from the nitrogen to the carbon to give the corresponding 2-

carboalkoxysulphonamide in excellent yield within 10 mins, entries (1-9) in 

Table (25). In contrast, when the corresponding nosyl derivatives (R = NO2) 

were subjected to the same treatment with LDA, no transfer of the 

carboalkoxy group to the aromatic ring took place. The N-protected nosyl 

sulphonamides were recovered unchanged, entries (10-12) in Table (25). 

 

 

 

Scheme (71) Reagents and conditions: i) LDA, THF, -78 °C, N2. 

 

 

When LDA was added to the solution of the carbamates derived from 

these p-nitrosulphonamides, a deep yellow colour developed in the reaction 

mixture. This colour change is often associated with deprotonation of a 

substrate to form an anion. The failure of the acyloxy groups on the p-

nitrosulphonamides to migrate to the aromatic ring was, therefore, initially 
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attributed to stabilisation of the anion formed after the deprotonation of the 

benzene ring to such an extent that no nucleophilic attack occurred on the 

carbonyl carbon atom of the carbamate.  Unfortunately, however, attempts to 

verify this postulate by quenching the reaction mixture with D2O, in the hope 

of producing a monodeuterio analogue of the carbamate, which would have 

had distinctive 1H NMR and mass spectra, were not successful. 

 

Table (25): Effect of structural features on the rearrangement. 

 

 

Entry R R’ Rearranged 

Product 

Yield (%) 

1 Me tBu 216 85 

2 Me Et 217 78 

3 Me Me 218 83 

4 H tBu 219 92 

5 H Et 220 78 

6 H Me 221 84 

7 MeO tBu 222 90 

8 MeO Et 223 93 

9 MeO Me 224 80 

10 NO2 tBu - No reaction 

11 NO2 Et - No reaction 

12 NO2 Me - No reaction 
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8.3.2.3. Formation of Sulphonamides Derivatives from Tert-butyl Aniline  

 

A further extension of this work was effected by the successful 

synthesis of a range of sulphonamides derived from p-t-butylaniline, 225. In 

this series, the substituent [R1 = Me, CF3, CH3CO, MeO, F, Cl, Br and CN] at 

the 4-position of the sulphonyl chloride was varied more extensively. These 

sulphonyl chlorides were treated with tertbutylaniline to give the 

corresponding sulphonamides, typically in excellent yield, Scheme (72, step 

i) and Table (26).  

 

 
 

 

Scheme (72) Reagents and conditions: i) Et3N, CH2Cl2, 87%; ii) MeOCOCl, THF, 
NaH iii) LDA (3 equ.), THF, -78 °C, N2.  
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Table (26): Formation of sulphonamide derived from tertbutyl aniline. 

 

Entry Sulfonyl chloride Sulphonamide Yield (%) 

1 4-MeC6H4SO2Cl 

 

84 

2 4-MeOC6H4SO2Cl 

 

53 

3 4-MeCOC6H4SO2Cl 

 

92 

4 4-NCC6H4SO2Cl 

 

88 

5 4-FC6H4SO2Cl 

 

93 

6 4-ClC6H4SO2Cl 

 

91 

7 4-BrC6H4SO2Cl 

 

81 

 

 

Elaboration of the sulphonamides, 226-232, by treatment with methyl 

chloroformate (MeOCOCl) in THF in the presence of NaH, gave the 

corresponding N-carbomethoxysulphonamides, 233-239, in yields that varied 

from fair to excellent, Scheme (72, step ii) and Table (27). Any influence of 

the nature of R of the efficiency of the transfer of the carbomethoxyl group 

from nitrogen to carbon could them be probed. 
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Table (27): Formation of carbamates of sulphonamides derived from tert butyl 
aniline. 

 

Entry Sulphonamide Carbamate Yield (%)a 

1 226 

 

96 

2 227 

 

93 

3 228 

 

44 

4 229 

 

41 

5 230 

 

93 

6 231 

 

36 

7 232 

 

76 

 

 

 

       The initial attempt to induce base-mediated rearrangement was made on 

233 with 1.5 equivalents of LDA and a reaction time of 10 minutes.  Analysis 
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of the reaction mixture by TLC after 20 minutes revealed no new spot; 

consequently, it was concluded that no reaction had taken place.  

Nevertheless, the reaction was worked up by quenching with aqueous citric 

acid solution, followed by extraction with DCM.  Spectroscopic analysis of the 

material that was isolated by 1H NMR revealed the presence of residual 

starting material, apparently confirming the conclusions reached on the basis 

of the TLC monitoring of the reaction; however, the spectrum also showed 

that at least one new compound had been formed. Consideration of the FT-

IR spectrum, which showed a band at 3200 cm-1 that was attributable to an 

N-H stretching vibration, led to similar conclusions: it appeared that the N-

carboalkoxy group had been removed, possibly because the rearrangement 

had occurred after all. On the basis of the 1H NMR and IR spectra, and the 

chromatographic results, two conclusions were drawn: firstly, the 

rearrangement had taken place to some extent, but had not gone to 

completion; and, secondly that the N-carbomethoxysulphonamide and the 

desired rearrangement product had closely similar Rfs.   

     Unfortunately, the closely similar chromatographic properties of the N-

carbomethoxysulphonamides and the isomerised product means that the 

reaction cannot be monitored by TLC. In order to improve the reaction 

conditions, twice the quantity of LDA was used (4 instead of 1.5 equivalents).  

The 1H NMR spectrum of the reaction mixture quenched 10 minutes after the 

addition of this increased quantity of LDA showed that no trace of the starting 

material remained and that the rearrangement had gone to completion. 

When these improved conditions were applied to the other membersof 

the series of N-carbomethoxysulphonamides, 224-239, the desired 
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isomerised product was usually obtained in good yield, Scheme (72, iii) and 

Table (28).  However for R1 = CH3CO (entry 4), the rearranged product was 

not obtained; instead, a mixture of products resulted, possibly because of the 

ease of deprotonation of the methyl group of the acetyl substituent in the 4-

position of the aromatic ring.  Any such deprotonation would compete with, or 

pre-empt entirely, the rearrangement.  Nevertheless, despite this restriction, 

the rearrangement can be induced when the sulphonamide entity contains a 

range of substituents (electron attracting, as in R1 = F, Cl, Br and CN, or 

electron donating, as exemplified when R1 = Me and MeO). 

 

Table (28): Rearrangements of carbamates derived from t-butyl aniline. 
 

 

Entry Substrate  R1 Rearranged 

Product 

Yield (%)a 

1 233  Me 240 78 

2 234  MeO 241 95 

3 235  MeCO - 82b 

4 236  CN 242 77 

5 237  F 243 98 

6 238  Cl 244 73 

7 239  Br 245 75 

 
 

 

8.4. Conclusion 
 

In summary, the base-mediated nitrogen to carbon rearrangement 

discovered in this research has clear synthetic potential. It gives access to a 
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series of nicotinic acid and sulphonamide derivatives (including 

sulphonamides derived from t-butylaniline), usually in good to excellent yield, 

in a short synthetic sequence comprising only three steps. The process can 

be effected for a range of N-carboalkoxysulphonamides, with several 

substituents in the 4-position of the aromatic ring, including the commonly 

available cases of R1 = H, CH3, CH3O, F, Cl, Br, NC and CF3. Therefore, it 

offers a general means of accessing numerous 2,4-disubstituted 

sulphonamides in which an carboalkoxy group has been added to the 

nitrogen atom and then transferred to the 2-position of the product.  Several 

of these substituted sulphonamides, particularly those derived from 4-tert-

butylaniline, may have potential as anti-cancer agents. 

The discovery that the N-carboalkoxysulphonamides (R2 = tBuO, EtO 

and MeO) derived from 4-nitrobenzenesulphonamide did not undergo the 

desired isomerisation restricts the generality of this route from the synthetic 

perspective.  However, this apparent limitation is potentially advantageous in 

another context because it has been tacitly assumed until this rearrangement 

was uncovered that sulphonamides are inert to most common bases.  

Consequently, when amines and similar nitrogenous compounds are 

protected as sulphonamides in reaction sequences that involve treatment of 

an intermediate with LDA, it is essential to choose the correct derivative 

which will not undergo the rearrangement described in this chapter.  In order 

to pre-empt carboalkoxy transfer to the aromatic ring, nitrobenzenesulphonyl 

chloride, rather than the traditional toluenesulphonyl chloride or the common 

alternatives, including benzenesulphonyl chloride, chlorobenzenesulphonyl 
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chloride, bromobenzenesulphonyl chloride and methoxybenzenesufonyl 

chloride, should be used. 
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9. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

 

 
Several useful conclusions may be drawn from the work summarised 

in this thesis, which spans the spectrum from analytical chemistry and 

spectroscopy, through the synthetic potential of novel processes occurring in 

the nebuliser of a mass spectrometer, to interesting rearrangements that are 

relevant in the field of conventional synthesis, especially the application of 

protecting groups. 

The starting point of the study of the spectroscopic properties of 

tricyclic indoles revealed that the distinction between ketoindoles and 

hydroxindolenines with the oxygen functional group in the 4 position of the 

third ring is less clear cut than might have been thought, particularly when the 

vibrational spectra of these materials are recorded in the solid state.  Thus, 

the infrared spectra of these solids do not show the expected strong bands 

for stretching the N-H and C=O bonds that are typical of normal indoles and 

carbonyl compounds. Nevertheless, a more careful consideration of these 

spectra indicates that these heterocycles are best described as ketoindoles, 

admittedly of rather unusual structure.  Similar remarks apply with less force 

to their isomers with the oxygen function in the 1 position of the third ring; the 

requisite vibrational spectra show less deviation from those expected for 

ketoindoles.  In contrast, the other two isomers, with a carbonyl group in the 

2 or 3 position, are clearly “normal” ketoindoles.  The mass spectra of these 

compounds are also informative: the isomeric “ketoindoles” with the 

tetrahydrocarbazole skeleton are distinguishable on the basis of their 

electron ionisation or electrospray spectra. Certain fragmentations appear to 

be influenced by precisely the same mechanistic considerations that govern 
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the electrophilic substitution of indoles. The electrophile is preferentially 

attached to the 3-position because the carbocyclic aromatic ring is not 

disrupted in the intermediate arenium ion (or because the electron density 

distribution in the Highest Occupied Molecular Orbital is highest at that 

position), whereas attachment of the electrophile to the 2-position leads to an 

arenium ion in which both rings no longer possess a complete sextet of 

electrons. Ionised tricyclic indoles with a 6,5,6 ring pattern often eliminate an 

alkene containing the carbon atoms in positions 2 and 3 (and any methyl 

groups attached to either of these ring atoms). This fragmentation can be 

described in terms of a cycloreversion (or, more loosely in the older literature, 

as a retro-Diels-Alder reaction); however, there are reasons to believe that 

this process occurs with a low degree of concert, in which one ring bond is 

essentially completely broken before the other begins to break. Further work 

to describe the mechanism of these processes would entail extensive 

isotopic labelling, which would be a major undertaking.  

Attempts to determine by means of labelled internal standards the 

threshold at which tricyclic indoles could be detected by electrospray mass 

spectrometry were thwarted by an unexpected novel dimerisation, which 

produced covalently bound [2M-H]+ ions in indoles containing an alkyl group 

in the 3-position. This unusual process is mechanistically interesting and 

analytically useful in distinguishing 1- and 2-alkyl indoles (which do not show 

the dimerisation) from their 3-alkyl isomers (which do form [2M-H]+ dimers).  

It appears that 3-methylindole dimerises at the 2-position, but other 

possibilities must be considered for tricyclic indoles because the third ring 

blocks this site; some insight into the dimerisation of tetrahydrocarbazoles 
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has been obtained by studying homologues with a halogeno, methyl or 

methoxy substituent in the carbocyclic aromatic ring, but further work with 

labelled analogues would be required to define the mechanism more 

precisely. Despite these uncertainties, however, this dimerisation in the 

nebuliser offers a potential route to the bisindole skeleton, which is found in 

some heterocycles of pharmaceutical and medicinal significance. 

The discovery of the novel dimerisation of certain indoles led to the 

idea that processes which occur in condensed phase synthesis might be 

accelerated or modified under positive ion electrospray conditions. This 

possibility was realised in so far as the formation of C=N bonds by 

condensation of C=O and NH2 groups in the nebuliser occurred more rapidly 

and under milder conditions than is the case in classical solution chemistry.  

A range of protonated quinoxalines could be readily generated when 

mixtures of the appropriate 1,2-phenylenediamine and substituted benzil 

were admitted to the mass spectrometer. Moreover, ions corresponding to 

the intermediates formed by nucleophilic attack of the diamine on the 

protonated diketone were also detected. This success illustrates the potential 

for performing organic synthesis in the droplets formed in the nebuliser of a 

mass spectrometer.  Further work on this theme would involve optimising the 

conditions under which the C=N bonds are formed, with a view to exploiting 

the accelerated formation of in the quinoxalines and related heterocycles. 

Exploratory work on the possibility of creating bisindoles by modern 

copper catalysed coupling reactions suggests that this elegant route may be 

viable, provided that conditions can be found to induce the final cyclisation.  
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Further work is necessary both to prepare a greater range of suitable 

intermediates, and to vary the metal in order to achieve the key cyclisation. 

Efforts aimed at elaborating the methyl group in the 2-position of 

indoles by rearrangement of 1-acyl, 1-carboalkoxy or 1-carboaryloxy-2-

methylindoles were partially successful, without establishing viable conditions 

to achieve this potentially useful isomerisation in good yield. The 

intermolecular nature of the process, which limits the maximum yield to 50 %, 

appears to be a fatal flaw in this approach unless half the intermediate that is 

to be rearranged can be sacrificed or recovered and subjected again to the 

rearrangement. Ironically, however, conditions were established to remove 

the substituent containing a carbonyl group from the nitrogen atom, thus 

solving the problem that had been detected by earlier workers who regarded 

the rearrangement as undesirable side reaction. 

Finally, the discovery of an interesting rearrangement of orthogonally 

protected sulphonamides is significant for two reasons. Firstly, it offers a 

means of transferring an acyl, carboalkoxy or carboaryloxy group to the aryl 

ring of a range of sulphonamides, including those containing the pyridine 

entity.  This rearrangement, which is induced by treatment of the protected 

sulphonamide with lithium diisopropylamide, appears to be compatible with a 

variety of functional groups, including methyl and methoxy (which are 

electron-releasing) and halogeno and trifluoromethyl (which are electron 

attracting).  Consequently, it may offer a route to nicotinic acids and related 

compounds, some of which might be difficult to synthesise by other means.  

Secondly, the rearrangement does not take place when a nitro group is 

present in the ring.  Therefore, if a sequence of reactions, which involve the 
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use of lithium diisopropylamine as a base, is to be done on an amino acid or 

similar substrate that has been protected as a sulphonamide, it is essential to 

employ the nitrobenzenesulphonamide as the protecting group in order to 

prevent the rearrangement. Further work is in progress to establish the scope 

of the rearrangement, to optimise the conditions necessary to induce it, and 

to exploit it to create compounds of medicinal and pharmaceutical value. 
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10. EXPERIMENTAL 

10.1. General comments  
 
Nuclear Magnetic Resonance: All 1H NMR spectra were obtained on a 

Bruker-Spectrospin 400 at 400 MHz, and 13C NMR spectra were obtained at 

100 MHz on the same instrument. The samples were prepared using CDCl3 

or DMSO-d6 as solvent; 10 mg of sample was dissolved in 2 mL of CDCl3 or 

DMSO-d6. 
1H and 13C NMR were recorded in the range 0-20 ppm and 0-200 

ppm respectively. For 1H NMR, the values for the coupling constant are 

recorded in Hz as calculated from the spectra. The following abbreviations 

have been used to describe the signal multiplicity; doublet (d), doublet of 

doublet (dd), J (coupling constant), multiplet (m), quartet (q), singlet (s) and 

triplet (t). All other reagents and solvents were obtained from commercial 

suppliers without further purification.  

 

Raman Spectroscopy:  FT-Raman spectra were recorded in the region of 

4000-100 cm-1 using a Bruker IFS66 infrared spectrometer with an FRA 106 

Raman module attachment equipped with an Nd3+/YAG laser operating at 

1064 nm as the excitation source. Laser powers of up 500 mW with spectral 

resolution of 4 cm-1 were used to record each spectrum. Accumulation of 500 

or 1000 individual spectral scans was used to improve the signal-to-noise 

ratio with each accumulated spectrum requiring 15 or 30 mins to record.  

 

Infrared Spectroscopy: The infrared spectra of the compounds were 

obtained using a Perkin Spectrum 100 FT-IR instrument fitted with DTGS 

(deuterated triglycine sulphate) detector. Each spectrum was run for a co-
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accumulation of 4 scans over a wavenumber range of 4000–650 cm-1. A 

background spectrum was obtained immediately before the spectra of the 

compounds were recorded. When comparisons were to be made between 

the spectra of related compounds, these spectra were run consecutively 

under identical operating conditions. 

 

Mass Spectrometry: Direct probe EI mass spectrometry analysis was 

carried out on a Shimadzu QP-2010 quadrupole MS system fitted with a 

heated solids probe and controlled by ‘GCMS solutions’ software, version 2.0 

(Shimadzu UK Ltd., Milton Keynes, UK). Some solid samples were either 

placed directly in a disposable glass vial or alternatively, the sample was 

dissolved in methanol at ~1 mg/mL concentration and 1 μL of this solution 

was then placed into the glass vial. The glass vial was inserted into the end 

of the solids probe and then placed directly into the mass spectrometer ion 

source via a vacuum lock. The probe was then heated from ambient to 320 

°C over ten minutes. The mass spectrometer used 70 eV electrons to ionise 

the thermally desorbed sample; data were acquired over the m/z 50 to 600 at 

a scan speed of 1250 m/z units/sec at unit m/z resolution. 

 

Computational Chemistry: Ab initio DFT calculations were performed with 

the ORCA program.265 Two density functionals were used the PBE 

functional266 and the B3LYP function267 which incorporates some Hartree 

Fock exchange.  The triple zeta valence basis set of Weigend et al.268 was 

used for all calculations.  Full geometry optimisation of the molecule was 

performed in the gas phase and within the COSMO framework for including 
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an effective dielectric medium.269 Parameters for the effective dielectric 

constants of chloroform were used in the calculation. The starting geometries 

for all calculations were taken from the molecular structure in the crystal 

JAZDOD104 (code of 1,2,3,4-tetrahydro-4-oxo-carbazole on the Cambridge 

Crystal Structure Database).103 All other conformations of Tautomer 2 were 

created by editing this structure. The zero-point energies and thermal 

corrections to the electronic energy were calculated within the harmonic 

approximation by the numerical calculation of the 2nd derivative matrix of the 

energy with respect to change in coordinates. Diagonalisation of the mass 

weighted 2nd derivative matrix was used to calculate the infrared and Raman 

absorption frequencies and intensities of each tautomer. 

 

10.2. Synthesis 

10.2.1 General procedure for the synthesis of Tricyclic Indoles 
 

 

Phenylhydrazine (0.05 mol) was added dropwise over 30 mins to a solution 

of cycloalkanone (0.05 mol) and glacial acetic acid (17.2 mL) under N2. The 

reaction mixture was heated at reflux; the reaction was monitoired by TLC. 

Upon completion, the hot reaction mixture was poured into a beaker and a 

solid instantly formed. The solid was allowed to cool to room temperature, 

filtered,  the resultant solid was washed with water followed by 75% EtOH. 

The crude product was recrystallised from MeOH.  

1,2,3,4-tetrahydrocarbazole, 26   

 

Shiny white platelets (4.62 g, 54%); mp:116–118 °C [lit: 116–118 °C];270 IR:  

νmax (ATR) 3397 (N–H),  3050, 2926, 2847, 1620, 1588, 1466, 1439, 1304 
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cm-1;  1H NMR: (CDCl3, 400 MHz);  7.60 (1H, broad singlet, N–H), 7.50 (1H, 

d, J = 6.5 Hz, H–5), 7.31 (1H, m, H–8), 7.12 (2H, m, H–6, H–7), 2.75 (4H, t, 

2CH2, J = 5.6 Hz, H–1, H–4), 1.94 (4H, m, 2CH2, H–2, H–3) ppm; 13C NMR: 

(CDCl3, 100 MHz); δ 135.6, 134.1, 127.8, 121.0, 119.1, 117.8, 110.4, 110.2, 

23.3, 23.2, 20.9 ppm; MS: m/z 171 [M+.], 170  [M-H]+., 143  [M-C2H4]
+. 

3-methyl-1,2,3,4-tetrahydrocarbazole, 27   

 

Shiny colourless platelets (3.35 g, 36%); mp: 107–109 °C [lit:108–111 °C];271 

νmax (ATR) 3390 (N-H) 3051, 2953, 1620, 1586, 1467, 1452, 1365, 1233; 1H 

NMR: (CDCl3, 400 MHz); δ 7.66 (1H, br s, N-H), 7.49 (1H, d, J = 7.4Hz, H–5), 

7.29 (1H, m, H–8), 7.09–7.18 (2H, m, H–6, H–7), 2.84 (3H, dd, J = 5.1, 15.4 

Hz, H–1, H–4), 2.33 (1H, ddt, J = 2.0, 9.5, 15.3 Hz, H–4), 2.00 (2H, m, H–2, 

H–3), 1.61 (1H, m, H-2), 1.18 (3H, d, J = 6.5 Hz, H-13) ppm; 13C NMR: 

(CDCl3, 100 MHz); δ 135.9, 117.7, 110.4, 110.2, 110.1, 31.4, 29.7, 29.4, 

22.9, 21.8 ppm; MS: m/z 185 [M+.], 184  [M-H]+., 143 [M-C3H6]
+. 

2-methyl-1,2,3,4-tetrahydrocarbazole, 28  

 

Shiny white platelets (3.46 g, 37%); mp: 98–100 °C [lit: 98–100 °C];271 IR: 

νmax (ATR)  3386 (N–H), 3053, 2949, 1621, 1572, 1470, 1466, 1371, 1234 

cm-1; 1H NMR: (CDCl3, 400 MHz); δ 7.63 (1H, br singlet, N–H), 7.50 (1H, d, J 

= 7.4 Hz, H–5), 7.31 (1H, m, H–8), 7.12 (2H, m, H–6, H–7), 2.75 (3H, dd, J = 
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4.4, 11.5 Hz, H–1, H–4), 2.40 (1H, ddt, J = 1.6, 9.6, 16.0 Hz, H–1), 2.01 (2H, 

m, H–3, H–4), 1.54 (1H, m, H–3), 1.17 (3H, d, J = 6.7 Hz, H–13) ppm; 13C 

NMR: (CDCl3, 100 MHz); δ 135.8, 134.1, 127.6, 120.9, 119.1, 117.8, 110.4, 

109.8, 31.7, 31.5, 29.7, 21.3, 20.4 ppm; MS: m/z 185 [M+.], 184  [M-H]+., 143 

[M-C3H6]
+. 

1,2,3,4-tetrahydrocyclopenta[b]indole, 31  

 

White crystals (3.77 g, 47%); mp: 105–107 °C  [Lit: 105–106 °C];272 IR:  νmax 

(ATR) 3394 (N–H), 3046, 2931, 2849, 1617, 1579, 1462, 1444, 1212 cm-1; 1H 

NMR: δ (CDCl3, 400 MHz); 7.80 (1H, br s, N–H), 7.48 (1H, m, H-4), 7.31 (1H, 

m, H-7), 7.12 (2H, m, H–5, H-6), 2.88 (4H, m, 2CH2 H–1, H-3), 2.53 (2H, m, 

H-2) ppm; 13C NMR: (CDCl3, 100 MHz); δ 143.8, 141.0, 124.8, 120.5, 119.8, 

119.5, 118.5, 111.4, 28.7,  25.9, 24.5 ppm; MS: m/z 157 [M+.], 156  [M-H]+., 

129 [M-C2H4]
+.. 

1,2,3,4,5,6-hexahydrocyclohept[b]indole, 32  

 

Shiny yellow platlets (5.25 g, 57%); mp: 141–143 °C [lit mp: 141–143 °C];273 

IR:  νmax (film) 3387 (N–H), 3058, 2911, 2844, 1618, 1577, 1465, 1425, 1367, 

1232 cm-1; 1H NMR: (CDCl3, 400 MHz); δ 7.62 (1H, br s, N–H), 7.52 (1H, m, 

H–6), 7.28 (1H,  m, H–9), 7.14 (2H, m, H–7, H–8), 2.87 (4H, m, 2CH2, H–1, 

H-5), 1.92 (2H, m, H–4), 1.74 (4H, m, 2CH2, H–2, H–3) ppm; 13C NMR: 
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(CDCl3, 100 MHz); δ  137.4, 134.2, 129.3, 120.6, 119.0, 117.6, 113.7, 110.2, 

31.8, 29.6, 28.7, 27.5, 24.7 ppm; MS: m/z 185 [M+.], 184 [M-H]+., 156 [M-

C2H5]
+., 143 [M-C3H6]

+..  

6,7,8,9,10,11-hexahydrocyclooct[b]indole, 33 

 

Shiny pale green platelets (5.76 g, 58%); mp: 73–74 °C [lit: 73–74 °C];270 IR: 

νmax (ATR) 3382 (N–H), 3055, 2918, 2846, 1619, 1580, 1465, 1448, 1437, 

1235 cm-1;  1H NMR: (CDCl3, 400 MHz); δ 7.78 (1H, s, N–H), 7.55 (1H, dd, J 

= 2.3, 7.0 Hz, H–7), 7.31 (1H, m, H-10), 7.16 (2H, m, H–8, H–9), 2.91 (4H, m, 

2CH2, H–1, H–6), 1.80 (4H, m, 2CH2, H–2, H–5), 1.51 (4H, m, 2CH2, H–3, H–

4) ppm; 13C NMR: (CDCl3, 100 MHz); δ 135.7, 135.0, 128.6, 120.6, 118.9, 

111.7, 110.3, 29.6, 26.0, 25.9, 22.2 ppm; MS: m/z 199 [M+.], 198  [M-H]+.,  

156 [M-C3H7]
+., 143 [M-C4H8]

+.. 

 

10.2.2. General procedure for the synthesis of 
Tetradeuteriocycloalkanones 

 

A 5% (w/w) solution of NaOD/D2O was prepared by cautious addition of 

sodium metal (1.15 g in small pieces) to D2O (24.5 g). After cooling to 

ambient temperature the solution of NaOD/D2O, cycloalkanone (0.05 mol) 

and PhCH2N(Et)3
+Cl- (3.0 g) was stirred under N2 for 2 hr and the reaction 

was followed by NMR. Once the exchange was completed, the two phase 

system was allowed to separate and the product was obtained. The partially 

deuteriated product was subjected to a further two exchanges with a fresh 
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batch of  5% (w/w) solution of NaOD/D2O each time and the resulting 

tetradeuterioketone was isolated with over 95 % deuterium incorporation.  

The corresponding labelled tricyclic indoles were synthesised by treating the 

appropriate tetradeutriocycloalkanones with PhNDND2 using the same 

procedure as described in 10.2.1. 

(1,1-2H2)-2,3,4,9-tetrahydro-1H-carbazole, 29  

 

Off white crystals (0.21 g, 45%); mp: 115–118 °C [lit: 116–118 °C];82 IR: νmax 

(ATR) 3396 (N-H), 3051, 2927, 2849, 2184 (C-D), 2093 (C-D), 1618, 1587, 

1467, 1357, 1226; 1H NMR: (CDCl3, 400 MHz); δ 7.70 (1H, br s, N-H), 7.50 

(1H, m, H-5), 7.30 (1H, m, H-8), 7.11 (2H, m, H-6, H-7), 2.74 (2H, t, J = 5.7 

Hz, H-4), 1.91 (4H, m, H-2, H-2) ppm; 13C NMR: (CDCl3, 100 MHz); δ 130.1, 

125.7, 122.4, 120.7, 35.7, 28.3, 20.6 ppm; MS: m/z 173 [M+.], 145  [M-C2H4]
+. 

3-methyl-(1,1-2H2)-2,3,4,9-tetrahydro-1H-carbazole, 30  

 

Shiny pale green crystals (0.12 g, 63%);  mp: 230–232 °C; IR: νmax (ATR) 

3393 (N-H), 3049, 2922, 2848, 2173 (C-D), 2096 (C-D), 1616, 1581, 1464, 

1456, 1425, 1352, 1228; 1H NMR: (CDCl3, 400 MHz); δ 7.69 (1H, br s, N-H), 

7.48 (1H, m, H-5), 7.3 (1H, m, H-8), 7.12 (2H, m, H-6, H-7), 2.87 (1H, ddd, J 

= 1.2, 5.0, 15.5 Hz, H-4), 2.31 (1H, dd, J = 9.5, 15.3 Hz, H-4), 1.99 (2H, m, H-
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3, H-2), 1.69 (1H, t, J = 12.3 Hz, H-2), 1.17 (3H, d, J = 6.5 Hz, H-13) ppm. 

13C NMR: (CDCl3, 100 MHz); δ 135.9, 135.8, 133.8, 127.7, 121.0, 119.1, 

117.7, 110.3, 31.3, 29.6, 29.4, 21.8 ppm; MS: m/z 187 [M+.], 145 [M-C3H6]
+. 

(6,6-2H2)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole, 35  

 

Shiny yellow platelets (0.26 g, 57%);  mp: 196–198 °C; IR: νmax (ATR) 3387 

(N-H), 3054, 2911, 2843, 2162 (C-D), 1616, 1575, 1463, 1433, 1215; 1H 

NMR: (CDCl3, 400 MHz); δ 7.69 (1H, br s, N-H), 7.52 (1H, m,  H-6), 7.29 (1H, 

m, H-9), 7.08-7.16 (2H, m, H-7, H-8), 2.85 (2H, m, H-5), 1.94 (2H, m, H-2), 

1.82 (4H, m, H-3, H-4) ppm. 13C NMR: (CDCl3, 100 MHz); δ 137.4, 134.2, 

129.2, 120.6, 120.5, 119.0, 113.8, 110.2, 31.8, 29.3, 27.4, 24.7 ppm; MS: m/z 

187 [M+.], 158 [M-C2H5]
+., 145 [M-C3H6]

+..  

(6,6-2H2)-6,7,8,9,10,11-hexahydro-5H-cycloocta[b]indole, 36 

 

Fine yellow needle-like crystals (0.68 g, 42%); mp: 230–232 °C [Lit 220–221 

°C]; IR: νmax (ATR) 3384 (N-H), 3054, 2920, 2847, 2162 (C-D), 1616, 1579, 

1467, 1437, 1236; 1H NMR: (CDCl3, 400 MHz) δ 7.83 (1H, br s, N-H), 7.52 

(1H, dd, J = 4.4, 7.4 Hz, H-7), 7.31 (1H, dd, J = 4.8, 7.0, H-10), 7.11 (2H, m, 

H-8, H-9), 2.85 (2H, t, J = 6.3 Hz, H-6), 1.75 (4H, m, H-2, H-5), 1.47 (4H, m, 

H-3, H-4) ppm.133 13C NMR: (CDCl3, 100 MHz) 135.9, 135.4, 130.0, 119.1, 
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118.6, 117.6, 113.8, 109.3, 34.4, 28.5, 27.3, 26.2. 26.5 ppm; δ; MS: m/z 201 

[M+.], 158 [M-C3H7]
+., 145 [M-C4H8]

+.. 

 

10.2.3. DDQ Oxidation: General procedure 

 
 
 

A solution of DDQ (1.14 g, 5.0 mmol) in THF (10 mL) was added to a solution 

of tricyclic indole (2.5 mmol, 1 equ.) in THF-water (9:1, 10 mL) at 0 °C under 

N2. The reaction mixture was stirred for a 1 hr and the solvent was 

evaporated to dryness. The residue was dissolved by the addition of EtOAc 

(200 mL) and washed with saturated NaHCO3 (2 x 50 mL) followed by water 

(50 mL). The organic phase was dried with MgSO4, filtered and the solvent 

was removed under reduced pressure. The crude product was recrystallised 

from aq. methanol.  

(1,1-2H2)-2,3-dihydro-1H-carbazol-4-ol, 15 

 

Brown platelets (0.17 g, 61%); mp: 216–228 °C;  IR: νmax (ATR) 3200-2800 

(N-H), 3056, 2953, 2926, 2862, 1937 (C-D), 1900 (C-D), 1603 (C=O), 1575, 

1451, 1317 cm-1; 1H NMR: (DMSO, 400 MHz); δ 11.85 (1H, br s, O-H), 7.95 

(1H, dd, J = 1.7, 6.6 Hz, H-5), 7.40 (1H, d, J = 1.5, 6.5 Hz, H-8), 7.15 (2H, m, 

H-6, H-7), 2.43 (2H, t, J = 6.4 Hz, H-3), 2.10 (2H, t, J = 6.6 Hz, H-2) ppm. 13C 

NMR: (100 MHz, DMSO); 192.9, 152.2, 135.8, 124.5, 122.4, 121.5, 120.1, 

111.5, 111.5, 37.7, 23.2 ppm; MS: m/z 187 [M+.], 159 [M-C2H4]
+., 131 [M-

C2H4-CO]+., 104 [M-C2H4-CO-HNC]+.. 
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3-methyl-(1,1-2H2)-2,3-dihydro-1H-carbazol-4-ol, 16  

 

Brown crystals (0.21 g, 42%); mp: 235–237 °C; IR: νmax (ATR): 3280- 2800 

(N-H), 3054, 2927, 2853, 2183 (C-D), 2044 (C-D), 1616 (C=O), 1582, 1449, 

1371,1353,  1319, 1298 cm-1; 1H NMR: (DMSO, 400 MHz); δ 11.88 (1H, br s, 

O-H), 8.02 (1H, m, H-5), 7.45 (1H, dd, J = 6.2, 1.8 Hz, H-8), 7.20 (2H, m, H-

6, H-7), 2.57 (4H, m, H-3, DMSO), 2.25 (1H, dd, J = 4.4, 13.1 Hz, H-2), 1.91 

(1H, dd, J = 10.8, 13.0 Hz, H-2), 1.21 (3H, d, J = 7.0 Hz, H-13) ppm. 13C 

NMR: (100 MHz; DMSO); 195.3, 151.7, 136.1, 124.7, 122.3, 121.4, 121.1, 

111.5, 111.1, 40.7, 31.2, 15.3 ppm; MS: m/z 201 [M+.], 159 [M-C3H6]
+., 131 [M-

C3H6-CO]+., 104 [M-C3H6-CO-HNC]+.. 

6,6-2H2-6,7,8,9-tetrahydrocyclohepta[b]indol-10-ol, 20 

 

Brown solid (0.19 g, 38%); mp: 246–248 °C;  IR: νmax (ATR) 3280 - 2800 (N-

H), 3097, 3042, 2931, 2863, 2163 (C-D), 1596 (C=O), 1572, 1486, 1425, 

1406, 1178 cm-1;  1H NMR: (400 MHz; DMSO); 11.81 (1H, br s, O-H), 8.20 

(1H, dd, J = 1.7, 6.8 Hz, H-6), 7.40 (1H, dd, J = 1.6, 6.6 Hz, H-9), 7.17 (2H, 

m, H-7, H-8), 2.71 (2H, t, J = 6.2 Hz, H-4), 1.97 (2H, t, J = 6.3 Hz, H-2), 1.89 

(2H, m, H-3) ppm. 13C NMR: (100 MHz; DMSO); 192.4, 149.0, 135.0, 127.3, 

122.2, 122.1, 120.9, 113.7, 111.0, 42.6, 24.0, 21.7 ppm; MS: 201 [M+.], 172 

[M-C2H5]
+., 145 [M-C4H8]

+.,117 [M-C4H8-CO]+., 90 [M-C4H8-CO-HNC]+. 
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(11E)-(6,6-2H2)-7,8,9,10-tetrahydro-6H-cycloocta[b]indol-11-ol, 21  

 

Off white crystals (0.27 g, 50%); mp: 281–285 °C;  IR: νmax (ATR) 3280 - 

2800 (N-H), 3097, 2943, 2926, 2852, 2200 (C-D), 1602 (C=O), 1575, 1486, 

1437, 1376, 1040 cm-1; 1H NMR: (DMSO, 400 MHz); δ 11.83 (1H, br s, O-H), 

8.29 (1H, dd, J = 2.4, 5.6 Hz, H-7), 7.43 (1H, dd, J = 2.5, 5.4 Hz, H-10), 7.19 

(2H, m, H-8, H-9), 2.97 (2H, t, J = 7.2 Hz, H-5), 1.78 (4H, m, H-2, H-4), 1.45 

(2H, m, H-3) ppm. 13C NMR: (100 MHz; DMSO); 195.48, 146.4, 134.5, 127.1, 

122.0, 121.4, 121.1, 116.0, 111.1, 41.1, 24.3, 23.4, 21.7 ppm; MS: 215 [M+.], 

172 [M-C3H7]
+., 145 [M-C5H10]

+.,117 [M-C5H10-CO]+., 90 [M-C5H10-CO-HNC]+. 

 

10.2.4. Synthesis of 2-(2-bromophenyl)-1-phenyl-1-ethanone azine, 125 
 

 
2-(2-bromophenyl)-1-phenyl-1-ethanone (0.58 g, 2 mmol) and NH2NH2.H2O 

(0.62 mL, 12 mmol) and paratoluenesulphonic acid (0.0215 g) were dissolved 

in EtOH (7 mL) and refluxed under N2. The reaction was monitored by TLC 

and when the reaction was completed the mixture was cooled in ice. Ice-

water was added to the reaction mixture until it became viscous. The organic 

layer was extracted with CH2Cl2, dried over MgSO4 and the solvent was 

removed under reduced pressure. The crude product was obtained as a 
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yellow viscous oil.274 Spectroscopic analysis showed the presence of NH2. To 

the crude hydrazine (1.3 mmol) was added 2-(2-bromophenyl)-1-phenyl-1-

ethanone (1.3 mmol); the mixture was dissolved in EtOH (10 mL), refluxed 

overnight, cooled in ice and made more viscous by the addition of ice-cold 

water. The crude product was collected by filtration and the azine was 

obtained as yellow solid (250 mg, 36%); mp: 220–223 oC; IR: νmax (ATR) 

3065, 2963, 2939, 1592, 1568, 1472, 1438, 732 cm-1; 1H NMR (400 MHz, 

CDCl3): 7.83 (2H, dd, J = 7.6, 1.6 Hz, H-10 and H-2), 7.59 (1H, dd, J = 7.5, 

1.5 Hz, H-12), 7.36 (3H, m, H-3 and H-10) 7.06 (3H, m, H-11, H-13 and H-4), 

6.97 (3H, m, H-3 and H-5), 4.54 (2H, s, H-7 ) ppm; 13C NMR (100 MHz, 

CDCl3): 162.3, 138.3, 132.7, 130.1, 129.7, 128.4, 127.8, 127.6, 127.4, 42.3 

ppm; 569 (M+Na)+, 547 (M+H)+. 

 

10.2.5. 3-Methyl-2-(pyridine-2-sulphonylamino)-butyric acid tertbutyl 
ester, 167 

 

To a solution of 2-mercaptopyridine (6 mmol) in CH2Cl2 (30 mL) at 5 oC was 

added aqueous HCl (4 mL conc. HCl in 13.4 mL H2O). Aqueous NaClO (20 

mL, 11% chlorine content) was added to the solution using an addition funnel 

over 10 minutes. The solution was stirred at 5 oC for a further 60 minutes and 

was then extracted with CH2Cl2 (2 x 20 mL), dried over sodium sulphate and 

filtered to give a pale yellow solution. The solvent was reduced in volume 

until no colour remained (approximately one third the original volume). To this 

solution was added valine tertbutyl ester (6 mmol) and triethylamine (6 
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mmol). The solution was allowed to stand at room temperature for 2 hours 

and was then quenched with H2O (20 mL) and extracted with CH2Cl2 (2 x 20 

mL), dried over sodium sulphate, filtered and the solvent removed to give a 

solid. This solid was recrystallised from MeOH/H2O to give the title 

compound as a colourless crystalline solid (1.64 g, 87%); IR: νmax (ATR) 

3257, 2968, 2935, 2875, 1719, 1345, 1177, 1121 cm-1; 1H NMR (400 MHz, 

CDCl3): 8.57 (1H, d, J = 4.5 Hz, H-2), 7.90 (1H, d, J = 7.8 Hz, H-5), 7.83 (1H, 

dt, J = 7.6, 1.6 Hz, H-4), 7.40 (1H, ddd, J = 4.5, 7.6, 1.0 Hz, H-3), 5.33 (1H, d, 

J = 9.3 Hz, NH), 3.99 (1H, dd, J = 9.3, 4.4 Hz, H-9), 2.03 (1H, m, H-14), 1.25 

(9H, s, H-13), 0.96 (3H, d, J = 6.8 Hz, H-15 or 16), 0.80 (3H, d, J = 6.8 Hz, H-

15 or 16); 13C NMR (100 MHz, CDCl3):170.4, 149.8, 138.2, 134.7, 126.6, 

121.9, 82.1, 62.2, 57.1, 28.1, 19.1, 16.9 ppm. 

 

10.2.6. N-tertbutylcarbamate, 168 

 

To a solution of 3-methyl-2-(pyridine-2-sulfonylamino)butyric acid tertbutyl 

ester (0.22 mmol, 70 mg) in CH2Cl2 (2 mL) at room temperature was added 

di-tertbutyl dicarbonate (90 mg, 0.41 mmol) and 4-(dimethylamino)pyridine (4 

mg, 0.03 mmol). The solution was stirred at room temperature for 10 hours 

and then quenched with H2O (5 mL) and extracted with CH2Cl2 (2 x 10 mL), 

dried over sodium sulphate, filtered and the solvent removed to give an oil. 
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The crude material was purified by column chromatography (2:1 

petrol/EtOAc) to give the title compound as a colourless oil (80 mg, 86%); IR: 

νmax (ATR) 2986, 1731, 1454, 1353, 1149, 1114, 1061 cm-1; 1H NMR (400 

MHz, CDCl3): 8.63 (1H, d, J = 4.3 Hz, H-2), 8.15 (1H, d, J = 8.0 Hz, H-5), 

7.86 (1H, dt, J = 7.7, 1.6 Hz, H-4), 7.45 (1H, ddd, J = 4.3, 7.6, 0.7 Hz, H-3), 

4.54 (1H, d, J = 8.9 Hz, H-9), 2.48 (1H, m, H-14), 1.32 (9H, s, H-20), 1.28 

(9H, s, H-13), 1.15 (3H, d, J = 6.8 Hz, H-15 or 16), 0.98 (3H, d, J = 6.8 Hz, H-

15 or 16); 13C NMR (100 MHz, CDCl3): 168.5, 157.2, 150.3, 148.5, 137.4, 

127.0, 124.2, 84.8, 81.7, 65.5, 29.0, 27.9, 27.8, 22.4, 20.0; MS: 415 (M+H)+,, 

359, 331, 303, 160. 

 

10.2.7. Rearrangement of N-tertbutylcarbamate, 170 

             
To a solution of N-tertbutylcarbamate 5 (20 mg, 0.06 mmol) in THF (1 mL) at 

-78 oC was added LDA (0.3 mL, 1M in THF). The solution was stirred at -78 

oC for 1 hour and then quenched by addition of an aqueous solution of citric 

acid (1 mL). The mixture was extracted with CH2Cl2 (2 x 10 mL), dried over 

sodium sulphate, filtered and the solvent removed to give a colourless solid 

(18 mg, 90%); mp: 84–86 oC; IR: νmax (ATR) 3200, 2975, 1727, 1369, 1307, 

1138, 846, 775 cm-1; 1H NMR (400 MHz, CDCl3): 8.57 (1H, dd, J = 4.7, 1.8 

Hz, H-2), 7.95 (1H, dd, J = 7.8, 1.8 Hz, H-4), 7.42 (1H, dd, J = 4.8, 7.8 Hz, H-

3), 5.98 (1H, d, J = 9.2 Hz, NH), 4.00 (1H, dd, J = 9.2, 4.0 Hz, H-9), 2.07 (1H, 
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m, H-14), 1.57 (9H, s, H-20), 1.22 (9H, s, H-13), 0.97 (3H, d, J = 6.7 Hz, H-15 

or 16), 0.84 (3H, d, J = 6.7 Hz, H-15 or 16); 13C NMR (100 MHz, CDCl3): 

168.5, 157.2, 150.3, 148.5, 137.4, 127.0, 124.2, 84.8, 81.7, 65.5, 29.0, 27.9, 

27.8, 22.4, 20.0; MS: 415 (M+H)+,, 359, 331, 303, 160; HRMS: found (M+H)+ 

415.1905, C19H30N2O6S requires (M+H) 415.1897 - This and all other HRMS 

data presented gave a measured value of m/z within 1 mmμ of the theoretical 

m/z value. 

 

10.2.8. General Synthesis of N-acylated compounds  
 

To a solution of pyridine-2-sulphonic acid benzylamide (234 mg, 1 mmol) in 

THF (10 mL) at 0 oC was added NaH (80 mg, 2 mmol, 60% dispersion in 

mineral oil), followed by the appropriate acid chloride (1.2 mmol). The 

solution was stirred at room temperature for 1 hour and then quenched with 

H2O (5 mL) and extracted with CH2Cl2 (2 x 10 mL), dried over sodium 

sulphate and filtered to give an oil. The crude material was purified by column 

chromatography (3:1 petrol/EtOAc) to give the acylated product. 

N-benzyl-N-(pyridin-2-ylsulphonyl)acetamide, 175 

 

Colourless solid (275.50 mg, 95%), mp: 78–80 oC; IR: νmax (ATR) 3064, 

1701, 1427, 1353, 1187, 1117 cm-1; 1H NMR (400 MHz, CDCl3): 8.67 (1H, d, 

J = 5.1 Hz, H-2), 7.93 (1H, d, J = 8.2 Hz, H-5), 7.87 (1H, dt, J = 7.5, 1.7 Hz, 

H-4), 7.51 (1H, ddd, J = 7.6, 4.6, 1.0 Hz, H-3), 7.37–7.34 (2H, m, Ph), 7.28–

7.22 (3H, m, Ph), 5.08 (2H, s, H-9), 2,55 (3H, s, H-17) ppm; 13C NMR (100 
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MHz, CDCl3):173171.4, 157.1, 150.0, 138.0, 136.3, 128.4, 128.1, 127.5, 

127.3, 122.8, 50.1, 15.3 ppm; MS: 291 (M+H)+, 249. 

Methylbenzyl(pyridin-2-ylsulphonyl)carbamate, 176 

 

Colourless solid (247.05 mg, 81%), mp: 72–74 oC; IR: νmax (ATR) 3032, 

2968, 1743 (C=O), 1580, 1429, 1348, 1306, 1239, 1118 cm-1; 1H NMR 

(CDCl3, 400 MHz): δ 8.62 (1H, d, J = 4.4 Hz, H-2), 8.07 (1H, d, J = 7.8 Hz, H-

5), 7.87 (2H, m, H-3, 4), 7.19-7.50 (5H, m, Ph), 5.13 (2H, s, H-9), 3.55 (3H, s, 

H-17) ppm; 13C NMR (100 MHz, CDCl3): 156.7, 151.0, 150.0, 137.9, 136.9, 

128.5, 128.1, 127.7, 127.4, 123.9, 54.1, 51.2 ppm; MS: 307 (M+H)+; HRMS: 

found (M+H)+ 307.0751, C14H14N2O4S requires (M+H) 307.0747. 

N-benzyl-N-(pyridin-2-ylsulphonyl)hexanamide, 177 

 

Colourless oil (283.72 mg, 82%); IR: νmax (ATR) 2956, 2930, 2871, 1703, 

1355, 1168, 1115 cm-1; 1H NMR (400 MHz, CDCl3): 8.55 (1H, m, H-2), 7.91 

(1H, d, J = 8.0 Hz, H-5), 7.77 (1H, dt, J = 8.0, 1.4 Hz, H-4), 7.38 (1H, ddd, J = 

8.0, 4.6, 0.8 Hz, H-3), 7.33 (2H, d, J = 7.2 Hz, H-11, 12), 7.21 (2H, t, J = 7.2 

Hz, H-13,14), 7.15 (1H, m, H-15), 5.05 (2H, s, H-9), 2.71 (2H, t, J = 7.2 Hz, 

H-17), 1.51 (2H, p, J = 7.2 Hz, H-18), 1.10-1.18 (4H, m, H-19,20), 0.76 (3H, t, 

J = 7.2 Hz, H-21); 13C NMR (100 MHz, CDCl3): 174.2, 156.9, 150.0, 138.2, 
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136.8, 128.5, 127.6, 127.5, 123.0, 50.1, 36.2, 31.0, 24.4, 22.3, 14.0; MS: 347 

(M+H)+, 249, 214, 204. 

N-benzyl-2-chloro-N-(pyridin-2-ylsulphonyl)propanamide, 178 

 

Colourless oil (263.64 mg, 78%); IR: νmax (ATR) 2987, 1707, 1452, 1428, 

1361, 1167, 1116 cm-1; 1H NMR (400 MHz, CDCl3): δ 8.54 (1H, dt, J = 4.8, 

1.5 Hz, H-2), 7.75 (1H d, J = 7.7 Hz, H-5), 7.71 (1H, dt, J = 7.7, 1.5 Hz, H-4), 

7.38 (1H, ddd, J = 7.7, 4.8, 1.7 Hz, H-3), 7.20 - 7.09 (5H, m, Ph), 5.46 (1H, q, 

J = 6.6 Hz, H-17), 5.05 (1H, d, J = 15.3 Hz, H-9), 4.97 (1H, d, J = 15.3 Hz, H-

9), 1.57 (3H, d, J = 6.6 Hz, H-18); 13C NMR: (100 MHz, CDCl3): 171.5, 156.3, 

150.0, 138.2, 135.6, 128.5, 128.0, 127.8, 127.6, 122.7, 52.7, 50.2, 21.6 ppm. 

N-benzyl-2,2-dimethyl-N-(pyridin-2-ylsulphonyl)propanamide,179 

 

Colourless solid (249.75 mg, 75%), mp: 118–120 oC; IR: νmax (ATR); 3088, 

3064, 3034, 3004, 2969, 2938, 1657 (C=O), 1607, 1581, 1338, 1321, 1253, 

1178, 1155 cm-1;  1H NMR (400 MHz, CDCl3): IR: νmax (ATR): 3034, 3004, 

2938, 1657, 1338, 1321, 1178, 1102 cm-1; 8.65 (1H, dd, J = 4.1, 1.2 Hz, H-2), 

8.16 (1H, d, J = 8.0 Hz, H-5), 7.95 (1H, dt, J = 8.0, 1.2 Hz, H-4), 7.52 (1H, dd, 

J = 8.0, 4.1 Hz, H-3), 7.36-7.44 (3H, m, Ph), 7.26-7.31 (2H, m, Ph), 5.34 (2H, 

s, H-9), 1.18 (9H, s, H-17); 13C NMR (100 MHz, CDCl3): 180.5, 157.4, 149.6, 
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138.0, 137.2, 128.7, 128.0, 127.4, 126.4, 123.7, 51.7, 42.0, 27.8; MS: 333 

(M+H)+, 249. 

Tertbutylbenzyl(pyridin-2-ylsulphonyl)carbamate, 180 

 

Colourless solid (330.60 mg, 95%), mp: 108–110 oC; IR: νmax (ATR) 2986, 

1731, 1353, 1149, 1113, 1061, 731 cm-1; 1H NMR (400 MHz, CDCl3): δ 8.59 

(1H, dt, J = 4.4, 1.2 Hz, H-2), 8.00 (1H br d, J = 7.7 Hz, H-5), 7.83 (1H, dt, J = 

7.7, 1.5 Hz, H-4), 7.44–7.40 (3H, m, Ph, H-3), 7.29–7.24 (2H, m, Ph), 7.19 

(1H, m, Ph), 5.02 (2H, s, H-9), 1.13 (9H, s, H-19); 13C NMR: (CDCl3, 100 

MHz): 157.3, 150.9, 149.9, 137.8, 137.6, 128.4, 127.9, 127.5, 127.1, 123.4, 

84.6, 60.4, 51.0, 27.7ppm; HRMS: found (M+H)+ 349.1217, C17H20N2O4S 

requires (M+H) 349.1217. 

N-benzyl-N-(pyridin-2-ylsulphonyl)benzamide, 181 

 

Colourless solid (348.48 mg, 99%), mp: 58–60 oC; IR: νmax (ATR) 3059, 

3033, 1677, 1661, 1358, 1320, 1181 cm-1; 1H NMR (400MHz, CDCl3): 8.73 

(1H, dd, J = 5.7, 1.6 Hz, H-2), 8.03 (1H, d, J = 8.0 Hz, H-5), 7.91 (1H, dt, J = 

8.0, 1.6 Hz, H-4), 7.54 (1H, ddd, J = 8.0, 4.7, 1.0 Hz, H-3), 7.25-7.47 (10H, 

m, Ph), 5.15 (2H, s, H-9); 13C NMR (100 MHz, CDCl3):171.2, 156.7, 150.0, 

138.0, 136.6, 134.7, 131.6, 128.6, 128.1, 128.0, 127.8, 127.7, 127.4, 52.0; 
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MS: 353 (M+H)+, 249, 214; HRMS: found (M+H)+ 353.0961, C19H16N2O3S 

requires (M+H) 353.0954. 

N-benzyl-2-phenyl-N-(pyridin-2-ylsulphonyl)butanamide, 182 

 

Colourless solid (294.14 mg, 77%), mp: 105–107 oC; IR: νmax (ATR) 2964, 

2926, 2874, 1697, 1454, 1354, 1181, 1115 cm-1; 1H NMR (400 MHz, CDCl3): 

8.58 (1H, br d, J = 4.6 Hz, H-2), 8.08 (1H, d, J = 8.1 Hz, H-5), 7.91 (1H, td, J 

= 7.7, 1.7 Hz, H-4), 7.51 (ddd, J = 7.7, 4.5, 1.0 Hz, H-3), 7.42–7.22 (10H, m, 

Ph), 7.06–7.02 (2H, m, Ph), 5.32 (1H, d, J = 16.4 Hz, H-9), 4.92 (1H, d, J = 

16.4 Hz, H-9), 4.02 (1H, t, J = 5.8 Hz, H-16), 1.97 (1H, m, H-17), 1.60 (1H, m, 

H-17), 0.71 (3H, t, J = 7.2 Hz, H-18); 13C NMR (100 MHz, CDCl3): 203.0, 

153.6, 150.0, 136.8, 136.5, 136.1, 135.8, 128.6, 127.9, 127.8, 126.6, 126.2, 

115.8, 47.8, 42.9, 27.6 ppm. 

 

10.2.9. General procedure for the rearrangement  
 

 

To a solution of the N-acylated compound (0.2 mmol) in THF (1 mL) at -78 oC 

was added a 0.66 M solution of LDA (0.3 mL). The solution was stirred at -78 

oC for 30 mins and then quenched with citric acid solution (5 mL) and 

extracted with CH2Cl2 (2 x 10 mL), dried over sodium sulphate and filtered to 

give an oil. The crude material was purified by column chromatography (3:1 

petrol/EtOAc) to give the nicotinic acid derivative. 
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Methyl-2-(benzylsulphamoyl)pyridine-3-carboxylate, 183 

 

Colourless oil (50.02 mg, 82%); IR: νmax (ATR) 3127, 2958, 2862, 1739, 

1584, 1436, 1336, 1304, 1224, 1142 cm-1; 1H NMR (400 MHz, CDCl3): δ 8.64 

(1H, dd, J = 5.0, 1.8 Hz, H-2), 7.95 (1H, dd, J = 7.6, 1.5 Hz, H-4), 7.46 (1H, J 

= 7.8, 4.9 Hz, H-3), 7.17 (5H, m, Ph), 5.68 (1H, t, J = 6.2 Hz, NH), 4.24 (2H, 

d, J = 6.3 Hz, H-9), 3.91 (3H, s, H-17) ppm; 13C NMR: (CDCl3, 400 MHz); 

171.2, 166.4, 150.6, 138.4, 136.3, 128.7, 128.1, 127.7, 126.1, 53.7, 48.0 

ppm; MS: 307 (M+H)+; HRMS: found (M+H)+ 307.0751, C14H14N2O4S 

requires (M+H) 307.0747. 

N-benzyl-3-(2-phenyl butanoyl)pyridine-2-sulphonamide, 184 

 
Colourless oil (66.43 mg, 96%); IR: νmax (ATR) 3276, 2955, 2930, 2870, 

1703, 1455, 1403, 1333, 1165; 1H NMR (400 MHz, CDCl3): 8.58 (1H, dd, J = 

4.5, 1.6 Hz, H-2), 7.67 (1H, dd, J = 8.0, 1.6 Hz, H-4), 7.44 (1H, dd, J = 8.0, 

4.5 Hz, H-3), 7.15 – 7.18 (5H, m, Ph), 5.55 (1H, t, J = 6.2 Hz, NH), 4.20 (2H, 

d, J = 6.2 Hz, H-9), 2.86 (2H, t, J = 7.5 Hz, H-17), 1.63-1.71 (2H, m, H-18), 

1.26-1.30 (4H, m, H-19,20), 0.83 (3H, t, J = 7.3 Hz, H-21); 13C NMR (CDCl3, 

100 MHz): 204.0, 153.5, 150.0, 137.0, 136.2, 135.8, 128.6, 128.0, 127.8, 

126.2, 47.8, 43.8, 31.1, 23.3, 22.5, 14.0 ppm. 
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N-benzyl-3-(hexanoyl)pyridine-2-sulphonamide, 185 

 

Colourless oil (51.38 mg, 76%); IR: νmax (ATR): 3029, 1717, 1455, 1338, 

1216, 1167, 753 cm-1; 1H NMR (400 MHz, CDCl3): 8.60 (1H, dd, J = 4.7, 1.5 

Hz, H-2), 7.80 (1H, dd, J = 7.9, 1.8 Hz, H-4), 7.47 (1H, dd, J = 7.9, 4.8 Hz, H-

3), 7.21 – 7.11 (5H, m, Ph), 5.45 (1H, t, J = 6.6 Hz, NH), 4.96 (1H, q, J = 6.9 

Hz, H-17), 4.19 (1H, dd, J = 14.1, 6.6 Hz, H-9), 4.10 (1H, dd, J = 14.1, 6.6 

Hz, H-9), 1.73 (1H, d, J = 6.9 Hz, H-18) ppm; 13C NMR: 196.6, 153.1, 150.7, 

138.4, 135.8, 134.7, 128.8, 128.0, 127.9, 126.1, 58.2, 47.8, 29.7 ppm. 

N-benzyl-3-(2,2-dimethylpropanoyl)pyridine-2-sulphonamide, 186  

 

Colourless oil (58.61 mg, 88%); IR: νmax (ATR) 3320, 2967, 1697, 1578, 

1455, 1335; 1H NMR (400 MHz, CDCl3): 8.58 (1H, dd, J = 4.7, 1.8 Hz, H-2), 

7.62 (1H, dd, J = 7.8, 1.8 Hz, H-4), 7.42 (1H, dd, J = 7.8, 4.7 Hz, H-3), 7.13–

7.18 (5H, m, Ph), 4.16 (2H, s, H-9), 1.25 (9H, s, H-18); 13C NMR: 210.9, 

153.1, 149.5, 136.5, 136.2, 134.7, 128.7, 128.0, 127.8, 125.8, 47.7, 45.3, 

27.6; MS 333 (M+H)+, 279, 249, 103; HRMS: found (M+H)+  333.1274, 

C17H20N2O3S requires (M+H) 333.1267. 
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Tertbutyl-2-(benzylsulphamoyl)pyridine-3-carboxylate, 187 

 

Colourless oil; (59.86 mg, 86%) 1H NMR (400 MHz, CDCl3): IR: νmax (ATR) 

8.60 (1H, dd, J = 4.9, 1.6 Hz, H-2), 7.95 (1H, dd, J = 7.7, 1.8 Hz, H-4), 7.44 

(1H, dd, J = 7.7, 4.9 Hz, H-3), 7.21–7.16 (5H, m, Ph), 5.72 (1H, t, J = 6.3 Hz, 

NH), 4.23 (1H, d, J = 6.5 Hz, H-9), 155 (9H, s, H-19) ppm; 13C NMR: 165.2, 

155.0, 150.0, 138.5, 136.5, 129.7, 128.6, 128.0, 127.8, 126.0, 84.8, 48.0, 27.; 

HRMS: found (M+H)+  349.1220, C17H20N2O4S requires (M+H) 349.1217 

N-benzyl-3-(phenylcarbonyl)pyridine-2-sulphonamide, 188 

 

Colourless solid (33.10 mg, 78%), mp: 137–138 oC; IR: νmax (ATR) 3191, 

1669, 1596, 1581, 1453, 1338, 1316, 1285, 1164, 1132; 1H NMR (400 MHz, 

CDCl3): 8.53 (1H, dd, J = 4.6, 1.5 Hz, H-2), 7.67-7.71 (3H, m, H-18, 19, 20), 

7.54 (1H, d, J = 7.7 Hz, H-4), 7.47 (1H, dd, J = 7.7, 4.5 Hz, H-3), 7.39 (2H, t, 

J = 8.0 Hz, H-20, 21), 7.13 – 7.19 (5H, m, Ph), 4.22 (2H, s, H-9); 13C NMR: 

194.2, 154.8, 150.1, 137.1, 136.2, 135.9, 139.9, 134.4, 130.2, 128.8, 128.6, 

127.9, 127.8, 125.8, 47.8; MS: 353 (M+H)+, 246. 
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N-benzyl-3-(2-phenylbutanoyl)pyridine-2-sulphonamide, 189 

 

Colourless solid (68.76 mg, 90%), mp: 108–110 oC; IR: νmax (ATR) 2925, 

2850, 1703, 1454, 1334, 1204, 1164, 1132, 730 cm-1; 1H NMR (400 MHz, 

CDCl3): δ 8.45 (1H, dd, J = 4.7, 1.8 Hz, H-2), 7.23–7.09 (11H, m, Ph, H-3), 

6.94 (1H, dd, J = 7.8, 1.8 Hz, H-4), 5.53 (1H, t, J = 14.0, 6.5 Hz, NH), 4.21 

(1H, dd, J = 14.0, 6.5 Hz, H-9), 4.1–4.09 (2H, m, H-9, H-17), 2.22 (1H, m, H-

18), 1.94 (1H, m, H-18), 0.78 (3H, t, J = 8.2 Hz, H-19); 13C NMR (CDCl3, 100 

MHz): 203.0, 153.6, 150.0, 136.8, 136.5, 136.1, 135.8, 128.6, 127.9, 127.8, 

126.6, 126.2, 115.8, 47.8, 42.9, 27.6 ppm. 

 

10.2.10. General Procedure for Synthesis of Sulphonamides 

 

To a solution of aryl sulphonyl chloride (10 mmol) in CH2Cl2 (50 mL) was 

added isopropylamine (10 mmol) and triethylamine (20 mmol). The resulting 

solution was stirred for 30 mins at room temperature and then diluted with 

water (20 mL). The mixture was extracted with CH2Cl2 (2 x 10 mL), dried over 

sodium sulphate and filtered to give the crude sulphonamide. If required, the 

sulphonamide was further purified by recrystallisation from EtOH/water. 

Tertbutyl-3-methyl-2-(4-methylphenylsulphonamido)butanoate, 192 
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Colourless solid (3.11 g, 95%), mp 155–157 oC; IR: νmax (ATR) 3280, 2970, 

1715, 1341, 1159 cm-1; 1H NMR (400 MHz, CDCl3): 7.74 (2H, d, J = 8.5 Hz, 

H-4), 7.29 (2H, d, J = 8.5 Hz, H-3), 5.08 (1H, d, J = 9.2 Hz, NH), 3.63 (1H, 

dd, J = 9.2, 5.0 Hz, H-6), 2.41 (3H, s, H-1), 2.06 (1H, m, H-10), 1.24 (9H, s, 

H-9), 1.01 (3H, d, J = 6.4 Hz, H-11/12), 0.86 (3H, d, J = 6.4 Hz, H-11/12); 13C 

NMR (100 MHz, CDCl3): 170.4, 143.5, 136.8, 129.6, 127.4, 82.2, 61.2, 31.7, 

27.7, 21.5, 19.1, 17.0 ppm; MS: 350 (M+Na)+, 272 (M+H-C4H8)
+; HRMS: 

found (M+Na)+  350.1398, C16H24NO4S requires (M+H)+ 350.1397. 

N-isopropyl-4-methylbenzenesulphonamide, 200 

 

Colourless solid (1.96 g, 92%), mp 49–51 oC (lit: 48-50 oC);275, 276 IR: νmax 

(ATR) 3261, 2977, 1596, 1388, 1298 cm-1; 1H NMR (400 MHz, CDCl3): 7.79 

(2H, d, J = 8.1 Hz, H-4), 7.31 (2H, d, J = 8.1 Hz, H-3), 4.72 (1H, d, J = 6.9 

Hz, NH), 3.45 (1H, oct, J = 6.9 Hz, H-6), 2.44 (3H, s, H-1), 1.09 (6H, d, J = 

6.9 Hz, H-7/8); 13C NMR (100 MHz, CDCl3): 143.2, 138.2, 129.6, 127.0, 46.0, 

23.7, 21.5 ppm; MS: 236 (M+Na)+, 172 (M+H-C3H6)
+; HRMS: found (M+Na)+  

236.0716, C10H15NO2S requires (M+Na+) 236.0716. 

N-isopropylbenzenesulphonamide, 201 

 

Colourless oil (1.89 g, 95%); IR: νmax (ATR) 3277, 2975, 1447, 1322, 1156 

cm-1; 1H NMR (400 MHz, CDCl3) 7.92 (2H, d, J = 7.3 Hz, H-2), 7.56 (1H, t, J 

= 7.3 Hz, H-4), 7.50 (2H, t, J = 7.3 Hz, H-3),  5.16 (1H, d, J = 6.1 Hz, NH), 

3.45 (1H, oct, J = 6.1 Hz, H-5), 1.07 (6H, d, J = 6.4 Hz, H-6/7); 13C NMR (100 
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MHz, CDCl3): 141.1, 132.4, 129.1, 127.0, 46.1, 23.6 ppm; MS: 222 (M+Na)+, 

200 (M+H)+, 158 (M+H-C3H6)
+; HRMS: found (M+H)+ 200.0739, C9H13NO2S 

requires (M+H)+  200.0740. 

N-isopropyl-4-methoxybenzenesulphonamide, 202  

 

Colourless solid (2.08 g, 91%), mp 55–57 oC; IR: νmax (ATR) 3263, 2971, 

1598, 1416, 1264, 1093 cm-1; 1H NMR (400 MHz, CDCl3): 7.84 (2H, d, J = 

8.7 Hz, H-4), 6.98 (2H, d, J = 8.7 Hz, H-3), 4.83 (1H, d, J = 6.5 Hz, NH), 3.87 

(3H, s, H-1), 3.42 (1H, oct, J = 6.5 Hz, H-6), 1.07 (6H, d, J = 6.5 Hz, H-7/8); 

13C NMR (100 MHz, CDCl3): 162.7, 132.7, 129.1, 114.2, 55.6, 46.0, 23.7 

ppm; MS: 252 (M+Na)+, 230 (M+H)+; HRMS: found (M+H)+  230.0847, 

C10H15NO3S requires (M+H)+, 230.0845. 

N-isopropyl-4-nitrobenzenesulphonamide, 203 

 

Light brown solid (1.78 g, 84%); mp 114–115 oC (lit: 114–115 oC);276 IR: νmax 

(ATR): 3245, 2980, 1521, 1346 cm-1; 1H NMR (400 MHz, CDCl3): 8.38 (2H, d, 

J = 89.2 Hz, H-2), 8.10 (2H, d, J = 9.2 Hz, H-3), 4.86 (1H, d, J = 7.8 Hz, NH), 

3.57 (1H, oct, J = 6.4 Hz, H-5), 1.14 (6H, d, J = 6.4 Hz, H-6/7); 13C NMR (100 

MHz, CDCl3): 150.0, 147.2, 128.2, 124.4, 46.6, 23.8 ppm; MS: 267 (M+Na)+; 

HRMS: found (M+Na)+ 267.0408, C9H12N2O4S requires (M+Na)+  267.0410. 
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10.2.11. General procedure for ‘Boc’ protection 
 

To a solution of sulphonamide (426 mg, 2 mmol) in DCM (10 mL) at ambient 

temperature was added Boc2O (480 mg, 2.2 mmol), and 4-

(dimethylamino)pyridine (5 mg). The solution was stirred at room temperature 

for 1 hr and was then quenched with H2O (5 mL) and extracted with CH2Cl2 

(2 x 10 mL), dried over sodium sulphate and filtered to give the product that 

was used without further purification. 

Tertbutyl-2-(N-(tert-butoxycarbonyl)-4-methylphenylsulphonamido)-3-
methylbutanoate, 193 

 

Colourless oil (669.2 mg, 78%); IR: νmax (ATR) 2979, 1734, 1353, 1144 cm-1; 

1H NMR (400 MHz, CDCl3): 7.92 (2H, d, J = 8.2 Hz, H-4), 7.28 (2H, d, J = 8.2 

Hz, H-3), 4.15 (1H, d, J = 9.1 Hz, H-6), 2.55 (1H, m, H-11), 2.42 (3H, s, H-1), 

1.40 (9H, s, H-12 or 15), 1.33 (9H, s, H-12 or 15); 13C NMR (100 MHz, 

CDCl3): 168.5, 150.2, 144.1, 137.0, 128.9, 128.8, 84.5, 81.9, 65.2, 28.5, 28.0, 

27.8, 22.4, 21.6, 19.9  ppm; MS: 422 (M+Na)+; HRMS: found (M+Na)+ 

422.1607, C19H29NO6S requires (M+Na)+ 422.1608.  

Tertbutylisopropyl(tosyl)carbamate, 204 
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Colourless solid (459.90 mg, 73%); mp: 83–85 oC; IR: νmax (ATR): 2978, 

1713, 1353, 1146 cm-1; 1H NMR (400 MHz, CDCl3): 7.78 (2H, d, J = 8.3 Hz, 

H-4), 7.30 (2H, d, J = 8.3 Hz, H-3), 4.77 (1H, sept, J = 7.2 Hz, H-6), 2.44 (3H, 

s, H-1), 1.47 (6H, d, J = 7.2 Hz, H-7), 1.37 (9H, s, H-12); 13C NMR (100 MHz, 

CDCl3): 150.8, 143.7, 138.1, 129.2, 127.5, 83.9, 51.1, 27.9, 21.6, 21.4 ppm; 

MS: 336 (M+Na)+, 314 (M+H)+, 258 (M+H-C4H8)
+; HRMS: found (M+H)+ 

314.1422, C15H23NO4S requires (M+H)+ 314.1421.  

Tertbutylisopropyl(phenylsulphonyl)carbamate, 207 

 

Colourless solid (451.5 mg, 75%); mp: 55–57 oC; IR: νmax (ATR): 2937, 2979, 

1724, 1394, 1143 cm-1; 1H NMR (400 MHz, CDCl3): 7.87 (2H, d, J = 7.1 Hz, 

H-3), 7.56  (1H, t, J = 7.1 Hz, H-1), 7.48 (2H, t, J = 7.1 Hz, H-2), 4.75 (1H, 

sept, J = 6.6 Hz, H-5), 1.45 (6H, d, J = 6.6 Hz, H-6), 1.31 (9H, s, H-9) ppm; 

13C NMR (100 MHz, CDCl3): 150.6, 141.0, 132.9, 128.7, 84.0, 51.2, 27.8, 

21.3 ppm. 

Tertbutylisopropyl((4-methoxyphenyl)sulphonyl)carbamate, 210 
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Colourless solid (529.6 mg, 80%); mp: 72–74 oC; IR: νmax (ATR): 2978, 2938, 

1721, 1348, 1258, 1145 cm-1;  1H NMR (400 MHz, CDCl3): 7.77 (2H, d, J = 

9.5 Hz, H-4), 6.91 (2H, d, J = 8.3 Hz, H-3), 4.69 (1H, sept, J = 7.2 Hz, H-6), 

3.76  (3H, s, H-1), 1.39 (6H, d, J = 7.2 Hz, H-7), 1.32 (9H, s, H-12); 13C NMR 

(100 MHz, CDCl3):163.1, 150.8, 132.5, 129.7, 113.7, 83.7, 55.6, 51.0, 27.9, 

21.3; MS: 353 (M+Na)+, 330 (M+H)+, 274 (M+H-C4H8)
+; HRMS: found (M+H)+ 

330.1368, C15H23NO5S requires (M+H)+ 330.1370. 

 Tertbutylisopropyl((4-nitrophenyl)sulphonyl)carbamate, 213 

 

Brown solid (464.7 mg, 74%); mp: 154–156 oC; IR: νmax (ATR): 3107, 2976, 

1717, 1528, 1350, 1144, 742 cm-1; 1H NMR (400 MHz, CDCl3): 8.37 (2H, d, J 

= 8.6 Hz, H-2), 8.10 (2H, d, J = 8.6 Hz, H-3), 4.77 (1H, sept, J = 7.0 Hz, H-5), 

1.49 (6H, d, J = 7.0 Hz, H-6 or 7), 1.40 (9H, s, H-10); 13C NMR (100 MHz, 

CDCl3):150.4, 150.1, 146.5, 128.9, 123.9, 85.0, 51.9, 27.9, 21.5 ppm; MS: 

367 (M+Na)+; HRMS: found (M+Na)+  367.0934, C14H20N2O6S requires 

(M+Na)+ 367.0934. 

  

10.2.12. General synthesis of N-acylated compounds  
 

 

To a solution of pyridine-2-sulfonic acid benzylamide (234 mg, 1 mmol) in 

THF (10 mL) at 0 oC was added NaH (80 mg, 2 mmol, 60 % dispersion in 

mineral oil), followed by the appropriate acid chloride (1.2 mmol). The 
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solution was stirred at room temperature for 1 hr and then quenched with 

H2O (5 mL) and extracted with CH2Cl2 (2 x 10 mL), dried over sodium 

sulphate and filtered to give an oil. The crude material was purified by column 

chromatography (3:1 petrol/EtOAc) to give the acylated product. 

Ethylisopropyl(tosyl)carbamate, 205 

 

Colourless oil (219.4 mg, 77%); IR: νmax (ATR) 2921, 2853, 1737, 1460 cm-1;  

1H NMR (400 MHz, CDCl3): 7.74 (2H, d, J = 8.7 Hz, H-4), 7.22 (2H, d, J = 8.7 

Hz, H-3), 4.75 (1H, sept, J = 6.1 Hz, H-6), 4.05 (2H, q, J = 7.9 Hz, H-10), 

2.35 (3H, s, H-1), 1.39 (6H, d, J = 6.1 Hz, H-7 or 8), 1.11 (3H, q, J = 7.9 Hz, 

H-11); 13C NMR (100 MHz, CDCl3): 152.2, 144.1, 137.6, 129.3, 128.0, 62.9, 

51.4, 21.6, 21.4, 13.9 ppm; MS: 308 (M+Na)+, 286 (M+H)+; HRMS: found 

(M+H)+ 286.1109, C13H19NO4S requires (M+H)+ 286.1108. 

Methylisopropyl(tosyl)carbamate, 206 

 

Colourless oil (227.6 mg, 84%); IR: νmax (ATR) 2975, 1730, 1351, 1256 cm-1; 

1H NMR (400 MHz, CDCl3 7.74 (1H, d, J = 8.2 Hz, H-2), 7.24 (1H, d, J = 8.2 

Hz, H-3), 4.75 (1H, sept, J = 7.2 Hz, H-6), 3.61 (3H, s, H-10), 2.36 (3H, s, H-

12), 1.38 (6H, d, J = 7.2 Hz, H-7 or H-8) ppm; 13C NMR (100 MHz, CDCl3): 

152.8, 144.3, 137.4, 129.3, 128.0, 53.2, 51.6, 21.5, 21.3 ppm; MS: 294 
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(M+Na)+, 272 (M+H)+; HRMS: found (M+Na)+ 294.0771, C12H17NO4S 

requires (M+Na)+ 294.0770. 

Ethylisopropyl(phenylsulphonyl)carbamate, 208 

 

Colourless oil (205.9 mg, 76%); IR: νmax (ATR) 2936, 1726, 1368, 1350, 1251 

cm-1; 1H NMR (400 MHz, CDCl3): 7.94 (2H, d, J = 7.6 Hz, H-3), 7.61 (1H, t, J 

= 7.6 Hz, H-1), 7.52 (2H, t, J = 7.6 Hz, H-2), 4.85 (1H, sept, J = 6.8 Hz, H-5), 

4.12 (2H, q, J = 7.4 Hz, H-9), 1.49 (6H, d, J = 6.8 Hz, H-6 or 7), 1.17 (3H, q, J 

= 7.4 Hz, H-10); 13C NMR (100 MHz, CDCl3): 152.1, 140.6, 133.2, 128.7, 

127.9, 63.0, 51.5, 21.4, 13.9 ppm; MS: 294 (M+Na)+, 272 (M+H)+; HRMS: 

found (M+H)+ 272.0953, C12H17NO4S requires (M+H)+ 272.0951. 

Methylisopropyl(tosyl)carbamate, 209 

 

Colourless oil (210.7 mg, 82%); IR: νmax (ATR) 2975, 1729, 1448, 1353, 

1256, 1089 cm-1; 1H NMR (400 MHz, CDCl3): 7.87 (2H, d, J = 7.5 Hz, H-3), 

7.54 (1H, t, J = 7.5 Hz, H-1), 7.45 (2H, t, J = 7.5 Hz, H-2), 4.76 (1H, sept, J = 

6.9 Hz, H-5), 3.61 (3H, s, H-9), 1.34 (6H, d, J = 6.9 Hz, H-6 or 7) ppm; 13C 

NMR (100 MHz, CDCl3): 152.8, 140.4, 133.2, 128.7, 127.9, 53.3, 51.7, 29.7,  
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21.3 ppm; MS: 280 (M+Na)+, 258 (M+H)+; HRMS: found (M+H)+ 258.0796, 

C11H15NO4S requires (M+H)+ 272.0951 

Ethylisopropyl((4-methoxyphenyl)sulphonyl)carbamate, 211 

 

Colourless solid (246.8 mg, 82%); mp: 57–58 oC; IR: νmax (ATR) 2978, 1724, 

1595, 1254, 1087 cm-1; 1H NMR (400 MHz, CDCl3): 7.87 (2H, d, J = 8.8 Hz, 

H-4), 6.97 (2H, d, J = 8.8 Hz, H-3), 4.81 (1H, sept, J = 7.0 Hz, H-6), 4.14 (2H, 

q, J = 7.3 Hz, H-10), 3.87 (3H, s, H-1), 1.46 (6H, d, J = 7.3 Hz, H-7 or 8), 1.21 

(3H, q, J = 7.3 Hz, H-11); 13C NMR (100 MHz, CDCl3): 163.3, 152.2, 132.0, 

130.2, 113.8, 62.8, 55.7, 51.4, 21.4, 14.0 ppm; MS: 324 (M+Na)+, 302 

(M+H)+; HRMS: found (M+H)+ 302.1057, C13H19NO5S requires (M+H)+ 

302.1057. 

Methylisopropyl((4-methoxyphenyl)sulphonyl)carbamate, 212 

 

Colourless oil (215.2 mg, 75%); IR: νmax (ATR) 2975, 1728, 1595, 1350, 1256 

cm-1; 1H NMR (400 MHz, CDCl3): 7.79 (2H, d, J = 8.4 Hz, H-4), 6.90 (2H, d, J 

= 8.4 Hz, H-3), 4.73 (1H, sept, J = 7.0 Hz, H-6), 3.79 (3H, s, H-5), 3.61 (3H, 

s, H-10), 1.36 (6H, d, J = 7.0 Hz, H-7 or 8) ppm; 13C NMR (100 MHz, CDCl3): 

163.4, 152.8, 131.7, 130.3, 114.1, 55.7, 53.2, 51.5, 23.7 ppm; MS: 310 
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(M+Na)+, 288 (M+H)+; HRMS: found (M+Na)+ 310.0717, C12H17NO5S 

requires (M+Na)+ 310.0720 

Ethylisopropyl((4-nitrophenyl)sulphonyl)carbamate, 214 

 

Brown solid (193.1 mg, 68%); mp: 83–84 oC; IR: νmax (ATR) 3109, 2981, 

2926, 1730, 1531, 1345, 1169 cm-1; 1H NMR (400 MHz, CDCl3): 8.38 (2H, d, 

J = 8.7 Hz, H-2), 8.15 (2H, d, J = 8.7 Hz, H-3), 4.85 (1H, sept, J = 6.6 Hz, H-

5), 4.18 (2H, q, J = 7.5 Hz, H-9), 1.51 (6H, d, J = 6.6 Hz, H-6 or 7), 1.24 (3H, 

q, J = 7.5 Hz, H-10) ppm; 13C NMR (100 MHz, CDCl3): 151.0, 146.0, 129.3, 

123.9, 68.0, 63.5, 52.2, 25.6, 21.5, 14.0 ppm; MS: 339 (M+Na)+; HRMS: 

found (M+Na)+ 339.0620, C12H16N2O6S requires (M+Na)+ 339.0621. 

Methylisopropyl((4-nitrophenyl)sulphonyl)carbamate, 215 

 

Brown solid (172.8 mg, 64%); mp: 99–100 oC; IR: νmax (ATR) 2978, 1732, 

1532, 1349 cm-1; 1H NMR (400 MHz, CDCl3): 8.37 (2H, d, J = 8.6 Hz, H-2), 

8.13 (2H, d, J = 8.6 Hz, H-3), 4.83 (1H, sept, J = 7.0 Hz, H-5), 3.72 (3H, s, H-

9), 1.48 (6H, d, J = 7.0 Hz, H-6 or 7) ppm; 13C NMR (100 MHz, CDCl3): 

152.5, 150.3, 145.7, 129.4, 124.0, 53.7, 52.3, 21.4 ppm; MS: 325 (M+Na)+; 

HRMS: found (M+Na)+ 325.0462, C11H14N2O6S requires (M+Na)+ 325.0465. 
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10.2.13. General procedure for the rearrangement reaction  
 

To a solution of the boc-protected amine (1 mmol) in THF (2 mL) at -78 oC 

was added LDA (1M, 1 mL) over 2 minutes. The solution was stirred at -78 

oC for 30 minutes and then quenched with citric acid aqueous solution (5 mL) 

and extracted with CH2Cl2 (2 x 10 mL), dried over sodium sulphate and 

filtered to give the product. 

Tertbutyl-2-(N-(1-(tert-butoxy)-3-methyl-1-oxobutan-2-yl)sulphamoyl)-5-
methylbenzoate, 194 

 

Colourless oil (338.9 mg, 79%); IR: νmax (ATR) 3292, 2974, 2934, 1718, 

1256, 1156, 1137 cm-1;  1H NMR (400 MHz, CDCl3): 7.82 (1H, d, J = 8.6 Hz, 

H-6), 7.49 (1H, s, H-3), 7.29 (1H, d, J = 8.6 Hz, H-5), 6.46 (1H, d, J = 8.6 Hz, 

NH), 3.79 (1H, dd, J = 8.6, 6.4 Hz, H-8), 2.41 (3H, s, H-7), 2.04 (1H, oct, J = 

6.4 Hz, H-9), 1.64 (9H, H-13 or 16), 1.16 (9H, H-13 or 16), 0.99 (3H, d, J = 

6.4 Hz, H-14 or 15), 0.94 (3H, d, J = 6.4 Hz, H-14 or 15) ppm; 13C NMR (100 

MHz, CDCl3): 169.9, 166.7, 142.9, 136.4, 132.7, 131.0, 130.8, 128.8, 83.5, 

81.9, 62.6, 31.9, 28.1, 27.6, 21.3, 19.0, 17.7 ppm; MS: 408 (M+Na)+; HRMS: 

found (M+Na)+ 408.1452, C18H27NO6S requires (M+Na)+ 408.1451. 
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Tertbutyl-2-(N-isopropylsulphamoyl)-5-methylbenzoate, 216 

 

Colourless oil (267.7 mg, 85%); IR: νmax (ATR) 3294, 2976, 2936, 1706, 

1306, 1119 cm-1; 1H NMR (400 MHz, CDCl3): 7.85 (1H, d, J = 7.8 Hz, H-6), 

7.39 (1H, s, H-3), 7.28 (1H, d, J = 7.8 Hz, H-5), 5.62 (1H, d, J = 6.7 Hz, NH), 

3.42 (1H, oct, J = 6.7 Hz, H-8), 2.37 (3H, s, H-7), 1.55 (9H, s, H-13), 1.01 

(6H, d, J = 6.7 Hz, H-9 or H-10) ppm; 13C NMR (100 MHz, CDCl3):  167.5, 

142.8, 133.3, 132.6, 131.1, 130.7, 83.7, 46.6, 28.0, 23.6, 21.3 ppm; MS: 336 

(M+Na)+, 314 (M+H)+, 258 (M-tBu)+; HRMS: found (M+H)+ 314.1421, 

C15H23NO4S requires (M+Na)+ 314.1421. 

Ethyl-2-(N-isopropylsulphamoyl)-5-methylbenzoate, 217 

 

Colourless oil (222.3 mg, 78%); IR: νmax (ATR) 3300, 2974, 1714, 1338, 

1266, 1164, 1117 cm-1; 1H NMR (400 MHz, CDCl3): 7.89 (1H, d, J = 7.7 Hz, 

H-4), 7.52 (1H, d, J = 1.0 Hz, H-3), 7.34 (1H, dd, J = 7.7, 1.0 Hz, H-7), 5.69 

(1H, d, J = 7.0 Hz, NH), 4.35 (2H, q, J = 7.2 Hz, H-9), 3.42 (1H, oct, J = 7.0 

Hz, H-8), 2.37 (3H, s, H-7), 1.34 (3H, t, J = 7.2 Hz, H-13), 1.00 (6H, d, J = 7.0 

Hz, H-11) ppm; 13C NMR (100 MHz, CDCl3): 167.9, 143.0, 137.4, 131.8, 

131.2, 129.5, 128.0, 62.4, 46.5, 23.6, 21.4, 14.1 ppm. 
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Methyl-2-(N-isopropylsulphamoyl)-5-methylbenzoate, 218 

 

Colourless oil (224.9 mg, 83%); IR: νmax (ATR) 3299, 2974, 1719, 1435, 

1337, 1267, 1163, 1118 cm-1; 1H NMR (400 MHz, CDCl3): 7.91 (1H, d, J = 

8.2Hz, H-6), 7.55 (1H, d, J = 1.6 Hz, H-3), 7.34 (1H, dd, J = 8.2, 1.6 Hz, H-5), 

5.68 (1H, d, J = 7.2 Hz, NH), 3.89 (3H, s, H-12), 3.43 (1H, oct, J = 7.2 Hz, H-

8), 2.38 (3H, s, H-7), 1.00 (6H, d, J = 7.2 Hz, H-9 or 10) ppm; 13C NMR (100 

MHz, CDCl3):168.2, 143.0, 137.6, 132.0, 131.4, 130.2, 129.6, 53.2, 46.5, 

23.6, 21.2 ppm. 

Tertbutyl-2-(N-isopropylsulphamoyl)benzoate, 219 

 

Colourless oil (276.9 mg, 92%); IR: νmax (ATR) 3291, 2978, 2935, 1706, 

1370, 1304, 1119 cm-1; 1H NMR (400 MHz, CDCl3): 7.97 (1H, m, J = 8.5Hz, 

H-6), 7.62 (1H, m, H-3), 7.52-7.48 (2H, m, H-4 and 5), 5.70 (1H, d, J = 7.2 

Hz, NH), 3.43 (1H, oct, J = 7.2 Hz, H-10), 1.54 (9H, s, H-11), 1.00 (6H, d, J = 

7.2 Hz, H-9) ppm; 13C NMR (100 MHz, CDCl3): 167.3, 139.6, 132.9, 132.0, 

130.7, 128.6, 127.4, 83.7, 67.9, 46.6, 28.0, 21.4 ppm; MS: 322 (M+Na)+, 300 

(M+H)+, 244 (M-tBu)+; HRMS: found (M+H)+ 300.1274, C14H21NO4S requires 

(M+H)+ 300.1264. 
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Ethyl-2-(N-isopropylsulphamoyl)benzoate, 220 

 

Colourless oil (211.4 mg, 78%); IR: νmax (ATR) 3297, 2975, 2935, 1713, 

1338, 1280, 1166, 1115 cm-1; 1H NMR (400 MHz, CDCl3): 8.03 (1H, m, H-6), 

7.73 (1H, m, H-3), 7.56-7.53 (2H, m, H-4 and 5), 5.73 (1H, d, J = 6.0 Hz, 

NH), 4.36 (2H, q, J = 7.6 Hz, H-11), 3.45 (1H, m, H-7), 1.34 (3H, t, J = 7.6 

Hz, H-12), 1.01 (6H, d, J = 7.6 Hz, H-8 and 9) ppm; 13C NMR (100 MHz, 

CDCl3):167.8, 140.3, 132.1, 131.5, 130.8, 129.3, 127.4, 62.5, 46.8, 22.2, 14.1 

ppm; MS: 294 (M+Na)+, 272 (M+H)+; HRMS: found (M+H)+ 272.0956, 

C14H21NO4S requires (M+H)+ 300.1264. 

Methyl-2-(N-isopropylsulphamoyl)benzoate, 221 

 

 Colourless oil (215.9 mg, 84%); IR: νmax (ATR) 3296, 2975, 1718, 1289, 

1115 cm-1; 1H NMR (400 MHz, CDCl3): 7.99 (1H, dd, J = 7.5, 2.4 Hz, H-6), 

7.69 (1H, dd, J = 7.5, 2.4 Hz, H-3), 7.52-7.48 (2H, m, H-4 and 5), 5.70 (1H, d, 

J = 6.4 Hz, NH), 3.85 (3H, s, H-11), 3.42 (1H, oct, J = 6.4 Hz, H-7), 0.97 (6H, 

d, J = 6.4 Hz, H-8 and 9) ppm; 13C NMR (100 MHz, CDCl3): 168.2, 140.5, 

132.1, 131.7, 130.7, 129.1, 127.0, 53.3, 46.6, 23.8 ppm; MS: 280 (M+Na)+, 

258 (M+H)+; HRMS: found (M+H)+  258.0797, C11H15NO4S requires (M+H)+ 

258.0795. 
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Tertbutyl-2-(N-isopropylsulphamoyl)-5-methoxybenzoate, 222 

 

Colourless oil (297.9 mg, 90%); IR: νmax (ATR) 3298, 2977, 1710, 1594, 

1572, 1308, 1163 cm-1; 1H NMR (400 MHz, CDCl3): 7.95 (1H, d, J = 8.5 Hz, 

H-4), 7.13 (1H, d, J = 2.8 Hz, H-7), 6.93 (1H, dd, J = 8.5, 2.8 Hz, H-3), 5.59 

(1H, d, J = 6.8 Hz, NH), 3.86 (3H, s, H-1), 3.44 (1H, oct, J = 6.8 Hz, H-11), 

1.59 (9H, s, H-10), 1.07 (6H, d, J = 6.8 Hz, H-12) ppm; 13C NMR (100 MHz, 

CDCl3):167.0, 162.0, 134.4, 131.4, 131.3, 116.7, 114.2, 83.8, 55.8, 46.5, 

28.0, 23.6; MS: 352 (M+Na)+, 330 (M+H)+, 274 (M-tBu)+; HRMS: found 

(M+H)+ 330.1367, C15H23NO5S requires (M+H)+ 330.1370. 

Ethyl-2-(N-isopropylsulphamoyl)-5-methoxybenzoate, 223 

 

Colourless oil (279.9 mg, 93%); IR: νmax (ATR) 3302, 2975, 1715, 1571, 

1335, 1292, 1113 cm-1; 1H NMR (400 MHz, CDCl3): 7.95 (1H, d, J = 8.9 Hz, 

H-6), 7.20 (1H, d, J = 2.8 Hz, H-3), 6.97 (1H, dd, J = 8.9, 2.8 Hz, H-5), 5.60 

(1H, d, J = 6.4 Hz, NH), 4.35 (2H, q, J = 7.5 Hz, H-12), 3.83 (3H, s, H-7), 3.42 

(1H, oct, J = 6.4 Hz, H-8), 1.35 (3H, t, J = 7.5 Hz, H-12), 1.02 (6H, d, J = 6.4 

Hz, H-9 or H-10); 13C NMR (100 MHz, CDCl3):167.5, 162.1, 132.5, 131.7, 

131.6, 117.0, 115.1, 62.6, 55.9, 46.5, 23.6, 14.1 ppm; MS: 324 (M+Na)+, 302 
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(M+H)+; HRMS: found (M+H)+ 302.1061, C13H19NO5S requires (M+H)+ 

302.1061. 

Methyl-2-(N-isopropylsulphamoyl)-5-methoxybenzoate, 224 

 

Colourless oil (229.6 mg, 80%); IR: νmax (ATR) 3299, 2974, 1719, 1435, 

1337, 1267, 1163, 1118 cm-1; 1H NMR (400 MHz, CDCl3): 7.91 (1H, d, J = 

8.2Hz, H-4), 7.55 (1H, d, J = 1.6 Hz, H-3), 7.34 (1H, dd, J = 8.2, 1.6 Hz, H-7), 

5.68 (1H, d, J = 7.2 Hz, NH), 3.89 (3H, s, H-9), 3.43 (1H, oct, J = 7.2 Hz, H-

10), 2.38 (3H, s, H-1), 1.00 (6H, d, J = 7.2 Hz, H-11) ppm; 13C NMR (100 

MHz, CDCl3):168.2, 143.0, 137.6, 132.0, 131.4, 130.2, 129.6, 53.2, 46.5, 

23.6, 21.2 ppm; MS: 310 (M+Na)+, 288 (M+H)+; HRMS: found (M+H)+ 

288.0902, C12H17NO5S requires (M+H)+ 288.0900. 

 

 

 

10.2.14. General procedure Sulphonamide derived from Tertbutyl 
Aniline 
 
 

To a solution of aryl sulphonyl chloride (10 mmol) in CH2Cl2 (20 mL) was 

added tertbutylaniline (10 mmol) and triethylamine (1.6 g, 18 mmol). The 

resulting solution was stirred for 30 mins at room temperature. The mixture 

was extracted with CH2Cl2 (2 x 10 mL), and washed with 2M HCl (2 x 10 mL) 

and NaHCO3 solution. The organic layer was dried over MgSO4, filtered and 

the solvent was removed to give the crude sulphonamide. If required, the 

sulphonamide was further purified by recrystallisation from aqueous EtOH. 
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N-(4-tertbutylphenyl)-4-methylbenzenesulphonamide, 226  

 

White solid, mp: 170–172 oC;  (3.50 g, 84%); IR: νmax (ATR) 3219, 3070, 

2969, 1596, 1433, 1323, 1149 cm-1; 1H NMR (400 MHz, CDCl3): 7.89 (2H, d, 

J = 8.3 Hz, H-4), 7.16 (4H, t, J = 7.4 Hz, H-3, H-8), 6.90 (2H, d, J = 6.7 Hz, H-

7), 6.31 (1H, s, N-H) 2.40 (3H, s, H-1) 1.22 (9H, s, H-11); 13C NMR (100 

MHz, CDCl3): 146.8, 141.9, 134.7, 131.8, 127.8, 124.4, 120.0, 32.6, 29.5, 

19.6 ppm. MS: 326 (M+Na)+, 304 (M+H)+, 248 (M+H-C4H8)
+. 

N-(4-tertbutylphenyl)-4-methoxybenzenesulphonamide, 227  

 

White needle-like crystals (1.69 g, 53 %); mp: 168–169 oC; IR: νmax (ATR) 

3231, 3023, 2971, 2956, 1594, 1446, 1267, 1148 cm-1; 1H NMR (400 MHz, 

CDCl3): 7.73 (2H, d, J = 8.8 Hz, H-4), 7.28 (2H, d, J = 9.0 Hz, H-8), 6.89 (2H, 

d, J = 8.6 Hz, H-7), 6.91 (2H, d, J = 8.9 Hz, H-3), 6.36 (1H, s, N-H), 3.85 (3H, 

s, H-1), 1.28 (9H, s, H-11); 13C NMR (100 MHz, CDCl3): 163.0, 148.6, 133.7, 

131.0, 129.4, 126.2, 121.8, 114.1, 55.6, 34.4, 31.3 ppm. MS: 342 (M+Na)+, 

320 (M+H)+, 264 (M+H-C4H8)
+. 
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N-(4-tertbutylphenyl)-4-acetylbenzenesulphonamide, 228  

 

White needle-like crystals (2.87 g, 92%); mp: 104–106 oC;  IR: νmax (ATR) 

3257, 2961, 1685, 1594, 1466, 1261, 1160 cm-1; 1H NMR (400 MHz, CDCl3): 

8.02 (2H, d, J = 8.5 Hz, H-5), 7.87 (2H, d, J = 8.5 Hz, H-4), 7.29 (2H, d, J = 

8.6 Hz, H-9), 6.98 (2H, d, J = 8.6 Hz, H-8), 6.49 (1H, s, N-H), 2.65 (3H, s, H-

1), 1.28 (9H, s, H-12) ; 13C NMR (100 MHz, CDCl3): 197.7, 149.4, 143.3, 

140.2, 140.0, 128.8, 127.6, 126.5, 122.3, 34.4, 31.2, 26.8 ppm; MS: 354 

(M+Na)+, 304 (M+H)+, 276 (M+H-C4H8)
+. 

N-(4-tertbutylphenyl)-4-cyanobenzenesulphonamide, 229  

 

 Off  white shiny needle-like crystals (2.77 g, 88%); mp: 168–170 oC;   IR: 

νmax (ATR) 3233, 3039, 2957, 2235, 1594, 1382, 1165 cm-1; 1H NMR (400 

MHz, CDCl3): 7.76 (2H, d, J = 8.42, H-4), 7.68 (2H, d, J = 8.43, H-3) 7.22 

(2H, d, J = 8.62, H-8) 6.91 (2H, d, J = 8.6 Hz, H-7) 6.37 (1H, s, N-H), 1.20 

(9H, s, H-11); 13C NMR (100 MHz, CDCl3): 154.6, 143.1, 133.0, 130.6, 130.4, 

129.3, 126.8, 117.9, 117.0, 35.0, 31.2 ppm.  
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N-(4-tertbutylphenyl)-4-fluorobenzenesulphonamide, 230  

 

White crystalline solid (2.57 g, 93%); mp: 160–162 oC; IR: νmax (ATR) 3246, 

3066, 2962, 2867, 1590, 1458, 1236, 1167 cm-1; 1H NMR (400 MHz, CDCl3): 

7.80 (2H, m, H-3), 7.28 (2H, t, J = 7.5. Hz, H-2) 7.13 (2H, m, H-7) 7.28 (2H, t, 

J = 7.5 Hz, H-6) 7.13 (2H, t, J = 8.5 Hz, H-8), 6.99 (2H, d, J = 8.6 Hz, H-6) 

6.61 (1H, s, N-H), 1.28 (9H, s, H-10); 13C NMR (100 MHz, CDCl3): 149.2, 

133.2, 130.0, 129.9, 126.3, 122.2, 116.4, 116.1, 34.4, 31.3 ppm.  

N-(4-tertbutylphenyl)-4-chlorobenzenesulphonamide, 231 

 

White sandy-like crystals (3.26 g, 91%); mp: 183–185 oC;  IR: νmax (ATR)  

3216, 3085, 2958, 2868, 1573, 1476, 1364, 1166, 753 cm-1; 1H NMR (400 

MHz, CDCl3): 7.71 (2H, d, J = 10.8 Hz, H-3) 7.44 (2H, d, J = 10.9 Hz, H-2) 

7.29 (2H, d, J = 11.1 Hz, H-7),  6.99 (2H, d, J = 11.2 Hz, H-6), 6.49 (1H, s, N-

H) 1.22 (9H, s, H-10) ; 13C NMR (100 MHz, CDCl3): 149.2, 139.5, 137.7, 

133.1, 129.3, 128.7, 126.4, 122.1, 34.7, 31.3 ppm. MS: 346 (M+Na)+, 324 

(M+H)+, 268 (M+H-C4H8)
+. 

N-(4-tertbutylphenyl)-4-bromobenzenesulphonamide, 232  
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White crystals (2.96 g, 81%); mp: 188–191 oC;  IR: νmax (ATR) 3218, 3051, 

2968, 1576, 1327, 1150, 746 cm-1; 1H NMR (400 MHz, CDCl3) 7.53 (4H, q, J 

= 7.7 Hz, H-2, H-3) 7.19 (2H, d, J = 8.3 Hz, H-7) 6.89 (2H, d, J = 8.6 Hz, H-6) 

6.44 (1H, s, N-H) 1.20 (9H, s, H-10) ppm; 13C NMR (100 MHz, CDCl3): 149.2, 

138.3, 133.1, 132.3, 128.8, 128.0, 126.4, 122.1, 34.5, 31.3 ppm. MS: 390 

(M+Na)+, 368 (M+H)+, 312 (M+H-C4H8)
+. 

 

10.2.15. General procedure for preparing Carbamates derived from 
Tertbutyl Aniline  
 
 

To a solution of sulphonamide (2 mmol) in THF (20 mL) at 0 oC was added 

NaH (300 mg, 12.5 mmol, 60% dispersion in mineral oil), followed by the 

MeOCOCl (0.5 mL, 6.5 mmol). The solution was stirred at room temperature 

overnight. The reaction mixture was quenched with water and the organic 

layer was washed with NaHCO3 solution. The organic layer was collected, 

dried over sodium sulphate, filtered and the solvent was removed under 

reduced pressure to give the crude product. The crude sulphonamide was 

purified by recrystallisation from aq. EtOH. 

Methyl(4-tertbutylphenyl)[(4-methylphenyl)sulphonyl] carbamate, 233 

 

White solid (2.76 g, 96%); 171–173 oC;  IR: νmax (ATR) 3047, 2961, 2871, 

1736, 1596, 1436, 1363, 1169 cm-1; 1H NMR (400MHz, CDCl3): 7.85 (2H, d, 

J = 8.3 Hz, H-4), 7.37 (2H, d, J = 6.6 Hz, H-8), 7.29 (2H, d, J = 8.2 Hz, H-3), 

7.18 (2H, d, J = 6.6 Hz, H-7) 3.58 (3H, s, H-13) 2.39 (3H, s, H-1), 1.28 (9H, s, 
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H-11) ppm; 13C NMR (100 MHz, CDCl3): 152.9, 152.4, 144.8, 136.2, 133.2, 

129.5, 129.0, 128.9, 126.3, 53.9, 35.0, 31.3 ppm. MS: 384 (M+Na)+, 362 

(M+H)+, 306 (M+H-C4H8)
+.  

Methyl(4-tertbutylphenyl)[(4-methoxylphenyl)sulphonyl] carbamate, 234 

 
White solid (0.70 g, 93%); mp: 180–182 oC; IR: νmax (ATR)  3032, 2959, 

1734, 1593, 1437, 1363, 1163 cm-1; 1H NMR (400 MHz, CDCl3): 7.90 (2H, d, 

J = 9.0 Hz, H-4 ) 7.35 (2H, d, J = 8.5 Hz, H-8) 7.07 (2H, d, J = 8.5 Hz, H-7) 

6.95 (2H, d, J = 9.0 Hz, H-3), 3.83 (3H, s, H-1), 3.58 (3H, s, H-13), 1.27 (9H, 

s, H-11 ); 13C NMR (100 MHz, CDCl3): 163.8, 153.0, 152.3, 133.2, 131.3, 

130.6, 128.9, 126.3, 114.0, 56.0, 54.0, 34.8, 31.3 ppm MS: 400 (M+Na)+, 378 

(M+H)+. 

Methyl(4-tertbutylphenyl)[(4-acetylphenyl)sulphonyl] carbamate, 235 

 

White solid (0.17 g, 44%); mp: 208–210 oC; IR: νmax (ATR) 3046, 2965, 1739, 

1639, 1371, 1172 cm-1; 1H NMR (400 MHz, CDCl3): 8.09-8.03 (4H, m, H-3, 

H-4, 5), 7.39 (2H, d, J = 8.5 Hz, H-9), 7.06 (2H, d, J = 8.5 Hz, H-8), 3.58 (3H, 

s, H-14),  2.60 (3H, s, H-1), 1.28 (9H, s, H-12); 13C NMR (100 MHz, CDCl3): 

196.7, 152.8, 142.7, 140.8, 132.7, 129.4, 128.9, 128.6, 126.4, 54.2, 34.8, 

31.3, 26.9; MS: 412 (M+Na)+, 390 (M+H)+.  
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Methyl(4-tertbutylphenyl)[(4-cyanophenyl)sulphonyl] carbamate, 236 

 

White crystalline solid (0.15 g, 41%); mp: 190–191 oC; IR: νmax (ATR) 3047, 

2954, 2870, 2236, 1736, 1508, 1435, 1370, 1187 cm-1; 1H NMR (400 MHz, 

CDCl3): 8.09 (2H, d, J = 8.3 Hz, H-4), 7.80 (2H, d, J = 8.3 Hz, H-3),  7.39 (2H, 

d, J = 8.5 Hz, H-8), 7.06 (2H, d, J = 8.4 Hz, H-7),  3.59 (3H, s, H-13), 1.18 

(9H, s, H-11) ppm; 13C NMR (100 MHz, CDCl3): 153.0, 152.7, 143.0, 132.5, 

132.3, 129.7, 129.7, 128.7, 126.5, 117.4, 54.3, 34.8, 31.2 ppm.   

Methyl(4-tertbutylphenyl)[(4-fluorophenyl)sulphonyl] carbamate, 237  

 

White crystalline solid (0.63 g, 93%); mp: 154–156 oC;  IR: νmax (ATR) 3068, 

2965, 1736, 1598, 1436, 1369, 1179 cm-1; 1H NMR (400 MHz, CDCl3): 8.08 

(2H, m, H-3), 7.46 (2H, d, J = 8.5 Hz, H-2), 7.25 (2H, d, J = 8.5 Hz, H-7), 7.14 

(2H, d, J = 8.5 Hz, H-6), 3.68 (3H, s, H-12), 1.39 (9H, s, H-10) ppm; 13C NMR 

(100 MHz, CDCl3): 156.9, 151.6, 135.1, 132.9, 131.9, 128.8, 126.3, 116.2 

ppm. 

Methyl(4-tertbutylphenyl)[(4-chlorophenyl)sulphonyl]carbamate, 238  
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Pale yellow solid (0.30 g, 36%); 174–177 oC; IR: νmax (ATR) 3071, 2960, 

2872, 1736, 1584, 1436, 1372, 1182 cm-1; 1H NMR (400 MHz, CDCl3): 7.91 

(2H, d, J = 8.7 Hz, H-3), 7.47 (2H, d, J = 8.6 Hz, H-2), 7.37 (2H, d, J = 8.5 

Hz, H-7), 7.06 (2H, d,  J = 8.5 Hz, H-6), 3.59 (3H, s, H-12), 1.18 (9H, s, H-10) 

ppm; 13C NMR (100 MHz, CDCl3): 155.6, 148.8, 140.1, 136.0, 130.4, 128.3, 

128.1, 125.8, 124.2, 50.8, 35.8, 31.2 ppm; MS: 404 (M+Na)+, 382 (M+H)+, 

326 (M+H-C4H8)
+. 

Methyl(4-tertbutylphenyl)[(4-bromophenyl)sulphonyl] carbamate, 239 

 

White crystalline solid (0.65 g, 76%); mp: 183–185 oC;  IR: νmax (ATR) 3083, 

2967, 1736, 1572, 1235, 1173, 742 cm-1; 1H NMR (400 MHz, CDCl3): 7.83 

(2H, d, J = 8.6 Hz, H-3); 7.65 (2H, d, J = 8.5 Hz, H-2), 7.37 (2H, d, J = 8.5 

Hz, H-7), 7.05 (2H, d, J = 8.6 Hz, H-6), 3.58 (3H, s, H-12), 1.27 (9H, s, H-10) 

ppm; 13C NMR (100 MHz, CDCl3): 152.7, 138.0, 132.8, 132.2, 130.6, 

129.2,128.8, 126.4, 54.2, 34.8, 31.3 ppm. 

 

10.2.16. General procedure for synthesis of the Rearranged Product 
 

To a solution of the carbamate (0.25 mmol) in THF (1 mL) at -78 oC was 

added LDA (1M, 1 mL). The solution was stirred at -78 oC for 10 minutes and 

then quenched with citric acid aqueous solution (2 mL) and extracted with 

CH2Cl2 (2 x 5 mL), dried over sodium sulphate and filtered to give the 

product. The crude rearranged product was purified by column 

chromatography (petrol/EtOAc) to give the title compound. 
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Methyl-2-[(4-tertbutylphenylsulphamyl]-5-methylbenzoate, 240 

 

White crystalline solid (70 mg, 78%); mp: 140–143 oC; IR: νmax (ATR) 3273, 

3047, 2961, 1734, 1595, 1264, 1156 cm-1; 1H NMR (400 MHz, CDCl3): 7.83 

(1H, s, H-3), 7.63 (1H, d, J = 8.1 Hz, H-6), 7.54 (1H, s, N-H), 7.14 (3H, m, H-

7, H-10), 7.09 (2H, m, H-9), 3.95 (3H, m, H-14), 1.16 (9H, s, H-12) ppm; 13C 

NMR (100 MHz, CDCl3):  168.4, 148.7, 143.4, 134.0, 130.6, 129.6, 128.7, 

128.3, 126.0, 121.7, 53.5, 40.9, 34.6, 33.8 ppm; MS: 384 (M+Na)+, 362 

(M+H)+.  

Methyl-2-[(4-tertbutylphenylsulphamyl]-5-methoxylbenzoate, 241 

 

White crystalline solid (90 mg, 95%); mp: 132–134 oC;  IR: νmax (ATR) 3305, 

3032, 2970, 2873, 1717, 1597, 1497, 1304, 1163, 701 cm-1; 1H NMR (400 

MHz, CDCl3): 7.70 (1H, s, N-H), 7.67 (1H, d, J = 8.8 Hz, H-6), 7.16 (2H, m, 

H-10), 6.98 (2H, d, J = 8.5 Hz, H-9), 6.70 (1H, dd, J = 8.8, 2.7 Hz, H-3), 3.96 

(3H, s, H-1), 3.74 (3H, s, H-14), 1.18 (9H, s, H-12) ppm; 13C NMR (100 MHz, 

CDCl3): 168.0, 162.8, 148.7, 134.2, 133.6, 131.9, 126.0, 122.7, 116.9, 115.2 

ppm. 
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Methyl-2-[(4-tertbutylphenylsulphamyl]-5-fluorobenzoate, 243 

 

Colourless oil (90.5 mg, 98%);  IR: νmax (ATR) 3285, 3079, 2961, 2869, 1722, 

1582, 1437, 1263, 1164, 670 cm-1; 1H NMR (400 MHz, CDCl3): 7.78 (1H, s, 

N-H), 7.76 (1H, dd, J = 8.8, 5.6 Hz, H-2), 7.44 (1H, dd, J = 8.5, 2.6 Hz, H-5), 

7.16 (2H, m, H-9), 7.06 (1H, m, H-6), 6.99 (2H, m, H-8), 4.00 (3H, s, H-13), 

1.19 (9H, s, H-11) ppm; 13C NMR (100 MHz, CDCl3): 169.2, 162.0, 161.5, 

161.3, 161.1, 148.1, 133.5, 129.0, 128.9, 127.9, 122.3, 121.9, 121.0, 117.4 

ppm. 

Methyl-2-[(4-tertbutylphenylsulphamyl]-5-chlorobenzoate, 244 

 
Yellow solid (70 mg, 73%); mp: 106–108 oC;  IR: νmax (ATR) 3273, 3020, 

2963, 2873, 1718, 1561, 1267, 1165, 705, 670 cm-1; 1H NMR (400 MHz, 

CDCl3): 7.75 (1H, s, H-2), 7.73-7.67 (2H, m, N-H, H-5), 7.36 (1H, dd, J = 8.5, 

2.1 Hz, H-6), 7.17 (2H, d, J = 8.6 Hz, H-9), 6.98 (2H, d, J = 8.6 Hz,  H-8), 

3.97 (3H, s, H-13), 1.18 (9H, s, H-11) ppm; 13C NMR (100 MHz, CDCl3): 169. 

3, 149. 2, 139.1, 136.9, 133.5, 131.9, 131.8, 130.7, 129.1, 122.7, 53.8, 34.4, 

31.2 ppm; MS: 404 (M+Na)+, 382 (M+H)+, 306 (M+H-C4H8)
+. 
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Methyl-2-[(4-tertbutylphenylsulphamyl]-5-methylbenzoate, 245  

 

White solid (80.3 mg, 75%); mp: 112–114 oC; IR: νmax (ATR) 3281, 3061, 

2961, 2868, 1718, 1662, 1436, 1288, 1167, 734 cm-1; 1H NMR (400 MHz, 

CDCl3): 7.96 (1H, s, H-2), 7.86 (1H, s, N-H), 7.66 (1H, m, H-5), 7.27 (2H, d, J 

= 8.5 Hz, H-9), 7.06 (2H, d, J = 8.5 Hz, H-8), 4.06 (3H, s, H-13), 1.28 (9H, s, 

H-12)  ppm; 13C NMR (100 MHz, CDCl3): 167.0, 149.2, 137.5, 134.4, 133.5, 

132.0, 131.9, 127.2, 126.2, 122.8 ppm; MS: 464 (M+K)+, 448 (M+Na)+, 426 

(MH+), 370 (M+H-C4H8)
+. 
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