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Abstract 

Mohammad Amir 

Semantically-enriched and semi-Autonomous collaboration framework for the 

Web of Things 

Design, implementation and evaluation of a multi-party collaboration 

framework with semantic annotation and representation of sensors in the 

Web of Things and a case study on disaster management. 
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This thesis proposes a collaboration framework for the Web of Things based 

on the concepts of Service-oriented Architecture and integrated with 

semantic web technologies to offer new possibilities in terms of efficient 

asset management during operations requiring multi-actor collaboration. The 

motivation for the project comes from the rise in disasters where effective 

cross-organisation collaboration can increase the efficiency of critical 

information dissemination. Organisational boundaries of participants as well 

as their IT capability and trust issues hinders the deployment of a multi-party 

collaboration framework, thereby preventing timely dissemination of critical 

data. In order to tackle some of these issues, this thesis proposes a new 

collaboration framework consisting of a resource-based data model, 

resource-oriented access control mechanism and semantic technologies 

utilising the Semantic Sensor Network Ontology that can be used 

simultaneously by multiple actors without impacting each other’s networks 

and thus increase the efficiency of disaster management and relief 

operations. The generic design of the framework enables future extensions, 

thus enabling its exploitation across many application domains. The 

performance of the framework is evaluated in two areas: the capability of the 

access control mechanism to scale with increasing number of devices, and 

the capability of the semantic annotation process to increase in efficiency as 
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more information is provided. The results demonstrate that the proposed 

framework is fit for purpose.
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Chapter 1: Introduction 

1.1 Overview 

This thesis investigates the feasibility of and proposes an integration of 

semantic technologies with the Web of Things (WoT) based on the concept 

and principles of the Service-Oriented Architecture (SoA) to realise a 

distributed and semi-autonomous collaboration framework. This framework 

will be tailored towards applications requiring multi-department collaboration 

(e.g. disaster management (DM) and relief scenarios, next-generation 

interactive environments (cities, airports, shopping malls, etc.)) where 

effective, timely and accountable asset management and information 

dissemination is a key requirement to the success of the mission. These 

situations may warrant immediate collaboration amongst heterogeneous 

actors, for example, DM scenarios which may arise suddenly and without 

notice from natural phenomena like earthquakes, floods and tornadoes; as 

well as from man-made situations like armed skirmishes, massacres and 

even large-scale wars. To account for the dynamic landscape of these 

events and the likelihood of massive asset deployment for administration and 

management purposes, the framework needs to be capable of managing and 

delegating information flow amongst the various actors. At the same time, 

the framework needs to retain the flexibility to provide the relevant data and 

information to an array of actors with varying interests, roles and 

responsibilities (e.g., police department, fire department, disease outbreak 

management, etc.). Due to the heterogeneity of the possible application 

domains, the framework will need to be generic in design but extensible in 

nature so that it can be tailored towards a particular application by 

augmenting additional functionalities, thus the modular approach adopted by 
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leveraging the principles of SoA. The framework from hereon in will be 

abbreviated to “SAW” which stands for “Semantically-enriched & semi-

Autonomous collaboration framework for the WoT”. 

1.2 Problem Statement & Motivation 

Today, web services are becoming prominent and web mashups are 

becoming the norm. It is now common for major corporations to offer public 

APIs (e.g. Facebook, Twitter, Google, Live, Yahoo, Amazon, EBay, Dropbox, 

GitHub, etc.) and expose their web services so that other web applications 

can use their data for building mashups [1]. Mashups can be defined as a 

compounded representation of a set of information formed by extracting and 

extrapolating related and linked data from other sources on the web. 

Examples of these mashups are today seen in offerings like GUI Widgets on 

Internet-of-Things (IoT) providers (e.g. Xively (formerly Cosm)), Yahoo 

Pipes, Google Maps and Shopping, and many others alike such as the online 

project collaboration systems (e.g. Redbooth). Modern webapps are starting 

to request an increasing amount of personal user data and “permissions” 

(see Figure 1-1) from other prominent service and identity providers that the 

user may be affiliated with. The webapps, in return for access to this 

enriched data, are able to provide a seamless and enhanced end-user 

experience. This leads to the enablement of a wide-range of services ranging 

from simple file-sharing with friends to a more complex and controlled 

process of enabling contacts to participate and collaborate in a project (e.g. 

Basecamp, Redbooth). All of this can now be achieved easily and readily, 

without having to download any software or register an additional account. 

Essentially, the advent of webapps is highlighting the growing value of open 
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data, the benefits that can be reaped from cross-organisation collaboration 

and data sharing, and the enhanced end-user experience that can be 

delivered due to the enriching of raw data when it is processed to derive 

meaningful and valuable information [2]. SAW envisions a similar revolution 

for an all-purpose collaboration framework for the WoT in the hopes that it 

becomes an enabler of controlled, audited, reliable and effective means of 

multi-department and cross-organisation information sharing. 

In the current digital age, ubiquitous connectivity is fast becoming the norm 

and social media is integrated with every aspect of our daily lives. As this 

phenomenon of ubiquitous networking continues to evolve rapidly, an 

increasing number of people are becoming internet, technology and social-

aware and IP-connected devices continue to surge in both demand and 

supply. In this world where microblogging thrives and users often use social 

media platforms as their source of information and updates surrounding 

issues of interest, including tragic situations like disasters, it is becoming 

imperative that the next generation of information exchange and 

collaboration frameworks adopt the principle of “open-data” and therefore 

breed an ecosystem where dissemination of data leads to empowerment and 

collaboration opportunities. This will help tackle some of the issues related to 

false speculation and untrue rumours that can circulate on the social 

networks within minutes of an incidence and cause panic, distress and 

unwarranted unrest or complications in the subsequent relief operations. 

Take, for example, a scenario involving a major flood in London, UK. 

Management of this type of disaster will not only involve the participation of 

and coordination between different emergency departments like the Police, 
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Fire Brigade Service, Ambulance Service, HM Coastguard, RAF Search and 

Rescue, etc. and thus the resultant collaboration amongst these 

heterogeneous responders but equally important will be the task of 

disseminating (timely and effectively) critical information to the general 

public, of which include affected people, people likely to be affected, relative 

and friends of those in distress, the general public and of course the media. 

Thus the problem here is not only of timely and controlled data dissemination 

and collaboration amongst the “active” actors/responders tackling to 

manage, contain and resolve the disaster(s) but there is also a problem of 

distributing useful information and updates to “passive” parties so as to 

inform the general masses with the correct and most up-to-date status 

information and the relevant procedures to undertake. There is also support 

for this claim in current literature, for example, in [1]. It is believed that in this 

setting, SAW can deliver the next-generation collaboration framework that 

can tie and link the somewhat closed and restricted information hubs like 

governmental bodies not only with other businesses who might need to make 

use of certain data, but also regular citizens who might experience a need to 

consume critical information in times of distress. 

 

Figure 1-1: Conceptboard, a Google app, requests "permissions" before it can be used fully 
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While SAW has been designed as a generic and all-purpose collaboration 

framework, the prototype has been tailored towards a particular application 

domain to give the framework focus, substance and enable critical evaluation 

of the inner and deeper workings. We, therefore, chose to focus on the DM 

application domain not only because of its growing importance in the wake of 

increasing natural disasters, but also because of its widespread affects, the 

plurality of the involved actors and the heterogeneity of these very actors. 

This all makes for a very testing and volatile environment and a very effective 

means of testing and evaluating a mission-critical collaboration framework for 

the WoT. It is anticipated that a fully developed instance of the SAW 

framework will utilise cloud computing to dynamically leverage the required 

computing resources as per the data processing needs of the framework. 

However, due to shortness of time and limitation of scope, the prototype 

developed in this thesis is based on a simpler server-client model where the 

SAW framework exists on a normal PC. The utilisation of cloud computing to 

host the SAW framework is marked as an item for future work. 

1.3 Contributed Work & Achievements 

In the current literature, the existing and proposed information exchange and 

collaboration models suffer from one of the following deficits (these will be 

discussed in their respective place later on): 

 Misaligned with or having no integration with social media; 

 Not considering mass data gathering and analysis (i.e. not being 

designed for the WoT); 

 Inappropriate/unsuitable data sharing mechanisms (i.e. not 

considering data sharing requirements beyond the scope of the 
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immediate framework, and thus, lack of or no support for inter-

department or cross-vendor collaboration). 

From the literature studied so far, the analysis for which is presented in the 

next section, it is concluded that there is a dire need for an all-around 

collaboration framework that provides a generic but extensible resource-

oriented package that can capture, codify, store, process, and share not just 

raw data but processed information and derived knowledge. This is made 

possible with the power of semantics to deliver a platform-independent 

information exchange and collaboration framework that can be tailored for 

any particular domain where sensor data needs to be collected, processed 

and shared in a unified and standardised manner. The semantic annotation 

of all sensing devices and data can even enable semi-autonomacity in the 

system, thereby removing the need for manual processing and annotation of 

resources. However, this does not imply, by any means, that SAW is an all-

inclusive framework, which is not the purpose of this undertaking. SAW is 

designed on the principle that “knowledge management is a continual 

process of incremental improvement and evolution – not a one-time effort” 

[2]. Therefore, SAW exposes an extensible resource-oriented architecture 

that can be easily augmented with additional functionality as and when the 

need arises. 

SAW primarily contributes 3 main systems that help to produce an overall 

distributed system for the WoT domain: 

1. Abstract and resource-based asset model: Enables the provisioning of 

multiple layers of inspection to represent assets at different levels of 

granularity with a clear and logical data hierarchy and generic but 
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extensible data templates. In current literature, this type of generic 

and extensible asset model which provides a low entry-barrier for 

potential users of the framework cannot be found. Existing solutions 

are either too simple, lacking semantic capability altogether, or are too 

complex, forcing users to adhere to strict schemas and therefore 

hindering acceptance; 

2. Resource-based access control mechanism: An enhanced Token-

Based Access Control scheme that allows distributed access to 

resources of any granularity and also scaling efficiently for large 

number of resources without projecting a noticeable impact on 

network performance. Existing access control mechanisms are largely 

role-based and therefore user-centric. However, to scale efficiently in 

a WoT application, resource-centric access control mechanisms are 

needed. SAW introduces an enhanced resource-centric access 

control scheme which plays nicely with the resource-based asset 

model while being capable of operating over resources of any 

granularity. 

3. Service-oriented and semantic interaction model: A set of distributed 

resource annotation and collaboration mechanisms which enable 

inter-department and cross-vendor collaboration in a standard and 

unified manner, without forcing users to adhere to strict semantic 

schemas which may otherwise impact usability of the system. Existing 

literature is ripe with semantic efforts to define new domain-specific 

ontologies and interactions. However, significantly less focus has 

been placed on the actual semantic profiling and annotation of 
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resources which are to be stored in the network, and even less in 

reaching out to other systems and frameworks and profiling these 

foreign assets. SAW fills this void by enabling the capability to semi-

autonomously profile and annotate resources from external networks 

such as Xively so that resources which are already published on the 

web but lack semantics can be used effectively. 

1.4 Thesis Structure 

The order of this thesis is as follows: This section will introduce the 

framework by providing a brief overview and also discuss related literature 

and motivation for the project. Section 2 discusses the various topics relating 

to collaboration models and mentions that until now a suitable solution does 

not exist which deals efficiently with the heterogeneity of involved actors, 

thus the motivation for SAW. The issue of semantic-level interoperability is 

also discussed and it is highlighted how integration of semantic technologies 

within the framework can help and aid in solving the problem of collaboration 

amongst a diverse array of interested parties. The current semantic efforts 

are highlighted and an analysis is presented on why the current efforts are 

not suitable for realising a semi-autonomous collaboration framework. 

Section 3 details the design of the SAW framework and lists all the different 

components that make up SAW. Section 4 then talks about the prototype 

implementation and lists the tools and techniques that will be used to not 

only implement but also test the reliability and performance of the framework. 

Section 5 then leads on from the framework architecture and discusses 

simulation models and results obtained from vigorous testing. A critical 

analysis of the results reveals that SAW is fit for the purpose it was designed 
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for. Section 6 discusses the framework validation procedure, and then 

section 7 mentions a real-life use case for SAW. Finally, section 8 concludes 

this thesis by delivering a critical evaluation of SAW and possible areas 

where improvements can be made. 

1.5 Published Works 

The following works have been published by taking material from this thesis: 

 M. Amir, Y. F. Hu, P. Pillai and Y. Cheng, “Interaction Models for 

Profiling Assets in an Extensible and Semantic WoT Framework,” in 

Wireless Communication Systems (ISWCS 2013), Ilmeanu, Germany, 

2013. 

 M. Amir, P. Pillai and Y. Hu, “Cascading Permissions Policy Model for 

Token-Based Access Control in the Web of Things,” in Future Internet 

of Things and Cloud (FiCloud) 2014, Barcelona, 2014. 

 M. Amir, P. Pillai and Y. Hu, “A Generic & Extensible Asset Model for 

a Semantic Collaboration Framework,” International Journal of 

Advanced Computer Technology (IJACT), vol. 3, no. 1, pp. 88-96, 

2014. 

 M. Amir, P. Pillai and Y. F. Hu, "Effective Knowledge Management 

using Tag-Based Semantic Annotation for Web of Things Devices," in 

European Conference on Knowledge Management (ECKM), 

Santarém, Portugal, 2014.  

The following works have been submitted and are pending notification of 

acceptance: 

 Aggregated Sensor Payload Submission Model for Token-Based 

Access Control in the Web of Things – Fi-Cloud 2015 Conference. 
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The following works are being prepared for submission to upcoming journals 

and conferences: 

 Tag-Based Semantic Annotation Mechanism: Effects of Varying 

Number of Tags and Concepts to be Mapped 
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Chapter 2: Problem Statement & Literature Review 

2.1 Collaboration Frameworks 

2.1.1 Definition of Collaboration Frameworks 

In the WoT, there is a strong emphasis on both the amount of data being 

generated and the ability to understand and derive knowledge from this data, 

readily, effectively and accurately. Furthermore, for the WoT to truly flourish, 

the data, whether its raw data coming from physical assets or derived 

knowledge produced through some process, needs to be exposed so that 

collaboration can take place. The act of collaboration with and by other 

actors improves the outreach and capabilities of the involved systems 

through enrichment of existing information and generation of further 

knowledge. The collection of technologies and methodologies pertaining to 

the enablement of the aforementioned system is termed a “collaboration 

framework” in this study. The purpose of a collaboration framework in the 

context of the WoT and as defined by this study is to: (1) Capture and 

represent data, (2) Generate knowledge, and (3) Share and exchange 

information and knowledge with external human and machine agents. Thus, 

a collaboration framework can be envisioned as having several components 

as illustrated in Figure 2-1. 

 

Figure 2-1: Top-level concept illustration of a collaboration framework 

Data capture and representation is the first component of the framework. 

This is where acquisition of raw data and its modelling and representation 

takes place. The data will usually be modelled according to a proprietary 
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schema. The next step is to apply semantic contexts and business rules on 

the data to convert it into useful information and actionable knowledge. 

Finally, the processed knowledge is ready to be exposed and collaborated 

upon with external agents, either through an Application Programming 

Interface (API), or via proprietary adapters. This is illustrated further in Figure 

2-2. 

 

Figure 2-2: Concept architecture of a collaboration framework 

2.1.1.1 Data capture, representation and modelling 

Sensor data is primarily captured from local sensor networks, but it can also 

be fetched from repositories that expose their data through an API (e.g. 

Xively). The two components identified here are: (1) Asset model and (2) 

Identity & access management. 

The asset model handles the modelling and representation of the sensing 

devices and data in a platform-specific manner. In other words, this means 

that the data pertaining to the sensing devices and their readings is stored 

according to a proprietary schema. The purpose of the asset model is to 

make this data available to the other components of the collaboration 

framework for further processing and enrichment. Thus, the asset model 

becomes a building block of a wider system known as Knowledge 

Management (KM), which will be discussed further in the oncoming sections. 
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The identity and access management component deals with the 

authentication and authorization of actors who want to access and interact 

with the data stored in the asset model. These actors can be both internal 

and external. Internal actors are those that reside within the organisational 

boundaries where the system is being operated (e.g. network administrators, 

instance operators). External actors are all other agents who want to interact 

with the system, for example, hobbyists, participating networks, autonomous 

agents, data mining applications and the general public at large. This idea is 

further illustrated in Figure 2-3. In this illustration, users of the system within 

organisation 1 appear as external users to the collaboration framework setup 

in organisation 2, and vice versa. Online repositories like Xively and DBpedia 

appear as external users to both systems. Collaboration takes place when 

the system is exposed to external entities such as other participating 

networks, as shown here. In this case, it is important to differentiate between 

internal and external users because external users are temporal whereas the 

internal users are more permanent. This then affects the way the system 

authorizes access for temporal external users. Further analysis of this 

problem will be provided in the section pertaining to identity and access 

management. 

 

Figure 2-3: Illustration of internal and external network and users 
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Data may be stored in any corresponding storage medium (e.g. RDBMS 

(Relational Database Management System), document-based NoSQL 

database systems, flat-file storage systems, etc.). The stored data is codified 

according to a schema which is used by the internal network. The ability and 

ease of sharing and using the data in contexts of collaboration depends on 

how this data is represented when it is retrieved from storage. 

2.1.1.2 Data processing and knowledge generation 

Once the data has been captured from the local sensor network or imported 

from other repositories, this data needs to be contextualised so that it can 

represent some meaningful information. The process of turning raw data into 

useful information can take place through a variety of methods. As an 

example, business rules can be applied to pieces of data to generate 

meaningful information. For example, a numeric data value taken from a 

sensor can have semantic contexts applied to it so that it turns into useful 

information, like a radiation level or pressure value. The reading can then be 

given further meaning by comparing it to pre-defined thresholds (e.g. the 

information “radiation level is high” is generated if radiation reading is above 

a certain threshold). After high-level information has been generated, it might 

be annotated in a specific way to provide interoperability with other systems, 

and to enable further processing. This whole field of capturing data and then 

generating, annotating and making available high-level information is known 

as KM [3]. KM will be further expounded upon in the section pertaining to this 

issue. 
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2.1.1.3 Collaboration 

Once high-level information has been generated, it can be exposed to 

participating networks and external actors. This act of exposing data and 

information leads to the enrichment of the knowledgebase for involved 

entities and therefore improves the capability to compose mashups and 

produce more meaningful reports. The process of collaboration can be 

enabled by developing an API and/or legacy adapters. The API can expose 

information that is represented in either a proprietary or an interoperable 

fashion. The legacy or platform-specific adapters can be used to collaborate 

with systems which use a proprietary schema and are therefore not 

interoperable. 

2.1.2 Scope of Study 

This study aims to develop a collaboration framework which is generic in 

nature so that it can support any type of sensor, and therefore any type of 

WoT application. However, the prototype developed, discussed and 

analysed in this study is catered towards one particular application domain to 

provide focus and effective extraction of data management needs. The study 

has chosen the application domain of DM as a potential scenario for 

evaluating the performance of the developed prototype. DM has been 

chosen both because of its growing impact in the world and the extreme data 

capture, modelling and collaboration needs inherent in this application. This 

does not mean, however, that the developed prototype is limited to this one 

application domain. As is illustrated in Figure 2-4, the application domain for 

the WoT is diverse, ranging from applications for smart environments to 

industrial control to managing logistics. The underlying functionalities within 
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each of these applications are similar. What differs is the actual data 

management needs in each scenario, but the principle of modelling data and 

exposing it for wider consummation is present throughout the entire 

application domain. Since DM touches a whole variety of applications 

ranging from logistics and tracking through to control and automation, it is an 

ideal scenario to evaluate the feasibility of a collaboration framework for the 

WoT. 

 

Figure 2-4: Illustration of potential application domain for the WoT 

2.1.3 Challenges in Disaster Management 

There are many publications available today that highlight the imminent 

danger from natural disasters due to their increasing frequency and level of 

damage. This may be due to global climate change, growing population, 

risky and hazardous energy extraction or simply as a result of more people 

populating areas of risk [4] [5]. Regardless of the actual means, these 

disasters cause mass catastrophes that bring with them a large number of 

casualties, loss of wealth and livelihood, and costly and complex search and 

rescue efforts. 

The UN/ISDR defines a disaster as “A serious disruption of the functioning of 

a community or a society involving widespread human, material, economic or 

environmental losses and impacts, which exceeds the ability of the affected 

community or society to cope using its own resources.” [6]. Whether these 

disasters are caused naturally or by manual conflicts and intervention, what 
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is important is the speedy resolution and effective management of the search 

and rescue and asset management process during the relief operations. 

There is ample research material available for disaster prevention and 

emergency planning, for example, [7] [8] [9] [10] [11]. The problems in this 

area are hazard assessment and consequently risk reduction where hazard 

assessment entails identification, assessment and monitoring of hazards. 

There has also been considerable research in regards to disaster inventory 

management and goods distribution over the past decade and to this day, for 

example, [12] [13] [14]. In this regard, the outlining problem is the effective 

tracking of assets alongside logistical planning while storage is a secondary 

concern. Aside from the problems outlined above, there is the major problem 

of integration and collaboration simply due to the myriad of interested and 

involved parties (e.g., national and international aid agencies, International 

and National Government Organisations (INGOs/NGOs), national 

emergency management and government personnel, volunteers, local 

businesses, etc.) each with their own organisational boundaries, fiscal 

constraints, working practices, technological capabilities and accessible 

areas [15] [16]. The differences in cultural and organisational policies as well 

as conflicting priorities and variations in mission goals and operating 

constraints further complicates the coordination and collaboration process; 

the result of which can be lost opportunities, ineffective relief operations, and 

loss of life and livelihood [17]. Thus the issue of collaboration and timely data 

dissemination turns into a complex procedure of “who has what”, “where is 

the information” and “who can we share it with”. This issue arises due to the 

fact that no single operational actor enjoys the full authoritative role; meaning 
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that there is usually no lead actor who has the authority as well as the 

capability and resources to monitor and coordinate the activities of the 

involved and/or affected parties. Thus, a top-down approach of appointing a 

lead actor is ineffective in these situations due to the plurality of actors 

involved/affected and differences in each actor’s operating procedures as 

well as trust relationships with other INGOs, NGOs and governmental bodies 

[18]. On the contrary, a decentralised network might provide more glue to the 

myriad of actors as suggested by available evidence from academic 

research, for example, [17] [19]. Although the aforementioned research 

suggests a loosely-coupled social network, the same concepts can be 

applied to an online electronic network, a “network of networks” which would 

allow potential actors access to data of interest so long as they are 

authorised to consume the given data. 

From the analysis above, the characteristics of a DM application can be 

summarised as follows: 

 Non-linear demand in a largely unpredictable environment: In DM, 

sudden bursts in data processing requirements can arise due to a surge 

in acquired sensing data, or if a certain deadline needs to be met, or if 

another disaster occurs at the scene. This needs to account for peaks & 

troughs in demand can be attributed to most WoT application. 

 Array of actors: DM and relief are usually carried out by a variety of 

governmental agencies (e.g. coast guard, ambulance and police services, 

fire services, etc.), NGOs and INGOs. This array of actors, by the very 

nature of our species, has inherent trust issues. Furthermore, varying 

mission goals, working practices and cultural differences can paint further 



 

 19   

chaos and confusion in the scene and lead to a point where timely and 

effective collaboration becomes nearly impossible. 

2.2 Data Classification & Representation 

2.2.1 Data classification 

In this study, data is represented into three forms [20] to identify it in terms of 

its granularity and usefulness in contexts of collaboration: 

1. Data – This is raw data that is only understood by the internal 

network, and is useless in contexts of collaboration because external 

agents do not understand what it represents. An example of this type 

of data is a sensor reading, “30”. The internal network can understand 

this data because it conforms to some proprietary schema which is 

known and understood by the network. However this data may not be 

understood by external networks and agents if they don’t understand 

the proprietary schema used to represent the data. 

2. Information – When a semantic concept is applied to data, it turns into 

useful and machine-process-able information. An example of this is 

when the semantic context of “temperature” is applied to a raw sensor 

reading of “30”, producing the information “temperature is 30”. 

Information can be understood by other networks as long as they 

understand the semantic concepts used to annotate the data. 

3. Knowledge – By composing pieces of information and applying 

intelligent reasoning on it, high-level and rich business knowledge can 

be derived. An example of this is: “very  cold  in  flooded areas  of 

Sunbury”,  derived  from  the  information “-2 degrees Celsius” , 

“location is Sunbury” and “water  level:  overflowing”. For the most 
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part, knowledge can be considered a composition of various pieces of 

information that are then combined using some pre-defined rules and 

abstractions. As humans, this is what we are really interested in at the 

end of the day. 

Figure 2-5 shows an illustration of this data classification. In the first 

instance, the raw data is present. In order for this data to represent 

meaningful information, it needs to be represented in a semantic context 

which adds meaning to the data. Further processing and composition can 

then turn many pieces of information into high-level knowledge which can be 

used in business-centric applications such as production of reports and 

delivering of informative status alerts. 

 

Figure 2-5: Illustration of data classification 

Data may be stored in a semantic or non-semantic fashion. Traditional 

approaches use non-semantic storage and represent data in proprietary 

schemas. These types of schemas are a hindrance to cross-vendor 

collaboration because they do not use a standard language to represent the 

data and thus cannot be processed automatically by machines. However, 

even if the data is stored in a non-semantic fashion, it can still be 

represented in a semantic fashion to facilitate machine processing 

collaboration at a later time. 
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2.2.2 Sources and methods of data acquisition 

It has been mentioned previously that sensor data is primarily captured from 

deployed sensor networks, but it can also be fetched from repositories that 

expose their data through an API (e.g. Xively). Most of the time, the fetched 

data will be non-semantic [21]. This will require an understanding of the 

source schema to decode the definition of the sensing devices and their 

associated data. However, semantic data (also known as “Structured Data” 

and “Linked Data”) is starting to appear on the wider web, and the most 

prominent repository in this regard is DBpedia [22]. There has also been a 

significant rise in governments exposing crucial environmental data in a 

semantic or semi-semantic fashion. The most recent example of this is a 

case where the UK Environmental Agency released structured flood data for 

the #Floodhack event organised in London on the 14th of February 2014 [23]. 

A great wealth of the data offered is often packaged in the form of an 

archive, and is not therefore a live representation of events occurring on the 

ground in real-time, but rather a historical account of events that have 

transpired. 

Acquisition of data depends on the way data is published in a repository. For 

data that is published in a semantic fashion, semantic query languages 

(discussed further on below) can be used to fetch and interact with the data. 

This provides a universal approach to interacting with semantic data without 

the need to build special APIs and adapters. Non-semantic data, on the other 

hand, requires development of special adapters that can interface with the 

target repository. The lack of semantic interoperability in this case means 
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that non-semantic data is harder to expose and make use of, and therefore a 

hindrance to cross-vendor collaboration. 

2.2.3 Representation of data and devices through an asset model 

The asset model describes the relationship between the different levels of 

granularity of sensing devices. It also defines structures for storing and 

representing the sensor data. Essentially, it forms the foundations for the 

capture, storage and representation of sensing devices and their data, at a 

basic level and in a non-semantic way. The asset model concept is 

something that is largely introduced by this study, although fragments of it 

exist in current literature. 

The asset model provides a means of modelling and representing data at a 

primitive level. At this stage, there are no formal semantics involved in the 

definition of the sensing devices and data. The provision of a non-semantic 

asset model may seem a frivolous task at first since the focus is on 

representing the data in a semantic fashion. However, this study deems it 

essential to provide an asset model in a collaboration framework for two 

reasons: 

1. To provide backwards compatibility for non-semantic systems: By 

virtue of an asset model and an API, systems that are not 

semantically aligned can still access raw and unprocessed sensing 

device data from the collaboration framework. 

2. To allow inspection of source data [24] which constitute a higher level 

semantic knowledge: It might be required to drill down to the different 

sources of data that are resulting in the composition of a piece of 

knowledge for debugging or performance analysis purposes. 
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2.2.4 Limitations of a proprietary schema-driven asset model 

In order to make use of data represented in a proprietary schema-driven 

asset model, participating agents need to have an understanding of the 

proprietary schema so that the data can be captured and transformed into a 

suitable format. There is scope for further complication in this process since 

the proprietary schema can incur changes in meaning and/or structure, 

forcing participating agents to update their understanding of the schema to 

the new format. In Figure 2-6 it can be seen that each proprietary schema 

requires a separate mapping before the data represented through it can be 

understood by the participating networks and services. 

 

Figure 2-6: Illustration showing separate mappings needed to work with each proprietary schema 

Solving this problem requires the development of a KM system that can 

transform data into knowledge and effectively manage this derived 

knowledge to facilitate collaboration [3]. 

2.3 Knowledge Management 

2.3.1 Overview of knowledge management 

KM is the functionality to capture, codify, store, process and share raw data, 

information and knowledge [3]. Essentially it is a study related to the 

generation of high-level knowledge from processed data and information. In 
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regards to DM, current literature uses a variety of terms to define frameworks 

utilised for the task of KM, which is to cater for standardised information 

retrieval/derivation and information/knowledge sharing/exchange: 

 Information/KM Systems (IMS/KMS) [3]: KM is defined in [3] as an 

activity by which an organisation captures, processes and applies 

knowledge effectively. Such systems can be represented as 

“document management systems, semantic networks, object oriented 

and relational databases, decision support systems (DSS), expert 

systems and simulation tools”. Examples of literature that explicitly 

identify themselves as a KMS-based solution include [25], [26] and 

[27]. Further analysis on these studies is presented in the literature 

review section. 

 Emergency Information Systems (EIS) [28]: Defined as a system that 

is used by organisations to react and respond to situations of crisis 

and disaster, these systems are designed to: (1) Support 

communication during crisis response; (2) Enable data gathering and 

analysis; and (3) Support the decision-making process. Examples of 

EIS include IMASH [29], PeopleFinder [30] and Google’s Person 

Finder application [31]. 

 Terms such as Crisis Response (CR), Crisis Response Information 

Systems (CRIS), Emergency Response Systems (ERS) and Web-

based Emergency Management Information System (WEMIS) are 

also used in some literature. 

Regardless of the actual terminology used by existing literature, the intent of 

these systems is to manage information/knowledge, be it related to the 



 

 25   

actual collection, retrieval, processing and analysis of data or the consequent 

knowledge-derivation and sharing of that data to enable higher-level 

functions and business processes. 

2.3.2 Schemas & mechanisms for annotating devices and data 

A schema is a means of representing the definition of sensing devices and 

their corresponding properties, attributes and data. To enable cross-vendor 

collaboration, the deployed schemas need to be interoperable so that each 

participating network can understand and relate to data and information 

being exposed in the other systems. The main challenges to overcome here 

are: (1) Heterogeneity in the data modelling architecture and hierarchy, and 

(2) Heterogeneity in terminology used to store data [32]. Heterogeneity in the 

modelling of data refers to issues such as differences in groupings or 

granularity of elements. For example, in one schema, the sensor attribute 

“range” might be stored in the group “root -> sensor_properties”. In another 

schema, the same attribute may be stored in the group “root -> device -> 

properties”. Heterogeneity in terminology used refers to the issue of 

synonyms, antonyms, and the like. For example, the “battery level” attribute 

might be stored in different schemas in elements with varying terminology, 

like “battery_level”, “fuel_capacity”, etc. The issue of interoperability in the 

context of a schema for the WoT can be classified in two categories: 

1. Syntactical interoperability. 

2. Semantic interoperability. 

Syntactic-level interoperability is necessary to model and represent data in a 

standardised way across multiple systems. It can be achieved through the 

use of standardised encodings and by using an interoperable mark-up format 
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such as XML. This facilitates interoperability in terms of terminology and 

mark-up. However, the actual interpreted meaning still remains an issue and 

can change from system to system. Maintaining a consistent meaning of 

definitions and data across multiple systems and platforms requires 

semantic-level interoperability. Semantic-level interoperability is achieved 

through utilisation of semantic technologies and ontologies (explained below 

in section 2.3.3). 

2.3.2.1 Schemas and mechanisms that achieve syntactical 
interoperability 

Descriptions of sensing devices and data need to be encoded in a certain 

fashion before they can be represented in a presentable fashion. Open 

Geospatial Consortium’s (OGC) Sensor Web Enablement (SWE) [33] suite 

of standards is perhaps the most commonly used set of schemas to achieve 

a unified and standardised encoding and representation of devices and data. 

The suite consists of various standards, but the following are the most 

prominent within the suite: 

 Observations & Measurements (O&M), which provides annotation 

mechanisms and encodings in XML for recording sensor observations 

and measurements. 

 Sensor Model Language (SensorML), which enables modelling of 

sensor devices and their processing systems. It outlines mechanisms 

for discovering sensors, locating observations (with the capability to 

process low-level observations), and listing task-able properties. 

 Sensor Observation Service (SOS), which carries provisions for web 

services to interact with sensing devices. 
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These standards provide XML encodings and mechanisms to model devices, 

their observation principles and their measurement processes, and provide a 

standardised representation of sensing devices and their data [34]. The 

schemas themselves are very comprehensive, albeit complex, and prove 

successful in achieving syntactic-level interoperability through deployment. 

However, semantic-level interoperability still remains an issue, and this is the 

focus of this study. 

2.3.3 Overview of semantic web technologies and languages 

Recent systems are increasingly relying on semantics to achieve a unified 

representation of data and enable collaboration. The underlying semantic 

technology and language is called Resource Description Framework (RDF). 

Other technologies then build-upon RDF to achieve a certain goal. Examples 

of such technologies and languages are Ontology Web Language (OWL), 

which is used to create ontologies, and SPARQL, the query language for 

RDF. 

RDF is used to write semantic statements as a set of “triples”. Triples consist 

of a subject, an object, and a predicate relating the subject to the object [35]. 

An example of this is: “Sensor1 measures Temperature”, where “Sensor1” is 

the subject, “Temperature” is the object, and “measures” is the predicate 

linking Sensor1 to Temperature (Figure 2-7). 

 

Figure 2-7: Illustration of RDF SPO (Subject-Property-Object) structure 

Subjects can have many predicates, thereby linking them to many objects, 

which in turn can have predicates linking them to other objects. This concept 

is illustrated in Figure 2-8 where the “Sensor1” subject has an additional 
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property linking it to another object. Also, the object “Temperature” now has 

a property of its own linking it to another object. RDF datasets such as this 

are often called Graphs. 

 

Figure 2-8: Illustration of an extended RDF SPO (Subject-Property-Object) structure, showing how 

objects can become subjects and vice versa 

If published properly, this can contribute to the Linked Open Data (LOD) 

Cloud, which can be navigated and browsed like webpages [36]. One main 

benefit of this is that while previously proprietary data was stored and 

represented in rigid and vendor-specific schemas, using this language it can 

now be presented on the web in a standardised manner. Since this linked 

data is written in RDF, it can be processed by machine agents. This allows 

for its automatic consumption by machines, and enables autonomous 

Machine-to-Machine (M2M) communication and interaction. 

Once the RDF annotations have been stored in some form of database 

backend (usually referred to as a “triple-store”), it is equally important to be 

able to query the triple-store in a semantic fashion. SPARQL meets this 

requirement by providing an SQL (Structured Query Language)-like syntax 

which can be used to compose semantic queries and traverse RDF triple-

stores in a formal and publicly standardized format [37]. Again, by 

standardising the query language for RDF, it becomes possible for machines 

to fetch and publish semantic fashion in a (semi-)autonomous manner. 
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A SPARQL endpoint accepts semantic queries and returns results via HTTP. 

The endpoints can be: 

 Generic: These will return results from any published RDF data on the 

web. 

 Specific: These will only return results from particular online/offline 

RDF datasets. 

The actual SPARQL query consists of the following [38]: 

 Prefix declarations: These are useful to abbreviate URIs. For 

example, PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-

ns#>. Here, “rdf:” is the abbreviated form of the full URI 

“http://www.w3.org/1999/02/22-rdf-syntax-ns#”. Since URIs are used 

in the actual query, using the abbreviated prefix is a lot easier than 

using the full URI. 

 Graph/dataset definitions: A SPARQL query is run against a set of 

RDF datasets. 

 Result clause: This is used to define what action to perform in the 

query and/or what results to return. 

 Query Pattern: This is used to define the query by restricting, refining 

and filtering triples from the desired graph. 

 Optional Query Modifiers: These perform actions on the returned 

results such as ordering and rearrangement. 

Some of these concepts are illustrated in Figure 2-9. This figure shows an 

excerpt of triples from a knowledgebase. The knowledgebase is written using 

an ontology which is abbreviated as “saw-ont”. The SPARQL query also 

uses the prefix “saw-feed”, which is another abbreviation for a URI that is 



 

 30   

used in the knowledgebase. For the sake of clarity, the prefix declarations 

have been omitted from the illustration. In the knowledgebase data, there is a 

“SensingDeviceConcept”, which has a number of derived sub-concepts: 

“LightSensor”, “CO2Sensor”, and so on. The “CO2Sensor” concept then has 

3 named instances. The named instances are: “CO2Sensor1”, 

“CO2Sensor2” and “CO2Sensor3”. The query uses the “ASK” keyword which 

returns a Boolean (true or false). Variables are prefixed with a question mark. 

The query searches for a device belonging to a feedConcept which has the 

rdf:type of “SensingDeviceConcept”. The “FILTER” keyword is then used to 

check for a specific device instance, which in this case is “CO2Sensor2”. If 

this instance exists in the knowledgebase, the query will return TRUE, 

otherwise it will return FALSE. Different keywords can be used in the result 

clause to return other information or to perform update/delete tasks with the 

knowledgebase. 

 

Figure 2-9: Illustration of a SPARQL query checking for existence of an instance of a sensing device 

After using a machine-readable language to represent data in a standardised 

manner, the problem is now one of choosing the correct definitions to define 

properties which link subjects to objects. OWL is a semantic language which 
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is used to define these vocabularies and terminologies. The main artefacts in 

an OWL ontology are the following: 

 Classes: A class is a general construct which can have members. 

Classes can have properties which are inherited by all individuals 

belonging to the class. An example of a class is “SensorDevice”. 

Properties attached to this class can be: “measures” (what parameter 

does the device measure), “manufacturer”, “isWireless”, and so on. 

 Individuals: Members (or instances) of a class are called individuals. 

Individuals inherit properties of their parent class. Specific properties 

can be assigned to just the individuals as well. An example of an 

individual is “PositionSensor”, which belongs to the “SensorDevice” 

class defined above. The “PositionSensor” individual will inherit the 

previously defined properties for the “SensorDevice” concept (e.g. 

measures, manufacturer, isWireless, etc.). 

 Properties: Properties have a domain (who the property applies to) 

and a range (what values the property can accept). Both the domain 

and range can be individuals which are defined in the ontology with 

their own properties. A property called “hasBrother” might have the 

domain “Person” (which resources can be mapped) and a range of 

“Male” (who can the resources be mapped to). Properties can be sub-

properties of existing properties for better specialisation. There are 

two types of properties: 

o Datatype properties: These relate individuals to data types. 

Example of a datatype property is “sensorValue”, which might 
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have a domain of “PositionSensor”, and a range of another 

resource called “xsd:double”. 

o Object properties: These relate individuals to other individuals. 

An example of this has been mentioned above already 

(“hasBrother”). 

OWL makes it possible to restrict classes/concepts so that they have a clear 

and understandable meaning [39]. For example, OWL allows concepts and 

properties to have a data range restriction so that they can only accept 

certain values (e.g. the property “hasSister” having the range of “Female”), or 

restrict properties to only apply to specific concepts (e.g. the property 

“sensorValue” having the domain “SensorDevice”), or to define certain 

concepts as aliases of one another (e.g. “Person” defined as an alias of 

“Human” by using the owl:sameAs construct). With OWL, a vocabulary of 

well-defined and machine-readable terms can be generated, and a common 

understanding of these concepts can be presented to external collaborative 

parties. These vocabularies are referred to as ontologies, and an example of 

this is the Semantic Sensor Network (SSN) Ontology [40], which enables 

annotation of sensing devices and platforms. 

The relationship between RDF, RDFS and OWL is illustrated in Figure 2-10. 

At the very basic end, RDF is used to write triples which relate subjects to 

objects via predicates. RDFS then allows for the construction of slightly more 

complex relationships between the subjects and objects, and most notably, it 

allows classes to be sub-classes of other classes. OWL then builds on top of 

RDFS and offers the capability to define richer and more complex 

relationships between classes, individuals and properties. 
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Figure 2-10: Relationship between RDF, RDFS and OWL 

Ontologies, like the SSN ontology mentioned above, are typically OWL 

documents containing definitions of domain-specific classes and properties. 

The SSN ontology is related to sensing devices and sensor network 

deployments, so it defines classes and properties that allow sensors and 

their deployment environments and parameters to be described in a 

semantic fashion. Another popular ontology is the FOAF (Friend of a Friend) 

ontology which describes people and the relationships between them [41]. 

The illustration in Figure 2-11 shows an excerpt from the ontology (top) and a 

sample usage (bottom). In the ontology excerpt, the “Person” class is 

defined. The “Person” class is defined as a sub-class of more generalised 

classes/concepts from other ontologies. This increases the semantic scope 

of the defined concept, and enables inter-linking between existing concepts. 

The definition also states that the “Person” class is “disjointWith” the 

“Organization” and “Project” classes. This means that any member of 

“Person” can never be a member of the other two. For example, Bob is an 
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instance of “Person”. The ontology states that Bob can’t now also be a 

member of “Organization” or “Project”. This is useful for semantic clarity of 

the concepts. The second excerpt shows the definition of the “knows” 

property. Both the domain and range of this property are stated as 

“foaf:Person”. The domain implies that this property can only be applied to a 

member of “foaf:Person”. The range implies that the object being linked to 

through this property can only be a member of “foaf:Person”. 

 

Figure 2-11: FOAF ontology illustration, showing an ontology excerpt (left) and sample usage (right) 

2.3.4 Schemas that achieve semantic-level interoperability 

W3C’s Semantic Sensor Network Ontology (SSN) tackles the issue of 

semantic interoperability by providing an ontology for describing sensors and 

methods [40]. The ontology itself is aligned with the Dolce Ultralite (DUL) 

upper ontology [42]. An upper ontology defines very general concepts that 

are similar across multiple application domains, and can be considered part 

and parcel of enabling semantic interoperability across multiple application 

domains. Aligning to upper ontologies helps to further formalise the semantic 

concepts and provision for extensions of definitions and inclusion of other 

ontologies [43]. SSN is capable of describing sensing devices in terms of 

their capabilities, observation principles, measurement processes and types 
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of deployments. By providing an ontology for defining sensing devices and 

data and by outlining mechanisms to annotate systems, devices, observable 

features and data, SSN achieves success in offering semantic-level 

interoperability [40]. 

SSN can either be used in a standalone fashion or in tandem with the SWE 

suite to annotate sensing devices and data. Unlike SWE, SSN is not XML-

dependent. Furthermore, semantic annotations using SSN form the basis of 

Semantic Sensor Web (SSW) [34] and Linked Data principles, and present a 

unified representation of sensing devices, their processes, and data. In turn, 

the semantic technologies enable interlinked sensor data which can be 

published on the web. 

While SSN permits semantic annotation of sensing devices and data, thus 

enabling M2M interaction and semantic information consumption, the 

mechanisms required to add and process the annotations still need to be 

developed separately. The annotation can be manual or (semi-)automatic. 

Manual annotation will require a greater level and frequency of intervention 

by system operators and administrators as they will have to add new 

concepts and correct existing mappings. This level of intervention can be 

reduced (therefore improving the system scalability) by introducing automatic 

or semi-automatic annotation mechanisms and processes. This will require a 

system where the users of the system can contribute to the network in a 

seamless fashion to expand the knowledgebase and improve the accuracy of 

its mappings. The system will in turn need to provide mechanisms that can 

recognise and correctly identify mappings against existing concepts stored in 

the knowledgebase. 
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2.3.5 Analysis of existing knowledge management systems 

From the commercially or publicly available solutions, Xively stands out both 

for its list of features and for its public adoption. It allows granular modelling 

and representation of sensor devices and data in terms of DF, DS and DP. 

However, it uses a proprietary and rigid schema with which to define sensors 

and actuators, and offers no relief in terms of semantic metadata to increase 

the openness of the system.  

Thingspeak is further restricted as it lacks the ability to flexibly model DS. At 

most, a user can have 8 DS (called “fields”) in a DF (called “channels”), and 

there is no support for managing access to the individual DS within the DF. 

As with Xively, there is no support for adding semantic metadata to devices 

and data in Thingspeak. 

In literature, Murphy and Jennex highlight the importance of KM and the 

growing necessity of its effective application in Crisis Response [30] by 

analysing two leaderless systems developed in the wake of Hurricane 

Katrina which hit the US Gulf Coast in 2005, namely PeopleFinder and 

ShelterFinder. The study states that “everyday citizens  that  would  like  to  

contribute  are  unable  to,  not only  because  they  are  not  inside  the  

physical  operations” but also because responders themselves are not able 

to reach out to the community  to  mine crucial data. Furthermore, the study 

brings to light the growing importance of the need for “systems that can 

quickly find and display knowledge relevant to the situation in a format that 

facilitates the decision maker in the decision process”. 

The case study presented by Bharosa & Janssen in [44] is very 

comprehensive in this regard as it focuses on KM and deals with the issue of 
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information management adaptability, that is, the system’s “ability to rapidly 

change existing or create new resources in order to align the internal 

information demand with external information supply and events”. By using a 

resource-oriented approach, they investigate the problems related to the 

adaptability of a CRIS (Crisis Response Information System) in regards to 

internal data management needs as the external conditions vary in response 

to on-going/evolving disaster scenarios. The team made several notable 

observations and concluded that overall in the mock drill, the information 

quality was poor in regards to its relevancy (who is the information for), 

consistency (various interpretations), accessibility (inability to access 

contextual information), reliability, correctness and completeness (at the time 

of viewing) even with the use of CEDRIC, an advanced web-based 

application for collaboration. Furthermore, they alluded to the fact that 

existing EIS systems are very close-knit solutions and are not flexible 

enough to permit integration with external resources beyond the scope of the 

immediate framework. The study does not propose a definite system design 

but rather presents a set of principles which, in the minds of the authors, 

should be implemented by an adaptive and responsive EIS. These principles 

are: 

1. Maintain and update team memory via a directly exploitable 

library/information storage system that is capable of storing 

information flow thus removing the need for repetitive requests and 

reducing the chance of presenting incomplete or outdated contextual 

information. 
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2. Dedicate specific resources for environmental scanning to ensure up-

to-date situational awareness amongst all involved actors. 

3. Maximise the number of alternative information sources to augment 

existing information base and derive more accurate knowledge about 

the situation. Alternative sources of information also help to remove 

single source dependency which can impact the decision-making 

process and reduce quality of available information. 

SENSEI [45], a European FP7 project, provides a more comprehensive KM 

system. It recognises four types of base-level resources: sensors, actuators, 

processing components and composites of each of the preceding resources. 

The physical resources are represented as web resources through a 

Resource End Point (REP). The system model also models real-world 

entities centred on device interactions, for example, people, places and 

objects. A Resource Directory (RD) is used to store device descriptions and 

to provide a list of resources for which an external request meets the criteria. 

The RD is complemented by the Entity Directory (ED) which stores 

relationships between devices and the modelled entities of interest, and is 

used to query interaction capabilities between the two. Semantic query 

support is enabled over the directories so that rich and natural-language 

queries can be conducted on top of the stored resources and entities. 

However, this requires semantic annotation of the stored resources and 

entities, a process which is not carried out by default and is a manual, 

optional step in SENSEI’s resource model. In all, SENSEI makes great leaps 

in terms of achieving device and syntactic-level interoperability, and the 

option to add semantic annotations can even achieve semantic-level 
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interoperability. However, the usage of a strict, rigid and complicated O&M 

schema prohibits generality and extensibility of device and data templates 

and it is hard to envision the technology being used by regular users outside 

the corporate realm. 

On a slight tangent, an experiment-based study in [46] brings to light the 

issue of trust in the use of computing technologies that are made invisible (to 

hide the underlying complexities). The study evaluates that in order to build 

trustable pervasive computing systems, i.e. systems that the end-users will 

actually use as opposed to doubt and refute their credibility, reliability and 

accuracy, the system design needs to embody the following key principles: 

 Flexible interaction modes to enable multiple forms of inspection and 

retrospection. 

 Multiple levels/layers of inspection to enable system-wide examination 

of the states, processes and connections of the system. 

The authors argue that while the underlying complexity can be hidden to 

provide more intuitive UI (user interfaces) to the end-users, there needs to be 

the capability to inspect the traffic flow within the framework, ideally, down to 

the very primitives (e.g. GPS coordinate string in a data packet). It is SAW’s 

belief that this level of transparency can be best achieved by utilising a 

resource-oriented systems design approach. 

A very recent experiment-based study by Caragea et al. in [47] highlights the 

growing importance of social media integration and alignment in DM 

applications and the inherent challenges imposed for machines in learning to 

analyse and classify information posted by affected people and the general 

public, especially short messages such as those produced via SMS and 
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Twitter. The findings in this study are further augmented by [48] which 

highlights the power and usefulness of social media as an information 

dissemination tool but warns that it also has the potential of being a 

distractive and disruptive medium if the capability to methodologically 

analyse, process and act upon the data is lacking or absent. [48] argues that 

a representation strategy (i.e. an ontology) needs to be formulated and/or 

identified for “formulating methods for communicating and capturing crisis 

response data, information and knowledge from social media”. This analysis 

strongly suggests that a next-generation semantics-driven collaboration 

framework for the WoT needs to be mindful of and strive to provision the 

capability to integrate with social media and take steps to ensure that 

information retrieved through these non-official networks is used, albeit 

cautiously, to build a more complete model, in real-time, regarding the 

situation on the ground. 

The virtual multi-user collaboration simulation mode envisaged in [49] also 

deserves a mention as it targets the issue of multi-user and cross-

organisation collaboration and sets the foundations for further research into 

the respective areas regarding these issues. Similarly, [50] demonstrates the 

foundations of a similar system with a virtual environment powered by Half 

Life 2 and the collaboration needs met through a combination of a CMS 

(content management system) and a Wiki. But as is apparent, these systems 

have limited outreach and the fundamental design principles do not permit 

flexible and comprehensive cross-vendor integration let alone collaboration. 

[51] analyses the performance of an Integrated Operational System (OS) 

built on the premises of integrating multiple sources of information arriving in 
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multiple formats into a single common platform. The analysed system is, 

however, a closed-ecosystem whereby open and 3rd party integration is not 

possible and only a limited number of pre-configured platforms can be 

utilised by the system, and even then, relatively marginally. Therefore the 

problem of effective and open cross-vendor collaboration remains a key 

research issue. 

The KM solutions reviewed so far either make no mention of the underlying 

asset model, or treat it as an insignificant subsystem, focusing instead on 

high-level tasks and services. The study presenting a resource-oriented WoT 

architecture in [52] is different as it focuses on this very same thing: how 

should resources best be modelled and presented on the web. It adopts a 

RESTful approach and promotes a hierarchical resource architecture such 

that each device (DF) and its children devices (DS) can not only be browsed 

individually, but also contain a link back to the parent (DF or DS). For 

example, the URL http://.../devices/device1/sensors/sensor1 navigates to 

sensor1 which is part of the sensors property of devices. This creates an 

unlimited-depth and hierarchical structure that can be easily crawled and 

navigated. The authors recommend the use of JSON to model smart object 

properties and show a proprietary schema used to define properties for 

smart things. It is not clear whether the definition templates are extensible 

from the presentation, but the authors do make an effort to semantically-align 

their proposed solution by describing devices and data in Microformats [53], 

achieving some form of semantic interoperability. The annotation process, 

however, is manual and there is no learning system that can adapt from 
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previous annotations and offer some sort of semi-autonomous semantic 

annotation facility. 

Similarly, the IoT-A reference architecture [54] also looks very promising. 

The rich, comprehensive and complex architecture and associated 

information models are still in development, and the final architecture is, as 

of yet, unavailable. Sensors, actuators and smart tags are abstracted as 

devices. Then physical and virtual resources are combined to form 

aggregated entities. The definitions are stored according to a rich but 

proprietary schema and prospects of semantic annotation are considered, 

but not detailed in this thesis. 

DERMIS, [24], undoubtedly provides the most comprehensive set of 

principles and guidelines for developing an emergency response system, but 

focuses on developing a “single integrated enterprise type system” that 

“spans all the functions of the emergency response from planning, through 

execution and recovery, to training”. However, this goes against the very 

premise and design principles of modern distributed systems, as is evident 

primarily in social media and secondly in the rapid influx and growing number 

of web services exposing public APIs whether it be for authentication, data 

access, information sharing or embedding non-native and 3rd party 

functionality. So while respecting the design principles and fundamental 

guidelines offered by this study, the single-systems approach adopted by the 

authors is refuted as it’s incompatible with the modern decentralised and 

distributed nature of web services. Furthermore, whilst the availability of a 

single authoritative command and control centre might improve data 

accuracy and consistency, it hinders third party integration and thereby limits 
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not only the ability of regular users in accessing and making use of the 

system, but it also dampens the prospects of mining data from disparate 

sources that would effectively be shut off to the single monolithic repository 

represented by DERMIS. 

2.3.6 Derivation of functional requirements for knowledge 
management 

The KM system in question will be dealing with a general WoT domain. The 

characteristics of the DM application domain in WoT have been presented 

earlier. In relation to the issues highlighted, it can be said that a framework 

which sets out to enable data mining, processing and collaboration facilities 

not only in the DM scene specifically, but in the whole WoT domain in 

general, needs to be designed with three characteristics in mind: 

1. Flexibility: The framework should be easy to setup, maintain and 

dismantle. The interaction mechanisms should enable different instances 

of the framework to collaborate with ease, whilst also making possible 

collaboration with other IoT repositories and/or other 3rd party services. 

2. Generality: The framework should not be designed as a particular 

application but instead as a generic platform for storing sensing devices 

definitions and data. This will enable the framework to be utilised for 

different purposes, thereby increasing its value and configurability for a 

diverse range of WoT-related problems which share common traits. 

3. Extensibility: The framework should be designed in an extensible and 

service-oriented fashion so that extensions can be developed and 

deployed with ease. This will allow the development of extra components 

for the system which can be leveraged by users of the system to increase 
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functionality in a certain realm or to augment the system with additional 

features. 

Furthermore, the authors of [24] outline a set of conceptual design 

requirements from which the following are taken as being appropriate for a 

generic framework: 

 Information source and timeliness: All assets captured by the network 

should be identified by their source and time of capture. Any linked or 

child assets should also clearly state the time of capture and the 

source of the information so that decisions can be made regarding the 

most up-to-date piece of information. 

 Comprehensive system & event log: All system actions should be 

logged at different levels of granularity and categorised to produce a 

collective memory bank. This bank can be inspected at any given 

instance in time to build an overall picture of the state of the system 

regarding manipulation of all system assets (capture, publication, 

interactions, processing, requests, responses, etc.). A log is the 

“ongoing roadmap of the emergency” situation and thus needs to be 

comprehensive enough to allow for different levels of abstraction and 

detail so that the correct level of detail can be presented to the 

responders at any given time. 

To develop an efficient next-generation KM system, there needs to be a 

balance between enforcing semantic schemas to provision semantic-

enrichment of data and the capability for users and agents to use the system 

without being forced to comply with strict and rigid schemas. Furthermore, 

from the aforementioned analysis and issues raised from existing studies, it 
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is necessary that a suitable asset model is developed which allows high level 

of introspection of the underlying assets so that underlying DS can be 

analysed when needed [24]. Taking this into consideration, key fundamental 

principles for a semantically-aligned KM system can be defined as follows: 

1. Hierarchical data/information model that enables high level of 

introspection; 

2. Generic and extensible data definition templates that provision for 

future extensions and enable users to upload customised data; 

3. Semi-autonomous semantic annotation capability that is optional and 

not enforced. 

A hierarchical data/information model is necessary to allow introspection into 

the system, and to be able to compose and decompose raw data into 

information into knowledge. Real-world sensing and actuating devices can 

be generally split into two types: 

i. Sensing/actuating devices, for example, a temperature sensor 

connected to an Arduino board; 

ii. Multi-device platforms, for example, an Arduino board and a 

SunSPOT system; such a device may consist of several sensing 

devices. 

In this thesis sensing/actuating devices would be modelled as datastreams 

(DS or streams) and multi-device platforms as datafeeds (DF or feeds). This 

creates a simple hierarchical model where DF contain one or more DS. The 

DS upload data, for example: sensor readings, to the network periodically or 

when a sensing event occurs. These readings will be referred to as 
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datapoints (DP or points). The illustration in Figure 2-12 shows the 

relationship between DF, DS and DP. 

 

Figure 2-12: DF, DS and DP relationship diagram 

A generic and extensible data definition template is essential for providing a 

low-entry barrier for users of the system and enabling extensions. Before a 

device can be used with a network, it will need to be registered. When this 

happens, the user will need to upload a definition by filling in some template. 

By providing a generic and extensible data definition template, it becomes 

easier and more convenient for the user to supply mandatory information and 

still retain the flexibility to add arbitrary data that might not be understood by 

the network, but can still be used by the user. 

Semi-autonomous semantic annotation capability is an important aspect of a 

heavy-load WoT application where manuals annotations are unfeasible due 

to the large number of sensing devices being added to the network 

constantly. It has been mentioned before that a community-driven and user-

oriented system is needed that can learn from the annotations submitted by 

the system users. Thereafter, the system can offer automated annotation 

facilities for new sensing devices by attempting to map them with concepts 

already stored in the knowledgebase. A community-driven and self-learning 

system such as this is essential for scaling a semantic WoT application. The 

actual semantic annotation process is selected to be optional. This will 

hopefully lead to greater adoption of the system since no one is forced to 
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comply with the semantic annotation process, but anyone can do so to 

increase the capability and usefulness of the overall platform. 

To compare existing works in light of the performed analysis and deduced 

principles, a formal list of functional requirements for KM is presented below. 

Please note that FR1 is the group of functional requirements for evaluating 

KM systems. FR2 is the group of functional requirements for evaluating 

access control systems. FR2 is presented in the section pertaining to access 

control mechanisms further below. 

FR1: Comprehensive, extensible and semantic asset model: Devices, 

their definitions and the data they upload to the network is referred to as 

“assets”. The framework should be able to represent assets as resources 

and users of the framework should be able to break down any composite 

(e.g. overlaid graphs) into its basic underlying assets (e.g. list of DS). 

Furthermore, the data model should be semantics-driven to enable semi-

autonamicity in the system (i.e. the ability of the machine to “learn” the 

“meaning” of data over time). 

1. General Capabilities – Asset Model: 

a. Capability to model and represent multi-sensor devices and 

composite platforms (e.g. an Arduino board, a SunSPOT 

device, or another multi-device platform) as DF, each 

consisting of many DS; 

b. Capability to model and represent a single sensing/actuating 

device that may or may not be part of a bigger platform as a 

DS; 



 

 48   

c. Capability to model and represent individual sensor readings 

that occur at some moment in time as DP; 

d. Capability to define arbitrary and additional properties when 

modelling devices (DF, DS and DP), easily and conveniently, 

through a generic, schema-less and extensible template; 

2. Semantic Capabilities: Capability to represent resources in a semantic 

fashion to represent data in a standardised manner and to enable 

automatic or semi-automatic machine processing. 

a. Capability to annotate DF and DS with semantic 

concepts/metadata; 

b. Capability to run semantic queries against semantic metadata.  

2.3.7 Comparison of existing knowledge management solutions in 
relation to the asset model 

An analysis of KM systems was presented earlier in section 2.3.5. These KM 

systems existed both for DM applications as well as WoT applications in 

general. Table 2-1 presents a summary of all of these solutions that describe 

some form of asset model for modelling devices and data. It compares each 

of these existing solutions against the list of functional requirements 

presented in the previous subsection. 

It is important to note that in all the presented studies, very few actually 

tackle the issue of unified data/knowledge dissemination. Where this issue 

has been given some focus, the outreach has been more or less limited to 

similar frameworks/systems (i.e. cross-instance collaboration) and no 

particular focus has been applied on the problem of exposing this data or 

knowledge to 3rd parties (i.e. cross-vendor collaboration). It is believed that a 

generic and extensible asset model would form the basis for standardised 
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sensing device definition and data representation. Since this area has not 

been addressed adequately in existing literature, it is one of the requirements 

and deliverables of the successive semantic KM framework being proposed 

in this thesis. 

Table 2-1: Comparison of existing literature against requirements to satisfy asset model 

Requirements/ 
Solutions 

Granular device 
modelling hierarchy, 
allowing modelling 
of resources as a: 

Extensible and 
schema-less device 
and data 
representation 
templates for: 

Semantic 
capabilities 

DF DS DF DS DP Annotation Querying 

Commercial and publicly available solutions 

Xively [55]        

ThingSpeak 
[56] 

 
(as 

chan-
nels) 

Partial (as 
fields, <= 
8 / chan-

nel) 

     

Paraimpu [57]  

 
(as sen-
sors and 

actuators) 

     

KM solutions and reference implementations in literature 

Dynamic-map 
container 

terminal in [58] 

No mention or indication of granular access to 
underlying assets or how this data is defined and 

represented 
  

PeopleFinder 
and 

ShelterFinder in 
[30] 

Based on manual input and web-scraping of 
information conforming to a strict schema 

(people, locations) as opposed to collecting 
sensor data. DM application but not based on 

sensor networks 

  

WoT 
architecture in 

[52] 
       

IoT-A reference 
architecture [54] 

 
(as de-
vices) 

 
(as sen-

sors, actu-
ators and 

tags) 

     

SENSEI [45] 

 
(as re-
source 
hosts) 

 
(as re-

sources) 

 
(O&M and other suites 

from OGC’s SWE 
package are used to 

model and store 
devices and data) 
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SmartSantan-
der [59]   

 
(O&M and other suites 

from OGC’s SWE 
package are used to 

model and store 
devices and data) 

  

2.3.8 Comparison of existing knowledge management solutions in 
relation to semantic capabilities 

Table 2-2 presents a summary of all KM solutions that describe some form of 

semantic technology for annotating sensing device definitions and data. 

Again, each solution is compared against the list of functional requirements 

presented in section 2.3.6. 

It is apparent from the analysed literature that there is a clear lack of 

autonomous semantic annotation capabilities and mechanisms. A majority of 

the major vendors are opting for OGC’s SWE suite of standards which 

provide syntactic-level of interoperability. Various ontologies are then used to 

enhance the metadata contained within the data stores and to annotate the 

sensing devices and data. This, of course, achieves some form of semantic-

level interoperability and enables M2M interactions over the data. However, 

the issue of autonomous or semi-autonomous semantic annotation remains 

a pressing issue. In the WoT where hundreds or even thousands of devices 

are expected to appear in a short intervals, manual semantic annotation of 

artefacts is simply unfeasible, and automated or semi-automated annotation 

of resources is a key priority [20]. 

Kno.e.sis linked sensor data platform is a major effort in collecting weather 

data from weather data stations, and then encoding these in O&M. However, 

it is not clear whether there exist any mechanisms to automatically enhance 

the encoded O&M data store with semantic annotations, and if they do, then 

whether there are provisions to annotate a broader range of devices. On that 
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front, SENSEI is a broader and more comprehensive platform which provides 

semantic annotation capabilities as an optional enhancement to its O&M 

encoded resource and entity directories. However, the process for doing so 

is manual and there is no support for providing automatic annotations for 

sensing devices, entities and observations. 

Table 2-2: Comparison of existing semantic annotation solutions 

Requirements/ 
Solutions 

Annotation methodology 
and ontologies used 

Further comments 

Kno.e.sis linked 
sensor data [60] 

Encoded using: OGC’s 
Observation & Measurement 

(O&M) standard [61]. 
Ontology: Custom-made 

Sensor-Observation ontology 
(based on O&M concepts) 
Procedure: Encode raw 

textual data obtained from 
MesoWest in O&M and then 
turn it into RDF statements. 

Info: Published datasets contain 
description of 20K weather stations in 

US. Approximately 5 sensors per 
weather station measuring temperature, 

visibility, precipitation, pressure, wind 
speed and humidity. 

Drawbacks: Limited scope, only deals 
with known sensor types from weather 

stations. Sensor definitions are very 
top-level and no way to define a sensor 
as part of a bigger platform. From what 

can be observed (as the actual 
annotation mechanisms are not 

detailed) annotation requires manual 
adjustment and there is no autonomous 

feature to learn from existing 
annotations. 

Sense2Web 
linked sensor 
data platform 

[62] 

Encoded using: RDF. 
Ontologies: Custom-made 

local ontologies. 
Procedure: Manual annotation 

via web interface 

Info: Uses DBpedia for Sensor Types 
Drawbacks: Focuses only on 

describing sensors on a very top-level 
and provides no support for describing 

observation and measurement 
principles. Manual annotation and no 

autonomous features to speed up 
annotations. 

SensorMasher 
[63] 

Encoded using: RDF. 
Ontologies: Custom core 
ontology and an extended 
ontology inspired by the 

SWEET [64] and SANY [65] 
ontologies. 

Procedure: Manual annotation 

Drawbacks: Shallow device hierarchy, 
doesn’t use the more prominent SSN 

ontology which provides better 
interoperability, no automated 

annotation capability. 

WoT 
architecture in 

[52] 

Encoded using: Microdata. 
Ontologies: Mixture. 
Procedure: Manual. 

Drawbacks: Limited scope, manual 
annotation, very top-level and simplistic. 

SENSEI [45] 

Encoded using: O&M and 
RDF. 

Ontologies: Unclear 
Procedure: Manual 

Drawbacks: Manual annotation, no 
learning mechanism. 

SPITFIRE [66] 

Encoded using: RDF. 
Ontologies: Custom ontology 

based on DULE and SSN. 
Procedure: Semi-automatic 

Info: Semi-automatic creation of 
semantic sensor descriptions is 

achieved by comparing the sensor 
output of newly deployed sensors 
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annotation based on sensor 
output 

against already deployed sensors. 

 
The WoT architecture presented in [52] is overly simplistic in terms of 

providing semantic annotations. It uses Microdata which is not as diverse 

and flexible as RDF, the official annotation language used in many of the 

present-day frameworks and systems for annotation. On the other hand, the 

Sense2Web linked sensor data platform in [62] does a much better job by 

using a suite of custom local ontologies and interfacing with DBpedia to 

inference some information (e.g. pulling sensor types). However, once again, 

there is no learning system or autonomous annotation capability and 

semantic metadata has to be entered manually. 

SPITFIRE in [66] achieves some form of semi-automated capability to 

annotate sensors semantically by comparing the output of newly deployed 

sensors against those already deployed over some period of time. By 

comparing the time series of devices, SPITFIRE can correlate new devices 

against those already deployed and producing a similar time series. If 

multiple correlations are present, then the user has to manually select the 

most correct one. Over time, the system is expected to increase in accuracy 

as more devices are added to the network and annotated successfully. What 

is not clear is the success rate of this algorithm for similar devices that are 

deployed in completely different environments, or a great distance apart; for 

example two motion sensors, one deployed in a busy university laboratory 

and another in a fire exit of a shopping centre. 

In all, there is a definite lack of attention and innovation in the field of 

automated annotation for sensor devices and data. 
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2.4 Identity & Access Management 

2.4.1 Overview of IAM 

IAM is the functionality to manage the visibility of assets to users of the 

system providing they are authorized to do so. This may be done via 

numerous methods and approaches (and not necessarily containing 

functionalities for identity (who are you) and authorization (can you do a, b 

and c) in each case). Typical DM and collaboration frameworks have limited 

collaboration facilities and therefore only focus on the internal IAM 

functionalities, i.e. the ability of users within the organisation to access 

resources, carry out tasks and view information. However, in the context of 

WoT access to information from external assets is also vital, the concept of 

IAM needs to be expanded. For example, if an autonomous agent wants to 

scrape and process semantic metadata from an IoT repository, what kind of 

access policies will it require? Will registration be a prerequisite? What about 

if it’s a temporal interaction and registration, therefore, becomes an 

unnecessary and even prohibitive hurdle? The problem is no longer 

managing access from internal users (which has received due attention); but 

now it’s becoming more important to consider how external collaboration 

agents wishing to interact with the network, can do so without necessarily 

having to register, but at the same time, retaining control over access 

privileges. This study only deals with the latter problem; that of managing 

access to unbounded, temporal and dynamic resources, and SAW 

contributes a potential solution to this problem by presenting an enhanced 

token-based approach for managing access rights and policies. 
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The purpose of access control is to limit access to privately-owned resources 

and assets by the owner of these resources. In this regard, a few 

methodologies exist: 

 User/Identity-Based Access Control (UBAC/IBAC) 

 Authorization-Based Access Control (ABAC) 

 Role-Based Access Control (RBAC) 

 Token-Based Access Control (TBAC) 

2.4.1.1 UBAC/IBAC 

The most basic type of access control is UBAC which forms the basis for 

security standards like SAML [67]. In this scheme, access to resources is 

controlled by the identity of a user and is therefore very problematic when it 

comes to public sharing of resources directly. Furthermore, since policies are 

tied to user accounts, if a user account is revoked or deleted, the related 

policies also disappear and have to be generated again for any successive 

users who might assume the same role. If the policies are stored in an 

access control list (ACL), then the ACL needs to be updated as and when 

users accounts are revoked or deleted which can quickly become messy in a 

real WoT scene [68]. It is highly unfeasible to use this scheme in the WoT 

due to its numerous restrictions, even though it can be considered to be the 

most secure out of the other schemes. It is only really suitable for 

applications where users and their roles within the application domain remain 

constant over a long period of time, for example, in a business environment. 

2.4.1.2 ABAC 

ABAC is very similar to UBAC in that it is still based around the existence of 

users but instead of using the identity of a user (i.e. who is the user), it 
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focuses on making use of the actual authorization data for the identity (i.e. 

what can the user do). In doing so, it eliminates the problems related to 

distributed identity management since each participating service domain has 

information about its own services and the relevant authorizations required to 

carry out those services. Then each domain only needs to be presented with 

the correct authorization to invoke a service, as opposed to revealing the 

caller identity as is the case in UBAC [69]. Whilst ABAC achieves many 

advantages over UBAC, it is still user-centric and therefore unsuitable for a 

resource-centric WoT where access to resources by anonymous agents is a 

key requirement. 

2.4.1.3 RBAC 

UBAC introduces many problems in large organisations where users are 

prone to changes in jobs, roles and duties. Any change in the job or role of a 

user would result in a complete rewrite of the policies for the user to align it 

with the subject’s new job or role. Aside from this, two users with similar jobs 

and roles will have two separate access policies in an UBAC system. RBAC 

was introduced to offset some of these managerial disadvantages of UBAC 

[70], and it is based on the premise of roles which belong to users and have 

access policies [58]. The scheme relies on the hypothesis that roles and 

responsibilities largely remain constant within an organization and it’s the 

users that change, therefore modeling access policies through user roles 

instead of user identities provides a more convenient and maintainable 

solution [71]. However, RBAC is unsuitable for modelling access control 

where roles are hard to define and/or unsuitable to use. Take, for example, a 

typical WoT scenario where hundreds of devices are being connected daily 
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such that multitudes of DS are being added to the network and thousands of 

sensor readings are being published. How can roles be defined for each user 

for each device for each DS in this case? It is both illogical and unfeasible to 

define roles in this dynamic setting, especially when the ability to control 

access right down to individual DS of data is needed. Furthermore, and as it 

has been alluded to previously, RBAC is based on roles which are tied to 

users and therefore promote a user-centric scheme which prohibits 

anonymous access of resources by non-registered agents. 

Context-based Access Control (CBAC) is an extension of RBAC, since it also 

takes into account the context of the user when requesting access to 

resources (e.g., user location, device where request is made from, etc.) [72]. 

However, it still does not remove the user-centricity from the control 

mechanism. 

2.4.1.4 TBAC 

TBAC systems are based on the premise of reusable and reconfigurable 

tokens that grant access to a set or group of resources for a particular user 

[73]. After generation, they are transmitted to agents who need to consume a 

set of private resources that are normally hidden from public view and 

accessible only by the resource owner. Tokens can be configured to only 

expose the relevant resources and assets without leaking any information 

regarding the identity of the resource owner. This is advantageous over 

UBAC which requires the identity of the user to be transmitted with a request. 

Whereas roles in RBAC are a part of the overall organizational structure and 

are therefore more permanent and long-term artifacts, tokens in TBAC are 

much more decoupled and can be easily generated, modified and revoked 
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without affecting the organization structure. This provides a significant 

managerial advantage when tokens are used to control access to temporal 

assets of the network. Finally, since tokens are tied to resources as opposed 

to users who own those resources, this scheme provides a resource-centric 

access control scheme which is perfect for managing interactions with 

resources in an enterprise-grade WoT setting. 

2.4.2 Comparison of access control mechanisms 

Table 2-3 presents a summary and relative comparison of the various access 

control mechanisms that have been discussed so far. In the WoT context, 

the access control mechanism needs to be resource-centric ideally so that it 

is not tied down to user identities which are not significant in WoT 

repositories. This necessitates the capability of enabling anonymous (non-

registered) agent authorisation to enable access to resources, which of 

course means that resources need to be shared publicly in the first place. 

UBAC is highly unsuitable in the temporal characteristic domain of the WoT 

and ABAC doesn’t fare much better either as it is still user-centric. RBAC 

makes some leaps in masking user identities when cross-domain service 

requests are made but its user-centricity, again, makes it unsuitable for use 

on temporal resources and services. TBAC, on the other hand, provides a 

decoupled resource-centric mechanism of access control which is capable of 

scaling, efficiently, with the dynamic environment of temporal assets in the 

WoT. It suffers, in part, from lower security because at its core, TBAC offers 

a single-step authentication service (i.e. the presence of a token is sufficient 

to access a service). In contrast, the other schemes generally require two-

step authentication which increases security. 
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From the analysis so far, it can be seen that a flexible and extensible access 

control mechanism is required to manage access to the various assets that 

are available in the network. It should be easy to spawn, grant and revoke 

access rights dynamically when the need arises (as actors emerge 

onto/leave the scene). It should also be easy and possible to grant access to 

selected resources without requiring explicit registration of the external party 

to the network so that inter-department and cross-vendor collaboration can 

be provisioned on the go. TBAC is evaluated to be the most suitable access 

control mechanism to achieve this task. 

Table 2-3: Comparison of access control schemes in the context of temporal resources in the WoT   

 
UBAC ABAC RBAC TBAC 

Centricity User User User Resource 

Anonymous access?     

Public sharing of 
resources?     

ID protection in cross-
domain invocations?     

Suitable for temporal 
assets?     

Dynamic scaling 
efficiency 

Very low Low Medium High 

Security High High High Lower 

 

2.4.3 Derivation of functional requirements for IAM 

To compare existing works in light of the performed analysis and deduced 

principles, a formal list of functional requirements for IAM is presented below. 

FR2: Comprehensive and extensible IAM: The framework should be able 

to provision access to assets at any level of granularity, from the top-level DF 

(e.g. an Arduino board and all its related DS) right down to the low-level DP 
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(e.g. light sensor readings on an Arduino board), without requiring extensive 

policy rights management and without registration being a prerequisite for 

access. 

1. General Capabilities [Core]: 

a. Capability to manage identities & access for internal (and 

trusted) users of an organisation; 

b. Capability to manage access for external/temporary (and 

untrusted) users of participating networks. In the case of 

external parties, managing identities is not as important or 

crucial as federating temporal access, enabling audited and 

controlled multi-party collaboration. 

2. General Capabilities [Optional]: 

a. Capability to support federated identities if possible (i.e. 

authentication provided by 3rd party services like Google and 

Facebook). 

3. Access Management Capabilities [Core]: 

a. Capability to issue & revoke access rights (also called “grants”) 

for creating, modifying, viewing and deleting DF; 

b. Capability to issue & revoke grants for creating, modifying, 

viewing and deleting DS; 

c. Capability to transitively apply grants for ease of access. For 

example, it should be easy to grant access to a DF and all of its 

DS, without having to explicitly apply this grant for each 

resource; 
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d. Capability to easily and conveniently exclude sub-resources 

from grants applied in (iii). For example, it should be relatively 

easy to exclude a single DS, or a group of them, from having 

the same access rights as their parent DF. 

4. Access Management Capabilities [Optional]: 

a. Capability to define white and blacklists for a variety of server 

environment variables (e.g. IP, Referring URI, Browser Agent); 

b. Capability to control the lifespan of grants; 

c. Capability to specify the permitted and forbidden contexts for 

grants; 

d. Capability to mark grants as “volatile” (these access rights must 

be renewed after some set condition has been met and are 

designed to improve security and/or remove inactive users), 

and to provision for their renewal. 

Comparison and analysis of existing IAM solutions 

Table 2-4 presents a summary and relative comparison of the various 

solutions in terms of their IAM capabilities. Where “(implied possibility)” is 

mentioned, it means that the necessary functionality has not been mentioned 

explicitly in the corresponding study/medium but that by applying the derived 

principles and mechanisms, it is theoretically possible to achieve the desired 

outcome. 

From the currently available commercial solutions, Xively offers the best 

access policy model for controlling access to temporal and dynamic sensor 

devices and data. The web service assigns each user a master API key 

which grants CRUD actions on all resources owned by the user. However, it 
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hits a roadblock when it comes to using a single key/token to control access 

to multiple DF and DS, as this is not possible in Xively. A single API key can 

only manage access to DS of a single device in Xively, and this is not ideal 

for the WoT domain where greater token flexibility is required. 

 

Table 2-4: Comparison of existing solutions against requirements to satisfy IAM 

Requirements/ 
Solutions 

Fine-grained access control for each 
of the following resources: Anonymous but audited 

access to DF, DS and DP 

Further comments DF DS DP 

Commercial and publicly available solutions 

Xively    

 
Drawback: One API key 

can only control access to a 
maximum of one DF. 

ThingSpeak     

Paraimpu     

Applied IAM solutions in literature 

ARCE in [71]  
 

(implied 
possibility) 

  

 
Drawbacks: Focuses on 
high-level organisational 

access as opposed to low-
level and fine-grained 
access to resources. 

CBAC in [72] 
 

(implied 
possibility) 

  

 
Drawbacks: Same as 

above except for the added 
convenience of being able 
to refine access according 

to defined contexts. 

CapBAC in [70] 
 

(implied 
possibility) 

 
(implied 

possibility) 

 
(implied 

possibility) 

 
Drawbacks: Requires 

credentials as well as the 
capability token to access 
services, so while it seems 

to enable anonymous 
access at first, that’s not the 

case. 

ABAC for SoA in 
[69] 

 
(implied 

possibility) 

 
(implied 

possibility) 

 
(implied 

possibility) 

 
Drawbacks: No 

anonymous access, 
requires policy store. 
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SENSEI    

 
Drawbacks: Several steps 

need to be performed to 
enable access from another 

domain (provide token, 
negotiate a security 

session, agree keys, setup 
security session, and so 

on.). Anonymous access is 
impossible. 

 
In comparison, Thingspeak is more limited. Its model only extends access 

rights to DF, and there is no way to fine-grain access to the individual DS. 

Even then, the access model is shallow at best as it does not allow selective 

choosing of individual CRUD operations for the DF, and only offers two 

preconfigured sets: (1) Write actions (create, update, delete) and (2) Read 

action. 

In literature, [71] presents a web-based EIS that is built upon a Role-Based 

Access Control model and aims to tackle the issue of managing diversity of 

actors within an EIS environment when accessing hypermedia (web content) 

and their ensuing roles and responsibilities within the whole system. It relies 

on the hypothesis that roles and responsibilities largely remain constant 

within an organisation and it’s the users that change, therefore a RBAC 

model offers a convenient and maintainable solution that is based on access 

policies and can be modified readily as new requirements arise and is 

especially useful when the number of users is huge (as is common in web-

based systems). Whilst the access-based model proposed by the study 

produces a highly transparent and secure data access system, the authors 

exclude the issue of enabling cooperation/collaboration (whether internal or 

external) within the RBAC model, thereby limiting the full potential of the 

system and hindering third-party integration, something which is becoming 
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very important in the modern world of growing publically-exposed APIs. 

Furthermore, the study does not deal with data/KM issues at all and 

therefore can only be considered a partial EIS solution at best. A similar 

(albeit more comprehensive) model is presented in [58] where the authors 

discuss a service-oriented and resource-based information modelling 

architecture that is capable of providing users with personalized information 

and/or services based on their profiles (composed of the user’s role and 

associated tasks within the crisis response team). However, and once again, 

lack of focus on developing semantics and the inability to share data without 

requiring explicit registration with the network dampens the outreach of the 

proposed solution. 

Still very much related to RBAC, the CBAC approach in [72] brings 

enhancements in terms of restrictions based on contexts. The contexts 

describe the situation in which the request to resources is made and control 

when the grants can be applied. Restrictions can be imposed in terms of the 

source (device type, IP, software), location, user role, security level, session 

restrictions, and similar parameters. The implementation of the access model 

is, however, quite complex and is more suited towards access control for 

static services as opposed to fine-grained and dynamic resources. 

The CapBAC system presented in [70] is more promising as it provides 

better scalability and permits temporal access to services. Before a user can 

access a resource, he/she needs to obtain a “capability token” from a Policy 

Decision Point (PDP), which considers the details of the requesting user as 

well as the service in subject and then either grants or denies the token. The 

method is suitable for temporary access to services and resources and does 
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not force the user to register with the service provider. This approach solves 

issues with managing trust between heterogeneous service providers. Still, it 

can only be considered a semi-anonymous access solution at best since the 

user still has to register with the PDP and a client profile for the user needs 

to be maintained. 

In all, it is apparent that literature is ripe with RBAC models that have been 

enhanced to deal with a variety of organisational access control problems. 

Whilst this is important and great leaps have been made in this regard, it is 

now becoming equally important to invest in more dynamic and token based 

access policies for the management and distribution of sensor devices and 

data in the WoT. Proof of this claim lays in the access policy mechanisms of 

the biggest commercial IoT repository on the market today, Xively. SAW 

contributes to this problem by enhancing the access policy mechanism of 

Xively and making it suitable for an environment where access to temporal, 

dynamic and volatile sensor devices and data is becoming increasingly 

important. 

2.5 Concluding Remarks 

Almost all of the solutions discussed in the literature have very weak cross-

vendor collaboration models, if present at all. The main reasons for this are 

the following: 

 The favouring of proprietary schemas to store and represent 

definitions and data. This data can only be understood by the internal 

network, and therefore hinders collaboration. 

 The lack of semantics in annotating and representing data, producing 

many definitions and representations of the same data. 
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Many of the analysed works use rigid, proprietary schemas and force the 

users to conform to these in a strict manner. This raises the entry-barrier, 

makes it harder to extend the system, and prevents cross-vendor 

collaboration. A live example of this is the well-known internet repository 

called Xively (formerly Cosm and Pachube). Xively uses a rigid and 

proprietary schema and forces users to adhere to this when defining devices 

and uploading data. While it works wonderfully inside Xively, it is not so user-

friendly for external networks who may want to make use of the wealth of 

publicly available sensor data in the internet repository. External users will 

need to develop special adapters to translate Xively’s schema into their own, 

before they can process the information. If, instead, Xively had annotated 

and represented its data in a semantic fashion, then any external user could 

have understood that data by simply conforming to the set of ontologies used 

to annotate the dataset (semantic concepts such as annotation and 

ontologies are explained later on in the thesis). Furthermore, semantic 

annotation of data can even enable semi-autonomous machine-processing, 

thereby yielding even greater returns. 

Analysis of the current literature in the field of DM and collaboration systems 

reveals the dire need for a unified and extensible collaboration model. This 

collaboration model needs to be flexible enough to cater for cross-vendor 

collaboration so that the in-house data and knowledge can be shared readily 

and effectively, whilst at the same time, data and knowledge from suitable 3rd 

party services can be easily brought in-house and exploited to create 

advanced mashups and intelligent services. It is paramount to keep in mind 

that crucial data can no longer be kept in-house and exposed to a select few 
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through conventional collaboration schemes; there is now an ever-increasing 

need to integrate with social networks and enable the capability to inspect 

multiple sources of information (including other (commercial) IoT service 

providers like Xively, Thingspeak, Paraimpu, etc.). This requires the 

undertaking of further research in regards to the modelling of data in such a 

way so as to enable this level of cross-vendor collaboration and data access. 

Furthermore, many systems reviewed earlier employ RBAC which, while 

suitable for a set of uniform organisations with similar roles and hierarchies, 

is insufficient for representing a generic data model which is not 

organisation-based. For example, if there is a need to grant access rights to 

an unregistered user (registration not being a pre-requisite for using the 

framework) to embed a graph generated by a registered user, this can’t be 

done through an RBAC system. A more comprehensive and decoupled 

access control mechanism is required to fulfil these supposedly exceptions 

that are becoming the norm in the WoT realm. Furthermore, current 

proposed solutions lack comprehensive semantics and therefore, most of the 

times, act as monolithic repositories as opposed to decentralised information 

and collaboration hubs. Modelling data with semantic metadata to enable 

and promote semi-autonomacity within networks will not only increase the 

productivity and efficiency of a system as more tasks can be automated, but 

it should also foster better understanding and sharing of data amongst 

different vendors since common ontologies can represent data in a unified 

manner in most networks and thereby facilitating a greater level of 

collaboration. Overall, it can be concluded that existing implementations in 

the studied literature have the following limitations and drawbacks: 
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 Limited Collaboration Facilities: This is by far the biggest limitation in 

current systems and deserves the most attention in future research 

simply due to its overwhelming importance in the modern WoT. 

Because these systems are largely unable to obtain information from 

multiple sources (or make no effort to do so), they are unable to build 

a more relevant, accurate and consistent picture of the current 

environment in a given scenario. For example, in an earthquake, 

information from affected people in the area could prove invaluable as 

they can share up-to-date information regarding the situation on the 

ground in areas perhaps not covered by the response team (for 

example, due to lack of equipment, facilities and expertise). It is even 

possible to imagine people uploading data to IoT repositories like 

Xively as a disaster unfolds (e.g. real-time radiation monitoring in 

Japan in the wake of the nuclear catastrophe [74]). Being able to use 

this type of 3rd party and external information within the DM 

application can prove to be invaluable and it means that the 

responders, themselves, do not have to cover the entire affected area. 

Rather they can make use of existing setups and leverage 3rd party 

data and services to augment their understanding of the situation on 

the ground and increase their relief capabilities and outreach. 

 Lack of Semantics: As we move towards a semantic web, i.e. a state 

of the web where machines can understand and derive meaning from 

data that is present on the web providing it is marked up and 

annotated in a certain way, there is a need to design DM applications 

and general collaboration frameworks with semantics from the 
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ground-up. This will primarily foster machine-learning and allow us to 

automate rudimentary tasks, thereby reducing the time (and 

complexity) to setup. For example, the first time a multi-sensor 

platform like a SunSPOT device is connected to the network, the user 

may have to define the relevant properties and capabilities of the 

device which are then marked with semantic metadata and stored in 

the repository. The next time the same or another user wants to 

connect a similar device to the network, the system can offer 

“suggestions” to the user as the device description is entered by 

making use of the existing semantic metadata and Linked Data 

principles. This leads to a higher likelihood of users specifying 

properties and capabilities of devices, sensors and data in a unified, 

standardised manner, and therefore better probability that machines 

can understand and act upon this data by themselves, with as little 

manual intervention as possible. 

 Unsuitable data and access control models: When design is 

considered with generality in mind, it is not possible to strictly model 

data and access rights in an RBAC fashion simply because the idea of 

“organisations” clashes with the fundamental principle of generality, 

“decoupled systems”. Instead, a more comprehensive and decoupled 

access control mechanism is required to satisfy (albeit ironically) the 

constraints imposed by generality. 

Looking at the current state of the web and the growing need for open 

distributed systems, it is proposed that a semantics-driven, service-oriented 

and resource-based asset model would be ideal for creating a decoupled, 
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easily extensible, plug and play framework that can be customised for a 

variety of applications ranging from DM and relief work to monitoring and 

interacting with next-generation WoT applications (e.g. smart cities). The 

SAW framework is proposed as an enabler of the above vision. 

 

 

Chapter 3: SAW - Semantically-enriched & semi-Autonomous 
Collaboration Framework for the WoT 

3.1 SAW Concept 

SAW is envisioned as an enabler of the next-generation cross-vendor 

collaboration through the development of a decoupled, semantics-enabled, 

service-oriented and resource-based data model and the corresponding 

collaboration mechanisms. It is important to point out at this stage that the 

focus of SAW is on developing the actual collaboration mechanisms to 

achieve the vision of cross-vendor collaboration which necessitates the 

development of the underlying data model. However, as SAW is designed to 

be generic in nature, there is no intention to provide all the functionalities 

required by a DM application, even though the problem of managing 

disasters effectively through cross-vendor collaboration is used as the test 

case and scenario for developing and evaluating the prototype. Rather, the 

aim is to provide the underlying functionality and the necessary mechanisms 

to enable the extension of SAW to any WoT-related application. Therefore, 

the focus of SAW is on tackling the problem of collaboration amongst 

vendors that ultimately do not trust each other but still want to make use of 

each other’s data, information, knowledge and expertise, in a uniform and 

consistent manner. 
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The outlining issues faced by WoT applications and the resultant goals in 

achieving to remedy these issues have already been defined in the 

preceding chapter. Furthermore, the underlying functional requirements have 

also been defined and the basis laid for the foundations of the two major 

systems: 

1. Resource-based asset model; 

2. Semantics-based interaction models. 

The goals mentioned previously necessitate the design of a distributed 

systems architecture whereby different instances of the framework can be 

individually maintained by different actors but at the same time, can 

collaborate not only amongst each other, but also make use of information 

and knowledge present in 3rd party (and commercial) IoT offerings, as 

illustrated in Figure 3-1. 

 

Figure 3-1: SAW: The concept of a distributed system architecture 

A system like the one illustrated above is truly decentralised as no single 

instance has the capability to administer any of the other instances. This 

means that each instance can operate independently of the other instances 
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and can be customised for a particular application. If sometime down the line 

there is need for collaboration with another instance of the system (which 

might be customised for the same or even a different application), then this 

can be easily achieved and data, information and knowledge can be 

conveniently exchanged without relinquishing any partner’s control over their 

private instance. This distributed approach to collaboration also means that 

underlying assets can be reused and removes the burden of each actor 

having to collect the same portion of data that may have already been 

collected, processed, analysed and converted into information and 

knowledge by another actor. 

3.2 System Overview & Architecture 

The overall system architecture for SAW is presented in Figure 3-2. 

 

Figure 3-2: SAW system architecture 

It consists of: 
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 External Networks Integration: These might be local Wireless Sensor 

Networks (WSN), internet repositories or even other instances of SAW 

itself; 

 The SAW Network: The SAW network consists of: 

o An API that enables external networks to communicate with 

SAW. The API exposes where endpoints to provide different 

types of interactions with the sensing devices and data. 

o A web application that provides administration capabilities for 

the SAW network. 

o A real-time server that provides real-time statistics (e.g. number 

of devices, requests coming in, semantically annotated 

devices, etc.). 

o A semantics engine that semantically annotates resources. The 

semantics engine relies on ontologies to define semantic 

concepts that can be applied to annotated devices. 

The above is a comprehensive system architecture and envisions the SAW 

framework being hosted in a cloud computing environment. However, due to 

shortness of time and limitation of scope, only the following features are 

designed and implemented in this thesis (and the implemented prototype): 

 External Networks Integration: Integration with a local WSN only. 

More details about this are provided in Chapter 4: (prototype 

implementation); 

 The SAW Network: 

o Only the following API endpoints are designed and 

implemented: Tokens (CPPM-TBAC – section 3.4.3), Feeds, 
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Streams and Points (the Asset Model – section 3.4.1). These 

enable basic device interactions such as registering devices 

and uploading sensing data. Other endpoints such as event, 

subscriptions and publications are not designed or 

implemented in this thesis. 

o The web application. 

o The semantics engine. The capability to annotate sensing 

device properties is provided. The capability to define semantic 

concepts for measurement data are marked as an item for 

future work. 

In brief, this thesis is not investigating the design or usage of the real-time 

server, cloud computing hosting and events and publishing/subscription 

endpoints and these should be considered items for future work. 

3.3 Design Considerations 

3.3.1 Ontology Selection 

SAW is a semantic solution to the generic problem of collaboration in a multi-

party environment. The basis of using semantic technologies to tackle and 

solve this issue of cross-vendor collaboration has been established in earlier 

chapters and so it is evident that a comprehensive, flexible and all-

encompassing ontology needs to be adopted to make possible the design of 

a generic and extensible collaboration platform. In this regard, the SSN 

ontology stands out for its adaptability and extensive nature. 

SSN can be considered the semantic equivalent of the highly popular OGC 

SWE suite. In fact, SSN is designed as an enhancement of some of the 

founding standards of SWE, for example, SensorML and Observations & 
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Measurements (O&M). This makes the SSN ontology a highly valued 

semantic adaptation of the popular OGC SWE suite. 

The OGC SWE standards provide description and access to data for sensing 

devices. However, the suite does not provide facilities for abstraction, 

categorization, and reasoning of devices and data. This is made possible 

through the semantics offered by SSN. In effect, SSN provides a domain-

independent, end-to-end model for sensing applications which is ideal not 

only for DM applications, but also as a whole for the WoT domain wherever 

sensing devices and data is considered. 

Another reason for the selection of SSN over other ontologies is its 

expressive nature, and the fact that it has been designed after reviewing 

many of the major existing ontologies. This has enabled SSN to learn from 

the mistakes and limitations of existing vocabulary systems and produce a 

more generic and extensible ontology. 

Existing ontologies for sensing devices and data can be split into two 

predominant categories: 

1. Sensor ontologies which focus on defining devices; and 

2. Observation ontologies which focus on quantifying the actual 

observations and measurements processes. 

Various efforts exist for each of the above two categories. CSIRO Sensor 

Ontology [75], OntoSensor [76], Sensor Web for Autonomous Mission 

Operations (SWAMO) ontology [77], Sensor Data Ontology (SDO) [78], 

Coastal Environmental Sensor Networks (CESN) ontology [79], WIreless 

Sensor Networks Ontology (WISNO) [80] and Ontonym – Sensor [81] are 

example sensor ontologies that have been reviewed by the SSN group as 
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part of their design process. Similarly, Semantic Reference Systems 

(SeReS) O&M [82], Stimuli-centered ontology [83], Sensei O&M [84], O&M-

OWL (SemSOS) [85] and Socio-Ecological Research and Observation 

oNTOlogy (SERONTO) [86] are examples of observation ontologies which 

have also helped shape the final SSN ontology. Since a comprehensive 

survey and analysis of these ontologies is presented in the SSN final report 

[87], the same will not be provided here in favour of brevity. 

SSN combines efforts of existing sensor as well as observation ontologies to 

produce an all-inclusive vocabulary system that can be extended to 

application-specific domains easily. The broadest definitions for concepts 

have been chosen in this ontology so that in the future, domain-specific sub-

concepts can be defined and extended easily and intuitively. The ontology, 

therefore, allows modelling of sensing devices, their measurement 

capabilities, operating and survival restrictions and deployments on multi-

platform systems and physical sites. The decision to align the core ontology 

concepts to the DOLCE-UltraLite (DUL) upper level ontology ensures future 

extensibility of the vocabulary definitions and usage in a broad array of 

applications. 

The SSN ontology is designed around the Stimulus–Sensor–Observation 

(SSO) pattern [88] and can be viewed from four differing perspectives: 

 From the sensor perspective with a focus on the sensing of the 

device: what is sensing, what is being sensed, and how it is being 

sensed. 

 From an observation perspective with a focus on what is observed. 
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 From a system perspective with a focus on deployments and multi-

sensor platforms (sensors) 

 From a feature and property perspective with a focus on observable 

properties, what senses them and how observations are made about 

them. 

In SAW, since the SSN ontology is used to annotate sensing devices and 

data, it makes to take the ontological architecture into consideration when 

designing the data and asset model for the framework. To do this, the SSN 

ontology needs to be viewed from the system perspective. In this 

perspective, the following core concepts are used: 

 Platform; 

 System; and 

 Sensors and Devices. 

A “System” is the overarching concept which can have many subsystems 

(Sensors and Devices) attached to it (i.e. sensing devices). Systems can, in 

turn, be mounted on platforms in deployments. A practical example of this is 

an Arduino Board which is a “System” (a multi-sensor platform), has 

subsystems (sensing devices): light and temperature sensors, has platform: 

laptop, and has deployment: wireless sensor network (or any other arbitrary 

name used to refer to the system of interconnected devices). 
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Figure 3-3: SSN System perspective showing relationship 

between System, Deployment, Platform and Devices 

 

Figure 3-4: Device hierarchy of SSN 

ontology 

 

Figure 3-3 shows the relationships between core concepts in this 

perspective. If this was to be modelled in a hierarchical data model, then it 

would produce a 3-tier hierarchy like the one shown in Figure 3-4 which 

shows a deployment platform containing many systems (multi-sensor 

platforms), and each system containing many devices (the actual sensing 

devices). This is, of course, quite extensive, and retaining all 3 tiers when 

mapping this semantic model to a non-semantic one might be unnecessary 

since the Platform (deployment site) and top-tier System (multi-sensor 

platform) can, essentially, be represented as one entity: a multi-sensor 

platform. This will achieve the required simplicity in the non-semantic model 

without impacting the expressivity of the semantic model. 

3.3.2 Extension of the SSN Ontology 

SAW’s semantic annotation system, as is explained later on in this chapter, 

revolves around the usage of arbitrary tags specified by users of the system 

to identify devices. Users of the system are not semantically restricted when 

it comes to defining tags for their devices, so the keywords specified in the 

payload in the form of tags can be arbitrary strings of data. The first 

challenge is to represent these arbitrary tags as semantic concepts that can 
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be linked to sensing devices. The second challenge is to map these arbitrary 

tags to the sensing devices associated with their representation through the 

inference of the semantic concepts relating to the specified tags. The final 

resultant ontology is attached in the appendix. 

3.3.2.1 Defining Types of Sensing Devices 

The first step is to define the various types of sensors to bootstrap the 

system and build the initial knowledgebase. Each type of sensor will be a 

subclass of the SensingDevice concept (e.g. TemperatureSensor 

rdfs:subClassOf ssn:SensingDevice). This allows retention of the semantic 

definitions and restrictions applied to the SensingDevice concept from the 

SSN ontology whilst permitting instantiation of devices as instances of a 

particular type of sensor. A small variation of sensors has been defined in the 

initial ontology as shown in Figure 3-5. End-users can extend the ontology to 

refine definitions for individual sensors or to add further device concepts 

easily and in an extensible manner.  

 

Figure 3-5: SAW sensor type concepts as a subclass of ssn:SensingDevice 

If the user is registering a new type of device whose concept doesn’t exist in 

the bootstrapped knowledgebase, then the system should facilitate the 

addition of the new device concept as a subclass of ssn:SensingDevice. This 
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will enable community-driven enrichment of the knowledgebase and 

extension of the system. 

Furthermore, the ontology uses the owl:sameAs property to contribute to 

published linked data. Figure 3-6 shows an excerpt from the ontology where 

the CO2Sensor concept is being defined. This concept corresponds to a 

sensing device measuring the carbon dioxide gas. An owl:sameAs assertion 

is made on line 252 in the figure to indicate that this concept is similar to 

another sensing device concept which exists in DBpedia and identified by the 

URI: http://dbpedia.org/resource/Carbon_dioxide_sensor. This concept of 

“class equality” allows the ontology to be extended in the future and 

interlinked with published semantic metadata on the web to integrate with 

similar semantic concepts from other knowledge bases. 

 

Figure 3-6: Excerpt from SAW ontology showing the CO2Sensor concept 

A similar approach is adopted to define concepts for multi-sensor platforms 

as shown in Figure 3-7. On line 34, a concept is defined for an Arduino 

board, a multi-sensor platform. On line 36, a primary tag for the concept is 

added to the definition. This process will take place when a new device is 

added to the network. 

On line 38, an instance of this multi-sensor platform is created and on the 

following line a primary tag is inserted for this new instance. When searching 

for tags corresponding to a device, both the parent concept and the 

individual instances will be traversed to produce an all-inclusive list of tags.  
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Figure 3-7: Excerpt from a device definition file showing description of a concept for the Arduino multi-

sensor platform 

3.3.2.2 URI Structure for Ontology Concepts 

A logical URI structure is used to reference not only the ontological concepts 

defined above, but also the sensing devices and their deployment 

characteristics within the network. To begin, the base URI is set to: 

http://saw.local/sw/ (please note that the domain name, “saw.local” is used 

for illustrational purposes only and resolves to a local instance of the 

network, and is thus not available on the web directly). Then the ontology 

URI is set to: http://saw.local/sw/ontology#. All ontological concepts derived 

by SAW are referenced to this URI, for example, 

http://saw.local/sw/ontology#PressureSensor for referring to the pressure 

sensor ontological concept, and http://saw.local/sw/ontology#Arduino for 

referring to the Arduino multi-sensor platform class. The individual instances 

of DF and DS are referenced to the URIs http://saw.local/sw/feeds# and 

http://saw.local/sw/streams# respectively. This would imply that an instance 

of an Arduino board labelled “Arduino-UoB-001” would be referenced to the 

URI http://saw.local/sw/feeds#Arduino-UoB-001. Similarly, a position sensor 

labelled “PositionSensor-UoB-001” would be referenced to the URI 

http://saw.local/sw/streams#PositionSensor-UoB-001. A coherent and 

comprehensive URI is essential for developing an easily traversable linked 

data map of the semantic information contained within the knowledgebase. 

The URI structure presented above achieves this aim by splitting up assets 
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into logical groupings and separating the ontological concepts from individual 

instances. 

SAW also defines URIs corresponding to three other overarching concepts 

found in the SSN ontology: ssn:System (multi-sensor platforms), 

ssn:Platform (host machines on or through which the multi-sensor platforms 

operate, such as PCs, laptops, servers, etc.) and ssn:Deployment 

(characteristics of the actual deployment, for example, location information). 

The corresponding URIs for these three concepts are 

http://saw.local/sw/deployment/system, 

http://saw.local/sw/deployment/platform and http://saw.local/sw/deployment 

respectively. Using this URI scheme, SAW is able to easily distinguish 

between the different levels of granularity involved in the semantic mapping 

of devices and their properties in the network. 

3.3.2.3 Representation of Tags as Semantic Concepts 

SAW extends the SSN ontology to define concepts to represent tags. The 

main concept is an owl object property termed DeviceTag, with the sub-

properties: DevicePrimaryTag and DeviceSecondaryTag as shown in Figure 

3-8. The DevicePrimaryTag is defined as a tag that has a direct and 

unambiguous relation with the tagged device, for example, the tag “temp” for 

a sensing device that is an instance of the TemperatureSensor concept. 

DeviceSecondaryTag, on the other hand, is defined as a tag that has an 

indirect and possibly ambiguous relation with the tagged device, for example, 

the tag “position” for a sensing device that is an instance of the 

ProximitySensor concept, or the tag “sensor” for any device. Finally, by 

applying an rdfs:domain restriction on the DeviceTag concept to ssn:System, 
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it is ensured that the tag properties can be applied to any type of device 

modelled through the SSN ontology. 

 

Figure 3-8: Illustration of the "DeviceTag" tag in the SAW ontology 

Since the DeviceTag is modelled as an owl object property, it can be 

assigned to instances of ssn:SensingDevice and its sub-concepts. For 

example, Figure 3-9 shows an excerpt in the Turtle format that first creates 

an instance of the CO2Sensor concept, and then assigns tags to it: 

 

Figure 3-9: Sample Turtle excerpt showing device instantiation and tagging 

Lines 1 & 2 instantiate a sensing device called “CO2Sensor-Ard-001” as an 

instance of the CO2Sensor concept. A list of primary tags for the device are 

then defined on line 6. These are tags that have a direct and easily 

identifiable relation with the tagged device. Line 7 then defines some 

secondary tags which don’t have any direct association with the tagged 

device but might prove useful as a stepping stone. The real challenge, 

however, is to categorise tags defined by the user as either primary or 

secondary tags, and then to append these onto the actual sensor type 

definitions so that a degree of semi-autonamicity can be achieved in future 

annotations. 
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Putting this altogether, individual types of sensing devices can now be 

modelled through the corresponding ssn:SensingDevice sub-concepts from 

the SAW ontology. Each of these sub-concepts can then be enriched by 

specifying a list of tags (both primary and secondary), which can be used to 

profile new devices being added to the network according to the correct 

concept. 

3.3.2.4 Methodology for Extracting & Classifying Tags  

An initial list of primary and secondary tags can be specified for each 

concept in the beginning to bootstrap the system. Eventually, however, an 

actual mechanism will be needed to extract user defined tags for a device. 

This mechanism will revolve around one of the following scenarios: 

 The device being modelled is a new type of sensor whose concept 

does not exist in the knowledgebase; 

 The device being modelled has a corresponding concept in the 

knowledgebase. 

If the device being modelled is a new concept, then the system can define 

the new concept and assign non-ambiguous tags as the primary tags for the 

new device. Non-ambiguous tags are those tags which don’t already have an 

association with another sensor type concept in the knowledgebase. All other 

tags should be assigned as secondary tags for the new concept. 

The mechanism for classifying tags of a device belonging to an existing 

concept is slightly more complex. First the user-defined tags will be used to 

search the knowledgebase for any associations to a sensing device concept. 

If no associations can be found, then either the user has provided an 

inadequate list of tags, or the device concept does not exist in the 
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knowledgebase. The mechanisms for dealing with this are detailed in the 

semantic annotation section. 

If a primary association has been found (i.e. one of the provided tags 

matches an instance which is DevicePrimaryTag of a sensing device), then 

the device should be modelled as the corresponding sensing device concept. 

Any tags provided for the new device by the user registering the device 

should then be added as secondary tags for the corresponding sensing 

device concept provided that they are not already modelled as DeviceTag 

properties for the sensing device concept. 

If more than one primary association has been found, then the secondary 

tags need to be processed to produce a similarity rank. The primary 

association with the most secondary tags associated to it should be chosen. 

If more than one primary association still remains after this process, then the 

user should be presented with the associations and asked for the final 

selection. If this is not possible (e.g. when mining data from other 

repositories that don’t implement the feedback loop), then an association 

should be chosen at random. 

If no primary associations are found but one or more secondary associations 

are found, then the secondary association with the largest number of 

corresponding tags should be chosen. If there is a tie, then the user should 

be presented with the associations and asked to make the final selection. If 

this is not possible, then an association should be chosen at random. 

Finally, it is highly recommended to exclude from the onset or remove later 

on really ambiguous concepts like “sensor”, “device”, “sensing device”, etc. 
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from the knowledgebase as these can lead to false positives resulting in 

faulty modelling of devices. 

3.3.3 Database Types 

Two different types of databases need to be used to store the different types 

of data present in SAW. 

First of all, a relational database system called MySQL needs to be used to 

store data with a known and fixed schema. Examples of this include user 

details, user permissions, user group assignment, system and error logs, etc. 

At the same time, a non-SQL database is needed to store data that has an 

unknown or dynamic schema that changes depending on the object being 

stored. Examples of this type of data include token permissions (there can be 

one permission policy definition or more than 10, each with different fields, 

ids, keywords, etc.), and DF, DS and DP definitions (each with varying 

properties). MongoDB is an example of a prominent no-SQL and non-

relational database system and needs to be used to store token policies and 

DF, DS and DP definitions and sensing data. 

3.4 Proposed System Architecture 

In line with the functional requirements, achieving the vision for SAW 

necessitates the creation of an abstract and resource-based asset model 

and a service-oriented and semantic interaction model. The resource-based 

asset model is essential for provisioning multiple layers of inspection so that 

assets can not only be built as mashups, but also decomposed into their 

fundamental origins upon inspection. The service-oriented interaction model 

will foster the birth of a set of decentralised and distributed collaboration 

mechanisms and, alongside the resource-based asset model, will lay the 
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foundations for an extensible collaboration model. Put together, these two 

approaches will enable representation of assets at different levels of 

granularity and expressiveness (from data to information to knowledge and 

the other way around), with the capability to easily expand their semantic 

definitions through generic and extensible templates. Secondly, the 

distributed nature of the interaction model will make it possible for individual 

instances of SAW to contain custom extensions and enable the instance 

administrators to augment the framework with problem-specific functionalities 

without affecting its ability to interact with other instances. Finally, by 

exposing the framework as a RESTful API, it becomes convenient and 

feasible for 3rd party networks to use the network’s assets and vice versa. 

3.4.1 Asset Model 

3.4.1.1 Conceptual Architectures 

Any resource that is captured, processed, derived or published is considered 

a network asset in SAW. The purpose of modelling assets is to allow 

abstraction of resources and empower the framework with the capability to 

define generic and extensible templates. The by-product of this process (and 

a much-needed functionality of the framework) is the possibility to compose 

assets from raw resources to form complex mashups, and then to also 

decompose compounded representations into their fundamental origins. The 

following steps are undertaken when modelling assets: 

1. Define data in terms of its expressiveness: This is the capability of 

assets to hold a meaningful representation. 

2. Define a data hierarchy so that assets can be categorised in terms of 

granularity. 
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In SAW, there exist 3 layers of data in terms of its expressiveness (Figure 

3-10), as has been mentioned previously in section 2.4: 

1. Data, which is the raw and unprocessed representation of sensor 

data; 

2. Information, which is the processed and tagged sensor data that may 

or may not be semantically annotated; and 

3. Knowledge, which is the derived rich set of information composed 

through via semantic technologies. 

 

Figure 3-10: Data expressiveness in SAW 

This structure makes it possible to break down high-level knowledge into the 

underlying information and even down to the very fundamental raw pieces of 

data which is useful for introspection of assets. Furthermore, the process of 

producing information from data and then deriving knowledge from 

information through the use of semantics presents a common methodology 

for participating networks to generate and understand network assets. 

SAW provides a simple but extensible data hierarchy as illustrated in Figure 

3-11 and explained previously in section 2.4. A DF implements a generic 

device template which can be used to model and represent any kind of 

physical or virtual device, for example, an Arduino board or a twitter user 

respectively. A DF has 1 or more DS that describe a particular sensor or 

actuator asset of the DF, for example, a light sensor on an Arduino board or 
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a twitter user’s tweet DS. Finally a DS can have 0 or more DP, where each 

DP references a particular value at a given instance in time, for example, a 

time-stamped light sensor value or a particular tweet from the DS of a twitter 

user. It can be seen that this model is derived through the simplification of 

the SSN device hierarchy with DF representing the top-tier “System” and DS 

representing the “Device” concepts of the ontology. Aligning the non-

semantic data model to the semantic device hierarchy of the SSN ontology 

ensures that SAW is easily able to map devices and data to the relevant 

concepts in the ontology, whilst retaining a sense of freedom and flexibility in 

the non-semantic modelling of devices and data. 

 

Figure 3-11: Data hierarchy 

DF, DS and DP are described initially using a set of generic templates called 

the Generic Device Definition (GDD) templates which are domain-

independent and can be customised to fit into any application domain. Once 

these initial payloads have been submitted to register the devices, further 

semantic templates referred to as Semantic Annotation (SA) templates can 

be used to add well-defined and cross-network semantic metadata to the 

device definitions. SA templates are discussed later on in this chapter. 

The GDD templates constitute the initial generic templates which are mainly 

used to register the devices to the network. The purpose of these payloads is 

to provide an intuitive and flexible template which can be used to define and 

register devices at a very basic and non-semantic level. GDD templates are 

therefore: 
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1. Extensible, so that more fields can be added as and when needed; 

and 

2. Transport-independent so that they can be represented in any data 

transport technology (XML, JSON, etc.). In SAW, the JSON format is 

used by default as it is more lightweight and widespread in the 

RESTful web than other representations. 

3.4.1.2 Generic Device Definition Templates 

When DF (whether physical or virtual) are connected to the network, they 

need to be registered to the network before they can be deployed and 

interacted with. To do this, the user specifies a set of mandatory properties 

for the device being registered, but is free to add other arbitrary definitions 

which are not understood but can be supported by the network, but can still 

be used to interact with the device. These templates are described below. 

3.4.1.2.1 DF Template 

The DF template is used to register a multi-sensor device platform, such as a 

SunSPOT device or an Arduino board. Figure 3-12 shows a DF template 

with only the three network-defined fields in the template. 

 Title: The name or identifier of the device which can easily distinguish 

and identify the device. This doesn’t have to be a unique identifier. 

 Visibility: Either public or private. Public devices can be viewed 

without the use of a token (see the section on CPPM-TBAC) whereas 

private devices can only be viewed if the requester produces a valid 

token. In the absence of this definition, the visibility of the device is set 

to public. 
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 Tags: A comma-separated list of tags that identify some property of 

the device. These are not required, but highly recommended since 

they form the basis of the semantic annotation interactions (detailed 

later on in this chapter). 

 

Figure 3-12: GDD template for a DF with only 

the network-defined fields 

 

Figure 3-13: GDD template for a DF with additional 

arbitrary definitions 

The template presented above is, of course, very rudimentary. In effect, that 

is the entire purpose of GDD templates: that they are generic and simple. 

This is feasible because the actual semantics are added to the devices later 

on via the SA templates, so there is no need for complicating the baseline 

device registration templates. But this does not mean that these templates 

cannot be expressive or extensible. Figure 3-13 shows a slightly more 

expressive registration payload where the user has specified additional 

arbitrary fields to enhance the description of the multi-sensor platform. Whilst 

the additional fields hold no semantic value as far as the SAW platform is 

concerned, they can nonetheless be treated as such with extensions to the 

system. Therefore it can be seen that SAW offers unparalleled functionality 

and freedom by offering generic and extensible device registration templates 

which promote usage of the platform by lowering the entry barrier and 

catering for extensibility within the framework.  
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Once the user fills the above template and sends it to the network for 

processing, the device registration process can take place and upon 

successful registration, the user will receive a unique device ID (labelled 

“feed_id”) that forms the resultant URI which can be used to browse to and 

interact with the device. This is described in greater detail in the section 

pertaining to the implementation of the framework. 

3.4.1.2.2 DS Template 

The DS template is almost exactly like the DF template, with the exception of 

one additional mandatory field: feed_id (Figure 3-14). This new mandatory 

field (if the DF ID is not specified in the URI) specifies which DF the new DS 

is being added to, since each DS must have a parent DF. 

 

Figure 3-14: GDD template for a DS with only the network-defined fields 

Similarly, users can extend the core GDD template for DS by specifying 

additional arbitrary fields and properties for their devices, just like they are 

able to when registering DF. 

The visibility of a DS might be restricted depending on the visibility of its 

parent DF. If the parent DF is a public device, then the child DS can take 

either the public or the private visibility. If, however, the parent DF is a private 

device, then the child DS must specify a private visibility scope. This means 

that sensing devices attached to private multi-sensor platforms are always 

private and require a token with the necessary grants before they can be 

browsed or interacted with. If the user has a multi-sensor platform with an 

array of sensing devices but only wants to make a few of them open for 
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public dissemination, then this can be easily accomplished by setting the 

visibility of the corresponding DS to public, and leaving the rest with the 

private visibility scope. 

3.4.1.2.3 DP Template 

After the two-tier devices have been defined using the DF and DS templates, 

only the problem of uploading the actual sensor data remains. This is done 

through the simplistic DP template as shown in Figure 3-15. 

 

Figure 3-15: GDD template for DP with only the network-defined fields 

In a DP template, the only network-defined fields are: 

 DF and DS ID: All DP belong to a DS which, in turn, belongs to a DF. 

These two fields are not mandatory if the respective IDs are present in 

the request URI, e.g.: 

POST 

http://saw.local/api/v1/feeds/FEED_ID/streams/STREAM_ID/points 

 

 At: A date-time stamp (formatted according to the ISO 8601 date and 

time standard) which specifies when the observation took place; 

 Value: A string representing the observed value at the time the 

observation took place. This can be any type of string or integer. 

Again, the DP template can be extended even though there might be very 

limited reasoning for doing so since the actual device definitions are already 

stored in the DP and DS templates. For the sake of extensibility, however, 

this functionality has been maintained as with the DF and DS templates. 
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If numeric values are specified for a reading, then it is easier for the 

framework to chart these values in a time series on a graph. The same may 

not be possible for textual and descriptive sensor readings such as “hot”, 

“cold”, etc. However, the functionality can certainly be developed within the 

framework should the need arise due to the extensible nature of the 

templates and the service-oriented architecture of the framework. 

3.4.2 RESTful Resource Exposition 

3.4.2.1 Overview of REST and URIs 

To enable web-based interaction based on resources, the framework needs 

to extend an API based on the RESTful architecture of the web. This 

architecture is chosen because the vision of WoT hinges on turning everyday 

connected things into web-based resources that can be browsed and 

interacted with much like we browse and interact with webpages today. To 

enable this vision over the HTTP protocol of the internet, the RESTful 

architecture needs to be adopted [89]. 

REST, which stands for Representational State Transfer, provides a 

resource-based, web-oriented architecture for achieving interoperability and 

decoupling of distributed applications on the web [90]. It is more lightweight, 

widespread, and simpler than the more verbose and complex WS-* (Web 

Services) suite (based on SOAP). A RESTful architecture leverages all the 

inherent power and features of HTTP to deliver services to the accessing 

agent (e.g. a web browser) by modelling objects and services to be 

interacted with as resources that can be browsed, navigated, linked and 

bookmarked. 
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The RESTful architecture relies on Uniform Resource Identifiers (URIs), 

which are more commonly known as Uniform Resource Locators (URLs) on 

the web. The origins of the URIs began as document identifiers on the web 

which pointed to a document’s location on the network. This definition was 

quickly changed as it became apparent that URIs did not always point to 

documents, and could essentially be used to refer to any type of artefacts 

presented on the web. URIs, thus, were redefined as endpoints that lead to 

resources [90]. Now that resources can be identified through URIs on the 

web, the only remaining problem is now one of interaction with these 

resources. REST solves this problem through the following four well-defined 

HTTP verbs: 

 GET: Request/browse to a resource identified by the URI; 

 POST: Create a new resource according to the presented URI and the 

attached payload; 

 POST: Update an existing resource according to the attached payload 

and identified by the URI; 

 DELETE: Delete the resource identified by the URI.  

Through the above four HTTP verbs, it is possible to browse and interact 

with a web-based resource in any manner possible. 

3.4.2.2 RESTful API for SAW’s Asset Model 

The resource-based asset model in SAW is exposed through a RESTful API, 

just like the growing number of Web 2.0 applications that use the same 

principle to expose their services for mass consumption. Basic CRUD 

(Create, Read, Update, Delete) operations on resources are enabled through 

the use of the corresponding HTTP verbs: POST for creating, GET for 
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reading, PUT for updating, and DELETE for deleting resources. In SAW’s 

own terminology, POST, PUT and DELETE actions are collectively referred 

to as modify actions, whilst GET is referred to as a read action. 

All actions require a token with the necessary grants before the action can be 

carried out. This requirement is imposed regardless of whether the subject 

resource has been set as private or public visibility. Read actions on public 

visibility resources are the only exception to this norm as in this case, no 

token is required to carry out the action. The workings of access control are 

detailed later on in this section, so only the process required to specify 

tokens in the request is detailed here. 

Tokens can be specified with the request in one of two ways: (1) Through the 

HTTP Headers and (2) As a URL query parameter. The former method is 

preferred and leads to better URIs. With the former method, the token must 

be specified in the HTTP Headers. This can be done by specifying a new 

header field/key called “X-ApiToken”, and then specifying the token as a 

value of this new header field like so: X-ApiToken: 5195feafe. If this is not 

possible, then the second method can be used. In this method, the token 

needs to be appended as a query string to the end of the URI with the query 

parameter: “token”. An all-inclusive URI with an appended token would look 

something like this: http://saw.local/api/v1/feeds?token=5195feafe. Both 

methods achieve the same result, but the former is preferred since it does 

not clutter the URI. 

Similarly, the client must also remember to specify a “Content-Type” HTTP 

Header. This basically informs the server of the client’s wishes in retrieving 

the response in a certain fashion (e.g. JSON document, XML document, 
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HTML document, etc.). By default, the server returns all responses in JSON 

format. 

DF, DS and DP are manipulated as resources through the API by virtue of 

the four HTTP verbs. Each resource has a clearly identifiable and traversable 

URI as is detailed below. Please note that the domain name, “saw.local” is 

used for illustrational purposes only and resolves to a local instance of the 

network, and is thus not available on the web directly. Similarly, the trailing 

“api/v1” is used by the framework to access the API endpoints corresponding 

to the version specified, which is “v1” in this case. Thanks to the service-

oriented architecture of SAW, the framework could be designed so that it can 

easily accommodate updates and extensions. The versioning of the API 

helps ensure that clients can keep on using an older version of the API when 

(and if) updates are made to the programming interface. 

3.4.2.2.1 DF Endpoints 

To create a new DF (i.e. device registration); a POST request needs to be 

submitted to the POST URI shown in Table 3-1 alongside the necessary 

payload. A sample is presented in Figure 3-16 to illustrate the process. 

The visibility property is required (public or private) alongside the title, as has 

been mentioned before.  Everything else is optional, but it is highly 

recommended to set the DF description for ease of identification, and specify 

some tags to enable the semantic annotation of the device. 

If the DF is successfully created, then the response will contain a HTTP 

Header called “location” which contains the URI for accessing the newly 

created DF. 

Table 3-1: Resource endpoints for DF 
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Action URI (http://saw.local/api/v1 has been omitted for the sake of readability) 

POST /feeds 

GET 

 View a single resource: 

/feeds/FEED_ID 

 View a list of resources accessible by the specified token: 

/feeds 

 Sample: Fetch the DF with ID 51c: 

/feeds/51c 

PUT 

/feeds/FEED_ID 

 Sample: Update the DF with ID 51c: 

/feeds/51c 

DELETE 

/feeds/FEED_ID 

 Sample: Delete the DF with ID 51c: 

/feeds/51c 

 
Method: POST, URI: /feeds 

 

Figure 3-16: Sample payload for creating a new DF 

The process of updating the DF is similar to that of creating it. The only 

difference is that the HTTP verb used now is the PUT verb and the ID of the 

DF is required in the URI. The payload, illustrated in Figure 3-17, should only 

contain values for fields that are being updated. 

Method: PUT, URI: /feeds/FEED_ID 

 

Figure 3-17: Sample payload for updating an existing DF 

Deleting a DF resource is far simpler. It only requires a request to be made 

with the DELETE verb and the ID of the DF to be deleted appended to the 

URI, as follows: 

Method: DELETE, URI: /feeds/FEED_ID 
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Fetching an already existing resource is also quite simple as it requires no 

payload to be specified with the request. The requester should make the 

request using the GET verb and append the ID of the DF of interest to the 

URI, as shown below: 

Method: GET, URI: /feeds/FEED_ID 

This will return a response like the one shown in Figure 3-18: 

 

Figure 3-18: Sample response when fetching a DF 

It is even possible to fetch a list of feeds that are accessible by the specified 

token by trimming the DF ID from the URI like so: 

Method: GET, URI: /feeds 

This will return a list of DF as shown in Figure 3-19. The list contains unique 

IDs of the DF that are accessible by the specified token. In turn, these IDs 

can be appended to the request URI to fetch more details about that DF. 

 

Figure 3-19: List of DF that are viewable by the specified token 
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3.4.2.2.2 DS Endpoints 

DS endpoints branch off from DP endpoints since DS belong to DF. This 

produces a resource architecture that is logical, consistent, linked and 

traversable. 

Creating, updating, deleting and fetching DS resources is just like 

manipulating DF resources with the exception that the API endpoints are 

different. The only other difference is that for POST and PUT requests, the 

parent DF ID needs to be specified in the payload if it is not present in the 

URI. If the URI structure being used is similar to the one presented in Table 

3-2 where DS are branched off of DF, then specifying the DF ID in the device 

registration and update payloads is not necessary as it’s already present in 

the URI. If however, an instance of the framework decides to use a more 

concise URI format which excludes the DF ID from the URI (e.g. PUT 

/streams/STREAM_ID), then the DF ID will need to be specified explicitly in 

the payload of POST and PUT requests. 

When a new DS is created successfully, a HTTP Header called “location” will 

be returned with the response to identify the unique ID of the newly created 

resource and the full URI which can be used to interact with the new DS. 

Similar to viewing DF, a list of DS can be fetched by trimming the DS ID from 

the GET URI. The ID of each DS can then be taken and appended to the 

URI request to browse the individual DS resources. 

Table 3-2: Resource endpoints for DS 

Action URI (http://saw.local/api/v1 has been omitted for the sake of readability) 

POST /feeds/PARENT_FEED_ID/streams 

GET 

 View a single resource: 

/feeds/ PARENT_FEED _ID/streams/STREAM_ID 

 View a list of resources accessible by the specified token: 
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/feeds/PARENT_FEED_ID/streams 

 Sample: Fetch the DS with ID 51d, belonging to DF with ID 51c: 

/feeds/51c/streams/51d 

PUT 

/feeds/ PARENT_FEED _ID/streams/STREAM_ID 

 Sample: Update the DS with ID 51d, belonging to DF with ID 51c: 

/feeds/51c/streams/51d 

DELETE 

/feeds/ PARENT_FEED _ID/streams/STREAM_ID 

 Sample: Delete the DS with ID 51d, belonging to DF with ID 51c: 

/ feeds/51c/streams/51d 

3.4.2.2.3 DP Endpoints 

DP endpoints branch off from DS endpoints since DP belong to DS. Again, 

this architecture is adopted to produce a logical, consistent, linked and 

traversable resource tree. 

Creating, updating, deleting and fetching DP resources is just like 

manipulating DF and DS resources with the exception that the API endpoints 

are different. The only other difference is that for POST and PUT requests, 

the parent DF and DS IDs need to be specified in the payload if they are not 

present in the URI. If the URI structure being used is similar to the one 

presented in Table 3-3 where DP are branched off of DF and DS, then 

specifying the DF and DS IDs in the DP creation and update payloads is not 

necessary as they’re already present in the URI. If however, an instance of 

the framework decides to use a more concise URI format which excludes the 

DF and DS IDs from the URI (e.g. POST /points), then the DF and DS IDs 

need to be specified explicitly in the payload of POST and PUT requests. 

Table 3-3: Resource endpoints for DP 

Action URI (http://saw.local/api/v1 has been omitted for the sake of readability) 

POST /feeds/PARENT_FEED_ID/streams/PARENT_STREAM_ID/points 

GET 

 View a single resource: 

/feeds/ PARENT_FEED 

_ID/streams/PARENT_STREAM_ID/points/POINT_ID 
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 View a list of resources accessible by the specified token: 

/feeds/PARENT_FEED_ID/streams/ PARENT_STREAM_ID/points 

 Sample: Fetch the DP with ID 51e, belonging to the DS with ID 51d, 

belonging to DF with ID 51c: 

/feeds/51c/streams/51d/points/51e 

PUT 

/feeds/ PARENT_FEED _ID/streams/ 

PARENT_STREAM_ID/points/POINT_ID 

 Sample: Update the DP with ID 51e, belonging to the DS with ID 51d, 

belonging to DF with ID 51c: 

/feeds/51c/streams/51d/points/51e 

DELETE 

/feeds/ PARENT_FEED _ID/streams/ 

PARENT_STREAM_ID/points/POINT_ID 

 Sample: Delete the DP with ID 51e, belonging to the DS with ID 51d, 

belonging to DF with ID 51c: 

/feeds/51c/streams/51d/points/51e 

 

3.4.3 Enhanced Token-Based Access Control Mechanism 

The constant fluctuations and rapid variations in data present in the WoT 

makes traditional access control mechanisms such as User-Based, 

Authorization-Based and Role-Based Access Control (UBAC, ABAC and 

RBAC respectively) highly unsuitable for the task at hand, which is to flexibly 

manage access to (often times, dynamically generated) data at varying 

levels of granularity. In a WoT setting, it cannot be assumed that the users of 

the system are known, i.e. access by anonymous data access points, which 

may be users or other machine endpoints, needs to be catered for and 

provisioned within the system [91]. Token-Based Access Control (TBAC) 

mechanisms cater for this need of secure and anonymous data access 

through interrogation of RESTful resource endpoints, but just on their own, 

do not contain the flexibility to refine access to fine levels of granularity 

without resorting to mass-generation of tokens, which is not manageable in a 

realistic WoT application. This study introduces a Cascading Permissions 

Policy Model (CPPM) for the TBAC system (henceforth referred to as CPPM-

TBAC) such that access control policies can be extended to not only allow 

finer control over granularity of visible resources, but also contain context-
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specific parameters that can further refine access based on the request 

origin context. 

3.4.3.1 Catering for Unbounded, Temporal and Dynamic Resources 

Repositories in the WoT have very different characteristics than traditional 

data stores. In the WoT context, consideration has to be given to the 

potential of handling an unbounded number of devices (sensors, actuators, 

and virtual entities), services (composition, processing, transformation, etc.) 

and interactions (capture, publication, querying, etc.) [92]. Furthermore, the 

resources themselves are much more temporal and short-lived which gives 

birth to dynamic and unpredictable application scenarios and interaction 

patterns [93]. In short, the following characteristics of cloud-based WoT 

repositories can be concluded: 

 Unbounded: New devices, services or interactions can be introduced 

at any time. For example, new devices may be introduced as more 

equipment becomes available at a disaster scene. 

 Temporal: Resources are generally short-lived and undergo various 

changes in their properties and definitions. For example, legacy or 

faulty devices will be replaced with newer or more capable platforms 

over time. Also, the repositories may only store a certain amount of 

historical data and any data outside this boundary will become 

unavailable. 

 Dynamic: Resources, their properties and definitions can change 

dynamically in response to events. For example, a monitoring event in 

a refugee camp may cause several devices in the near vicinity to 

activate automatically. 
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Furthermore, for the WoT to truly flourish and be deployed in a useful 

context, accessing resources should be easy, intuitive and hassle-free. Take 

the example of a disaster event like the likelihood of a major flood along the 

River Thames, London. Whilst governmental bodies will employ the 

necessary measures to monitor this type of event and to keep track of 

developments (e.g. water level across areas of high risk), keeping this data 

confined and restricted internally will hinder public use of this critical 

information, which might prove fruitful if the power of crowdsourcing can be 

leveraged appropriately and responsibly. If the information was instead 

exposed to the general public in a controlled manner, hobbyists and 

enthusiasts could easily conjure intelligent agents that monitor key events 

and push alerts or compose mashups to not only aid in the awareness of the 

disaster situation, but to also prepare a response in a timely manner. Even 

more-so, the publicly exposed data might be used for other purposes, for 

example to monitor environmental changes in neighbouring areas or for 

composing other useful mashups. But this can only really become possible 

(both in terms of exposing data as public resources and consuming the 

resources by the general public) if the mechanisms behind doing so are 

intuitive, flexible and speedy. If the governmental body has to setup a horde 

of accounts and roles and if the public agents have to register accounts to 

publish or use this data, then the likelihood of its adoption and the usefulness 

of its exposure will quickly deteriorate due to the expensive investment in 

time. Instead, if all this access control information could be stored in a few 

well designed tokens, and then these tokens distributed to those with a need 

to consume the data without requiring them to register an account, then it 
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can be seen that the effort is more likely to be rewarded with higher adoption 

and consumption. It is with this reasoning that this study has opted to 

develop an enhanced model of the token-based access control mechanism 

to control and audit access to temporal and dynamic resources within the 

framework. 

3.4.3.2 How does the TBAC scheme work? 

TBAC systems are based on the premise of reusable and reconfigurable 

tokens that grant access to a set or group of resources for a particular user 

[73]. After generation, they are transmitted to agents who need to consume a 

set of private resources that are normally hidden from public view and 

accessible only by the resource owner. Tokens can be configured to only 

expose the relevant resources and assets without leaking any information 

regarding the identity of the resource owner. This is advantageous over 

UBAC which requires the identity of the user to be transmitted with a request. 

Whereas roles in RBAC are a part of the overall organizational structure and 

are therefore more permanent and long-term artifacts, tokens in TBAC are 

much more decoupled and can be easily generated, modified and revoked 

without affecting the organizational structure. This provides a significant 

managerial advantage when tokens are used to control access to temporal 

assets of the network. Finally, since tokens are tied to resources as opposed 

to users who own those resources, this scheme provides a resource-centric 

access control scheme which is perfect for managing interactions with 

resources in an enterprise-grade WoT setting. 
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3.4.3.3 CPPM-TBAC 

TBAC, as opposed to UBAC and RBAC, provides a decoupled resource-

centric mechanism of access control which is capable of scaling efficiently 

with the dynamic environment of temporal assets in the WoT. It suffers, in 

part, from lower security because at its core, TBAC offers a single-step 

authentication service (i.e. the presence of a token is sufficient to access a 

service). In contrast, the other schemes generally require two-step 

authentication which increases security. This study is not addressing the 

security concerns of TBAC, so the problem then is one of modeling the 

necessary policy systems that allow tokens to be used efficiently in the face 

of big data in the WoT, otherwise the advantages gained through resource-

centricity will quickly be lost against the volume of tokens needed to model 

access controls for volatile and highly unpredictable temporal assets. Current 

literature in TBAC models is scarce to say the least and it is hard to find any 

relevant publications which discuss TBAC in a WoT setting, let alone any 

enhancements on top of the scheme. This study proposes the CPPM as an 

effective and comprehensive modeling scheme that enables tokens to be 

used in a large WoT setting without incurring costs in terms of generating 

large volume of tokens, extensive maintenance and un-intuitive usage 

thereof. 

The CPPM-TBAC works over the asset model for SAW which represents 

resources at different levels of granularity and expressiveness, as has been 

presented earlier. By utilizing a RESTful API, resources are first exposed as 

web-accessible URIs which can be interacted with using the 4 common 

HTTP verbs: POST for creating, GET for querying, PUT for updating and 
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DELETE for removing resources. CPPM-TBAC controls access to resources 

in this asset model at the various levels of granularity; starting from the most 

verbose, expressive and comprehensive DF right down to the least 

expressive and cardinal DP. 

A set of tokens are generated automatically for each DF to represent a 

common set of read and write permissions and further tokens can be 

generated by users for refining access to DF and DS. 

Tokens effectively enable the modelling of multi-faceted and cascading sets 

of permissions for accessing resources on the network. In SAW’s 

implementation of TBAC (the CPPM), the 1st step is to define two top-level 

visibility controls for resources: 

1. Public access: These resources can be searched and viewed by 

everyone and do not require a token. 

2. Private access: These resources can only be accessed if a token with 

the necessary permissions is used. Child resources of a private 

visibility resource are always private. 

The 2nd step is then to categorise actions as either: 

 Read actions: Identified by the GET HTTP verb, these actions view 

resource information. A public resource can be read freely whereas a 

token with the necessary permissions will be required for reading a 

private resource. 

 Modify/write actions: Any action that uses the remaining HTTP verbs 

(PUT, POST, and DELETE) has the potential to modify resources on 

the network. Regardless of the visibility of a resource, a token with the 

necessary permissions is required to carry out these actions. 
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The general process for creating tokens is shown in Figure 3-20. In the 

beginning there is the option of restricting the token scope to particular DF 

for a given user (and subsequently, selected DS with those DF). In the next 

step, actions that are permitted on the selected resources can be chosen 

and finally, due to the extensible nature of SAW’s architecture, additional 

restrictions can be defined to refine the scope of the token even further by 

adding context-specific constraints (e.g. location) or usage limits (e.g. max 

requests per defined threshold). Furthermore, each token can have multiple 

sets of permissions in a cascading fashion thanks to CPPM which enables 

more fine-grained access control for network resources. Finally, the tokens 

can be used to audit resource access as each request is logged. This TBAC 

model presents a comprehensive and extensible access control mechanism 

for a WoT network’s temporal resource-based asset model and allows users 

to easily provision and audit access to private resources. 

 

Figure 3-20: CPPM-TBAC model showing token construction process 

CPPM defines two upper-level scopes when forming the tokens: (1) Global 

scope and (2) Local scope. The global scope can contain the basic grants 

(CRUD operations, i.e. create, read, update and delete) and the extended 
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access restrictions whereas the local scope can only specify the basic 

grants, but can do so for any group of resources. Permissions defined in the 

global scope cascade to all public and private resources of the resource 

owner. The local scope can then be used to refine these permissions further 

if needed, or to remove certain resources from the permission set altogether, 

as shown in Figure 3-21. The eventual applied grants are calculated 

according to the following methodology: 

1. If global grants are present and local grants are absent then apply the 

global grants on all public and private resources for the resource 

owner. 

2. If local grants are present and global grants are absent then apply the 

local grants on the specified resources for the resource owner. 

3. If both global and local grants are present, then do the following: 

a. Apply the global grants on all public and private resources of 

the resource owner; 

b. For the DF and DS specified in local grants: 

i. Keep the global grants which have not been specified in 

the local scope. 

ii. Apply the local grants which have not been specified in 

the global scope. 

iii. Overwrite the global grants which exist in the local scope 

with the local scope grants. 

This methodology is only applied on the basic grants and not on the 

extended access restrictions which are always defined in the global scope 

and cannot be overwritten locally. This is an area where the CPPM can be 
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improved in future iterations.

 

Figure 3-21: Pictorial illustration of the CPPM Algorithm 

In the global scope, the basic grants consist of the CRUD operations and any 

or all of these can be defined with a value of 1 (grant) or 0 (restrict). CPPM 

employs the least access methodology so that the absence of a grant is 

equal to its restriction. Usually, it is discouraged to define global grants 

because they apply to all the resources of the resource owner and if the 

relevant local scopes are missing, they can result in the unwanted exposure 

of sensitive resources or the unintentional cloaking of others. 

The local scope is used to refine access restrictions to resources on a finer 

level. Here, it is possible to specify grants and restrictions for a group of 

resources based on their visibility (e.g. “public/private” for the respective 

public/private-visibility resources, or “all” for all resources). Further 

extensions to the CPPM may permit other types of resource groupings as 

well in the future. The local scope also makes it possible to define access 

controls for specific resources denoted by a resource ID, which will be a DF 

ID at the topmost level. Going even further, the CPPM adheres to the asset 
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model presented earlier and allows refining of access down to the individual 

DS, again, either by their visibility group keyword or by specific DS IDs. This 

cascading permissions style allows CPPM to easily create tokens with any 

level of access control for any type of resource in the asset model. 

It should also be noted that the GET (read) grant is not specified for public 

resources in the local grant scope. This is because public resources do not 

require a token to be queried and read, so the GET grant is meaningless in 

this context since it will always resolve to 1 (grant). 

3.4.3.4 CPPM-TBAC Deployment in Disaster Management: Example 
Scenario 

CPPM-TBAC can be used to model access policies for sensing devices and 

data in a DM situation in cases of pre, intra and post disaster. The scenario 

below considers CPPM-TBAC usage pre and during the disaster. 

Take, for example, a flood occurring in a location known for flooding and 

therefore having existing sensing infrastructure to monitor the appropriate 

environmental variables. Pre-disaster, CPPM-TBAC can be used to manage 

access policies of the sensing infrastructure for known parties (e.g. 

governmental organisations). This can include controlling which aspects of 

each device can be managed by whom, and who can see the sensing data 

that is being collected. These access policies will typically be long-term and 

not change as frequently. As the disaster is unfolding, CPPM-TBAC can 

similarly be used to expand the range of access policies and create temporal 

access tokens to give new actors on the ground the relevant access to help 

and facilitate them in their disaster management and relief work. This can 

include giving first responders and relief agencies limited and short-term 

access to consume sensing devices data on the fly and revoking this access 
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as soon as their work is finished. It can also include opening up the sensing 

devices data to the larger public so that hobbyists can conjure up their own 

data-driven applications to monitor the scene on the ground and provide their 

communities with tailored updates. It can be seen that CPPM-TBAC can be 

used for a wide range of access control activities to effectively manage 

distribution of access to sensing devices in what is likely to be a chaotic DM 

environment. 

3.4.4 Interaction Models 

Composition of interactions makes possible semi-automatic processing, 

enrichment and publication of network assets to other agents for 

consumption, whether internally or externally. Generally speaking, 

interactions in the WoT domain come in one of the following flavours: 

 Eventing systems that publish information in response to events 

based on pre-defined triggers and/or time-based schedules. 

 PubSub systems that enable subscription to assets and the publishing 

of these assets thereof according to some predefined rules and/or 

criteria to designated agents for consumption. 

 Profiling systems that work to achieve an enrichment and semantic 

betterment of data. 

To narrow the scope of possible work and finish it within the allocated 

timeframe, this study only focuses on the latter interaction, that of profiling 

network assets in order to provide semantic metadata that can be used to 

enable cross-vendor, multi-party collaboration and achieve semantic 

interoperability in the WoT. The following section details the novel 
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mechanisms developed in SAW to semantically annotate sensing devices 

and data using the SSN ontology. 

3.4.5 Semantic Annotation 

The process of profiling DF and their respective DS involves the semantic 

annotation of the device properties, attributes, characteristics and related 

metadata. This is done by applying semantic concepts to the device 

definitions and data and then storing these concepts in the form of semantic 

metadata which can be shared and distributed to achieve an interoperable 

representation of data and devices across the multi-party collaboration 

framework. Over time, the framework will become more capable of 

automatically annotating devices semantically when they are connected to 

the network as more and more semantic annotations are added to the 

framework. This will make it easier for the system to recognise common 

devices and offer suggestions during the profiling phase, thereby quickening 

the annotation process and improving its accuracy. 

Assets in the SAW framework are annotated using the SSN and SAW 

ontologies as has been illustrated before. The maximum benefits are reaped 

when users are highly expressive and precise during the semantic 

annotation process. Whilst this is ideal, it is not practical to assume that 

regular non-tech users will be capable of effectively annotating their 

resources, which means that direct serving of semantic templates to users is 

not the best solution. To account for this practical limitation, SAW offers a set 

of supplementary approaches that should help annotate resources even 

when the user cannot do so directly and on the fly. 
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When a DF or DS is registered to the network, it may be profiled in one of 

two ways: (1) Directly, and (2) Indirectly. 

3.4.5.1 Direct Semantic Annotation via Tags 

The direct annotation method requires explicit input from the user and it is 

illustrated in Figure 3-22. The direct method relies on the actual user to 

power and drive the semantic annotation process, and its accuracy and 

effectiveness depends on the richness of the semantic knowledgebase. As 

more devices are registered and annotated, the accuracy and efficiency of 

the system will increase, ultimately enabling semi-automatic semantic 

annotation of assets. 

When a new device (DF or DS) is being registered with the network, a set of 

tags will need to be provided to begin the semantic profiling mechanism. The 

mechanism takes into account the three possible variations in this case: 

1. Scenario 1: The provided tags map to one or more semantic concepts 

and the user has selected one of the provided concepts for mapping 

of the device. In this case, the device is mapped to the selected 

concept. 

2. Scenario 2: The provided tags map to one or more semantic concepts 

but the user is not happy with the provided results and opts to create a 

new concept. In this case, a new concept is created for the device and 

the device is then mapped to this newly created concept. 

3. Scenario 3: The provided tags do not map to any known semantic 

concept in the knowledge base. In this case, the user is given the 

option of creating a new semantic concept for the device and then 
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map the device to this new concept. Otherwise, the whole process 

repeats again until the user makes a choice/selection. 

 

Figure 3-22: Asset profiling process illustration 

Each scenario is described step by step in more detail below in Table 3-4. 

In the first two scenarios, the limiting factor is the user’s ability to identify the 

corresponding asset. In the last scenario, the limiting factor is the lack of a 

comprehensive knowledgebase from which to fetch the relevant semantic 

concepts to build the semantic template for annotation. 

In the first scenario, the user is registering a device for which semantic 

definitions already exist in the knowledgebase. If the user is using the web 

interface, as is the case in this scenario, then the user can easily select the 

corresponding device from a drop-down suggestion list and receive the 

corresponding semantic template for annotation. In most cases, since the 

definitions for the device already exist in the knowledgebase, the user will 

only need to modify a small number of concepts specific to his/her device 

(e.g. location, observation interval, host platform, etc.) as most static 

properties will already be stored for that device. 
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Table 3-4: Possible scenarios in the semantic annotation process for profiling DF and DS 

Scenario 1: Asset definitions exist in knowledgebase AND user is able to select the 

corresponding definitions (e.g. when using the web interface). 

Step 1: Register DF. 

Step 2: Select the corresponding asset from the knowledgebase for that DF. 

Step 3: 
Fill in/modify (if required) the received semantic template for the DF and 

upload to server. 

---------- Repeat these steps for registering DS. 

Scenario 2: Asset definitions exist in knowledgebase BUT user is unable to select the 

corresponding definitions (e.g. when using the RESTful API). 

Step 1: Register DF. 

Step 2: Update the DF with a list of tags identifying the device. 

Step 3: 

Select from suggestions provided in the response those tags which most 

closely match the device being registered. Repeat steps 2 to 3 based on 

personal discretion and then upload the final list of tags to the server. 

Step 4: 

The server will return a semantic template with each response in step 3. Fill 

in/modify (if required) the received semantic template for the DF and upload 

to server. 

---------- Repeat these steps for registering DS. 

Scenario 3: Asset definitions don’t exist in knowledgebase OR user is unable to select 

the corresponding definitions (e.g. by not specifying the correct tags). 

Step 1: Register DF. 

Step 2: 

Update the DF with a list of tags identifying the device. If no tags are 

provided, the system will still proceed to the next step as is the case in this 

scenario. 

Step 4: 

The server will return a generic semantic template if the list of tags submitted 

is either empty, or does not match any stored semantic concepts. Fill in the 

received semantic template as much as possible for the DF and upload to 

server. 

---------- Repeat these steps for registering DS. 

 
In the second scenario, the user is registering a device for which the 

semantic definitions already exist in the knowledgebase, but the user cannot 

directly select the corresponding device because of interface limitations (e.g. 

when the user is interacting with the network through the RESTful API). In 

this case, the user will need to send a list of tags identifying the device in a 

separate payload after the device has been registered. Once the server 

receives these tags, it tries to retrieve matching concepts from the 
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knowledgebase, the process for which is detailed further on in this 

subsection. At this juncture, the server generates a semantic template with 

semantic concepts most closely matching the provided tags, and then sends 

this semantic template along with a short list of tag suggestions to the user. 

The user, in turn, can either fill in the received semantic template if it closely 

matches the device in question, or can provide further tags including those 

provided by the server to refine the process further until he/she is happy with 

the received semantic template. The template can then be filled in and sent 

to the server. 

The third scenario is similar to the first scenario. In this scenario, the user is 

registering a device for which one of the following is true: 

a. The definition for that device does not exist fully in the 

knowledgebase; 

b. The user is not providing a list of tags, or the list of tags provided is 

incomprehensive. 

In this case, the server will return a generic semantic template for the user to 

be completed in the response payload. 

To sum up, when profiling DF or DS, the users will be able to enter arbitrary 

tags to describe their assets. These tags are not semantically-restricted and 

can be anything the user wants them to be, for example, “light sensor”, 

“Oracle”, “Arduino”. The system might try to infer semantic meaning from the 

tags as they are entered by the user and offer further suggestions for tags. 

Furthermore, as tags are entered by the user and their semantic relation is 

recognised by the system, SAW will be able to provide tailored DF and DS 

templates to the users dynamically, thereby improving the accuracy of the 
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semantic annotation process. For example, the user may enter the tags: 

“light sensor” and “SunSPOT”. From this information, the system may be 

able to work out that the “SunSPOT” is a multi-sensor device and “light 

sensor” is possibly a sensor object that measures photons. Equipped with 

this information, the system will be able to offer the user a tailored DF 

template for a SunSPOT device and a DS template for a generic light sensor. 

The actual tag-based semantic annotation mechanism is illustrated in Figure 

3-23. In the first step, DF (multi-sensor platforms) and DS (sensing devices) 

are registered to the network with an arbitrary payload where only the asset 

name, visibility and associated tags are required. Once this payload has 

been submitted (labels 1.0 and 1.1), a query builder is used to parse the 

specified tags and generate synonyms, possibly using open tools like 

WordNet [94].  

 

Figure 3-23: Asset profiling scheme showing how tags are used to derive semantic definitions 
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SAW tries to generate an exhaustive list as false positives are not a major 

issue since the aim is to give the end user a comprehensive list of 

corresponding asset definitions from which the correct or most relevant 

artefacts can be selected. After building the augmented list, the query builder 

calls the SPARQL query agent which runs a semantic query against the 

knowledgebase to find semantic concepts relating to the specified keywords. 

Since the internal knowledgebase will be limited in the beginning, manual 

configuration may be required to bootstrap the system. As more and more 

semantic annotations are added to the framework, however, it will become 

easier for the system to recognise common assets and offer suggestions in 

the feedback loop (labels 1.2 and 1.3) during the profiling phase, providing 

the client supports the feedback mechanism. 

In the second step, matching semantic definitions are returned to an 

annotation agent where a semantic template is generated and sent to the 

client for annotation (labels 1.6 to 1.8). If the client does not support a 

feedback mechanism, then the system will self-annotate the template based 

on the available information, as might be the case when mining data from 

external repositories like Xively and ThingSpeak. 

Finally, the client submits the annotated semantic template to the system and 

the annotation agent forwards the response to the semantic engine where 

semantic metadata in the form of RDF statements (or triples) are inserted 

into the knowledgebase.  

The above procedure can result in one of 3 cases, as described previously: 

1. The client is using the web GUI and can identify the relevant assets 

directly. In this case, there is no need to provide tags. 
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2. The client cannot directly select the relevant assets or the client is 

communicating via the API. In this case, the client provides tags to 

describe the assets. 

3. The system is unable to retrieve the relevant asset definitions from the 

knowledgebase. In this case, the system returns a generic semantic 

template leading to the creation of a new semantic concept. 

3.4.5.1.1 Mapping Devices to Existing Concepts – Process Explanation 

When a new device (DF or DS) is registered with the network, the requester 

has the option of specifying device-specific tags to aid the network in 

semantically annotating the device. When these tags are submitted to the 

SAW framework, the system tries to fetch the corresponding semantic 

associations for these tags from the RDF triple store (openly available 

database for storing semantic data). The URI for submitting these tags is: 

http://localhost:8111/fetch-associations/. The requester must then append a 

comma-delimited list of tags at the end of the URI (i.e. the query string), for 

example, http://localhost:8111/fetch-associations/tag1, tag2, tag3. Each tag 

in this list is then processed by the system to try and fetch the corresponding 

semantic concepts from the knowledge base. Figure 3-24 shows the web 

form where tags are entered at the bottom. After clicking on the “Fetch 

Associations” button, the “Matched Concepts” section at the top is populated 

with a list of corresponding concepts. 

Each semantic concept has an initial list of primary and secondary tags, as 

has been explained before in Chapters 2 and 3. When a new device is 

registered to the network and a list of tags is provided, then each tag from 

this list is processed by the system to search for any matching concepts. The 
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device tags are queried against the primary and secondary tags of all 

concepts to derive mappings. Each mapping is then classified as a primary 

or secondary mapping depending on whether the device tag mapped to a 

primary or secondary tag of the concept. If the same concepts are retrieved 

multiple times through different device tags, then the weight of those 

concepts are increased to highlight their raised rank and matching 

correlation. Mappings through primary tags contribute a weight of 2 whilst 

mappings through secondary tags contribute an additional weight of 1. 

 

Figure 3-24: Semantic profiling screen, showing 

the tag mapping facility at the bottom and the 

selectable matching concepts at the top 

 

Figure 3-25: Sample annotation process showing 

a list of primary and secondary concepts and their 

respective weights 

Figure 3-25 (above) shows a sample annotation where the submission of 

tags for a newly registered device has resulted in the system returning a set 

of primary and secondary concepts back to the user, each with a 

corresponding weight. This list may very well contain concepts that are 

similar or even duplicates of each other simply due to the community-driven 
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nature of the system whereby users are able to create new concepts on the 

fly. 

If the user is able to interact with the SAW network, as is the case here, then 

he/she can select an appropriate semantic concept from the provided list and 

click on the “Apply Mapping” button shown in Figure 3-24. Doing so will 

create a new mapping for the device to the selected concept, and generate a 

new semantic ID for the device as well (e.g. SunSPOT-1). The semantic ID 

of the device forms a linked data URI which can be used to interact with the 

device in a semantic fashion. The final traversable URI of the device may 

look something like this: http://saw.local/sw/feeds#SunSPOT-1 for DF or 

http://saw.local/sw/streams#CO2Sensor-251 for DS. When the mapping is 

applied, the provided tags are classified as primary or secondary tags by 

matching them against the primary and secondary tags of the semantic 

concept the device is mapped against. A slight limitation of the SAW network 

here is that when mapping to existing semantic concepts, there is no way for 

new devices to add new primary tags to the mapped concept. The new 

device can only contribute secondary tags with the current mechanism. A 

possible solution to this would be to maintain a persistence of weights when 

devices are mapped to concepts, and if any secondary tags reach a certain 

defined threshold, then they can be promoted to primary tags. This takes 

care of case 1 where the provided tags map to one or more semantic 

concepts and the user has selected one of the provided concepts for 

mapping of the device. 
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3.4.5.1.2 Creating New Semantic Concepts for Devices 

Both cases 2 and 3 presented earlier lead to the creation of a new concept. 

This is done by clicking on the “Create New Concept” button in Figure 3-24. 

When a new concept is created, a new concept ID is generated and this 

publishes the new concept as a linked data concept, e.g. 

http://saw.local/sw/ontology#MicaMote, where MicaMote is the new concept 

ID. Once the new concept has been created, the device is mapped to it and 

a unique semantic ID for the device is generated as explained before. In this 

case, all the device tags are classified as primary tags for the new concept. 

When devices are mapped to semantic concepts, the knowledge base is 

enriched further and the system is able to infer and aggregate the primary 

and secondary tags of the devices that are mapped to the concepts to the 

primary and secondary tags of the concepts themselves. This results in 

continuous enhancement of the knowledge base and better accuracy of 

mapping when new devices are registered to the network. However, at the 

same time, a systematic and regular review of the knowledge base will be 

required to clean up and remove ambiguous tags such as “device”, “wireless 

sensor” and alike to improve the annotation accuracy and decrease the 

chance of generating false positives during the semantic profiling phase. At 

this moment in time, SAW does not implement any such semi-automatic 

review mechanisms and this has to be done manually. A potential area of 

further research is to use established resources like WordNet [95] and 

ResearchCyc [96] to help in the automation of removing ambiguous or 

erroneous tags and enhancing the existing knowledge base by enriching 

tags with synonyms and semantically-similar concepts. 



 

 123   

3.4.5.1.3 Challenges in Creating a New Semantic Concept 

In the case of a new device being registered to the network for which no 

relevant semantic concept exists in the knowledgebase, the system creates 

a new concept for this device. The challenges in this task are the following: 

 Generating a unique concept ID so that the concept can be 

represented in a unique fashion without conflicting with existing 

concepts. For example, if the concept “saw-ont:Arduino” exists 

already, the new concept cannot also be called “saw-ont:Arduino” 

since that ID already exists. 

 Aligning the new concept with existing concepts that may be similar, 

or at times, aliases. The biggest challenge here is the removal of 

duplicates when a concept has syntactical differences in 

representation and the list of tags attributed to it. 

Generation of a unique concept ID is easily resolved by the system. The 

system first searches the triple store for existing concepts with the same ID 

as the new concept that is to be inserted. If a match is not found, then the 

new concept can be added with the ID originally provided. If, however, a 

match exists, this implies that the system needs to generate a new unique ID 

for the new concept. The system is provided with a list of pre-composed 

methods by which it can achieve this, for example, by adding a date-time 

value at the end of the concept ID (e.g. “saw-ont:Arduino-2013-11-14”), 

amongst other ways. Eventually, the system will be able to derive a unique 

concept ID that can be used for the new concept, and upon insertion, it will 

return this unique concept ID back to the requester so that the URI for the 

new concept is known. 
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The problem of semantic aligning of semantic concepts and removal of 

duplicates is more challenging and involves manual intervention. Due to the 

intrinsic community-driven nature of SAW, the likelihood of generating 

duplicate concepts remains very high. The scope of the current study does 

not permit extensive research into this area, but one way in which this 

problem can be effectively tackled is by using the owl:sameAs property to 

link concepts together as aliases of one another. Again, in the current setup 

this has to be done manually but future enhancements of the framework can 

investigate more effective and semi-autonomous approaches in this regard. 

3.4.5.2 Indirect, Community-Based Semantic Annotation 

By utilising a community-driven contribution system, SAW envisions a 

comprehensive and peer-to-peer community tagging system that is built and 

driven by members of the system. While this feature is discussed in this 

study, limitations in time and resources, unfortunately, did not permit its 

implementation in the first prototype of SAW. It is hoped that this feature will 

be incorporated in a later iteration of the framework. 

SAW is intrinsically a community-oriented solution where the focus is on 

collective knowledge and collaboration. By employing a community-driven 

contribution system, SAW can make it even easier and viable for users to 

flag incorrect annotations and contribute relevant tags and semantic 

annotations for DF and DS. This system essentially consists of the following: 

a. Ability to flag incorrect annotations. For example, if a SunSPOT 

device (a multi-sensor platform which is a DF) has been annotated as 

a temperature sensor (a sensor object which is a DS belonging to a 

DF). 
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b. Ability to contribute relevant semantic annotations. For example, a 

SunSPOT device may only be annotated by its owner as a “sensor 

platform”. Other community members with more technical knowledge 

might add further annotations like “has sensor”, “has analogue inputs”, 

“has digital outputs”, etc. These public annotations are added to the 

relevant DF and DS by default, but the owners of the respective 

assets can flag incorrect public annotations for review by the instance 

administrators who will have the power to remove irrelevant 

annotations. 

As mentioned previously, limitations in time and resources does not permit 

further study and analysis of this community-driven approach to semantic 

tagging but the concept was introduced briefly nonetheless to highlight 

possible areas of further work and improvements to the SAW framework. 
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Chapter 4: Implementation of the SAW Prototype 

4.1 The Cloud-Based SAW Framework 

Taking the notions of a distributed collaboration framework and semantics 

data modelling forward, the top-level concept architecture for SAW is derived 

as illustrated in Figure 4-1.  An instance of SAW exists in the cloud where the 

supporting computing resources (e.g. CPUs, RAM, storage and bandwidth) 

can be easily scaled up and down depending on the demand of the network. 

The system itself consists of 3 distinct components: 

1. Semantics Engine: Enabled by the open-source JENA implementation 

by Apache and running on a Java Virtual Machine (VM), the 

semantics engine deals with the semantic annotation of resources on 

the network as well as semantic reasoning and querying of assets. 

The semantics engine is exposed to the web through a Tomcat servlet 

provided by Apache. The actual semantic metadata browser is called 

a Fuseki server. 

2. Webserver: The front-end web application is hosted on an Apache 

webserver and exposes the underlying functionalities through a 

RESTful API. Amongst other things, the front-end application (i.e. the 

web application or the website), deals with the following: 

a. Implementing (and exposing) the underlying semantic engine to 

the web for applications such as semantic querying of network 

assets; 

b. Providing a UI for the web application users; 

c. Providing a web-based administration client for the instance 

administrators; 

d. Exposing the framework functionalities through a RESTful API. 
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3. Real-time server: Powered by Node.js, this acts much like the 

webserver above but has a few additional key functionalities that 

enable and make possible real-time monitoring and analysis of the 

network as well as real-time capture and publication of data, 

information and knowledge. 

 

Figure 4-1: SAW - The concept of an extensible system that exposes underlying functionality through 

open APIs 

The semantics-based modelling of assets and the distributed SoA-based 

design of the system enables SAW to easily communicate with and 

collaborate amongst not only other instances of itself, but also other 

commercial and public IoT solutions like Xively and Thingspeak (with the 

help of adapters). By extensively focusing on the problem of collaboration 

and tasking itself with the design and creation of a decentralised, RESTful 

and semantics-enabled system, SAW has the potential to offer and enable 

plug-and-play collaboration amongst WoT applications. 
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4.2 The OSGi-Based Wireless Sensor Network 

Whilst developing the SAW framework prototype, it became apparent that a 

local WSN would also need to be built to test and evaluate SAW’s asset 

model, the effect of introducing CPPM-TBAC into the equation, and to 

measure the accuracy and effectiveness of the semantic annotation process. 

The WSN, at the same, needed to be able to host, cope with and interact 

amongst various heterogeneous sensor platforms and devices, so an 

interoperable solution was required to build the test bed. 

Eminent issues relating to device heterogeneity, vendor lock-in and platform 

dependencies can be resolved by using an OSGi (Open Service Gateway 

initiative) framework as the software fabric for IoT deployment [97], and in 

our case, the local WSN. The OSGi standard is essentially a service-oriented 

component model and enables high modularity and portability of the 

codebase and improved resource utilisation [98]. Managed software 

components deployed in the OSGi platform are called “bundles” which can 

be installed, updated, or removed on the fly without disrupting the operation 

of the host device. These bundles can also dynamically discover and interact 

with other OSGi bundles/services, thereby breeding an ecosystem of 

modular, independent and self-contained functionalities that can be adopted 

and extended with ease. 

Executing on a networked device such as gateway, OSGi service platform is 

capable of managing the life cycle of the software components in the system. 

The provided management functions allow the dynamic installation, update, 

and removal of the software components without disrupting the operation of 

related devices. Software components in OSGi can dynamically lookup and 
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use other components, and even integrate with other OSGi-based 

components into an application or library. 

The OSGi-based Sensor Gateway Node (OSGi-SGN) developed in this 

study interacts with a WSN and the cloud-based SAW framework. The 

Equinox implementation has been chosen as it is the most common and 

established implementation and therefore conveys high code reusability and 

extensibility value. Other well-known implementations include Apache Felix 

and Makewave Knopflerfish. 

The architecture of OSGi-SGN is shown in Figure 4-2. The first three layers 

of this architecture (Hardware, Operating System and Java VM) are the 

underlying parts of this gateway and must primarily meet minimum 

requirements for running OSGi. The fourth layer consists of the OSGi 

framework and contains several components, each of which is an OSGi 

bundle. These bundles can communicate with one another based on the 

service-oriented approach and depending on the task specification provided 

during runtime. 

 

Figure 4-2: OSGi-SGN architecture 

The OSGi-SGN consists of the following bundles:  
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1. Device Discovery Bundle: Discover new devices which have recently 

been added to the network, collect information about these devices 

(device type, communication protocol, address and etc.) and store it 

for future use. 

2. Device Manager Bundle: Since there are a lot of possible 

combinations of devices and communication protocols, there is a need 

for a bundle which will provide a unified and abstract interface for 

communication between these devices and the gateway. Device 

Manager Bundle is responsible for direct communication with all the 

devices and it can control the devices, monitor their status and enable 

cooperation with other components (such as to receive service 

requests, report device status, etc.). 

3. Device Bundles: In this architecture, the devices are divided into two 

main categories: sensors and actuators. Actuators are “active” and 

can be controlled to serve users, whereas the sensors are “passive” 

and can only be used to collect data. Sensing devices may also be 

considered as “semi-passive” since some devices allow tweaking of 

parameters and observational properties. 

4. Communication Protocol Bundles: Different devices might have 

different means of communication with the gateway. In order to be 

able to get data from all these devices, the gateway has to support at 

least the most common communication protocols such as Wi-Fi, 

Zigbee and Bluetooth. More bundles can be added later on to 

increase the range of communication protocols available for 

interaction with devices.  
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5. Other Bundles: Additional bundles built for data processing and 

transformation requirements within the network and for interacting with 

the SAW framework. 

With this architecture, it becomes possible for the OSGi-SGN to integrate a 

wealth of heterogeneous devices and act as a test bed for the evaluation and 

analysis of the SAW framework. 
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Chapter 5: Simulation of Framework and Results 

5.1 Overview 

The SAW framework consists of several elements that are essential for the 

correct working of the system but these may affect the overall efficiency and 

system performance. This section presents a performance evaluation of 

these elements. Namely, the elements to be evaluated are the following: 

 CPPM-TBAC Mechanism; 

 Semantic Annotation Mechanism. 

5.1.1 Simulation Setup 

The simulation setup is the same for the performance evaluation of both 

elements and is shown in Figure 5-1. 

 

Figure 5-1: SAW simulation setup 

The simulation setup consists of a client acting as the Wireless Sensor 

Network (WSN), and a server running the SAW framework. The client is an 

Intel i3 2.4GHz laptop with 8GB of memory running Microsoft Windows 8 and 

the server an AMD Athlon processor PC. An IP-enabled Arduino-based 

multi-sensor platform with two sensors is attached to the client. For all 

scenarios except one, the client acts as the OSGi-based Sensor Gateway 

Node (OSGi-SGN). For one scenario, the client acts as a Native Java-SGN 

(OSGi framework is not used). This is explained further in the appropriate 

sections below. 
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The OSGi/Native Java-SGN communicates with the SAW network through a 

RESTful API. The function of the client is to collect sensor data and readings 

from the attached multi-sensor platform, and then package these as 

payloads that can be sent to the server for processing. The function of the 

server is to receive the submitted payloads, process them, and then return a 

response to the client. 

All requests considered in the simulation scenarios below originate from the 

SGN when it wants to register a new DF/DS, update an existing DF/DS, or 

upload new sensor readings/DP to the SAW network. The server then 

processes these requests and returns a response to the client. 

5.1.2 Definition of Simulation Scenarios 

5.1.2.1 CPPM-TBAC Mechanism 

For the CPPM-TBAC mechanism, the parameters to be measured and 

evaluated are the response time and the added delay. 

The response time is defined as the time taken for a response to be received 

from the server after a request has been submitted by the client. In each 

scenario, this parameter is measured both when CPPM-TBAC is turned on 

(the higher response time) and also when it is turned off (the lower response 

time). The difference between the response time when CPPM-TBAC is 

turned off and when it is turned on is referred to as the added delay. 

𝐴𝑑𝑑𝑒𝑑 𝑑𝑒𝑙𝑎𝑦 = 𝐻𝑖𝑔ℎ𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 − 𝐿𝑜𝑤𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 

The added delay can also be turned into a percentage by dividing the higher 

response time with the lower response time and taking away 1 and this is 

referred to as the percentage added delay. 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑎𝑑𝑑𝑒𝑑 𝑑𝑒𝑙𝑎𝑦 = ((
𝐻𝑖𝑔ℎ𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

𝐿𝑜𝑤𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒
) − 1) × 100 

The response time is measured primarily to calculate, compare and analyse 

the added delay and percentage added delay parameters. The added delay 

and percentage added delay parameters are being calculated to compare 

the difference in response times when the CPPM-TBAC mechanism is 

turned on in order to determine its effect on the SAW network’s ability to 

scale and handle large amounts of data. 

Section 5.2 presents a simulation where the performance of the OSGi-SGN 

is compared to a Native Java-SGN to analyse the various tradeoffs for using 

OSGi as the software fabric for the SGN. 

Sections 5.3 and 5.4 then analyse the CPPM-TBAC mechanism 

performance with non-aggregated and aggregated payloads respectively. 

Non-aggregated payloads refer to the scenarios where sensing device 

definitions or data are submitted from the client to the server one by one. On 

the other hand, aggregated payloads refer to the scenarios where several 

payloads are combined by the client to form one aggregated payload. This 

aggregated payload is then submitted by the client to the server in one go. In 

section 5.3, the response times are also measured and compared for 

different payload sizes in order to determine if this has any adverse effect on 

the SAW network. 

Finally, section 5.5 summarises the results of the CPPM-TBAC performance 

evaluation and presents some final analysis on the proposed mechanism. 
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5.1.2.2 Semantic Annotation Mechanism 

For the semantic annotation mechanism, simulations are carried out to test 

the suitability and effectiveness of the semantic profiling mechanisms when 

annotating a set of sensing devices semantically. The objective is to 

determine the accuracy of the semantic annotation process and the ability of 

the system to learn from these annotations and augment the internal 

knowledge base. 

The semantic profiling of network resources involves the semantic mapping 

of DF and DS to their corresponding semantic concepts in the semantic data 

store. A semantic concept is a class in an ontology that represents an idea, 

feature/property, or object. Examples of semantic concepts include an RDF 

class to represent a temperature sensor, or an RDF class to represent a 

multi-sensor platform. The process of semantic annotation transforms the 

schema-oriented and restricted network resources into schema-less and 

open assets that can be browsed, navigated and interacted with by external 

agents (both human and machines). 

The simulations consist of a list of 50,100 and 500 devices (depending on 

the scenario set) with a pre-configured list of tags for each device. The 

devices map to 10, 20 or 50 possible concepts, again depending on the 

individual scenario set configuration. The basic 10 concepts used in the 

simulations are as follows: Arduino, SunSPOT, MicaMote, TelosMote, 

EpicMote, WaspMote, MicrochipPIC, DragonBall, AtmelAVR and RFID USB 

Reader. Each concept has a list of 2, 5, 10 or 50 possible devices depending 

on the scenario set and these are named with the name of the concept and a 
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number 1-n, for example: SunSPOT-5. The concepts to devices ratio is 

worked out by dividing the number of devices with the number of concepts. 

𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 𝑡𝑜 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑣𝑖𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠
 

For a simulation scenario set consisting of 50 concepts and 10 devices, the 

concepts to devices ratio will be expressed as 1:5. 

Each concept has a list of tags and these tags are submitted with the devices 

during the profiling phase in a random manner. The list of tags for each 

concept is provided in  

Table 5-1 below. 

Table 5-1: List of tags being used in each of the simulation scenarios for each semantic concept. 

Semantic Concept List of Tags 

Arduino Arduino, Arduino Board, Arduino Shield, Uno, Leonardo, Due, 

Micro, Lillypad, Nano, Fio 

SunSPOT SunSPOT, Sun, SPOT, Oracle, Rev8 

MicaMote MicaMote, Mote, ATmega, TinyOS 

TelosMote TelosMote, Mote, TelosB, UC Berkeley, Willow, Crossbow 

EpicMote EpicMote, Mote, UC Berkeley, Breakout, Devboard, Irene Base, 

RUC Mote, HydroWatch, Quanto, Lynx, OpenMote, Nova, Texas 

Instruments 

WaspMote WaspMote, Mote, Libelium, Zigbee, Wi-Fi, RFID, Bluetooth 

MicrochipPIC PIC, Microchip, Microcontroller, PIC16, PIC17, PIC18, PIC24, 

PIC32 

DragonBall DragonBall, MC68328, Motorola, Freescale Semiconductor, 

DragonBall EZ, MC68EZ328, DragonBall VZ, MC68VZ328, 

DragonBall MX, i.MX, MC9328MX, MCIMX 

AtmelAVR AtmelAVR, Microcontroller, tinyAVR, megaAVR, XMEGA, 



 

 137   

FPSLIC, RISC, Raven Wireless Kit 

RFID USB Reader RFID USB Reader, Sparkfun, RFID, RFID Tag, RFID Label, RFID 

Button, ID-3LA, ID-12LA, ID-20LA 

 
In simulation scenarios where there is a need to create more concepts than 

the 10 shown above, the above 10 concepts are replicated one by one until 

the number of concepts reaches the required number. The replicated 

concepts and their tags have unique numbers appended to ensure that all 

concepts are unique. 

In each simulation scenario set, the following scenarios are simulated: 

1. All devices are submitted in a random fashion and provided with one 

random tag from the corresponding concepts. 

2. All devices submitted in a random fashion and provided with two 

random tags from the corresponding concepts. 

3. All devices submitted in a random fashion and provided with three 

random tags from the corresponding concepts. 

In the semantic annotation process, various parameters need to be 

measured and analysed to evaluate the performance of the framework. 

In each simulation, the following parameters are recorded: 

1. The total number of concepts generated; 

2. The total number of concepts which are duplicates. This will reveal 

how big of a problem the duplicate generation of concepts is in the 

framework. 

3. The total number of concepts which have 2/5/10 devices mapped to 

them (depends on the concepts to devices ratio in the particular 
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scenario). This will help to determine if the system is effectively 

mapping devices to the corresponding concepts or not. 

4. The total number of concepts which have less than 2/5/10 devices 

mapped to them. This stats will help to explain trends observed in the 

other stats (e.g. highlighting concepts with only 1/x mapped devices or 

2/x mapped devices, etc., where x represents the ideal number of 

devices that should have been mapped to the concept (see parameter 

3)). 

5. The total number of concepts which have more than 2/5/10 devices 

mapped to them. This will help determine the rate of generating false 

positives. 

6. The average number of concepts which are returned by the system 

when the tags are submitted. This is calculated by dividing the total 

number of returned concepts for all of the cases by the total number of 

cases, where number of cases is number of devices being mapped in 

the simulation scenario; 

o Of these, the percentage which are primary concepts and the 

percentage which are secondary concepts. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
 

7. The number of cases where one concept has a bigger weight than the 

rest of the returned concepts. This helps to measure the ability of the 

system to differentiate between different concepts in terms of their 

mapping suitability and relevancy to the device that is being mapped. 

8. The number of cases where all returned concepts have equal weights. 

This is the inverse of parameter 7. 
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5.2 Performance of OSGi-SGN vs Native Java-SGN 

Both the OSGi-SGN and the Native Java-SGN use similar setups. The only 

difference is that the OSGi-SGN setup has an OSGi application 

communicating with the Arduino board and the SAW network on the client 

and the Native Java-SGN implementation has a Java Web Service 

application on Tomcat 7 (open-source Java HTTP web server environment) 

instead.  

This simulation is carried out for two different operations: (i) Registering a 

new device (DF) with 2 sensors (DS), and (ii) Updating definitions of existing 

DS. 

Amongst the many functions of the SGN, one key function is to check 

whether the source device is a new device in the network. If it is, then the 

SGN shall register it with the SAW network by sending an initial payload 

describing the device (the DF), which is the Arduino board in this case. Upon 

successful registration of the DF, the gateway also registers two DS, one for 

each sensor on the Arduino board. Once the DF and DS are registered, the 

gateway keeps on submitting sensor readings every 20 seconds, thereby 

simulating a typical sensor device in a volatile application scenario like DM 

where devices frequently (and dynamically) incur changes in their status and 

properties. This is the first operation and the response times are only 

collected for the process of registering the DF and 2 DS belonging to it. 

In the second operation, the definition of an existing DS is updated. In both 

these operations, the simulation scenario does not consider the semantic 

annotation of the registered DF and DS as this will be analysed separately in 

the following sections. The results of the simulation are shown in Figure 5-2. 
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Figure 5-2: Comparison of DF/DS registration and DS update times from OSGi and Native Java-SGN 

Table 5-2 shows the average response times (and the percentage added 

delays in brackets) for registering and updating definitions for 1,000 assets 

through the OSGi and the Native Java-SGN. The OSGi-SGN implementation 

fares marginally better than the Native Java-SGN in performing similar 

requests. While the performance of OSGi in this scenario is only slightly 

better, the real benefits are gained in the actual codebase in terms of code 

reusability, modularity and interoperability. 

Table 5-2: DF/DS registration and DS update times for 1,000 DF/DS 

 OSGi-SGN Native Java-SGN 

Registration time for 1K DF/DS 680s 699s (2.9% slower) 

Definition update time for 1K DS 265s 281s (6% slower) 

 
The percentage added delays in the table above are represented in the 

graph in Figure 5-3. It can be seen that Native Java-SGN requests take 

slightly longer than OSGi requests, and that the added delay increases with 

increasing number of devices. 
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Figure 5-3: Percentage added delay for Native Java-SGN request when compared to OSGi requests 

5.3 Effect of CPPM-TBAC on Response Time (Non-Aggregated 
Payloads) 

The serial sensor payload submission procedure (non-aggregated payloads) 

is shown in Figure 5-4. It shows multiple devices being connected to the 

client, each sending sensor readings either periodically or when stimulated. 

The purpose of the client is to construct payloads for each device interaction. 

The payloads are constructed in a way such that they can be processed by 

the SAW network (if they are being submitted to the server) or the connected 

devices (if they are being submitted to the devices). Multiple devices can 

connect to the client at the same time. 

 

Figure 5-4: CPPM-TBAC serial payload submission procedure 

Each payload is processed and transmitted to the SAW API sequentially by 

the client. For example, the client will submit the payload D1 to the SAW API, 

and then wait for a response. When it has received a response, it will send 

the next payload. 
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Consequently, the API receives and processes each payload in isolation of 

the other payloads. This means that the server needs to initialise a new 

processing action and a database connection for each payload it receives 

under this methodology. So for example, if n number of payloads are 

submitted in this manner and assuming that each payload uses the same 

access token, instead of the server having to check the access token only 

once, it will have to check it n times because each payload is captured and 

processed in isolation. 

5.3.1 Response Times for DF Registrations with Payloads of Varying 
Sizes 

The response times are measured for the OSGi-SGN and presented below. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5-5: DF registration times, in seconds, for minimum, average and heavy payloads and with 

TBAC enabled and disabled 
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Figure 5-5 (a) and Figure 5-5 (b) show the minimum payload. Figure 5-5 (c) 

and Figure 5-5 (d) show the average payload. Figure 5-5 (e) and Figure 5-5 

(f) show the heavy payload. 

Figure 5-6, Figure 5-7 and Figure 5-8 show the minimum, average and heavy 

DF registration payloads respectively.  

 

Figure 5-6: Minimal DF registration payload 

 

Figure 5-7: An average DF registration payload 

 

Figure 5-8: A verbose DF registration payload 

The minimal payload only contains essential fields as shown in Figure 5-6. 

Essential fields are the minimum set of fields that SAW expects the payload 

to contain. The size of this payload is a mere 84 bytes. The average payload 

in Figure 5-7 contains some optional fields alongside the essential fields 

shown in the minimal payload. The size of this payload is around 290 bytes. 

The heavy payload in Figure 5-8 is even more verbose and is around 520 

bytes. 
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The comparison of the device registration times with and without the 

proposed TBAC mechanism, for the minimum, average and heavy payloads, 

are presented in Table 5-3, Table 5-4 and Table 5-5 respectively.  

For the minimum payload, it can be seen that registration of 100 DF takes 

around 40 seconds when TBAC is disabled, which is increased to 46 

seconds when TBAC is enabled, resulting in a percentage added delay of 

14.6%. On the higher scale when registering 1,000 DF, it takes nearly 6 

minutes and 19 seconds with TBAC disabled and 7 minutes and 30 seconds 

with TBAC enabled. This translates to a percentage added delay of 18.7% 

which is only marginally higher than the increased delay for 100 devices. 

Table 5-3:  Comparison of DF registration times with minimum payload with TBAC on/off 

Number of DF registered With TBAC disabled With TBAC enabled 

100 40.8 seconds 46.7 seconds (14.6% slower) 

500  190.8 seconds 224.4 seconds (17.6% slower) 

1,000  378.9 seconds 449.8 seconds (18.7% slower) 

 

Table 5-4:  Comparison of DF registration times with average payload with TBAC on/off 

Number of DF registered With TBAC disabled With TBAC enabled 

100  43.8 seconds 49.8 seconds (13.8% slower) 

500  195.4 seconds 229.8 seconds (17.6% slower) 

1,000  389.3 seconds 459.2 seconds (18% slower) 

 

Table 5-5:  Comparison of DF registration times with heavy payload with TBAC on/off 

Number of DF registered With TBAC disabled With TBAC enabled 

100 47.8 seconds 54.3 seconds(13.6% slower) 

500 201 seconds 234.9 seconds(16.9% slower) 

1,000 398.9 seconds 468.7 seconds(17.5% slower) 

 
For the average payload, the comparisons are similar. Registration of 100 

DF takes around 44 seconds when TBAC is disabled. This is increased to 50 

seconds when TBAC is enabled, resulting in a percentage added delay of 
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13.76%. For 1,000 devices, it takes nearly 6 minutes and 29 seconds with 

TBAC disabled and 8 minutes and 39 seconds with TBAC enabled. This 

translates to a percentage added delay of 17.97% which, again, is only 

marginally higher than the increased delay for 100 DF. 

Similarly, for the heavy payload, registration of 100 devices takes around 48 

seconds when TBAC is disabled. This is increased to 54 seconds when 

TBAC is enabled, resulting in a percentage added delay of 13.6%. Following 

the same trend, for 1,000 devices it takes nearly 7 minutes and 39 seconds 

with TBAC disabled and 8 minutes and 49 seconds with TBAC enabled. This 

translates to a percentage added delay of 17.5%. Once again, this is only a 

slight increase over the percentage added delay for 100 devices. 

It can be seen from the presented information and statistics that TBAC 

introduces a noticeable added delay when registering DF. This is the trade-

off that is incurred in order to get new security features. The added delay 

when using TBAC is most significant with a small number of devices, and is 

comparatively less with a very large number of devices. Hence it can be said 

that for a large scale cloud-based networks, the proposed TBAC would be 

highly suitable.  

It can also be observed that the added delay increases as the payload size 

increases. These increases can be seen in Table 5-6, which displays a 

comparison between the average and heavy payloads with TBAC on and off. 

For example, the heavy payload takes 47.8 seconds to register 100 devices 

without TBAC. The same configuration with the average payload which takes 

43.8 seconds. Therefore, the percentage added delay when registering 100 

DF with TBAC off is 9.1% for the heavy payload when compared to the 
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average payload. This is the same as saying that registering 100 DF with 

TBAC off is 9.1% slower for the heavy payload when compared to the same 

configuration using the average payload. 

These statistics indicate that the payload size can have a small influence on 

the response times of DF registrations. However, it can be clearly seen that 

the percentage added delays tend to decrease as the number of DF 

registrations increase, and the decrease is more significant when TBAC is 

turned on. This, once again, demonstrates that the proposed CPPM-TBAC 

mechanism is suitable for large scale cloud-based networks as the 

percentage added delay is minimal when dealing with a large number of 

devices. 

Table 5-6: Comparison of DF registration times for different payload sizes 

Number of DF 
registered 

Average payload Heavy payload 

TBAC off TBAC on TBAC off TBAC on 

100 43.8s 49.8s 
47.8s 

(9.1% slower) 

54.2s 

(8.8% slower) 

500 195.4s 229.8s 
201s 

(2.9% slower) 

234.9s 

(2.2% slower) 

1,000 389.2s 459.2s 
398.9s 

(2.5% slower) 

468.7s 

(2.1% slower) 

 
As to the reason for why TBAC introduces a noticeable delay on the 

response times, this is due to the extra processing required at the server-

side for processing the token permissions and resource details. Mostly this 

involves extra queries to the database system for fetching the token 

permissions and also the details of the resources (DF, DS and DP) to be 

acted upon (create, read, update, delete). A potential area for future 

development can be the optimisation of the query generation and execution 

process when determining and processing access rights for resources (e.g. 
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not reusing already existing data, not caching frequently-used query calls, 

etc.) to reduce the response times when TBAC is turned on. 

5.3.2 Response Times for Uploading DP 

When devices (DF and their corresponding DS) have been registered to the 

network, sensor data can begin to upload to the network. This sensor data is 

referred to as DP. A DP payload is simple and usually only contains two 

fields: a field to specify the time the measurement was taken and another to 

specify the measurement value. The type of measurement (e.g. temperature, 

pressure, etc.) and other similar properties should already be defined for the 

DS submitting the DP so there is no need to replicate this information at the 

DP payload.  The typical size of this payload in the SAW network is around 

60-80 bytes and examples of it have been illustrated in Chapter 3. The 

following experiment tests the response times for sending these DP from the 

client to the server. The payload used for this experiment is shown in Figure 

5-9. 

 

Figure 5-9: DP payload showing the date of measurement and the sensor reading at that time 

The response times for submitting these DP payloads are displayed in Figure 

5-10 (a) and Figure 5-10 (b). 

The response times for uploading DP are higher compared to registering 

new DF because uploading DP requires loading the resource models of the 

parent DF and DS as well. This is why it becomes necessary to fetch the 

parent resources as well to satisfy the extensive set of permissions that can 

be modelled in the CPPM-TBAC tokens. For example, a token can provide 

permissions to create new DP. In CPPM-TBAC, permissions of DS cascade 
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down to DP. In this sort of token, the permissions will be specified for the DF 

or DS. Therefore, in order to determine if the provided token can be used to 

act on the DP being submitted, the system will have to fetch the parent DS 

and DF for the DP and check the permissions provided by the token against 

these resources. View section 3.4.3 for more details on this procedure. 

Obviously this incurs additional costs in terms of database processing. 

Uploading 100 DP takes around 61 seconds when TBAC is disabled. This is 

increased to 72 seconds when TBAC is enabled, resulting in a percentage 

added delay of 16.6%. On the higher scale when uploading 1,000 DP, it 

takes around 10 minutes and 9 seconds with TBAC disabled and 11 minutes 

and 57 seconds with TBAC enabled. This translates to a percentage added 

delay of 17.8% which is a marginal increase of 1.2% from the percentage 

added delay for 100 DP. The full set of comparisons are available in Table 

5-7. 

 

(a) 

 

(b) 

Figure 5-10: Time taken to upload DP with TBAC enabled and disabled 

Table 5-7:  Comparison of DP upload times with TBAC on/off 

Number of DP uploaded With TBAC disabled With TBAC enabled 

100 61.4 seconds 71.5 seconds (16.6% slower) 
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500 305.7 seconds 357.2 seconds (16.8% slower) 

1,000 608.8 seconds 717.2 seconds (17.8% slower) 

 

5.4 Effect of CPPM-TBAC on Response Time (Aggregated Payloads) 

The results presented for the asset model in the previous sections have used 

serial requests from the client to the server. Under this technique, requests 

are submitted one after another with no query optimisation. The large 

response time occurs due to the instantiation of the DB for each and every 

request. For example, uploading 1,000 DP requires sending each and every 

single individual payload by itself to the server. Once the server responds, 

the next payload is sent, and so on. 

A more efficient method of uploading numerous payloads is to first aggregate 

them and then upload them to the server in a single request. There are many 

aggregation techniques available and it is obvious that aggregated payloads 

will have better performance in terms of response times because the number 

of requests from the client to the server will be reduced and more processing 

will be undertaken in each request. The aim in this thesis is to analyse and 

compare the scale of differences in response times between serial requests 

and lumped-sum requests in order to prepare for the selection of an efficient 

technique. 

The aggregated payload procedure is illustrated in Figure 5-11. As with the 

serial sensor payload submission procedure, multiple devices can be 

connected to the client, each sending sensor readings either periodically or 

when stimulated. This procedure is quite similar to the previous procedure 

but varies in two major aspects: 

1. At the client end: The client has to decide how many payloads to 

combine and how to package this combination as a new aggregated 
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payload. It should be kept in mind that the current iteration of SAW 

only allows usage of a single access token for each request (whether 

it’s a single payload or an aggregated payload). Thus, the client has to 

ensure that it only aggregates payloads for DF, DS and DP that can 

be processed by the network with the supplied token. Since this 

intelligence is currently not available in the client node, for simulation 

purposes the payloads for aggregation are manually generated 

depending on the supplied token to ensure that the request is valid; 

2. At the server API end: The server API has to be able to recognise an 

aggregated payload submission and then extract the individual 

payloads for processing. As mentioned in the previous point, the 

server expects a single access token with each request. This access 

token is used to check the associated grants stored in the database to 

determine whether the client’s request can be fulfilled. 

 

Figure 5-11: CPPM-TBAC aggregated payload submission procedure 

There are obvious disadvantages to this, however, and some of these are as 

follows: 

 There needs to be extra capability and intelligence at the client side in 

order to select suitable payloads for aggregation, and to also 

determine the optimum number of payloads for aggregation. 
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 The client or the server will also need extra functionality and 

intelligence to handle cases where aggregated payloads are lost 

during transmission so that they can be re-transmitted if possible. 

 There can be significant added delay in the propagation of a large 

payload through the network due to its size. 

 The server needs to carry out extra processing to extract individual 

payloads from the aggregated payload and then process these 

individually. 

But the biggest disadvantage by far is that this scheme will only work in the 

SAW network if all the individual payloads in the aggregated payload can be 

processed using the same single token used by the client. This restriction 

applies because the current implementation of SAW can only accept a single 

token per request from the client. This restriction has significant implications 

on the aggregated payload submission scheme because it can be expected 

that aggregated payloads will contain multiple assets (DF, DS and DP), 

belonging to multiple users, requiring multiple tokens. Therefore, it must be 

kept in mind that while this scheme is being presented here as a really 

efficient alternative to the serial payload submission procedure, it cannot 

realistically be implemented with the current deployment of the SAW 

network. However, it is definitely something that is an area of further 

research and development, and hence the decision to include it in the thesis. 

In this scenario, the server would handle all the processing in one request. 

This means that the connection to the database (both MySQL and 

MongoDB) will only be initialised once. 
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This simulation was run for DF registrations ranging from 100 devices to 

1,000 devices. The results of the simulation are presented in Table 5-8 and 

plotted in Figure 5-12 (a) and Figure 5-12 (b). 

Table 5-8:  DF registration times for the aggregated payload submission procedure. 

Number of DF 
registered 

With TBAC disabled With TBAC enabled 

100  6 seconds 11.958 seconds(99.2% slower) 

500  31 seconds 62.4 seconds(100.9% slower) 

1,000  63.1 seconds 127.3 seconds(101.6% slower) 

 

 

(a) 

 

(b) 

Figure 5-12: DF registration time with TBAC enabled and disabled for the aggregated payload 

submission procedure 

Two things can be noted with these results: 

1. The response times are significantly faster in this scenario. There is 

an improvement of almost 700% when TBAC is off (Figure 5-13 (b)) 

and nearly 400% when TBAC is on (Figure 5-13 (a)). 

2. The added delay when TBAC is on is almost double. 

In regards to the first point, it can be see here that aggregating payloads to 

reduce the number of requests made to the server greatly improves the 

response time. This is mainly due to the reduction in the number of database 
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initialisations that need to be done, as this is the most costly operation on the 

server. Reducing the number of database initialisations leads to a great 

improvement in response times because the server can do more work with 

each database connection. 

The improvements in response times with TBAC enabled are shown in 

Figure 5-13 (a) and the improvements with TBAC disabled are shown in 

Figure 5-13 (b). 

 

(a) 

 

(b) 

Figure 5-13: Improvement in DF registration time with TBAC enabled and disabled for the aggregated 

payload submission procedure 

It is seen from Table 5-8 that in this scenario, the response times doubles 

when TBAC is enabled. In comparison, the added delay in response times 

seen in the serial requests scenarios was in the region of 15-30%. However, 

the increase of response times to just over 100% when TBAC is enabled in 

the aggregated payload submission procedure can be easily explained.  

When TBAC is enabled, the number of queries to the database increase 

significantly due to checking of permission policies for the supplied token. 

However, the added delay due to this process is relatively small compared to 

the time taken to initialise and close down the database, and is thus quite 
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largely masked in the overall response time for serial payload submission 

procedure scenarios. For the aggregated payload submission procedure 

scenarios, however, this delay is more noticeable because the database is 

not being initialised or closed down as the payloads are being processed. So 

in the aggregated payload submission scenarios, the actual added delay for 

using TBAC is being seen. 

 

Figure 5-14: Percentage delay added on DF registration times when using the CPPM-TBAC scheme 

for the aggregated payload submission procedure 

More importantly, it is important to note that once again, the percentage 

added delay remains relatively uniform as we increase the number of 

devices being registered from 100 devices to 1,000 devices. The plot for the 

added delay for the aggregated payload submission procedure can be seen 

in Figure 5-14. The percentage added delay only increases by a mere 2.4% 

as the number of devices increases by 10 times from 100 devices. 

5.5 CPPM-TBAC Analysis 

5.5.1 TBAC Scaling Efficiency 

It is clear that any access control mechanism will undoubtedly introduce 

some level of delay to the network due to additional processing and 

authentication checks, so the actual delay is not the focal point of concern in 

this regard. The real problem that needs to be addressed in a dynamic 
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environment like the WoT is the issue of delay caused as the number of 

devices increases for very large networks. In this regard, it is important for an 

access control scheme to maintain a relatively uniform percentage added 

delay across an increasing number of devices. 

In Figure 5-15 (a) and Figure 5-15 (b) it can be seen that the proposed 

CPPM-TBAC scheme scales very well with both an increase in the number 

of DF being registered and the increase in number of DP being uploaded to 

the SAW network. 

 

(a) 

 

(b) 

Figure 5-15: Percentage delay added on DF registration and DP upload response times when using 

the CPPM-TBAC scheme 

The added delay with TBAC on in response times when registering 100 DF is 

14.59%. For 1,000 devices, this percentage added delay increases by a 

mere 4.12% to 18.71%, even though the number of DF being registered 

increases by 10 times. 

Similarly, the added delay with TBAC on in response times when uploading 

100 DP is 16.59%. For 1,000 DP, this percentage added delay increases by 

just 1.21% to 17.8%, even though the number of DP being uploaded 

increases by 10 times. It can be seen here that the percentage added delay 
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for uploading DP to the SAW network remains relatively uniform as the 

number of DP increases from a modest 100 DP to a much more resource-

intensive 1,000 DP. This uniform increase in percentage added delay is 

paramount for achieving scalability in a dynamic, temporal and high-load 

environment. 

5.5.2 Tokens as a means of Dynamic Access Control 

CPPM-TBAC tokens are designed in such a fashion so as to facilitate the 

dynamic generation of access rights for numerous resources of a user by 

using a small number of tokens. Each token, if needed, can model access 

rights for all resources of a user all the way from coarser DF right down to 

the finer DP. However, this may lead to degraded performance due to the 

intensive processing of a large number of access rights each and every time 

a resource is accessed via the token. 

Each token has the capability to specify a set of global permissions for a 

specific user. The token can then specify access rights for DF either 

according to their visibility grouping (public or private), or according to 

specific DF IDs. The token can then specify access rights for the DS of each 

DF, again, either by specifying grants according to the visibility grouping of 

the DS or, for even finer access, according to the DS IDs. If access rights are 

specified for a specific DF or DS, then those access rights can easily be 

removed in the future without affecting the token in regards to access for 

other resources it has modelled. This effectively allows dynamic granting and 

revoking of access rights for each token. 

The same is true for when an existing token needs to be updated for 

additional resource grants of new or existing resources. This can be useful 
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for upgrading an agent’s access to new resources or subsets of existing 

resources without issuing a new token, thereby improving usability and 

manageability of tokens. This technique can also be used to degrade an 

agent’s access to resources, again, without necessitating the issuing of a 

new token if that is what is desired in the specific application scenario. 

However, this may not be the best option because using the same token 

over long periods of times can pose a security risk if someone manages to 

illegally obtain the token. A token with a shorter life period is considered to 

be more secure. 

Network administrators can therefore dynamically assign and revoke grants 

for each and every single token for any level of granularity by either using 

visibility level groupings for coarser control or specific DF and DS IDs for 

fine-grained access management. Each token can be enhanced or reduced 

whenever the need arises. 

5.5.3 Improving Security 

Tokens can be set to expire in the near future (temporal tokens) to force 

agents to request new tokens for continued access to network resources. 

This technique can be used to improve the security of the TBAC system and 

mitigate security threats related to compromised tokens (e.g. if a hacker 

manages to get access to a legitimate token). 

If temporal tokens are not used and access still needs to be revoked for an 

agent, then the token in question can simply be deleted. When the agent 

tries to access the network resources using the deleted token, then the 

request will not be honoured. It goes without saying that this method should 

be used with care due to its vague nature. 
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Network administrators can also setup automated token renewal capability 

within the system to automatically expire and renew tokens for agents. This, 

again, can help mitigate threats from compromised tokens. 

There are also various other issues pertaining to the security implications of 

using CPPM-TBAC that have not been discussed in the thesis due to 

limitation in time and scope. Some of the more prominent issues are listed 

below with brief commentaries that are not aimed at solving the problem of 

security but rather highlighting it as an area of future work: 

 Token generation and propagation mechanisms/procedures: Currently 

all tokens are generated manually with a set of defined permissions 

for existing users and resources. They are then manually sent to 

clients who need to make use of them. There is no automated 

mechanism or procedure in place to propagate the generated tokens 

to clients in a secure fashion. Possible solutions to this problem can 

be implementation of cryptographic key generation and exchange 

mechanisms like Diffie–Hellman key exchange (D–H) and RSA [99]. 

By using a shared secret, tokens can be securely transmitted to 

clients in an automated fashion. 

 Automatic token expiration: While network administrators have some 

control over the life period of generated tokens to control when they 

expire, there is no automated mechanism of identifying compromised 

tokens and automatically expiring them to prevent further security 

breaches. Various methods and parameters can be employed to 

identify compromised tokens (e.g. abnormal differences in source 

IP/requester location). 
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All of these issues can be considered potential areas of future work that can 

be investigated further to improve the security of the system. 

5.5.4 Automated Access Grants Using Visibility Groups 

It has been mentioned earlier that tokens can specify access rights according 

to visibility groups of DF and DS. This has the added benefit of automating 

the granting of access for new resources that are added to the network, if 

this is desired. 

For example, if a token grants read and update access for public DF and all 

its public DS, then it will automatically grant access to new public DF and 

their public DS. If some of the new resources need to be excluded from this 

rule, then either their visibility group can be changed or specific access rights 

for them added to the token by specifying the DF and DS IDs. The 

automated granting of access leads to reduced maintenance and easier 

usage and deployment of the tokens, whilst the ability to override grants for 

specific resources helps to overcome the drawback in manageability of the 

TBAC system. 

5.6 Semantic Profiling Analysis 

One possible application of the SAW framework is in DM applications where 

a multitude of sensing devices will be collecting and uploading large amounts 

of sensor data for immediate processing. In this type of application, the 

system needs to be able to readily and effectively identify devices accurately 

and profile their characteristics in a semantic fashion so as to enable 

machine-initiated interaction with the sensing devices and the collected data. 

The simulation scenarios presented here take these considerations into 

account. The simulations intends to profile and measure the ability of the 
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framework to map devices to the correct corresponding concepts. When tags 

are submitted, more than one matching concept can be returned by the 

system. This, of course, depends on the existing knowledge base and the list 

of tags provided to the framework. The complete list of experiments carried 

out are detailed in Table 5-9 and justified below the table. 

The actual semantic profiling mechanisms have been detailed earlier in 

Chapters 2 and 3. Simulation scenarios are presented in this section to test 

the suitability and effectiveness of the semantic profiling mechanisms when 

annotating a set of sensing platforms semantically. 

Table 5-9: List of semantic annotation experiments 

Experiment 
No 

Section No. of 
Concepts 

No. of 
Devices 

Concepts to Devices 
Ratio 

1 5.6.1 10 50 1:5 

2 5.6.2 20 100 1:5 

3 5.6.3 50 100 1:2 

4 5.6.4 10 100 1:10 

5 5.6.5 10 500 1:50 

 
Sections 5.6.1 and 0 present simulation scenario sets for a concepts to 

devices ratio of 1:5. The purpose of experiment 2 is to compare the effects of 

increasing the number of concepts and devices whilst keeping the concepts 

to devices ratio the same as experiment 1. Section 5.6.3 presents a 

simulation scenario set for a hypothetical and improbable concepts to 

devices ratio of 1:2. The purpose is not to analyse real-world performance as 

this ratio is highly improbably, but rather to identify trends between the 

different concepts to devices ratios and provide a basis for further 

comparison. For the same purpose, sections 5.6.4 and 0 present simulation 

scenario sets for concepts to devices ratios of 1:10 and 1:50 respectively. 
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Finally, section 5.6.6 compares and analyses the results collected for the 

various simulations. 

5.6.1 Semantic Profiling Simulation Scenario Set 1: 10 Concepts and 
50 Devices 

This simulation uses the baseline setup so that the number of devices is 50 

and the number of concepts 10. Each concept has 5 possible devices it can 

map to. This produces a concepts to devices ratio of 1:5. 

In an ideal case, the following values will be expected for each measured 

parameter: 

1. Total concepts generated: 10.  

2. Duplicate concepts: 0. This implies 100% mapping accuracy. 

3. Total concepts with 5 mapped devices: 10 

4. Total concepts with less than 5 mapped devices: 0 

5. Total concepts with more than 5 mapped devices: 0 

6. Average concepts returned by the system when tags are submitted: 

Ideally this needs to be above 1 to indicate that the system is 

returning at least 1 valid concept for each mapping. 

7.  Percentage of primary concepts returned by the system when tags 

are submitted: No ideal value. 

8. Percentage of secondary concepts returned by the system when tags 

are submitted: No ideal value. 

9. Total cases where one concept has a bigger weight than the rest of 

the returned concepts: 100% of all cases. 

10. Total cases where all returned concepts had equal weight: 0% of all 

cases. 
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5.6.1.1 Simulation 1: All 50 devices submitted in a random fashion and 
provided with one random tag from the corresponding concepts 

In this scenario a single tag is being used to register the device and to map it 

with a semantic concept. As expected, this gives rise to a large number of 

semantic concepts being generated as the single tag proves insufficient in 

mapping new devices to existing concepts. The results in Table 5-10 show 

that the system generates around 73% duplicate concepts in this scenario. 

Table 5-10: Results for simulation scenario set 1: Simulation 1 (1 tag) 

Statistic Result Comments 

Total concepts generated 38  

Duplicate concepts 28 73.7% of concepts generated are 

duplicates 

Total concepts with 5 mapped 

devices 

0  

Total concepts with less than 5 

mapped devices 

38 29 concepts with 1 mapped device; 

6 concepts with 2 mapped devices; 

3 concepts with 3 mapped devices; 

Total concepts with more than 5 

mapped devices 

0  

Average concepts returned by the 

system when tags are submitted 

0.26  

Percentage of primary concepts 

returned by the system when tags 

are submitted 

100%  

Percentage of secondary 

concepts returned by the system 

when tags are submitted 

0%  

Total cases where one concept 

has a bigger weight than the rest 

of the returned concepts 

13 100% of total cases 

Total cases where all returned 

concepts had equal weight 

0 0% of total cases 

 
Another expected outcome is the lack of concepts having all their devices 

mapped to them successfully. Results show that no concepts were able to 

achieve this in the given scenario. In fact, 29 concepts, which accounts for 

76% of the total generated concepts in this scenario, were only mapped to 1 
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device. Only 3 concepts, i.e. around 8% of the total generated, were 

successful in mapping at least 3 devices successfully. 

Furthermore, the average number of concepts returned when tags were 

being submitted to the system is well below 1, which is the reason for the 

large number of duplicates seen in this scenario. In fact, only 26% of the 

profiling attempts resulted in the system returning one or more matched 

concepts, and in all these cases, no secondary mappings were produced. 

This is due to the small number of tags which are being stored in the 

knowledge base. If, on the other hand, the knowledge base had more data to 

work with resulting in it becoming richer with each mapping, then the results 

would be significantly different as is seen in the following two simulation 

scenarios where more tags are used and therefore more knowledge added 

to the repository. 

To conclude, submitting a small number of tags leads to a slower enriching 

of the knowledge base, less useful results, higher chance of generating 

duplicate semantic concepts, but almost 100% chance of obtaining a clearly 

distinguished semantic concept which has a higher weight than the rest of 

the returned concepts, suggesting very strong likelihood of a positive match. 

5.6.1.2 Simulation 2: All 50 devices submitted in a random fashion and 
provided with two random tag from the corresponding concepts 

In this scenario two tags are being used to register the device and to map it 

with a semantic concept. The results show that the system generates around 

44% duplicate concepts in this scenario, which is an improvement of 33.3% 

from scenario 1. The results, as presented in Table 5-11, also show an 

improvement of 11.1% in successfully mapping 5 devices to the 

corresponding concept compared to scenario 1, where no concept was 
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mapped to all of its 5 devices. A negative outcome of the addition of an extra 

tag in the profiling phase can be observed in the form of false positives 

where 2 concepts ended up with having more than 5 devices mapped to 

them. This is a decline in performance of 11.1% compared to the same 

statistic in scenario 1. 

Table 5-11: Results for simulation scenario set 1: Simulation 2 (2 tags) 

Statistic Result Comments 

Total concepts generated 18  

Duplicate concepts 8 44.4% of concepts generated are 

duplicates. 

Improvement of 33.3% from scenario 1. 

Total concepts with 5 mapped 

devices 

2 11.1% of total generated concepts. 

Improvement of 11.1% from scenario 1. 

Total concepts with less than 5 

mapped devices 

14 77.8% of total generated concepts. 

5 concepts with 1 mapped device; 

5 concepts with 2 mapped devices; 

2 concepts with 3 mapped devices; 

2 concepts with 4 mapped devices; 

Total concepts with more than 5 

mapped devices 

2 11.1% of total generated concepts. 

Decline of 11.1% from scenario 1. 

Average concepts returned by the 

system when tags are submitted 

1.04 Improvement of 400% from scenario 1. 

Percentage of primary concepts 

returned by the system when tags 

are submitted 

78.8%  

Percentage of secondary concepts 

returned by the system when tags 

are submitted 

21.2%  

Total cases where one concept has 

a bigger weight than the rest of the 

returned concepts 

27 90% of all cases; 

Decline of 10% from scenario 1. 

Total cases where all returned 

concepts had equal weight 

3 10% of all cases; 

Decline of 10% from scenario 1. 

 
Another obvious enhancement is the 4 times increase in the average number 

of concepts returned by the system when two tags are used to map each 

device compared to the same statistics observed in scenario 1. This 

enhancement results from the better and speedier enrichment of the 
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knowledge base from using two tags instead of one. The results also show 

that due to the enrichment of the knowledge base, secondary mappings are 

also more likely to be returned with each request. Finally, it can be observed 

that the percentage of cases where all returned concepts had the same 

weight (and therefore introducing ambiguity for autonomous profiling) 

increased by 10% compared to scenario 1, suggesting that more tags 

potentially lead to bigger ambiguity. This is not a big issue for human clients 

but can become problematic for machine agents where a decision has to be 

made regarding the concept to map the device to according to the weights of 

the returned concepts. 

To conclude, obvious improvements can be observed in reduction of 

duplicate concept generation when using two tags instead of one. The 

system also produces more accurate mappings for the devices but 

introduces a risk of generating false positives, and at the same time, 

ambiguous results. 

5.6.1.3 Simulation 3: All 50 devices submitted in a random fashion and 
provided with three random tag from the corresponding 
concepts 

In this scenario three tags are being used to register the device and to map it 

with a semantic concept. The results show that the system generates around 

23% duplicate concepts in this scenario, which is an improvement of 21.3% 

from scenario 2 and a huge improvement of 54.6% from scenario 1. Table 

5-12 also shows that there is an improvement of 19.7% in successfully 

mapping 5 devices to the corresponding concept compared to scenario 2, 

which translates to a respectable increase of 30.8% compared to scenario 1. 
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The results show significant improvements in the average number of 

concepts returned by the system when mapping devices with an increase of 

23% from simulation scenario 2. This means that human clients are given 

more options when mapping their devices, resulting in higher likelihood of the 

correct corresponding semantic concept being selected in the end. 

Table 5-12: Results for simulation scenario set 1: Simulation 3 (3 tags) 

Statistic Result Comments 

Total concepts generated 13  

Duplicate concepts 3 23.1% of concepts generated are 

duplicates. 

Improvement of 21.3% from scenario 2. 

Improvement of 54.6% from scenario 1. 

Total concepts with 5 mapped 

devices 

4 30.8% of total generated concepts. 

Improvement of 19.7% from scenario 2. 

Improvement of 30.8% from scenario 1. 

Total concepts with less than 5 

mapped devices 

7 3 concepts with 1 mapped device; 

1 concepts with 2 mapped devices; 

1 concepts with 3 mapped devices; 

2 concepts with 4 mapped devices; 

Total concepts with more than 5 

mapped devices 

2 7.7% of total generated concepts. 

1 concept with 9 mapped devices;  

Decline of 4.27% from scenario 2; 

Decline of 15.38% from scenario 1.  

Average concepts returned by the 

system when tags are submitted 

1.28 Up 23% from scenario 2. 

Up 492% from scenario 1. 

Percentage of primary concepts 

returned by the system when tags 

are submitted 

75%  

Percentage of secondary 

concepts returned by the system 

when tags are submitted 

25%  

Total cases where one concept 

has a bigger weight than the rest 

of the returned concepts 

33 89.2% of total cases. 

Decline of 0.8% from scenario 2. 

Decline of 10.8% from scenario 1. 

Total cases where all returned 

concepts had equal weight 

4 10.8% of total cases. 

Decline of 0.8% from scenario 2. 

Decline of 10.8% from scenario 1. 

 
Finally, and as expected, using three tags instead of two or one tags has 

resulted in increased likelihood of returning more than one concept with the 
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same weight, thereby increasing the ambiguity of the returned concepts and 

making it especially difficult for machine agents to choose the correct 

corresponding concept. The decrease, however, is less than 1% compared 

to scenario 2, so it is not a huge change but does, nonetheless, point 

towards a correlation where increasing the number of tags during the 

profiling phase leads to the generation of more ambiguous returned 

concepts. 

5.6.1.4 Comparison of Using 1, 2 and 3 Tags 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-16: Simulation scenario set 1 results showing duplicate concept generation, fully mapped 
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concepts, average returned concepts and cases with one concept having bigger weight than the rest 

As the number of tags is increased in each of the simulation scenarios 

above, the following observations can be made: 

1. The generation of duplicate concepts is reduced (Figure 5-16 (a)) 

significantly. There is an improvement of 54.6% when 3 tags are used 

as opposed to 1, meaning that generation of duplicate concepts is 

halved by increasing the number of tags from 1 to 3. It can also be 

observed that the improvement in reduction of duplicate concepts is 

only 21.3% when using 3 tags compared to 2, indicating that the trend 

is approaching a saturation point. Increasing the number of tags even 

further may help to identify the rough saturation point for this trend. 

2. The number of fully mapped concepts increase (Figure 5-16 (b)). This 

is due to various reasons but primarily because of the reduction in 

duplicate concepts being generated, which in turn is because more 

concepts are being returned during each mapping (point 3 below). 

This shows that increasing the number of tags leads to better 

accuracy of the system in mapping devices to their corresponding 

concepts. 

3. The average returned concepts increase (Figure 5-16 (c)). As 

explained before, this is due to better and speedier enrichment of the 

knowledgebase which means that more concepts are turned for each 

device mapping, thereby resulting in a higher likelihood of an accurate 

mapping and less chance of generating duplicate concepts. 

4. The ambiguity increases (number of cases where one concept has a 

bigger weight than the rest decrease) (Figure 5-16 (d)). The increase 
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in percentage for this stat is quite small but it is there nonetheless and 

points towards a trend where increasing the number of tags leads to 

more difficulty for autonomous agents to identify the correct returned 

semantic concept to map the device to. 

5.6.2 Semantic Profiling Simulation Scenario Set 2: 20 Concepts and 
100 Devices 

Table 5-13: Results for simulation scenario set 2 

Statistic 100 devices 
mapped with 1 

tag (S1) 

100 devices 
mapped with 2 

tags (S2) 

100 devices 
mapped with 3 

tags (S3) 

Total concepts generated 72 38 27 

Duplicate concepts 52 18 

-24.9% from S1 

7 

-46.3% from S1 

-21.4% from S2 

Total concepts with 5 mapped 

devices 

0 5 

+13.2% from S1 

8 

+29.6% from S1 

+16.5% from S2 

Total concepts with less than 5 

mapped devices 

72 29 15 

Total concepts with more than 

5 mapped devices 

0 4 

-10.5% from S1 

4 

-14.8% from S1 

-4.3% from S2 

Average concepts returned by 

system when tags are 

submitted 

0.33 0.89 

+273% from S1 

1.16 

+356.9% from S1 

+130.3% from S2 

Percentage of primary 

concepts returned by system 

when tags are submitted 

100% 88.8% 80% 

Percentage of secondary 

concepts returned by system 

when tags are submitted 

0% 11.2% 20% 

Total cases where one 

concept has a bigger weight 

than the rest of the returned 

concepts 

27 57 

-6.1% from S1 

33 

-6.6% from S1 

-0.5% from S2 

Total cases where all returned 

concepts had equal weight 

2 9 

+6.6% from S1 

4 

+6.7% from S1 

+0.1% from S2 

 
This simulation uses the same setup as before but instead the number of 

devices has been increased to 100 and the number of concepts to 20. In 

effect, both the number of concepts and the number of devices have been 
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doubled. As before, each concept still has 5 possible devices it can map to. 

So the ratio of concepts to devices still remains at 1:5. The results for the 

simulation are shown in Table 5-13. 

It can be seen here that the results for this simulation are comparable to the 

simulation scenario set 1 where 10 concepts were being mapped to 50 

devices. This was expected as the ratio of concepts to devices was the same 

in both cases. 

There is a similar drop in the percentage of duplicate concepts generated as 

the number of tags is increased from 1-3. The percentage of duplicate 

concepts generated drops by 46.3% when 3 tags are used instead of 1. This 

is similar to the 50.6% drop observed in simulation scenario set 1. 

Similarly, the percentage of fully mapped devices rises by 29.6% when 3 

tags are used instead of 1, and again this is the same as the 30.7% 

percentage rise seen for the same stat in simulation scenario set 1. 

The percentage of cases where all returned concepts had equal weights also 

follows the same trend, with usage of 3 tags seeing an increase of 6.7% in 

mapping ambiguity when compared to usage of a single tag. This is similar to 

the increase of 10.8% seen for the same stat in simulation scenario set 1. 

In summary, as the number of tags is increased, similar conclusions can be 

made for this simulation scenario set: 

1. The generation of duplicate concepts is reduced (Figure 5-17 (a)). 

2. The number of fully mapped concepts increase (Figure 5-17 (b)). 

3. The average returned concepts increase (Figure 5-17 (c)). 

4. The ambiguity increases (number of cases where one concept has a 

bigger weight than the rest decrease) (Figure 5-17 (d)). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-17: Simulation scenario set 2 results showing duplicate concept generation, fully mapped 

concepts, average returned concepts and cases with one concept having bigger weight than the rest 
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thus 1:2. It should be noted that whilst this simulation is carried out for 
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system, the concepts to devices ratio would be this small. In real-life 

72.22
% 

47.37
% 

25.93
% 

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f 
d
u
p
lic

a
te

 c
o
n
c
e
p
ts

 

No. of tags submitted 

Duplicate concepts generated (20 
Concepts, 100 Devices) 

0.00% 

13.16
% 

29.63
% 

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f 
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

 

No. of tags submitted 

Fully mapped concepts (20 
Concepts, 100 Devices) 

0.325 

0.89 

1.16 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3

A
v
e
ra

g
e
 c

o
n
c
e
p
ts

 r
e
tu

rn
e
d

 

No. of tags submitted 

Average concepts returned (20 
Concepts, 100 Devices) 

93.10
% 

87.02
% 86.52

% 

82%

84%

86%

88%

90%

92%

94%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f 
u
n
a
m

b
ig

u
o
u
s
 c

a
s
e
s
 

No. of tags submitted 

Cases with one concept having 
bigger weight than the rest (20 

Concepts, 100 Devices) 



 

 173   

operation, the number of concepts will be few (these are the different types 

of sensing devices and platforms) and the number of devices many (these 

are the individual instances of the aforementioned devices). Having said that, 

this scenario is still simulated in order to learn the effects of increasing and 

decreasing the ratio of concepts to devices. The results for this simulation 

scenario set are shown in Table 5-14. 

Table 5-14: Results for simulation scenario set 3 

Statistic 100 devices 
mapped with 1 

tag (S1) 

100 devices 
mapped with 2 

tags (S2) 

100 devices 
mapped with 3 

tags (S3) 

Total concepts generated 91 72 52 

Duplicate concepts 41 2 

-14.5% from S1 

2 

-41.2% from S1 

-26.7% from S2 

Total concepts with 2 mapped 

devices 

10 27 

+26.5% from S1 

47 

+79.4% from S1 

+52.9% from S2 

Total concepts with less than 2 

mapped devices 

81 44 4 

Total concepts with more than 

2 mapped devices 

0 1 

-1.4% from S1 

1 

-1.9% from S1 

-0.5% from S2 

Average concepts returned by 

system when tags are 

submitted 

0.1 0.39 

+390% from S1 

0.59 

+590% from S1 

+151.3% from S2 

Percentage of primary 

concepts returned by system 

when tags are submitted 

100% 100% 100% 

Percentage of secondary 

concepts returned by system 

when tags are submitted 

0% 0% 0% 

Total cases where one 

concept has a bigger weight 

than the rest of the returned 

concepts 

10 29 49 

 

Total cases where all returned 

concepts had equal weight 

0 0 0 

 
Compared to the preceding scenarios, the following observations can be 

made straight away: 
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 The percentage of duplicate concepts generated is around 20-30% 

less compared to the earlier scenarios, with 3 tags only generating 

3.9% duplicate concepts (a reduction of 41.2% compared to usage of 

1 tag in the same simulation). 

 The percentage of fully mapped concepts is almost 60% higher with 

the usage of 3 tags compared to the earlier scenarios as it crosses 

90%. This translates to an increase of 79.4% in this stat when 

compared to the usage of 1 tag. 

 The average concepts returned by the system during the mapping 

process is a lot lower. This is because of the high mapping accuracy 

which leads to only the correct concepts being returned by the 

system. 

 In all instances, no secondary concepts are returned by the system. 

Again, this is due to the high mapping accuracy of the system where 

all mappings are being achieved through primary tags. 

 In all instances, the system returned a concept with a higher weight 

than the rest of the concepts for 100% of the mappings. This is related 

to the low average concepts returned stat and the high mapping 

accuracy. This translates to a 0% ambiguity for autonomous agents in 

all cases which is excellent. However, as mentioned before, this 

simulation scenario is unrealistic and not applicable to real-life 

operation. 

In summary, as the number of tags is increased, similar conclusions can be 

made for this simulation scenario set as well: 

1. The generation of duplicate concepts is reduced (Figure 5-18 (a)). 
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2. The number of fully mapped concepts increases dramatically (Figure 

5-18 (b)). 

3. The average returned concepts increase, but never rise above 1 

(Figure 5-18 (c)). 

4. The ambiguity remains at 0% throughout (Figure 5-18 (d)). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-18: Simulation scenario set 3 results showing duplicate concept generation, fully mapped 

concepts, average returned concepts and cases with one concept having bigger weight than the rest 
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5.6.4 Semantic Profiling Simulation Scenario Set 4: 10 Concepts and 
100 Devices 

This simulation uses the same setup as simulation scenario set 1 but instead 

the number of devices has been increased to 100, such that each concept 

has 10 possible devices that can be mapped to it. The ratio of concepts to 

devices is now 1:10. 

Table 5-15: Results for simulation scenario set 4 

Statistic 100 devices 
mapped with 1 

tag (S1) 

100 devices 
mapped with 2 

tags (S2) 

100 devices 
mapped with 3 

tags (S3) 

Total concepts generated 56 24 16 

Duplicate concepts 46 14 

-23.8% from S1 

6 

-44.6% from S1 

-20.8% from S2 

Total concepts with 10 

mapped devices 

0 2 

+8.3% from S1 

4 

+25.0% from S1 

+16.7% from S2 

Total concepts with less than 

10 mapped devices 

55 21 9 

Total concepts with more than 

10 mapped devices 

1 1 

-2.4% from S1 

3 

-17.0% from S1 

-14.6% from S2 

Average concepts returned by 

system when tags are 

submitted 

0.78 1.43 

+183.3% from S1 

1.71 

+219.2% from S1 

+119.6% from S2 

Percentage of primary 

concepts returned by system 

when tags are submitted 

100% 87.6% 78% 

Percentage of secondary 

concepts returned by system 

when tags are submitted 

0% 12.4% 21.9% 

Total cases where one 

concept has a bigger weight 

than the rest of the returned 

concepts 

28 66 

+23.5% from S1 

77 

+29.4% from S1 

+6.0% from S2 

 

Total cases where all returned 

concepts had equal weight 

17 11 7 

 
It was mentioned before that in real-life operation, the number of concepts 

will be few and the number of devices many. This simulation scenario set is 

therefore conducted primarily to compare it against the simulation scenario 
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set 1, where the concepts to devices ratio of 1:5. The results for this 

simulation scenario set are shown in Table 5-15. 

In general, this simulation scenario set has similar results to simulation 

scenario set 1. 

 The number of duplicate concepts generated decrease as the number 

of tags is increased. The percentage of duplicate concepts generated 

is around 9%-14% higher in each case compared to simulation 

scenario set 1, however. 

 The number of fully mapped devices increases as the number of tags 

is increased. However, this percentage is smaller compared to 

simulation scenario set 1. 

 The average returned concepts increase as the number of tags is 

increased. However, there are two notable differences: 

o The average returned concepts are higher in each case 

compared to simulation scenario set 1. 

o The increase in the average returned concepts as the number 

of tags is increased is noticeably lower. 

However, there is a major difference in this simulation scenario set compared 

to simulation scenario set 1. Whereas before the ambiguity would increase 

as the number of tags increased, now the ambiguity is seen to decrease as 

the number of tags increases. This is apparent from the increase of cases 

where one concept has higher weight than the rest of the returned concepts 

as the number of tags is increased. This appears to show a trend where 

having a high concepts to devices ratio actually helps to reduce the 

ambiguity of the semantic mapping process as the number of tags is 
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increased. It is also important to note that the ambiguity hovers around the 

10% mark for both simulation scenario sets when 3 tags are used. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-19: Simulation scenario set 4 results showing duplicate concept generation, fully mapped 

concepts, average returned concepts and cases with one concept having bigger weight than the rest 
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1. Duplicate concepts generation is reduced significantly (Figure 5-19 
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2. Number of fully mapped concepts increases dramatically (Figure 5-19 

(b)). 

3. The average returned concepts increase, and are much higher than 

the preceding simulation scenario sets (Figure 5-19 (c)). 

4. Bucking the trend so far, the ambiguity decreases as the number of 

tags is increased (Figure 5-19 (d)). 

5.6.5 Semantic Profiling Simulation Scenario Set 5: 10 Concepts and 
500 Devices 

This simulation uses the same setup as before but instead the number of 

devices has been increased to 500, such that each concept has 50 possible 

devices that can be mapped to it. In this scenario, the ratio of concepts to 

devices is 1:50, making it even more near to real-life operation than 

simulation scenario set 4. The results for this simulation scenario set are 

shown in Table 5-16. 

Most of the statistics follow the same trend as seen in simulation scenario set 

4: 

 The number of duplicate concepts generated decrease as the number 

of tags is increased. The percentage of duplicate concepts generated 

is around 7%-15% higher in each case compared to simulation 

scenario set 4.  

 The number of fully mapped devices increases as the number of tags 

is increased. However, this percentage is smaller compared to 

simulation scenario set 4, and the difference is even greater when 

compared to simulation scenario set 1. 
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 The average returned concepts increase as the number of tags is 

increased. Once again, the average returned concepts in each case 

are greater when compared to simulation scenario set 4. 

Table 5-16: Results for simulation scenario set 5 

Statistic 500 devices 
mapped with 1 tag 

(S1) 

500 devices 
mapped with 2 

tags (S2) 

500 devices 
mapped with 3 

tags (S3) 

Total concepts generated 142 38 18 

Duplicate concepts 132 28 

-19.3% from S1 

8 

-48.5% from S1 

-29.2% from S2 

Total concepts with 50 mapped 

devices 

0 1 

+2.6% from S1 

4 

+22.2% from S1 

+19.6% from S2 

Total concepts with less than 50 

mapped devices 

142 35 13 

Total concepts with more than 50 

mapped devices 

0 2 

-5.3% from S1 

1 

-5.6% from S1 

Average concepts returned by 

system when tags are submitted 

1.29 2.30 

+178.1% from S1 

2.42 

+187.5% from S1 

+105.3% from S2 

Percentage of primary concepts 

returned by system when tags 

are submitted 

100% 55.8% 53% 

Percentage of secondary 

concepts returned by system 

when tags are submitted 

0% 44.3% 47.2% 

Total cases where one concept 

has a bigger weight than the rest 

of the returned concepts 

277 415 

+12.5% from S1 

444 

+14.8% from S1 

+2.3% from S2 

 

Total cases where all returned 

concepts had equal weight 

82 48 39 

In summary, as the number of tags is increased, similar conclusions can be 

made for this simulation scenario set as made for the simulation scenario set 

4: 

1. The generation of duplicate concepts is reduced (Figure 5-20 (a)). 

2. Number of fully mapped concepts increases dramatically (Figure 5-20 

(b)). 

3. The average returned concepts increase (Figure 5-20 (c)). 
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4. Similar to simulation scenario set 4, the ambiguity continues to 

decrease as the number of tags is increased (Figure 5-20 (d)). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-20: Simulation scenario set 5 results showing duplicate concept generation, fully mapped 

concepts, average returned concepts and cases with one concept having bigger weight than the rest 
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5.6.6.1 Comparison of Duplicate Concepts Generated 

The comparison of duplicate concepts generated for concepts to devices 

ratios of 1:5, 1:10 and 1:50 is displayed in Table 5-17. The same results are 

plotted and displayed in Figure 5-21. 

Table 5-17: Comparison of duplicate concepts generated for 10 concepts with 50, 100 and 500 

devices. 

Simulation scenario set 1 tag 2 tag 3 tags 

10 Concepts, 50 Devices 

Concepts to devices ratio: 1:5 

74% 44% 23% 

10 Concepts, 100 Devices  

Concepts to devices ratio: 

1:10 

82% 58% 38% 

10 Concepts, 500 Devices  

Concepts to devices ratio: 

1:50 

93% 74% 44% 

 

 

Figure 5-21: Comparison of duplicate concepts generated for 10 concepts with 50, 100 and 500 

devices 
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a real-life application, these results state that as the concepts to devices ratio 

increases, the percentage of duplicate concepts generated will also increase. 

However, increasing the number of tags used in the mapping process will 

help to reduce the generation of duplicate concepts and therefore improve 

the mapping accuracy. So this trend is expected to continue as the number 

of tags is increased. Further work in this area can look at identifying the 

optimum number of tags to be used to achieve the best balance between the 

various parameters. 

5.6.6.2 Comparison of Fully Mapped Devices 

The comparison of fully mapped devices for concepts to devices ratios of 

1:5, 1:10 and 1:50 is displayed in Table 5-18. The same results are plotted 

and displayed in Figure 5-22. 

Table 5-18: Comparison of fully mapped devices for 10 concepts with 50, 100 and 500 devices. 

Simulation scenario set 1 tag 2 tag 3 tags 

10 Concepts, 50 Devices 

Concepts to devices ratio: 1:5 

0% 11% 31% 

10 Concepts, 100 Devices  

Concepts to devices ratio: 

1:10 

0% 8% 25% 

10 Concepts, 500 Devices  

Concepts to devices ratio: 

1:50 

0% 3% 22% 

 
The results show a similar trend in all cases where increasing the number of 

tags increases the percentage of fully mapped concepts. However, it is 

important to note that as the concepts to devices ratio increases, the actual 

percentage of fully mapped concepts decreases. Even with this fact in mind, 

it can be seen that there is only a drop of 10% in duplicate concepts 

generated with the usage of 3 tags as the concepts to devices ratio 
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increases from 1:5 to 1:50. The drop in percentage is only 3% when the 

concepts to devices ratio increases from 1:10 to 1:50. 

 

Figure 5-22: Comparison of fully mapped concepts for 10 concepts with 50, 100 and 500 devices 
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The comparison of average returned concepts for concepts to devices ratios 
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Table 5-19: Comparison of average concepts returned for 10 concepts with 50, 100 and 500 devices. 
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1:10 
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10 Concepts, 500 Devices  

Concepts to devices ratio: 

1:50 

1.29 2.30 2.42 

 
Once again the results show a similar trend in all cases where increasing the 

number of tags increases the average concepts returned. However, as the 

concepts to devices ratio increases, the number of average concepts 

returned also increases in response. This is expected because having a 

0% 

11% 

31% 

0% 

8% 

25% 

0% 
3% 

22% 

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 

P
e
rc

e
n
ta

g
e
 o

f 
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

 

No. of tags submitted 

Fully mapped concepts (10 Concepts, 50-500 Devices) 

50 Devices

100 Devices

500 Devices



 

 185   

higher number of devices in the knowledgebase increases the likelihood of 

getting more matches (regardless of whether the actual provided mappings 

are accurate or not). Translating these results into a real-life application, this 

shows that with a large concepts to devices ratio, the system is expected to 

at least return 1 correct or incorrect mapping when any number of tags are 

used to map the device to an appropriate semantic concept. With the usage 

of 3 tags, the system is expected to return at least 2 concepts for each 

mapping. 

 

Figure 5-23: Comparison of average concepts returned for 10 concepts with 50, 100 and 500 devices 
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the number of tags is increased. In all simulation scenario sets, when 3 tags 

are used, the ambiguity hovers around the 10% mark (the percentage of 

cases with one concept having bigger weight than the rest is around 90%). 

Table 5-20: Comparison of cases with one concept having bigger weight than the rest for 10 concepts 

with 50, 100 and 500 devices. 

Simulation scenario set 1 tag 2 tag 3 tags 

10 Concepts, 50 Devices 

Concepts to devices ratio: 1:5 

100% 90% 89% 

10 Concepts, 100 Devices  

Concepts to devices ratio: 

1:10 

62% 86% 92% 

10 Concepts, 500 Devices  

Concepts to devices ratio: 

1:50 

77% 90% 92% 

 

 

Figure 5-24: Comparison of cases with one concept having bigger weight than the rest for 10 concepts 

with 50, 100 and 500 devices 
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5.7 Final Recommendations 

SAW is an extensive collaboration framework powered by semantics and this 

is why it has been necessary to propose and implement both a suitable 

access control as well as a semantic annotation mechanism. This chapter 

has presented simulations for both of these mechanisms in an effort to 

evaluate their performance and identify areas of further research and 

development. 

In regards to CPPM-TBAC, it was observed and evaluated that the proposed 

mechanism is highly suitable for scaling in large cloud environments such as 

the WoT. Further areas of research in regards to this include investigations 

into better forms of security and developing a token propagation mechanism 

to securely transmit tokens to clients of interest. Another area of further 

exploitation is the idea of using aggregated payloads and determining how 

this can best work with the SAW network, and how the limitation on usage of 

a single token with each request can be overcome in this case. 

With regards to the semantic annotation mechanism, it has been 

demonstrated that the proposed mechanism is suitable for annotating 

sensing devices in the WoT. It has been shown that the performance of the 

proposed mechanism increases as both the quality (more primary tags with a 

high semantic correlation to the device being mapped) and quantity 

(enrichment of the database and usage of extra tags) of information supplied 

during the profiling phase increases. Further areas of research and 

development in this regard include increasing the number of tags to more 

than 3 to find the saturation point for many of the trends seen in the semantic 
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annotation results, and investigating if there start to appear any other trends 

or trade-offs as the concepts to devices ratio is increased even further.  
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Chapter 6: Verification & Validation of the SAW Framework 

The SAW framework has two major components that need to be tested to 

ensure correct operation: (1) The semantics engine powered by the Apache 

Jena framework and which takes care of the semantic annotation of 

resources, and (2) The PHP-based web application which exposes the 

functionalities of the SAW framework to external networks. Both components 

were unit tested to ensure correct operation of their individual components. 

Unit testing is a testing mechanism whereby small units of functionality (e.g. 

a particular function/method within a class) are tested in isolation of other 

functionalities to ensure that they operate as expected. It can be used to 

perform integration testing as well by using multiple units in a single test. It 

involves asserting entities to check whether they match the given criteria 

(e.g. does it contain the given string, does it match the given value, is it of the 

correct type, etc.). The necessary data required for the unit test is setup 

before each test. Similarly, any changes made by the unit test are 

reversed/rolled-back after the unit test has finished executing to ensure that 

all unit tests are independent of the operation of other unit tests. 

The semantic engine extension was written in the Java programming 

language. Because Java is very strongly embedded in Object Oriented 

Programming (OOP) principles and is strictly typed (e.g. a variable declared 

as an integer can only accept integers and not strings), basic type testing is 

taken care of during code compilation. Still, it is a good practice to carry out 

proper testing to validate the functionality of the system and thus the JUnit 

unit testing framework was used to test the functionalities of each method in 

each class. Typically each method in a class has one corresponding unit 
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test. However, more complex methods which can fail at multiple points and 

can have a range of varying parameters usually have more than one unit test 

to take into account all possible cases. 

Similarly, PHPUnit was used to write unit tests for the web application which 

was written in PHP. PHP, whilst having support for OOP, is not as strictly 

typed nor as strongly embedded in OOP principles. This means that PHP, 

unlike Java, can have standalone functions and code that does not exist in a 

class. Similarly, a variable initially declared as an integer in PHP can later 

accept strings and vice versa. However, since the web application was built 

using a PHP framework called Laravel, it simplified the testing procedure 

somewhat as it forced the application to use strong OOP principles and 

create separation between the back-end logic and the front-end exposition. 

As with the Java code, unit tests for written for the PHP code to test methods 

of crucial classes and even to test the operation of complete classes and 

their integration with other classes. 

Each time the semantics engine or the web application code would be 

updated, the unit tests would be executed to ensure that the new 

functionalities operated as expected and none of the existing functionalities 

were broken as a result of the introduction of the new functionalities. This 

ensured that the SAW framework was thoroughly tested and validated to 

ensure correct operation at all times. 

An example of a unit test is as follows. There is a method called 

“insertNewDevice” in the semantic engine in the 

“src/main/java/org.saw.query.AnnotationAgent.java” class which accepts a 

map consisting of the device properties and the semantic concept ID for 
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which the device should be inserted as its parameters. To unit test this 

method, a new class will be created in the test package called 

“src/test/java/org.saw.query.AnnotationAgentTest.java”, and it will contain a 

method called “insertNewDeviceTest”. Inside this method attempts are made 

to call the “insertNewDevice” method with incorrect or invalid parameters 

(e.g. specifying a concept ID which does not exist, or leaving out vital 

properties for the device being inserted) and test to see if it fails as expected. 

This can be done by catching the expected exceptions or monitoring the 

return of the method and asserting it to be the expected invalid output (or the 

absence of an expected output). Similarly, attempts are made to supply the 

correct parameters to the method being tested and test to see if it succeeds 

as expected. Again, this can be done by asserting the return/output of the 

method to be equal to the expected value, and also by checking other 

entities that might have been affected by the method call (e.g. checking the 

datastore for the insertion of the new device). At the end of the unit test, any 

data generated through the test is deleted to ensure that all unit tests are 

independent of each other and that data generated from one unit test does 

not affect other unit tests (achieves isolation which is a requirement for 

successful execution of unit tests).
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Chapter 7: SAW Use Case: Flood Disaster Management in London 

This section presents a quick use case study for the SAW framework to 

illustrate how it can be used in a real-life situation. Take, for example, a 

scenario involving a major flood in London, UK. Management of this type of 

disaster will not only involve coordination between different emergency 

departments like the Police, Fire Brigade Service, Ambulance Service, HM 

Coastguard, etc. but equally important will be the task of disseminating 

critical information to the general public, of which include affected people, 

people likely to be affected, relative and friends of those in distress, the 

general public and of course the media. Thus the problem here is not only of 

timely and controlled data dissemination and collaboration amongst the 

“active” actors tackling to manage, contain and resolve the disasters but 

there is also a problem of distributing useful information and updates to 

“passive” parties so as to inform the general masses with the correct and 

most up-to-date status information and the relevant procedures to undertake. 

Whilst governmental bodies will employ the necessary measures to monitor 

this type of event and to keep track of developments (e.g. water level across 

areas of high risk), keeping this data confined internally will hinder public use 

of this critical information. Exposition of this information would enable 

interested parties to compose intelligent agents that monitor key events and 

push alerts or compose mashups to not only aid in the awareness of the 

disaster situation, but to also prepare a response in a timely manner. But this 

can only really become possible (both in terms of exposing data as public 

resources and consuming the resources by the general public) if the 

mechanisms behind doing so are intuitive, flexible and speedy. If the 



 

 193   

governmental body has to setup a horde of accounts and roles and if the 

public agents have to register accounts to publish or use this data, then the 

likelihood of its adoption and the usefulness of its exposure will quickly 

deteriorate due to the expensive investment in time. Instead, if all this access 

control information could be stored in a few well designed tokens, and then 

these tokens distributed to those with a need to consume the data without 

requiring them to register an account, then it can be seen that the effort is 

more likely to be rewarded with higher adoption and consumption. In this 

regard, SAW can be used to provide audited access to resources, and 

semantically annotate them to make them more useful and enable 

autonomous agent collaboration. Here is a rough list of steps that might be 

taken to realise this: 

1. Create a secure network with appropriate token generation and 

distribution mechanisms; 

2. Register devices to the network and generate admin tokens to enable 

their administration. Distribute these admin tokens to the parties who 

are responsible for the management of the sensing infrastructure; 

3. Carry out semantic annotation of the devices to enable their 

representation in a unified schema and interrogation through semantic 

technologies by participating agents (whether human or machine); 

4. Create additional tokens with the appropriate access policies to 

expose the sensing infrastructure to those who need to consume the 

data; 

5. Revoke tokens for agents that no longer need to consume the data; 
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6. Repeat steps 4-5 as appropriate. More details on how tokens can be 

used in a real-life deployment are provided in section 3.4.3.4.  
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Chapter 8: Conclusion & Future Work 

8.1 Conclusion 

8.1.1 Summary of problem statement and proposed solutions 

This thesis identified various issues pertaining to the representation, 

annotation and sharing of data. These issues were found to be more 

apparent and significant when collaborating in multi-party and cross-

organisation settings. An analysis of the existing literature revealed no 

suitable or optimised solutions for enabling efficient collaboration and data 

exchange in applications involving heterogeneous actors. 

Hence, it was the goal of this study to tackle two underlying problems: 

 Syntactic-level interoperability: Achieving a consistent data 

representation; 

 Semantic-level interoperability: Achieving a consistent data meaning. 

Syntactic-level interoperability is necessary to model and represent data in a 

standardised way across multiple systems. This facilitates interoperability in 

terms of terminology and mark-up. To achieve syntactic-level interoperability, 

this study presented a resource-based asset model. 

Semantic-level interoperability is essential for maintaining a consistent 

meaning of data and definitions across multiple systems and platforms, 

exposed to multiple actors and vendors. This facilitates interoperability in 

terms of meaning and understanding. To achieve semantic-level 

interoperability, this study developed a novel semantic annotation and KM 

system. 

The study has outlined the procedures for developing both the resource-

based asset model and also the semantic interaction model for annotating 

resources. In unison, these models form the SAW network which consists of 
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an OSGi-based WSN and a cloud-based SAW framework in deployment 

terms. 

8.1.2 Summary of results 

The study has carried out an extensive analysis of the three major 

components of the SAW framework: 

 The asset model; 

 CPPM-TBAC; 

 Semantic profiling. 

8.1.2.1 The Asset Model 

Simulations were carried out to test the performance of the OSGI-SGN vs 

Native Java-SGN by registering new devices to the network and also 

updating definitions of existing devices. It was discovered that the OSGi 

requests were faster than the Native Java-SGN requests. 

The response times for registration of DF and uploading of DP to the SAW 

network with varying payloads were also measured. Each simulation was 

performed with both TBAC enabled and disabled. It was ascertained that the 

usage of TBAC introduced a noticeable added delay in the response times, 

both when registering new devices and uploading data to the SAW network. 

This delay increased with the increase in both the payload size and the 

number of payloads. More importantly, it was discovered that the percentage 

added delay only increased by a few percent as the number of DF/DS/DP 

increased from 100 to 1,000. This proved that the proposed CPPM-TBAC 

scheme scaled very well with an increase in the number of devices on the 

network. This measure was crucial for proving the scalability of the proposed 

scheme in a dynamic, temporal and high-load environment. 
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8.1.2.2 CPPM-TBAC 

A comprehensive analysis of the proposed access control scheme resulted 

in the deduction of the following main advantages of using the scheme: 

 The proposed scheme makes it possible for network administrators to 

dynamically assign and revoke grants for each and every single token 

for any level of granularity by either using visibility level groupings for 

coarser control or specific feed and stream ids for fine-grained access 

management. 

 Temporal tokens can be used to increase security. 

 Extended access restrictions (e.g. source IP) can be used to increase 

the security of the tokens. 

 Access grants can be automated using visibility groups. 

8.1.2.3 Semantic profiling 

Finally, a thorough analysis of the semantic profiling process was undertaken 

to measure the performance and reliability of the proposed tag-based 

semantic annotation process. A number of conclusions were drawn from this 

analysis: 

 First and foremost, increasing the number of tags used in the profiling 

phase lead to a decrease in the percentage of duplicate concepts 

generated. However, as the concepts to devices ratio was increased, 

the percentage of duplicate concepts generated also increased. 

Taken in the context of a real-life application, these results state that 

as the concepts to devices ratio increases, the percentage of 

duplicate concepts generated will also increase. However, increasing 

the number of tags used in the mapping process will help to reduce 
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the generation of duplicate concepts and therefore improve the 

mapping accuracy. 

 Secondly, the results showed that increasing the number of tags 

increased the percentage of fully mapped concepts. However, as the 

concepts to devices ratio increased, the percentage of fully mapped 

concepts also decreased, albeit there was only a drop of 10% as the 

concepts to devices ratio increased tenfold from 1:5 (less real-life-like) 

to 1:50 (more real-life-like). 

 A similar trend was observed for the average concepts returned 

statistic. Increasing the number of tags increased the average 

concepts returned. However, as the concepts to devices ratio 

increased, the number of average concepts returned also increased in 

response. This is expected because having a higher number of 

devices in the knowledgebase increases the likelihood of getting more 

matches (regardless of whether the actual provided mappings are 

accurate or not). Translating these results into a real-life application, 

this shows that with a large concepts to devices ratio, the system is 

expected to return at least 1 correct or incorrect mapping when any 

number of tags are used to map the device to an appropriate semantic 

concept. With the usage of 3 tags, the system is expected to return at 

least 2 concepts for each mapping. 

 The aforementioned trend was broken in the comparison of the final 

statistic: cases with one concept having bigger weight than the rest. 

For a concepts to devices ratio of 1:5, the trend was that the ambiguity 

increased as the number of tags was increased. However, in all other 
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simulations, the trend was the opposite: the ambiguity decreased as 

the number of tags was increased. In all simulation scenarios, when 3 

tags were used, the ambiguity hovered around the 10% mark (the 

percentage of cases with one concept having bigger weight than the 

rest was around 90%). This showed that as the concepts to devices 

ratio increased, usage of 1 tag increased the ambiguity and created 

difficulty for autonomous agents. It also showed that usage of 3 tags 

reduced the ambiguity to the 10% mark regardless of the concepts to 

devices ratio. 

The results obtained from vigorous testing and a critical analysis of the 

performance metrics reveal that SAW is fit for the purpose it was designed 

for, and is successful in achieving both syntactic as well as semantic 

interoperability. 

8.1.3 Summary of key contributions 

SAW primarily contributes 3 main systems that help to produce an overall 

distributed and collaboration system for the WoT domain: 

1. Resource-based asset model: 

a. Provides the capability to represent assets at different levels of 

granularity; 

b. Provides a logical data hierarchy; 

c. Provides generic and extensible data templates. 

2. CPPM-TBAC – A resource-based access control mechanism: 

a. Allows distributed access to resources of any granularity; 

b. Scales efficiently for large number of resources without 

projecting a noticeable impact on network performance. 
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The extensive set of tests carried out and the results recorded in relation to 

the asset model also present a baseline for future studies to compare against 

for further work in this area. Existing studies were lacking this statistical 

analysis into existing access control mechanisms and their impact on the 

added delay as the number of resources increased in a network.  

3. Service-oriented and semantic interaction model: Enabling the 

capability to semi-autonomously profile and annotate resources from 

external networks such as Xively so that resources which are already 

published on the web but lack semantics can be used effectively. 

Once again, the comprehensive set of tests carried out and the metrics 

measured present a springboard for future studies to compare their proposed 

mechanisms against. Currently, no existing studies present statistical 

measures of semantic annotation mechanisms which makes it difficult to 

compare new methodologies in terms of their effectiveness. It is hoped that 

the findings of this study form this much needed baseline. 

8.2 Future Work 

There are various areas in the proposed asset model, the CPPM-TBAC and 

the tag-based semantic annotation mechanisms that can be improved to 

achieve better performance metrics and to also extend the underlying 

capabilities of the SAW framework. These improvements and further areas of 

potential research are discussed below. 

8.2.1 Potential improvements and future work for the asset model 

The following improvement is a noteworthy future undertaking for the asset 

model: 
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  Extend the asset model to support circular relationships. This will 

enable the asset data templates to have DF within DF. This will be 

useful for modelling and representing coarser devices. 

An example of this is a laptop which can have built-in sensors. The laptop 

can also have other multi-sensor platforms attached to it. With the current 

asset model data hierarchy, the attached multi-sensor platforms would be 

modelled as DF and their sensors as DS. This presents a problem when 

representing the laptop because it would be modelled as a DF and the 

attached multi-sensor platforms as DS which is semantically incorrect. With 

circular relationships, the laptop can be modelled as a DF containing other 

DF (the multi-sensor platforms). 

8.2.2 Potential improvements and future work for the CPPM-TBAC 

The main improvements and areas of further work in terms of the CPPM-

TBAC mechanism are the following: 

 Enable overwriting of extended access restrictions in the local scope: 

Currently, extended access restrictions (e.g. IP restrictions, API 

invocation limits, token expiration, etc.) are provided in the global 

scope, so they apply to all resources that the token applies to. There 

is no way to refine the scope of the global access restrictions for 

particular resources within the same token. View section 3.4.3.3 for 

more details about this feature and the recommendation to enable 

overwriting of access restrictions in the local scope. 

 Investigate methods of improving security for the proposed token-

based access control mechanism. In the proposed CPPM-TBAC, the 

production of a valid token is all that is required to access the 
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corresponding resources. There is no need to login, so there is no 

authentication process (who does the token belong to, although the 

extended access restrictions can be used to limit token to certain 

source IPs), only an authorisation process (what the token can 

access). In contrast, RBAC would typically have a two-step 

authentication procedure (provide a username/email and a 

password/secret) as well as an authorisation feature (roles). This is a 

potential area of future work that can be investigated to improve the 

security of the SAW framework. 

8.2.3 Potential improvements and future work for the tag-based 
semantic annotation mechanism 

Finally, it is believed that the following list of improvements will help in 

extending the capability of the semantic annotation mechanism and 

increasing its performance: 

 Create persistent weights/rankings for secondary tags so that system 

operators can promote oft-used secondary tags to primary tags. 

Primary tags have a higher weighting than secondary tags and 

represent a higher likelihood of the tag accurately representing the 

resource being annotated. Over time, the knowledgebase may consist 

of secondary tags that are as non-ambiguous as primary tags in their 

relation to the resources being annotated, but there is currently no 

way to promote these high-quality secondary tags to primary tags. On 

the surface, this seems to be a good mechanism of increasing the 

accuracy of the annotation mechanism, but thorough analysis after its 

implementation will be required to evaluate the effectiveness of this 

feature. 
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 Community-based semantic annotation mechanism: Section 3.4.5.2 

discusses and proposes an indirect and community-based semantic 

annotation mechanism as a complementary annotation mechanism to 

the tag-based one. The main advantages of this complementary 

mechanism are believed to be the ability to flag incorrect annotations, 

and the ability to contribute relevant semantic annotations for existing 

resources. Both of these have the potential to improve the accuracy of 

the annotation process and lead to a further enrichment of the 

knowledgebase. 

 Investigate the usage of measurement ontologies. Currently SAW is 

based on the SSN ontology which is very effective in semantically 

annotating properties of sensing devices. The SSN ontology also lays 

the foundations for using specialised measurement ontologies 

alongside it to provide semantic concepts defining the measurement 

characteristics of sensing devices and data. 

Another item for future work is the utilisation of cloud computing for hosting 

the SAW framework in order to dynamically allocate the necessary 

computing resources such as Central Processing Unit (CPU), Random 

Access memory (RAM), hard-disk space and network bandwidth. It is 

anticipated that this will dramatically increase the performance of the 

framework since computing limitations in the underlying infrastructure can 

effectively be eliminated by utilising the elastic scaling capabilities of cloud 

computing. Adoption of cloud computing can also lead to higher uptime of 

the system and therefore increase the utilisation of the framework and 

provide more useful collaboration facilities with other online system. 
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Appendices 
Appendix A – SAW Ontology 

<?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="owl2html.xslt"?> 

<!DOCTYPE rdf:RDF [<!ENTITY dct "http://purl.org/dc/terms/" 

><!ENTITY cc "http://creativecommons.org/ns#" ><!ENTITY owl 

"http://www.w3.org/2002/07/owl#" ><!ENTITY dc 

"http://purl.org/dc/elements/1.1/" ><!ENTITY xsd 

"http://www.w3.org/2001/XMLSchema#" ><!ENTITY ssn 

"http://purl.oclc.org/NET/ssnx/ssn#" ><!ENTITY skos 

"http://www.w3.org/2004/02/skos/core#" ><!ENTITY rdfs 

"http://www.w3.org/2000/01/rdf-schema#" ><!ENTITY DUL 

"http://www.loa-cnr.it/ontologies/DUL.owl#" ><!ENTITY rdf 

"http://www.w3.org/1999/02/22-rdf-syntax-ns#" >]> 

 

<rdf:RDF xmlns="http://saw.local/sw/ontology#" 

xml:base="http://saw.local/sw/ontology" 

xmlns:dc="http://purl.org/dc/elements/1.1/" 

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

xmlns:DUL="http://www.loa-cnr.it/ontologies/DUL.owl#" 

xmlns:dct="http://purl.org/dc/terms/" 

xmlns:owl="http://www.w3.org/2002/07/owl#" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

xmlns:ssn="http://purl.oclc.org/NET/ssnx/ssn#" 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:skos=http://www.w3.org/2004/02/skos/core# 

xmlns:cc="http://creativecommons.org/ns#"> 

     

    <owl:Ontology rdf:about="http://saw.local/sw/ontology"> 

        <dc:creator rdf:datatype="&xsd;string">Mohammad 

Amir</dc:creator> 

        <rdfs:comment rdf:datatype="&xsd;string">Describes concepts 

for tagging sensing devices.</rdfs:comment> 

        <rdfs:comment rdf:datatype="&xsd;string">Developed by 

Mohammad Amir, University of Bradford.</rdfs:comment> 

        <dc:identifier>http://saw.local/sw/ontology</dc:identifier> 

        <dc:rights>Copyright 2013 University of 

Bradford.</dc:rights> 

        <dct:created>2013-10-14</dct:created> 

        <dct:modified>2013-10-14</dct:modified> 

        <rdfs:seeAlso>http://saw.local/sw/ontology</rdfs:seeAlso> 

        <dc:title>SAW Ontology</dc:title> 

        <owl:imports 

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn"/> 

        <cc:license 

rdf:resource="http://www.w3.org/Consortium/Legal/2002/copyright-

software-20021231.html"/> 

    </owl:Ontology> 
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