

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Semantically-enriched and semi-Autonomous collaboration framework for the

Web of Things

Design, implementation and evaluation of a multi-party collaboration

framework with semantic annotation and representation of sensors in the

Web of Things and a case study on disaster management

Mohammad AMIR

Submitted for the Degree of

Doctor of Philosophy

Faculty of Engineering & Informatics

University of Bradford

2015

 i

Abstract

Mohammad Amir

Semantically-enriched and semi-Autonomous collaboration framework for the

Web of Things

Design, implementation and evaluation of a multi-party collaboration

framework with semantic annotation and representation of sensors in the

Web of Things and a case study on disaster management.

Keywords: Semantic Web, Web of Things, Multi-party Collaboration

Framework, Semantic Annotation, Semantic Sensor Network Ontology

(SSN), Cloud Computing, Service-oriented Architecture (SoA), Resource-

based Data Model, Resource-oriented Access Control, Disaster

Management.

This thesis proposes a collaboration framework for the Web of Things based

on the concepts of Service-oriented Architecture and integrated with

semantic web technologies to offer new possibilities in terms of efficient

asset management during operations requiring multi-actor collaboration. The

motivation for the project comes from the rise in disasters where effective

cross-organisation collaboration can increase the efficiency of critical

information dissemination. Organisational boundaries of participants as well

as their IT capability and trust issues hinders the deployment of a multi-party

collaboration framework, thereby preventing timely dissemination of critical

data. In order to tackle some of these issues, this thesis proposes a new

collaboration framework consisting of a resource-based data model,

resource-oriented access control mechanism and semantic technologies

utilising the Semantic Sensor Network Ontology that can be used

simultaneously by multiple actors without impacting each other’s networks

and thus increase the efficiency of disaster management and relief

operations. The generic design of the framework enables future extensions,

thus enabling its exploitation across many application domains. The

performance of the framework is evaluated in two areas: the capability of the

access control mechanism to scale with increasing number of devices, and

the capability of the semantic annotation process to increase in efficiency as

 ii

more information is provided. The results demonstrate that the proposed

framework is fit for purpose.

 iii

Acknowledgements

First and foremost, I thank Allah the Almighty for giving me the capability to

undertake this task and then for giving me patience and perseverance to see

it to completion. Indeed, all praises are to and for Allah, the Most Beneficent,

the Most Merciful.

I would then like to thank my supervisor Dr. P. Pillai for helping and guiding

me through my years of study, and for constantly encouraging my work and

helping me develop as a researcher. Your advice has always been

appreciated.

At the same time, I would like to thank Prof. Fun Hu in whose lab I had the

privilege of working on and developing the SAW framework. Your input on

my publications and research work has been immensely valuable.

I would also like to thank my colleague Kirils Bibiks for lending me some of

his time to help develop the client-side simulation setup for my framework.

I cannot close this chapter without thanking my family. I could not have seen

this through especially without the support of my mother and my wife. Thank

you for supporting me and for encouraging me and keeping me steadfast on

this long journey.

 iv

Table of Contents

Abstract ... i

Acknowledgements .. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables.. x

Abbreviations ... xi

Chapter 1: Introduction ... 1

1.1 Overview .. 1

1.2 Problem Statement & Motivation ... 2

1.3 Contributed Work & Achievements .. 5

1.4 Thesis Structure... 8

1.5 Published Works .. 9

Chapter 2: Problem Statement & Literature Review 11

2.1 Collaboration Frameworks ... 11

2.1.1 Definition of Collaboration Frameworks 11

2.1.2 Scope of Study ... 15

2.1.3 Challenges in Disaster Management 16

2.2 Data Classification & Representation .. 19

2.2.1 Data classification ... 19

2.2.2 Sources and methods of data acquisition 21

2.2.3 Representation of data and devices through an asset model . 22

2.2.4 Limitations of a proprietary schema-driven asset model 23

2.3 Knowledge Management ... 23

2.3.1 Overview of knowledge management 23

2.3.2 Schemas & mechanisms for annotating devices and data 25

2.3.3 Overview of semantic web technologies and languages 27

2.3.4 Schemas that achieve semantic-level interoperability 34

2.3.5 Analysis of existing knowledge management systems 36

2.3.6 Derivation of functional requirements for knowledge

management ... 43

2.3.7 Comparison of existing knowledge management solutions in

relation to the asset model .. 48

2.3.8 Comparison of existing knowledge management solutions in

relation to semantic capabilities .. 50

2.4 Identity & Access Management ... 53

2.4.1 Overview of IAM ... 53

2.4.2 Comparison of access control mechanisms 57

2.4.3 Derivation of functional requirements for IAM 58

 Comparison and analysis of existing IAM solutions 60

2.4.4 .. 60

 v

2.5 Concluding Remarks ... 64

Chapter 3: SAW - Semantically-enriched & semi-Autonomous

Collaboration Framework for the WoT ... 69

3.1 SAW Concept .. 69

3.2 System Overview & Architecture ... 71

3.3 Design Considerations ... 73

3.3.1 Ontology Selection ... 73

3.3.2 Extension of the SSN Ontology .. 77

3.3.3 Database Types ... 85

3.4 Proposed System Architecture .. 85

3.4.1 Asset Model .. 86

3.4.2 RESTful Resource Exposition .. 93

3.4.3 Enhanced Token-Based Access Control Mechanism 101

3.4.4 Interaction Models .. 111

3.4.5 Semantic Annotation .. 112

Chapter 4: Implementation of the SAW Prototype 126

4.1 The Cloud-Based SAW Framework ... 126

4.2 The OSGi-Based Wireless Sensor Network 128

Chapter 5: Simulation of Framework and Results 132

5.1 Overview .. 132

5.1.1 Simulation Setup .. 132

5.1.2 Definition of Simulation Scenarios .. 133

5.2 Performance of OSGi-SGN vs Native Java-SGN 139

5.3 Effect of CPPM-TBAC on Response Time (Non-Aggregated

Payloads) ... 141

5.3.1 Response Times for DF Registrations with Payloads of Varying

Sizes 142

5.3.2 Response Times for Uploading DP 148

5.4 Effect of CPPM-TBAC on Response Time (Aggregated Payloads)

 150

5.5 CPPM-TBAC Analysis ... 155

5.5.1 TBAC Scaling Efficiency ... 155

5.5.2 Tokens as a means of Dynamic Access Control 157

5.5.3 Improving Security .. 158

5.5.4 Automated Access Grants Using Visibility Groups 160

5.6 Semantic Profiling Analysis ... 160

5.6.1 Semantic Profiling Simulation Scenario Set 1: 10 Concepts and

50 Devices .. 162

5.6.2 Semantic Profiling Simulation Scenario Set 2: 20 Concepts and

100 Devices .. 170

5.6.3 Semantic Profiling Simulation Scenario Set 3: 50 Concepts and

100 Devices .. 172

 vi

5.6.4 Semantic Profiling Simulation Scenario Set 4: 10 Concepts and

100 Devices .. 176

5.6.5 Semantic Profiling Simulation Scenario Set 5: 10 Concepts and

500 Devices .. 179

5.6.6 Comparison of the Varying Concepts to Devices Ratio 181

5.7 Final Recommendations .. 187

Chapter 6: Verification & Validation of the SAW Framework 189

Chapter 7: SAW Use Case: Flood Disaster Management in London 192

Chapter 8: Conclusion & Future Work .. 195

8.1 Conclusion ... 195

8.1.1 Summary of problem statement and proposed solutions 195

8.1.2 Summary of results ... 196

8.1.3 Summary of key contributions .. 199

8.2 Future Work ... 200

8.2.1 Potential improvements and future work for the asset model 200

8.2.2 Potential improvements and future work for the CPPM-TBAC

 201

8.2.3 Potential improvements and future work for the tag-based

semantic annotation mechanism .. 202

References... 204

Appendices .. 212

Appendix A – SAW Ontology ... 212

 vii

List of Figures

Figure 1-1: Conceptboard, a Google app, requests "permissions" before it

can be used fully .. 4

Figure 2-1: Top-level concept illustration of a collaboration framework 11

Figure 2-2: Concept architecture of a collaboration framework 12

Figure 2-3: Illustration of internal and external network and users 13

Figure 2-4: Illustration of potential application domain for the WoT 16

Figure 2-5: Illustration of data classification ... 20

Figure 2-6: Illustration showing separate mappings needed to work with each

proprietary schema .. 23

Figure 2-7: Illustration of RDF SPO (Subject-Property-Object) structure 27

Figure 2-8: Illustration of an extended RDF SPO (Subject-Property-Object)

structure, showing how objects can become subjects and vice versa 28

Figure 2-9: Illustration of a SPARQL query checking for existence of an

instance of a sensing device .. 30

Figure 2-10: Relationship between RDF, RDFS and OWL 33

Figure 2-11: FOAF ontology illustration, showing an ontology excerpt (left)

and sample usage (right) ... 34

Figure 2-12: DF, DS and DP relationship diagram 46

Figure 3-1: SAW: The concept of a distributed system architecture 70

Figure 3-2: SAW system architecture .. 71

Figure 3-3: SSN System perspective showing relationship between System,

Deployment, Platform and Devices .. 77

Figure 3-4: Device hierarchy of SSN ontology ... 77

Figure 3-5: SAW sensor type concepts as a subclass of ssn:SensingDevice

 ... 78

Figure 3-6: Excerpt from SAW ontology showing the CO2Sensor concept . 79

Figure 3-7: Excerpt from a device definition file showing description of a

concept for the Arduino multi-sensor platform.. 80

Figure 3-8: Illustration of the "DeviceTag" tag in the SAW ontology 82

Figure 3-9: Sample Turtle excerpt showing device instantiation and tagging

 ... 82

Figure 3-10: Data expressiveness in SAW .. 87

Figure 3-11: Data hierarchy ... 88

Figure 3-12: GDD template for a DF with only the network-defined fields ... 90

Figure 3-13: GDD template for a DF with additional arbitrary definitions 90

Figure 3-14: GDD template for a DS with only the network-defined fields ... 91

Figure 3-15: GDD template for DP with only the network-defined fields 92

Figure 3-16: Sample payload for creating a new DF 97

Figure 3-17: Sample payload for updating an existing DF 97

Figure 3-18: Sample response when fetching a DF 98

Figure 3-19: List of DF that are viewable by the specified token 98

Figure 3-20: CPPM-TBAC model showing token construction process 107

 viii

Figure 3-21: Pictorial illustration of the CPPM Algorithm 109

Figure 3-22: Asset profiling process illustration.. 114

Figure 3-23: Asset profiling scheme showing how tags are used to derive

semantic definitions ... 117

Figure 3-24: Semantic profiling screen, showing the tag mapping facility at

the bottom and the selectable matching concepts at the top 120

Figure 3-25: Sample annotation process showing a list of primary and

secondary concepts and their respective weights 120

Figure 4-1: SAW - The concept of an extensible system that exposes

underlying functionality through open APIs .. 127

Figure 4-2: OSGi-SGN architecture ... 129

Figure 5-1: SAW simulation setup .. 132

Figure 5-2: Comparison of DF/DS registration and DS update times from

OSGi and Native Java-SGN .. 140

Figure 5-3: Percentage added delay for Native Java-SGN request when

compared to OSGi requests .. 141

Figure 5-4: CPPM-TBAC serial payload submission procedure................. 141

Figure 5-5: DF registration times, in seconds, for minimum, average and

heavy payloads and with TBAC enabled and disabled 143

Figure 5-6: Minimal DF registration payload .. 144

Figure 5-7: An average DF registration payload .. 144

Figure 5-8: A verbose DF registration payload... 144

Figure 5-9: DP payload showing the date of measurement and the sensor

reading at that time .. 148

Figure 5-10: Time taken to upload DP with TBAC enabled and disabled .. 149

Figure 5-11: CPPM-TBAC aggregated payload submission procedure 151

Figure 5-12: DF registration time with TBAC enabled and disabled for the

aggregated payload submission procedure ... 153

Figure 5-13: Improvement in DF registration time with TBAC enabled and

disabled for the aggregated payload submission procedure 154

Figure 5-14: Percentage delay added on DF registration times when using

the CPPM-TBAC scheme for the aggregated payload submission procedure

 ... 155

Figure 5-15: Percentage delay added on DF registration and DP upload

response times when using the CPPM-TBAC scheme 156

Figure 5-16: Simulation scenario set 1 results showing duplicate concept

generation, fully mapped concepts, average returned concepts and cases

with one concept having bigger weight than the rest 168

Figure 5-17: Simulation scenario set 2 results showing duplicate concept

generation, fully mapped concepts, average returned concepts and cases

with one concept having bigger weight than the rest 172

Figure 5-18: Simulation scenario set 3 results showing duplicate concept

generation, fully mapped concepts, average returned concepts and cases

with one concept having bigger weight than the rest 175

 ix

Figure 5-19: Simulation scenario set 4 results showing duplicate concept

generation, fully mapped concepts, average returned concepts and cases

with one concept having bigger weight than the rest 178

Figure 5-20: Simulation scenario set 5 results showing duplicate concept

generation, fully mapped concepts, average returned concepts and cases

with one concept having bigger weight than the rest 181

Figure 5-21: Comparison of duplicate concepts generated for 10 concepts

with 50, 100 and 500 devices... 182

Figure 5-22: Comparison of fully mapped concepts for 10 concepts with 50,

100 and 500 devices .. 184

Figure 5-23: Comparison of average concepts returned for 10 concepts with

50, 100 and 500 devices .. 185

Figure 5-24: Comparison of cases with one concept having bigger weight

than the rest for 10 concepts with 50, 100 and 500 devices 186

 x

List of Tables

Table 2-1: Comparison of existing literature against requirements to satisfy

asset model.. 49

Table 2-2: Comparison of existing semantic annotation solutions 51

Table 2-3: Comparison of access control schemes in the context of temporal

resources in the WoT ... 58

Table 2-4: Comparison of existing solutions against requirements to satisfy

IAM .. 61

Table 3-1: Resource endpoints for DF ... 96

Table 3-2: Resource endpoints for DS ... 99

Table 3-3: Resource endpoints for DP ... 100

Table 3-4: Possible scenarios in the semantic annotation process for profiling

DF and DS ... 115

Table 5-1: List of tags being used in each of the simulation scenarios for

each semantic concept. ... 136

Table 5-2: DF/DS registration and DS update times for 1,000 DF/DS 140

Table 5-3: Comparison of DF registration times with minimum payload with

TBAC on/off ... 145

Table 5-4: Comparison of DF registration times with average payload with

TBAC on/off ... 145

Table 5-5: Comparison of DF registration times with heavy payload with

TBAC on/off ... 145

Table 5-6: Comparison of DF registration times for different payload sizes147

Table 5-7: Comparison of DP upload times with TBAC on/off................... 149

Table 5-8: DF registration times for the aggregated payload submission

procedure. .. 153

Table 5-9: List of semantic annotation experiments 161

Table 5-10: Results for simulation scenario set 1: Simulation 1 (1 tag) 163

Table 5-11: Results for simulation scenario set 1: Simulation 2 (2 tags) 165

Table 5-12: Results for simulation scenario set 1: Simulation 3 (3 tags) 167

Table 5-13: Results for simulation scenario set 2 170

Table 5-14: Results for simulation scenario set 3 173

Table 5-15: Results for simulation scenario set 4 176

Table 5-16: Results for simulation scenario set 5 180

Table 5-17: Comparison of duplicate concepts generated for 10 concepts

with 50, 100 and 500 devices... 182

Table 5-18: Comparison of fully mapped devices for 10 concepts with 50,

100 and 500 devices. ... 183

Table 5-19: Comparison of average concepts returned for 10 concepts with

50, 100 and 500 devices. ... 184

Table 5-20: Comparison of cases with one concept having bigger weight

than the rest for 10 concepts with 50, 100 and 500 devices. 186

 xi

Abbreviations

ABAC Authorization-Based Access Control

API Application Programming Interface

CPPM Cascading Permissions Policy Model

DF Datafeeds or data feeds or feeds

DM Disaster Management

DP Datapoints or data points or points

DS Datastreams or data streams or streams

GDD Generic Device Definition

IAM Identity & Access Management

INGO International Governmental Organisation

IoT Internet of Things

KM Knowledge Management

KMS Knowledge Management System

NGO National Governmental Organisation

OGC Open Geospatial Consortium

OOP Object Oriented Programming

OSGi Open Service Gateway initiative

OWL Ontology Web Language

RBAC Role-Based Access Control

RDBMS Relational Database Management System

RDF Resource Description Framework

REST Representational State Transfer

SAW Semantically-enriched and semi-Autonomous collaboration

framework for the Web of Things

SGN Sensor Gateway Node

SoA Service-oriented Architecture

SSN Semantic Sensor Network (Ontology)

SWE Sensor Web Enablement

TBAC Token-Based Access Control

UBAC User-Based Access Control

WoT Web of Things

 1

Chapter 1: Introduction

1.1 Overview

This thesis investigates the feasibility of and proposes an integration of

semantic technologies with the Web of Things (WoT) based on the concept

and principles of the Service-Oriented Architecture (SoA) to realise a

distributed and semi-autonomous collaboration framework. This framework

will be tailored towards applications requiring multi-department collaboration

(e.g. disaster management (DM) and relief scenarios, next-generation

interactive environments (cities, airports, shopping malls, etc.)) where

effective, timely and accountable asset management and information

dissemination is a key requirement to the success of the mission. These

situations may warrant immediate collaboration amongst heterogeneous

actors, for example, DM scenarios which may arise suddenly and without

notice from natural phenomena like earthquakes, floods and tornadoes; as

well as from man-made situations like armed skirmishes, massacres and

even large-scale wars. To account for the dynamic landscape of these

events and the likelihood of massive asset deployment for administration and

management purposes, the framework needs to be capable of managing and

delegating information flow amongst the various actors. At the same time,

the framework needs to retain the flexibility to provide the relevant data and

information to an array of actors with varying interests, roles and

responsibilities (e.g., police department, fire department, disease outbreak

management, etc.). Due to the heterogeneity of the possible application

domains, the framework will need to be generic in design but extensible in

nature so that it can be tailored towards a particular application by

augmenting additional functionalities, thus the modular approach adopted by

 2

leveraging the principles of SoA. The framework from hereon in will be

abbreviated to “SAW” which stands for “Semantically-enriched & semi-

Autonomous collaboration framework for the WoT”.

1.2 Problem Statement & Motivation

Today, web services are becoming prominent and web mashups are

becoming the norm. It is now common for major corporations to offer public

APIs (e.g. Facebook, Twitter, Google, Live, Yahoo, Amazon, EBay, Dropbox,

GitHub, etc.) and expose their web services so that other web applications

can use their data for building mashups [1]. Mashups can be defined as a

compounded representation of a set of information formed by extracting and

extrapolating related and linked data from other sources on the web.

Examples of these mashups are today seen in offerings like GUI Widgets on

Internet-of-Things (IoT) providers (e.g. Xively (formerly Cosm)), Yahoo

Pipes, Google Maps and Shopping, and many others alike such as the online

project collaboration systems (e.g. Redbooth). Modern webapps are starting

to request an increasing amount of personal user data and “permissions”

(see Figure 1-1) from other prominent service and identity providers that the

user may be affiliated with. The webapps, in return for access to this

enriched data, are able to provide a seamless and enhanced end-user

experience. This leads to the enablement of a wide-range of services ranging

from simple file-sharing with friends to a more complex and controlled

process of enabling contacts to participate and collaborate in a project (e.g.

Basecamp, Redbooth). All of this can now be achieved easily and readily,

without having to download any software or register an additional account.

Essentially, the advent of webapps is highlighting the growing value of open

 3

data, the benefits that can be reaped from cross-organisation collaboration

and data sharing, and the enhanced end-user experience that can be

delivered due to the enriching of raw data when it is processed to derive

meaningful and valuable information [2]. SAW envisions a similar revolution

for an all-purpose collaboration framework for the WoT in the hopes that it

becomes an enabler of controlled, audited, reliable and effective means of

multi-department and cross-organisation information sharing.

In the current digital age, ubiquitous connectivity is fast becoming the norm

and social media is integrated with every aspect of our daily lives. As this

phenomenon of ubiquitous networking continues to evolve rapidly, an

increasing number of people are becoming internet, technology and social-

aware and IP-connected devices continue to surge in both demand and

supply. In this world where microblogging thrives and users often use social

media platforms as their source of information and updates surrounding

issues of interest, including tragic situations like disasters, it is becoming

imperative that the next generation of information exchange and

collaboration frameworks adopt the principle of “open-data” and therefore

breed an ecosystem where dissemination of data leads to empowerment and

collaboration opportunities. This will help tackle some of the issues related to

false speculation and untrue rumours that can circulate on the social

networks within minutes of an incidence and cause panic, distress and

unwarranted unrest or complications in the subsequent relief operations.

Take, for example, a scenario involving a major flood in London, UK.

Management of this type of disaster will not only involve the participation of

and coordination between different emergency departments like the Police,

 4

Fire Brigade Service, Ambulance Service, HM Coastguard, RAF Search and

Rescue, etc. and thus the resultant collaboration amongst these

heterogeneous responders but equally important will be the task of

disseminating (timely and effectively) critical information to the general

public, of which include affected people, people likely to be affected, relative

and friends of those in distress, the general public and of course the media.

Thus the problem here is not only of timely and controlled data dissemination

and collaboration amongst the “active” actors/responders tackling to

manage, contain and resolve the disaster(s) but there is also a problem of

distributing useful information and updates to “passive” parties so as to

inform the general masses with the correct and most up-to-date status

information and the relevant procedures to undertake. There is also support

for this claim in current literature, for example, in [1]. It is believed that in this

setting, SAW can deliver the next-generation collaboration framework that

can tie and link the somewhat closed and restricted information hubs like

governmental bodies not only with other businesses who might need to make

use of certain data, but also regular citizens who might experience a need to

consume critical information in times of distress.

Figure 1-1: Conceptboard, a Google app, requests "permissions" before it can be used fully

 5

While SAW has been designed as a generic and all-purpose collaboration

framework, the prototype has been tailored towards a particular application

domain to give the framework focus, substance and enable critical evaluation

of the inner and deeper workings. We, therefore, chose to focus on the DM

application domain not only because of its growing importance in the wake of

increasing natural disasters, but also because of its widespread affects, the

plurality of the involved actors and the heterogeneity of these very actors.

This all makes for a very testing and volatile environment and a very effective

means of testing and evaluating a mission-critical collaboration framework for

the WoT. It is anticipated that a fully developed instance of the SAW

framework will utilise cloud computing to dynamically leverage the required

computing resources as per the data processing needs of the framework.

However, due to shortness of time and limitation of scope, the prototype

developed in this thesis is based on a simpler server-client model where the

SAW framework exists on a normal PC. The utilisation of cloud computing to

host the SAW framework is marked as an item for future work.

1.3 Contributed Work & Achievements

In the current literature, the existing and proposed information exchange and

collaboration models suffer from one of the following deficits (these will be

discussed in their respective place later on):

 Misaligned with or having no integration with social media;

 Not considering mass data gathering and analysis (i.e. not being

designed for the WoT);

 Inappropriate/unsuitable data sharing mechanisms (i.e. not

considering data sharing requirements beyond the scope of the

 6

immediate framework, and thus, lack of or no support for inter-

department or cross-vendor collaboration).

From the literature studied so far, the analysis for which is presented in the

next section, it is concluded that there is a dire need for an all-around

collaboration framework that provides a generic but extensible resource-

oriented package that can capture, codify, store, process, and share not just

raw data but processed information and derived knowledge. This is made

possible with the power of semantics to deliver a platform-independent

information exchange and collaboration framework that can be tailored for

any particular domain where sensor data needs to be collected, processed

and shared in a unified and standardised manner. The semantic annotation

of all sensing devices and data can even enable semi-autonomacity in the

system, thereby removing the need for manual processing and annotation of

resources. However, this does not imply, by any means, that SAW is an all-

inclusive framework, which is not the purpose of this undertaking. SAW is

designed on the principle that “knowledge management is a continual

process of incremental improvement and evolution – not a one-time effort”

[2]. Therefore, SAW exposes an extensible resource-oriented architecture

that can be easily augmented with additional functionality as and when the

need arises.

SAW primarily contributes 3 main systems that help to produce an overall

distributed system for the WoT domain:

1. Abstract and resource-based asset model: Enables the provisioning of

multiple layers of inspection to represent assets at different levels of

granularity with a clear and logical data hierarchy and generic but

 7

extensible data templates. In current literature, this type of generic

and extensible asset model which provides a low entry-barrier for

potential users of the framework cannot be found. Existing solutions

are either too simple, lacking semantic capability altogether, or are too

complex, forcing users to adhere to strict schemas and therefore

hindering acceptance;

2. Resource-based access control mechanism: An enhanced Token-

Based Access Control scheme that allows distributed access to

resources of any granularity and also scaling efficiently for large

number of resources without projecting a noticeable impact on

network performance. Existing access control mechanisms are largely

role-based and therefore user-centric. However, to scale efficiently in

a WoT application, resource-centric access control mechanisms are

needed. SAW introduces an enhanced resource-centric access

control scheme which plays nicely with the resource-based asset

model while being capable of operating over resources of any

granularity.

3. Service-oriented and semantic interaction model: A set of distributed

resource annotation and collaboration mechanisms which enable

inter-department and cross-vendor collaboration in a standard and

unified manner, without forcing users to adhere to strict semantic

schemas which may otherwise impact usability of the system. Existing

literature is ripe with semantic efforts to define new domain-specific

ontologies and interactions. However, significantly less focus has

been placed on the actual semantic profiling and annotation of

 8

resources which are to be stored in the network, and even less in

reaching out to other systems and frameworks and profiling these

foreign assets. SAW fills this void by enabling the capability to semi-

autonomously profile and annotate resources from external networks

such as Xively so that resources which are already published on the

web but lack semantics can be used effectively.

1.4 Thesis Structure

The order of this thesis is as follows: This section will introduce the

framework by providing a brief overview and also discuss related literature

and motivation for the project. Section 2 discusses the various topics relating

to collaboration models and mentions that until now a suitable solution does

not exist which deals efficiently with the heterogeneity of involved actors,

thus the motivation for SAW. The issue of semantic-level interoperability is

also discussed and it is highlighted how integration of semantic technologies

within the framework can help and aid in solving the problem of collaboration

amongst a diverse array of interested parties. The current semantic efforts

are highlighted and an analysis is presented on why the current efforts are

not suitable for realising a semi-autonomous collaboration framework.

Section 3 details the design of the SAW framework and lists all the different

components that make up SAW. Section 4 then talks about the prototype

implementation and lists the tools and techniques that will be used to not

only implement but also test the reliability and performance of the framework.

Section 5 then leads on from the framework architecture and discusses

simulation models and results obtained from vigorous testing. A critical

analysis of the results reveals that SAW is fit for the purpose it was designed

 9

for. Section 6 discusses the framework validation procedure, and then

section 7 mentions a real-life use case for SAW. Finally, section 8 concludes

this thesis by delivering a critical evaluation of SAW and possible areas

where improvements can be made.

1.5 Published Works

The following works have been published by taking material from this thesis:

 M. Amir, Y. F. Hu, P. Pillai and Y. Cheng, “Interaction Models for

Profiling Assets in an Extensible and Semantic WoT Framework,” in

Wireless Communication Systems (ISWCS 2013), Ilmeanu, Germany,

2013.

 M. Amir, P. Pillai and Y. Hu, “Cascading Permissions Policy Model for

Token-Based Access Control in the Web of Things,” in Future Internet

of Things and Cloud (FiCloud) 2014, Barcelona, 2014.

 M. Amir, P. Pillai and Y. Hu, “A Generic & Extensible Asset Model for

a Semantic Collaboration Framework,” International Journal of

Advanced Computer Technology (IJACT), vol. 3, no. 1, pp. 88-96,

2014.

 M. Amir, P. Pillai and Y. F. Hu, "Effective Knowledge Management

using Tag-Based Semantic Annotation for Web of Things Devices," in

European Conference on Knowledge Management (ECKM),

Santarém, Portugal, 2014.

The following works have been submitted and are pending notification of

acceptance:

 Aggregated Sensor Payload Submission Model for Token-Based

Access Control in the Web of Things – Fi-Cloud 2015 Conference.

 10

The following works are being prepared for submission to upcoming journals

and conferences:

 Tag-Based Semantic Annotation Mechanism: Effects of Varying

Number of Tags and Concepts to be Mapped

 11

Chapter 2: Problem Statement & Literature Review

2.1 Collaboration Frameworks

2.1.1 Definition of Collaboration Frameworks

In the WoT, there is a strong emphasis on both the amount of data being

generated and the ability to understand and derive knowledge from this data,

readily, effectively and accurately. Furthermore, for the WoT to truly flourish,

the data, whether its raw data coming from physical assets or derived

knowledge produced through some process, needs to be exposed so that

collaboration can take place. The act of collaboration with and by other

actors improves the outreach and capabilities of the involved systems

through enrichment of existing information and generation of further

knowledge. The collection of technologies and methodologies pertaining to

the enablement of the aforementioned system is termed a “collaboration

framework” in this study. The purpose of a collaboration framework in the

context of the WoT and as defined by this study is to: (1) Capture and

represent data, (2) Generate knowledge, and (3) Share and exchange

information and knowledge with external human and machine agents. Thus,

a collaboration framework can be envisioned as having several components

as illustrated in Figure 2-1.

Figure 2-1: Top-level concept illustration of a collaboration framework

Data capture and representation is the first component of the framework.

This is where acquisition of raw data and its modelling and representation

takes place. The data will usually be modelled according to a proprietary

 12

schema. The next step is to apply semantic contexts and business rules on

the data to convert it into useful information and actionable knowledge.

Finally, the processed knowledge is ready to be exposed and collaborated

upon with external agents, either through an Application Programming

Interface (API), or via proprietary adapters. This is illustrated further in Figure

2-2.

Figure 2-2: Concept architecture of a collaboration framework

2.1.1.1 Data capture, representation and modelling

Sensor data is primarily captured from local sensor networks, but it can also

be fetched from repositories that expose their data through an API (e.g.

Xively). The two components identified here are: (1) Asset model and (2)

Identity & access management.

The asset model handles the modelling and representation of the sensing

devices and data in a platform-specific manner. In other words, this means

that the data pertaining to the sensing devices and their readings is stored

according to a proprietary schema. The purpose of the asset model is to

make this data available to the other components of the collaboration

framework for further processing and enrichment. Thus, the asset model

becomes a building block of a wider system known as Knowledge

Management (KM), which will be discussed further in the oncoming sections.

 13

The identity and access management component deals with the

authentication and authorization of actors who want to access and interact

with the data stored in the asset model. These actors can be both internal

and external. Internal actors are those that reside within the organisational

boundaries where the system is being operated (e.g. network administrators,

instance operators). External actors are all other agents who want to interact

with the system, for example, hobbyists, participating networks, autonomous

agents, data mining applications and the general public at large. This idea is

further illustrated in Figure 2-3. In this illustration, users of the system within

organisation 1 appear as external users to the collaboration framework setup

in organisation 2, and vice versa. Online repositories like Xively and DBpedia

appear as external users to both systems. Collaboration takes place when

the system is exposed to external entities such as other participating

networks, as shown here. In this case, it is important to differentiate between

internal and external users because external users are temporal whereas the

internal users are more permanent. This then affects the way the system

authorizes access for temporal external users. Further analysis of this

problem will be provided in the section pertaining to identity and access

management.

Figure 2-3: Illustration of internal and external network and users

 14

Data may be stored in any corresponding storage medium (e.g. RDBMS

(Relational Database Management System), document-based NoSQL

database systems, flat-file storage systems, etc.). The stored data is codified

according to a schema which is used by the internal network. The ability and

ease of sharing and using the data in contexts of collaboration depends on

how this data is represented when it is retrieved from storage.

2.1.1.2 Data processing and knowledge generation

Once the data has been captured from the local sensor network or imported

from other repositories, this data needs to be contextualised so that it can

represent some meaningful information. The process of turning raw data into

useful information can take place through a variety of methods. As an

example, business rules can be applied to pieces of data to generate

meaningful information. For example, a numeric data value taken from a

sensor can have semantic contexts applied to it so that it turns into useful

information, like a radiation level or pressure value. The reading can then be

given further meaning by comparing it to pre-defined thresholds (e.g. the

information “radiation level is high” is generated if radiation reading is above

a certain threshold). After high-level information has been generated, it might

be annotated in a specific way to provide interoperability with other systems,

and to enable further processing. This whole field of capturing data and then

generating, annotating and making available high-level information is known

as KM [3]. KM will be further expounded upon in the section pertaining to this

issue.

 15

2.1.1.3 Collaboration

Once high-level information has been generated, it can be exposed to

participating networks and external actors. This act of exposing data and

information leads to the enrichment of the knowledgebase for involved

entities and therefore improves the capability to compose mashups and

produce more meaningful reports. The process of collaboration can be

enabled by developing an API and/or legacy adapters. The API can expose

information that is represented in either a proprietary or an interoperable

fashion. The legacy or platform-specific adapters can be used to collaborate

with systems which use a proprietary schema and are therefore not

interoperable.

2.1.2 Scope of Study

This study aims to develop a collaboration framework which is generic in

nature so that it can support any type of sensor, and therefore any type of

WoT application. However, the prototype developed, discussed and

analysed in this study is catered towards one particular application domain to

provide focus and effective extraction of data management needs. The study

has chosen the application domain of DM as a potential scenario for

evaluating the performance of the developed prototype. DM has been

chosen both because of its growing impact in the world and the extreme data

capture, modelling and collaboration needs inherent in this application. This

does not mean, however, that the developed prototype is limited to this one

application domain. As is illustrated in Figure 2-4, the application domain for

the WoT is diverse, ranging from applications for smart environments to

industrial control to managing logistics. The underlying functionalities within

 16

each of these applications are similar. What differs is the actual data

management needs in each scenario, but the principle of modelling data and

exposing it for wider consummation is present throughout the entire

application domain. Since DM touches a whole variety of applications

ranging from logistics and tracking through to control and automation, it is an

ideal scenario to evaluate the feasibility of a collaboration framework for the

WoT.

Figure 2-4: Illustration of potential application domain for the WoT

2.1.3 Challenges in Disaster Management

There are many publications available today that highlight the imminent

danger from natural disasters due to their increasing frequency and level of

damage. This may be due to global climate change, growing population,

risky and hazardous energy extraction or simply as a result of more people

populating areas of risk [4] [5]. Regardless of the actual means, these

disasters cause mass catastrophes that bring with them a large number of

casualties, loss of wealth and livelihood, and costly and complex search and

rescue efforts.

The UN/ISDR defines a disaster as “A serious disruption of the functioning of

a community or a society involving widespread human, material, economic or

environmental losses and impacts, which exceeds the ability of the affected

community or society to cope using its own resources.” [6]. Whether these

disasters are caused naturally or by manual conflicts and intervention, what

 17

is important is the speedy resolution and effective management of the search

and rescue and asset management process during the relief operations.

There is ample research material available for disaster prevention and

emergency planning, for example, [7] [8] [9] [10] [11]. The problems in this

area are hazard assessment and consequently risk reduction where hazard

assessment entails identification, assessment and monitoring of hazards.

There has also been considerable research in regards to disaster inventory

management and goods distribution over the past decade and to this day, for

example, [12] [13] [14]. In this regard, the outlining problem is the effective

tracking of assets alongside logistical planning while storage is a secondary

concern. Aside from the problems outlined above, there is the major problem

of integration and collaboration simply due to the myriad of interested and

involved parties (e.g., national and international aid agencies, International

and National Government Organisations (INGOs/NGOs), national

emergency management and government personnel, volunteers, local

businesses, etc.) each with their own organisational boundaries, fiscal

constraints, working practices, technological capabilities and accessible

areas [15] [16]. The differences in cultural and organisational policies as well

as conflicting priorities and variations in mission goals and operating

constraints further complicates the coordination and collaboration process;

the result of which can be lost opportunities, ineffective relief operations, and

loss of life and livelihood [17]. Thus the issue of collaboration and timely data

dissemination turns into a complex procedure of “who has what”, “where is

the information” and “who can we share it with”. This issue arises due to the

fact that no single operational actor enjoys the full authoritative role; meaning

 18

that there is usually no lead actor who has the authority as well as the

capability and resources to monitor and coordinate the activities of the

involved and/or affected parties. Thus, a top-down approach of appointing a

lead actor is ineffective in these situations due to the plurality of actors

involved/affected and differences in each actor’s operating procedures as

well as trust relationships with other INGOs, NGOs and governmental bodies

[18]. On the contrary, a decentralised network might provide more glue to the

myriad of actors as suggested by available evidence from academic

research, for example, [17] [19]. Although the aforementioned research

suggests a loosely-coupled social network, the same concepts can be

applied to an online electronic network, a “network of networks” which would

allow potential actors access to data of interest so long as they are

authorised to consume the given data.

From the analysis above, the characteristics of a DM application can be

summarised as follows:

 Non-linear demand in a largely unpredictable environment: In DM,

sudden bursts in data processing requirements can arise due to a surge

in acquired sensing data, or if a certain deadline needs to be met, or if

another disaster occurs at the scene. This needs to account for peaks &

troughs in demand can be attributed to most WoT application.

 Array of actors: DM and relief are usually carried out by a variety of

governmental agencies (e.g. coast guard, ambulance and police services,

fire services, etc.), NGOs and INGOs. This array of actors, by the very

nature of our species, has inherent trust issues. Furthermore, varying

mission goals, working practices and cultural differences can paint further

 19

chaos and confusion in the scene and lead to a point where timely and

effective collaboration becomes nearly impossible.

2.2 Data Classification & Representation

2.2.1 Data classification

In this study, data is represented into three forms [20] to identify it in terms of

its granularity and usefulness in contexts of collaboration:

1. Data – This is raw data that is only understood by the internal

network, and is useless in contexts of collaboration because external

agents do not understand what it represents. An example of this type

of data is a sensor reading, “30”. The internal network can understand

this data because it conforms to some proprietary schema which is

known and understood by the network. However this data may not be

understood by external networks and agents if they don’t understand

the proprietary schema used to represent the data.

2. Information – When a semantic concept is applied to data, it turns into

useful and machine-process-able information. An example of this is

when the semantic context of “temperature” is applied to a raw sensor

reading of “30”, producing the information “temperature is 30”.

Information can be understood by other networks as long as they

understand the semantic concepts used to annotate the data.

3. Knowledge – By composing pieces of information and applying

intelligent reasoning on it, high-level and rich business knowledge can

be derived. An example of this is: “very cold in flooded areas of

Sunbury”, derived from the information “-2 degrees Celsius” ,

“location is Sunbury” and “water level: overflowing”. For the most

 20

part, knowledge can be considered a composition of various pieces of

information that are then combined using some pre-defined rules and

abstractions. As humans, this is what we are really interested in at the

end of the day.

Figure 2-5 shows an illustration of this data classification. In the first

instance, the raw data is present. In order for this data to represent

meaningful information, it needs to be represented in a semantic context

which adds meaning to the data. Further processing and composition can

then turn many pieces of information into high-level knowledge which can be

used in business-centric applications such as production of reports and

delivering of informative status alerts.

Figure 2-5: Illustration of data classification

Data may be stored in a semantic or non-semantic fashion. Traditional

approaches use non-semantic storage and represent data in proprietary

schemas. These types of schemas are a hindrance to cross-vendor

collaboration because they do not use a standard language to represent the

data and thus cannot be processed automatically by machines. However,

even if the data is stored in a non-semantic fashion, it can still be

represented in a semantic fashion to facilitate machine processing

collaboration at a later time.

 21

2.2.2 Sources and methods of data acquisition

It has been mentioned previously that sensor data is primarily captured from

deployed sensor networks, but it can also be fetched from repositories that

expose their data through an API (e.g. Xively). Most of the time, the fetched

data will be non-semantic [21]. This will require an understanding of the

source schema to decode the definition of the sensing devices and their

associated data. However, semantic data (also known as “Structured Data”

and “Linked Data”) is starting to appear on the wider web, and the most

prominent repository in this regard is DBpedia [22]. There has also been a

significant rise in governments exposing crucial environmental data in a

semantic or semi-semantic fashion. The most recent example of this is a

case where the UK Environmental Agency released structured flood data for

the #Floodhack event organised in London on the 14th of February 2014 [23].

A great wealth of the data offered is often packaged in the form of an

archive, and is not therefore a live representation of events occurring on the

ground in real-time, but rather a historical account of events that have

transpired.

Acquisition of data depends on the way data is published in a repository. For

data that is published in a semantic fashion, semantic query languages

(discussed further on below) can be used to fetch and interact with the data.

This provides a universal approach to interacting with semantic data without

the need to build special APIs and adapters. Non-semantic data, on the other

hand, requires development of special adapters that can interface with the

target repository. The lack of semantic interoperability in this case means

 22

that non-semantic data is harder to expose and make use of, and therefore a

hindrance to cross-vendor collaboration.

2.2.3 Representation of data and devices through an asset model

The asset model describes the relationship between the different levels of

granularity of sensing devices. It also defines structures for storing and

representing the sensor data. Essentially, it forms the foundations for the

capture, storage and representation of sensing devices and their data, at a

basic level and in a non-semantic way. The asset model concept is

something that is largely introduced by this study, although fragments of it

exist in current literature.

The asset model provides a means of modelling and representing data at a

primitive level. At this stage, there are no formal semantics involved in the

definition of the sensing devices and data. The provision of a non-semantic

asset model may seem a frivolous task at first since the focus is on

representing the data in a semantic fashion. However, this study deems it

essential to provide an asset model in a collaboration framework for two

reasons:

1. To provide backwards compatibility for non-semantic systems: By

virtue of an asset model and an API, systems that are not

semantically aligned can still access raw and unprocessed sensing

device data from the collaboration framework.

2. To allow inspection of source data [24] which constitute a higher level

semantic knowledge: It might be required to drill down to the different

sources of data that are resulting in the composition of a piece of

knowledge for debugging or performance analysis purposes.

 23

2.2.4 Limitations of a proprietary schema-driven asset model

In order to make use of data represented in a proprietary schema-driven

asset model, participating agents need to have an understanding of the

proprietary schema so that the data can be captured and transformed into a

suitable format. There is scope for further complication in this process since

the proprietary schema can incur changes in meaning and/or structure,

forcing participating agents to update their understanding of the schema to

the new format. In Figure 2-6 it can be seen that each proprietary schema

requires a separate mapping before the data represented through it can be

understood by the participating networks and services.

Figure 2-6: Illustration showing separate mappings needed to work with each proprietary schema

Solving this problem requires the development of a KM system that can

transform data into knowledge and effectively manage this derived

knowledge to facilitate collaboration [3].

2.3 Knowledge Management

2.3.1 Overview of knowledge management

KM is the functionality to capture, codify, store, process and share raw data,

information and knowledge [3]. Essentially it is a study related to the

generation of high-level knowledge from processed data and information. In

 24

regards to DM, current literature uses a variety of terms to define frameworks

utilised for the task of KM, which is to cater for standardised information

retrieval/derivation and information/knowledge sharing/exchange:

 Information/KM Systems (IMS/KMS) [3]: KM is defined in [3] as an

activity by which an organisation captures, processes and applies

knowledge effectively. Such systems can be represented as

“document management systems, semantic networks, object oriented

and relational databases, decision support systems (DSS), expert

systems and simulation tools”. Examples of literature that explicitly

identify themselves as a KMS-based solution include [25], [26] and

[27]. Further analysis on these studies is presented in the literature

review section.

 Emergency Information Systems (EIS) [28]: Defined as a system that

is used by organisations to react and respond to situations of crisis

and disaster, these systems are designed to: (1) Support

communication during crisis response; (2) Enable data gathering and

analysis; and (3) Support the decision-making process. Examples of

EIS include IMASH [29], PeopleFinder [30] and Google’s Person

Finder application [31].

 Terms such as Crisis Response (CR), Crisis Response Information

Systems (CRIS), Emergency Response Systems (ERS) and Web-

based Emergency Management Information System (WEMIS) are

also used in some literature.

Regardless of the actual terminology used by existing literature, the intent of

these systems is to manage information/knowledge, be it related to the

 25

actual collection, retrieval, processing and analysis of data or the consequent

knowledge-derivation and sharing of that data to enable higher-level

functions and business processes.

2.3.2 Schemas & mechanisms for annotating devices and data

A schema is a means of representing the definition of sensing devices and

their corresponding properties, attributes and data. To enable cross-vendor

collaboration, the deployed schemas need to be interoperable so that each

participating network can understand and relate to data and information

being exposed in the other systems. The main challenges to overcome here

are: (1) Heterogeneity in the data modelling architecture and hierarchy, and

(2) Heterogeneity in terminology used to store data [32]. Heterogeneity in the

modelling of data refers to issues such as differences in groupings or

granularity of elements. For example, in one schema, the sensor attribute

“range” might be stored in the group “root -> sensor_properties”. In another

schema, the same attribute may be stored in the group “root -> device ->

properties”. Heterogeneity in terminology used refers to the issue of

synonyms, antonyms, and the like. For example, the “battery level” attribute

might be stored in different schemas in elements with varying terminology,

like “battery_level”, “fuel_capacity”, etc. The issue of interoperability in the

context of a schema for the WoT can be classified in two categories:

1. Syntactical interoperability.

2. Semantic interoperability.

Syntactic-level interoperability is necessary to model and represent data in a

standardised way across multiple systems. It can be achieved through the

use of standardised encodings and by using an interoperable mark-up format

 26

such as XML. This facilitates interoperability in terms of terminology and

mark-up. However, the actual interpreted meaning still remains an issue and

can change from system to system. Maintaining a consistent meaning of

definitions and data across multiple systems and platforms requires

semantic-level interoperability. Semantic-level interoperability is achieved

through utilisation of semantic technologies and ontologies (explained below

in section 2.3.3).

2.3.2.1 Schemas and mechanisms that achieve syntactical
interoperability

Descriptions of sensing devices and data need to be encoded in a certain

fashion before they can be represented in a presentable fashion. Open

Geospatial Consortium’s (OGC) Sensor Web Enablement (SWE) [33] suite

of standards is perhaps the most commonly used set of schemas to achieve

a unified and standardised encoding and representation of devices and data.

The suite consists of various standards, but the following are the most

prominent within the suite:

 Observations & Measurements (O&M), which provides annotation

mechanisms and encodings in XML for recording sensor observations

and measurements.

 Sensor Model Language (SensorML), which enables modelling of

sensor devices and their processing systems. It outlines mechanisms

for discovering sensors, locating observations (with the capability to

process low-level observations), and listing task-able properties.

 Sensor Observation Service (SOS), which carries provisions for web

services to interact with sensing devices.

 27

These standards provide XML encodings and mechanisms to model devices,

their observation principles and their measurement processes, and provide a

standardised representation of sensing devices and their data [34]. The

schemas themselves are very comprehensive, albeit complex, and prove

successful in achieving syntactic-level interoperability through deployment.

However, semantic-level interoperability still remains an issue, and this is the

focus of this study.

2.3.3 Overview of semantic web technologies and languages

Recent systems are increasingly relying on semantics to achieve a unified

representation of data and enable collaboration. The underlying semantic

technology and language is called Resource Description Framework (RDF).

Other technologies then build-upon RDF to achieve a certain goal. Examples

of such technologies and languages are Ontology Web Language (OWL),

which is used to create ontologies, and SPARQL, the query language for

RDF.

RDF is used to write semantic statements as a set of “triples”. Triples consist

of a subject, an object, and a predicate relating the subject to the object [35].

An example of this is: “Sensor1 measures Temperature”, where “Sensor1” is

the subject, “Temperature” is the object, and “measures” is the predicate

linking Sensor1 to Temperature (Figure 2-7).

Figure 2-7: Illustration of RDF SPO (Subject-Property-Object) structure

Subjects can have many predicates, thereby linking them to many objects,

which in turn can have predicates linking them to other objects. This concept

is illustrated in Figure 2-8 where the “Sensor1” subject has an additional

 28

property linking it to another object. Also, the object “Temperature” now has

a property of its own linking it to another object. RDF datasets such as this

are often called Graphs.

Figure 2-8: Illustration of an extended RDF SPO (Subject-Property-Object) structure, showing how

objects can become subjects and vice versa

If published properly, this can contribute to the Linked Open Data (LOD)

Cloud, which can be navigated and browsed like webpages [36]. One main

benefit of this is that while previously proprietary data was stored and

represented in rigid and vendor-specific schemas, using this language it can

now be presented on the web in a standardised manner. Since this linked

data is written in RDF, it can be processed by machine agents. This allows

for its automatic consumption by machines, and enables autonomous

Machine-to-Machine (M2M) communication and interaction.

Once the RDF annotations have been stored in some form of database

backend (usually referred to as a “triple-store”), it is equally important to be

able to query the triple-store in a semantic fashion. SPARQL meets this

requirement by providing an SQL (Structured Query Language)-like syntax

which can be used to compose semantic queries and traverse RDF triple-

stores in a formal and publicly standardized format [37]. Again, by

standardising the query language for RDF, it becomes possible for machines

to fetch and publish semantic fashion in a (semi-)autonomous manner.

 29

A SPARQL endpoint accepts semantic queries and returns results via HTTP.

The endpoints can be:

 Generic: These will return results from any published RDF data on the

web.

 Specific: These will only return results from particular online/offline

RDF datasets.

The actual SPARQL query consists of the following [38]:

 Prefix declarations: These are useful to abbreviate URIs. For

example, PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-

ns#>. Here, “rdf:” is the abbreviated form of the full URI

“http://www.w3.org/1999/02/22-rdf-syntax-ns#”. Since URIs are used

in the actual query, using the abbreviated prefix is a lot easier than

using the full URI.

 Graph/dataset definitions: A SPARQL query is run against a set of

RDF datasets.

 Result clause: This is used to define what action to perform in the

query and/or what results to return.

 Query Pattern: This is used to define the query by restricting, refining

and filtering triples from the desired graph.

 Optional Query Modifiers: These perform actions on the returned

results such as ordering and rearrangement.

Some of these concepts are illustrated in Figure 2-9. This figure shows an

excerpt of triples from a knowledgebase. The knowledgebase is written using

an ontology which is abbreviated as “saw-ont”. The SPARQL query also

uses the prefix “saw-feed”, which is another abbreviation for a URI that is

 30

used in the knowledgebase. For the sake of clarity, the prefix declarations

have been omitted from the illustration. In the knowledgebase data, there is a

“SensingDeviceConcept”, which has a number of derived sub-concepts:

“LightSensor”, “CO2Sensor”, and so on. The “CO2Sensor” concept then has

3 named instances. The named instances are: “CO2Sensor1”,

“CO2Sensor2” and “CO2Sensor3”. The query uses the “ASK” keyword which

returns a Boolean (true or false). Variables are prefixed with a question mark.

The query searches for a device belonging to a feedConcept which has the

rdf:type of “SensingDeviceConcept”. The “FILTER” keyword is then used to

check for a specific device instance, which in this case is “CO2Sensor2”. If

this instance exists in the knowledgebase, the query will return TRUE,

otherwise it will return FALSE. Different keywords can be used in the result

clause to return other information or to perform update/delete tasks with the

knowledgebase.

Figure 2-9: Illustration of a SPARQL query checking for existence of an instance of a sensing device

After using a machine-readable language to represent data in a standardised

manner, the problem is now one of choosing the correct definitions to define

properties which link subjects to objects. OWL is a semantic language which

 31

is used to define these vocabularies and terminologies. The main artefacts in

an OWL ontology are the following:

 Classes: A class is a general construct which can have members.

Classes can have properties which are inherited by all individuals

belonging to the class. An example of a class is “SensorDevice”.

Properties attached to this class can be: “measures” (what parameter

does the device measure), “manufacturer”, “isWireless”, and so on.

 Individuals: Members (or instances) of a class are called individuals.

Individuals inherit properties of their parent class. Specific properties

can be assigned to just the individuals as well. An example of an

individual is “PositionSensor”, which belongs to the “SensorDevice”

class defined above. The “PositionSensor” individual will inherit the

previously defined properties for the “SensorDevice” concept (e.g.

measures, manufacturer, isWireless, etc.).

 Properties: Properties have a domain (who the property applies to)

and a range (what values the property can accept). Both the domain

and range can be individuals which are defined in the ontology with

their own properties. A property called “hasBrother” might have the

domain “Person” (which resources can be mapped) and a range of

“Male” (who can the resources be mapped to). Properties can be sub-

properties of existing properties for better specialisation. There are

two types of properties:

o Datatype properties: These relate individuals to data types.

Example of a datatype property is “sensorValue”, which might

 32

have a domain of “PositionSensor”, and a range of another

resource called “xsd:double”.

o Object properties: These relate individuals to other individuals.

An example of this has been mentioned above already

(“hasBrother”).

OWL makes it possible to restrict classes/concepts so that they have a clear

and understandable meaning [39]. For example, OWL allows concepts and

properties to have a data range restriction so that they can only accept

certain values (e.g. the property “hasSister” having the range of “Female”), or

restrict properties to only apply to specific concepts (e.g. the property

“sensorValue” having the domain “SensorDevice”), or to define certain

concepts as aliases of one another (e.g. “Person” defined as an alias of

“Human” by using the owl:sameAs construct). With OWL, a vocabulary of

well-defined and machine-readable terms can be generated, and a common

understanding of these concepts can be presented to external collaborative

parties. These vocabularies are referred to as ontologies, and an example of

this is the Semantic Sensor Network (SSN) Ontology [40], which enables

annotation of sensing devices and platforms.

The relationship between RDF, RDFS and OWL is illustrated in Figure 2-10.

At the very basic end, RDF is used to write triples which relate subjects to

objects via predicates. RDFS then allows for the construction of slightly more

complex relationships between the subjects and objects, and most notably, it

allows classes to be sub-classes of other classes. OWL then builds on top of

RDFS and offers the capability to define richer and more complex

relationships between classes, individuals and properties.

 33

Figure 2-10: Relationship between RDF, RDFS and OWL

Ontologies, like the SSN ontology mentioned above, are typically OWL

documents containing definitions of domain-specific classes and properties.

The SSN ontology is related to sensing devices and sensor network

deployments, so it defines classes and properties that allow sensors and

their deployment environments and parameters to be described in a

semantic fashion. Another popular ontology is the FOAF (Friend of a Friend)

ontology which describes people and the relationships between them [41].

The illustration in Figure 2-11 shows an excerpt from the ontology (top) and a

sample usage (bottom). In the ontology excerpt, the “Person” class is

defined. The “Person” class is defined as a sub-class of more generalised

classes/concepts from other ontologies. This increases the semantic scope

of the defined concept, and enables inter-linking between existing concepts.

The definition also states that the “Person” class is “disjointWith” the

“Organization” and “Project” classes. This means that any member of

“Person” can never be a member of the other two. For example, Bob is an

 34

instance of “Person”. The ontology states that Bob can’t now also be a

member of “Organization” or “Project”. This is useful for semantic clarity of

the concepts. The second excerpt shows the definition of the “knows”

property. Both the domain and range of this property are stated as

“foaf:Person”. The domain implies that this property can only be applied to a

member of “foaf:Person”. The range implies that the object being linked to

through this property can only be a member of “foaf:Person”.

Figure 2-11: FOAF ontology illustration, showing an ontology excerpt (left) and sample usage (right)

2.3.4 Schemas that achieve semantic-level interoperability

W3C’s Semantic Sensor Network Ontology (SSN) tackles the issue of

semantic interoperability by providing an ontology for describing sensors and

methods [40]. The ontology itself is aligned with the Dolce Ultralite (DUL)

upper ontology [42]. An upper ontology defines very general concepts that

are similar across multiple application domains, and can be considered part

and parcel of enabling semantic interoperability across multiple application

domains. Aligning to upper ontologies helps to further formalise the semantic

concepts and provision for extensions of definitions and inclusion of other

ontologies [43]. SSN is capable of describing sensing devices in terms of

their capabilities, observation principles, measurement processes and types

 35

of deployments. By providing an ontology for defining sensing devices and

data and by outlining mechanisms to annotate systems, devices, observable

features and data, SSN achieves success in offering semantic-level

interoperability [40].

SSN can either be used in a standalone fashion or in tandem with the SWE

suite to annotate sensing devices and data. Unlike SWE, SSN is not XML-

dependent. Furthermore, semantic annotations using SSN form the basis of

Semantic Sensor Web (SSW) [34] and Linked Data principles, and present a

unified representation of sensing devices, their processes, and data. In turn,

the semantic technologies enable interlinked sensor data which can be

published on the web.

While SSN permits semantic annotation of sensing devices and data, thus

enabling M2M interaction and semantic information consumption, the

mechanisms required to add and process the annotations still need to be

developed separately. The annotation can be manual or (semi-)automatic.

Manual annotation will require a greater level and frequency of intervention

by system operators and administrators as they will have to add new

concepts and correct existing mappings. This level of intervention can be

reduced (therefore improving the system scalability) by introducing automatic

or semi-automatic annotation mechanisms and processes. This will require a

system where the users of the system can contribute to the network in a

seamless fashion to expand the knowledgebase and improve the accuracy of

its mappings. The system will in turn need to provide mechanisms that can

recognise and correctly identify mappings against existing concepts stored in

the knowledgebase.

 36

2.3.5 Analysis of existing knowledge management systems

From the commercially or publicly available solutions, Xively stands out both

for its list of features and for its public adoption. It allows granular modelling

and representation of sensor devices and data in terms of DF, DS and DP.

However, it uses a proprietary and rigid schema with which to define sensors

and actuators, and offers no relief in terms of semantic metadata to increase

the openness of the system.

Thingspeak is further restricted as it lacks the ability to flexibly model DS. At

most, a user can have 8 DS (called “fields”) in a DF (called “channels”), and

there is no support for managing access to the individual DS within the DF.

As with Xively, there is no support for adding semantic metadata to devices

and data in Thingspeak.

In literature, Murphy and Jennex highlight the importance of KM and the

growing necessity of its effective application in Crisis Response [30] by

analysing two leaderless systems developed in the wake of Hurricane

Katrina which hit the US Gulf Coast in 2005, namely PeopleFinder and

ShelterFinder. The study states that “everyday citizens that would like to

contribute are unable to, not only because they are not inside the

physical operations” but also because responders themselves are not able

to reach out to the community to mine crucial data. Furthermore, the study

brings to light the growing importance of the need for “systems that can

quickly find and display knowledge relevant to the situation in a format that

facilitates the decision maker in the decision process”.

The case study presented by Bharosa & Janssen in [44] is very

comprehensive in this regard as it focuses on KM and deals with the issue of

 37

information management adaptability, that is, the system’s “ability to rapidly

change existing or create new resources in order to align the internal

information demand with external information supply and events”. By using a

resource-oriented approach, they investigate the problems related to the

adaptability of a CRIS (Crisis Response Information System) in regards to

internal data management needs as the external conditions vary in response

to on-going/evolving disaster scenarios. The team made several notable

observations and concluded that overall in the mock drill, the information

quality was poor in regards to its relevancy (who is the information for),

consistency (various interpretations), accessibility (inability to access

contextual information), reliability, correctness and completeness (at the time

of viewing) even with the use of CEDRIC, an advanced web-based

application for collaboration. Furthermore, they alluded to the fact that

existing EIS systems are very close-knit solutions and are not flexible

enough to permit integration with external resources beyond the scope of the

immediate framework. The study does not propose a definite system design

but rather presents a set of principles which, in the minds of the authors,

should be implemented by an adaptive and responsive EIS. These principles

are:

1. Maintain and update team memory via a directly exploitable

library/information storage system that is capable of storing

information flow thus removing the need for repetitive requests and

reducing the chance of presenting incomplete or outdated contextual

information.

 38

2. Dedicate specific resources for environmental scanning to ensure up-

to-date situational awareness amongst all involved actors.

3. Maximise the number of alternative information sources to augment

existing information base and derive more accurate knowledge about

the situation. Alternative sources of information also help to remove

single source dependency which can impact the decision-making

process and reduce quality of available information.

SENSEI [45], a European FP7 project, provides a more comprehensive KM

system. It recognises four types of base-level resources: sensors, actuators,

processing components and composites of each of the preceding resources.

The physical resources are represented as web resources through a

Resource End Point (REP). The system model also models real-world

entities centred on device interactions, for example, people, places and

objects. A Resource Directory (RD) is used to store device descriptions and

to provide a list of resources for which an external request meets the criteria.

The RD is complemented by the Entity Directory (ED) which stores

relationships between devices and the modelled entities of interest, and is

used to query interaction capabilities between the two. Semantic query

support is enabled over the directories so that rich and natural-language

queries can be conducted on top of the stored resources and entities.

However, this requires semantic annotation of the stored resources and

entities, a process which is not carried out by default and is a manual,

optional step in SENSEI’s resource model. In all, SENSEI makes great leaps

in terms of achieving device and syntactic-level interoperability, and the

option to add semantic annotations can even achieve semantic-level

 39

interoperability. However, the usage of a strict, rigid and complicated O&M

schema prohibits generality and extensibility of device and data templates

and it is hard to envision the technology being used by regular users outside

the corporate realm.

On a slight tangent, an experiment-based study in [46] brings to light the

issue of trust in the use of computing technologies that are made invisible (to

hide the underlying complexities). The study evaluates that in order to build

trustable pervasive computing systems, i.e. systems that the end-users will

actually use as opposed to doubt and refute their credibility, reliability and

accuracy, the system design needs to embody the following key principles:

 Flexible interaction modes to enable multiple forms of inspection and

retrospection.

 Multiple levels/layers of inspection to enable system-wide examination

of the states, processes and connections of the system.

The authors argue that while the underlying complexity can be hidden to

provide more intuitive UI (user interfaces) to the end-users, there needs to be

the capability to inspect the traffic flow within the framework, ideally, down to

the very primitives (e.g. GPS coordinate string in a data packet). It is SAW’s

belief that this level of transparency can be best achieved by utilising a

resource-oriented systems design approach.

A very recent experiment-based study by Caragea et al. in [47] highlights the

growing importance of social media integration and alignment in DM

applications and the inherent challenges imposed for machines in learning to

analyse and classify information posted by affected people and the general

public, especially short messages such as those produced via SMS and

 40

Twitter. The findings in this study are further augmented by [48] which

highlights the power and usefulness of social media as an information

dissemination tool but warns that it also has the potential of being a

distractive and disruptive medium if the capability to methodologically

analyse, process and act upon the data is lacking or absent. [48] argues that

a representation strategy (i.e. an ontology) needs to be formulated and/or

identified for “formulating methods for communicating and capturing crisis

response data, information and knowledge from social media”. This analysis

strongly suggests that a next-generation semantics-driven collaboration

framework for the WoT needs to be mindful of and strive to provision the

capability to integrate with social media and take steps to ensure that

information retrieved through these non-official networks is used, albeit

cautiously, to build a more complete model, in real-time, regarding the

situation on the ground.

The virtual multi-user collaboration simulation mode envisaged in [49] also

deserves a mention as it targets the issue of multi-user and cross-

organisation collaboration and sets the foundations for further research into

the respective areas regarding these issues. Similarly, [50] demonstrates the

foundations of a similar system with a virtual environment powered by Half

Life 2 and the collaboration needs met through a combination of a CMS

(content management system) and a Wiki. But as is apparent, these systems

have limited outreach and the fundamental design principles do not permit

flexible and comprehensive cross-vendor integration let alone collaboration.

[51] analyses the performance of an Integrated Operational System (OS)

built on the premises of integrating multiple sources of information arriving in

 41

multiple formats into a single common platform. The analysed system is,

however, a closed-ecosystem whereby open and 3rd party integration is not

possible and only a limited number of pre-configured platforms can be

utilised by the system, and even then, relatively marginally. Therefore the

problem of effective and open cross-vendor collaboration remains a key

research issue.

The KM solutions reviewed so far either make no mention of the underlying

asset model, or treat it as an insignificant subsystem, focusing instead on

high-level tasks and services. The study presenting a resource-oriented WoT

architecture in [52] is different as it focuses on this very same thing: how

should resources best be modelled and presented on the web. It adopts a

RESTful approach and promotes a hierarchical resource architecture such

that each device (DF) and its children devices (DS) can not only be browsed

individually, but also contain a link back to the parent (DF or DS). For

example, the URL http://.../devices/device1/sensors/sensor1 navigates to

sensor1 which is part of the sensors property of devices. This creates an

unlimited-depth and hierarchical structure that can be easily crawled and

navigated. The authors recommend the use of JSON to model smart object

properties and show a proprietary schema used to define properties for

smart things. It is not clear whether the definition templates are extensible

from the presentation, but the authors do make an effort to semantically-align

their proposed solution by describing devices and data in Microformats [53],

achieving some form of semantic interoperability. The annotation process,

however, is manual and there is no learning system that can adapt from

 42

previous annotations and offer some sort of semi-autonomous semantic

annotation facility.

Similarly, the IoT-A reference architecture [54] also looks very promising.

The rich, comprehensive and complex architecture and associated

information models are still in development, and the final architecture is, as

of yet, unavailable. Sensors, actuators and smart tags are abstracted as

devices. Then physical and virtual resources are combined to form

aggregated entities. The definitions are stored according to a rich but

proprietary schema and prospects of semantic annotation are considered,

but not detailed in this thesis.

DERMIS, [24], undoubtedly provides the most comprehensive set of

principles and guidelines for developing an emergency response system, but

focuses on developing a “single integrated enterprise type system” that

“spans all the functions of the emergency response from planning, through

execution and recovery, to training”. However, this goes against the very

premise and design principles of modern distributed systems, as is evident

primarily in social media and secondly in the rapid influx and growing number

of web services exposing public APIs whether it be for authentication, data

access, information sharing or embedding non-native and 3rd party

functionality. So while respecting the design principles and fundamental

guidelines offered by this study, the single-systems approach adopted by the

authors is refuted as it’s incompatible with the modern decentralised and

distributed nature of web services. Furthermore, whilst the availability of a

single authoritative command and control centre might improve data

accuracy and consistency, it hinders third party integration and thereby limits

 43

not only the ability of regular users in accessing and making use of the

system, but it also dampens the prospects of mining data from disparate

sources that would effectively be shut off to the single monolithic repository

represented by DERMIS.

2.3.6 Derivation of functional requirements for knowledge
management

The KM system in question will be dealing with a general WoT domain. The

characteristics of the DM application domain in WoT have been presented

earlier. In relation to the issues highlighted, it can be said that a framework

which sets out to enable data mining, processing and collaboration facilities

not only in the DM scene specifically, but in the whole WoT domain in

general, needs to be designed with three characteristics in mind:

1. Flexibility: The framework should be easy to setup, maintain and

dismantle. The interaction mechanisms should enable different instances

of the framework to collaborate with ease, whilst also making possible

collaboration with other IoT repositories and/or other 3rd party services.

2. Generality: The framework should not be designed as a particular

application but instead as a generic platform for storing sensing devices

definitions and data. This will enable the framework to be utilised for

different purposes, thereby increasing its value and configurability for a

diverse range of WoT-related problems which share common traits.

3. Extensibility: The framework should be designed in an extensible and

service-oriented fashion so that extensions can be developed and

deployed with ease. This will allow the development of extra components

for the system which can be leveraged by users of the system to increase

 44

functionality in a certain realm or to augment the system with additional

features.

Furthermore, the authors of [24] outline a set of conceptual design

requirements from which the following are taken as being appropriate for a

generic framework:

 Information source and timeliness: All assets captured by the network

should be identified by their source and time of capture. Any linked or

child assets should also clearly state the time of capture and the

source of the information so that decisions can be made regarding the

most up-to-date piece of information.

 Comprehensive system & event log: All system actions should be

logged at different levels of granularity and categorised to produce a

collective memory bank. This bank can be inspected at any given

instance in time to build an overall picture of the state of the system

regarding manipulation of all system assets (capture, publication,

interactions, processing, requests, responses, etc.). A log is the

“ongoing roadmap of the emergency” situation and thus needs to be

comprehensive enough to allow for different levels of abstraction and

detail so that the correct level of detail can be presented to the

responders at any given time.

To develop an efficient next-generation KM system, there needs to be a

balance between enforcing semantic schemas to provision semantic-

enrichment of data and the capability for users and agents to use the system

without being forced to comply with strict and rigid schemas. Furthermore,

from the aforementioned analysis and issues raised from existing studies, it

 45

is necessary that a suitable asset model is developed which allows high level

of introspection of the underlying assets so that underlying DS can be

analysed when needed [24]. Taking this into consideration, key fundamental

principles for a semantically-aligned KM system can be defined as follows:

1. Hierarchical data/information model that enables high level of

introspection;

2. Generic and extensible data definition templates that provision for

future extensions and enable users to upload customised data;

3. Semi-autonomous semantic annotation capability that is optional and

not enforced.

A hierarchical data/information model is necessary to allow introspection into

the system, and to be able to compose and decompose raw data into

information into knowledge. Real-world sensing and actuating devices can

be generally split into two types:

i. Sensing/actuating devices, for example, a temperature sensor

connected to an Arduino board;

ii. Multi-device platforms, for example, an Arduino board and a

SunSPOT system; such a device may consist of several sensing

devices.

In this thesis sensing/actuating devices would be modelled as datastreams

(DS or streams) and multi-device platforms as datafeeds (DF or feeds). This

creates a simple hierarchical model where DF contain one or more DS. The

DS upload data, for example: sensor readings, to the network periodically or

when a sensing event occurs. These readings will be referred to as

 46

datapoints (DP or points). The illustration in Figure 2-12 shows the

relationship between DF, DS and DP.

Figure 2-12: DF, DS and DP relationship diagram

A generic and extensible data definition template is essential for providing a

low-entry barrier for users of the system and enabling extensions. Before a

device can be used with a network, it will need to be registered. When this

happens, the user will need to upload a definition by filling in some template.

By providing a generic and extensible data definition template, it becomes

easier and more convenient for the user to supply mandatory information and

still retain the flexibility to add arbitrary data that might not be understood by

the network, but can still be used by the user.

Semi-autonomous semantic annotation capability is an important aspect of a

heavy-load WoT application where manuals annotations are unfeasible due

to the large number of sensing devices being added to the network

constantly. It has been mentioned before that a community-driven and user-

oriented system is needed that can learn from the annotations submitted by

the system users. Thereafter, the system can offer automated annotation

facilities for new sensing devices by attempting to map them with concepts

already stored in the knowledgebase. A community-driven and self-learning

system such as this is essential for scaling a semantic WoT application. The

actual semantic annotation process is selected to be optional. This will

hopefully lead to greater adoption of the system since no one is forced to

 47

comply with the semantic annotation process, but anyone can do so to

increase the capability and usefulness of the overall platform.

To compare existing works in light of the performed analysis and deduced

principles, a formal list of functional requirements for KM is presented below.

Please note that FR1 is the group of functional requirements for evaluating

KM systems. FR2 is the group of functional requirements for evaluating

access control systems. FR2 is presented in the section pertaining to access

control mechanisms further below.

FR1: Comprehensive, extensible and semantic asset model: Devices,

their definitions and the data they upload to the network is referred to as

“assets”. The framework should be able to represent assets as resources

and users of the framework should be able to break down any composite

(e.g. overlaid graphs) into its basic underlying assets (e.g. list of DS).

Furthermore, the data model should be semantics-driven to enable semi-

autonamicity in the system (i.e. the ability of the machine to “learn” the

“meaning” of data over time).

1. General Capabilities – Asset Model:

a. Capability to model and represent multi-sensor devices and

composite platforms (e.g. an Arduino board, a SunSPOT

device, or another multi-device platform) as DF, each

consisting of many DS;

b. Capability to model and represent a single sensing/actuating

device that may or may not be part of a bigger platform as a

DS;

 48

c. Capability to model and represent individual sensor readings

that occur at some moment in time as DP;

d. Capability to define arbitrary and additional properties when

modelling devices (DF, DS and DP), easily and conveniently,

through a generic, schema-less and extensible template;

2. Semantic Capabilities: Capability to represent resources in a semantic

fashion to represent data in a standardised manner and to enable

automatic or semi-automatic machine processing.

a. Capability to annotate DF and DS with semantic

concepts/metadata;

b. Capability to run semantic queries against semantic metadata.

2.3.7 Comparison of existing knowledge management solutions in
relation to the asset model

An analysis of KM systems was presented earlier in section 2.3.5. These KM

systems existed both for DM applications as well as WoT applications in

general. Table 2-1 presents a summary of all of these solutions that describe

some form of asset model for modelling devices and data. It compares each

of these existing solutions against the list of functional requirements

presented in the previous subsection.

It is important to note that in all the presented studies, very few actually

tackle the issue of unified data/knowledge dissemination. Where this issue

has been given some focus, the outreach has been more or less limited to

similar frameworks/systems (i.e. cross-instance collaboration) and no

particular focus has been applied on the problem of exposing this data or

knowledge to 3rd parties (i.e. cross-vendor collaboration). It is believed that a

generic and extensible asset model would form the basis for standardised

 49

sensing device definition and data representation. Since this area has not

been addressed adequately in existing literature, it is one of the requirements

and deliverables of the successive semantic KM framework being proposed

in this thesis.

Table 2-1: Comparison of existing literature against requirements to satisfy asset model

Requirements/
Solutions

Granular device
modelling hierarchy,
allowing modelling
of resources as a:

Extensible and
schema-less device
and data
representation
templates for:

Semantic
capabilities

DF DS DF DS DP Annotation Querying

Commercial and publicly available solutions

Xively [55]

ThingSpeak
[56]

(as

chan-
nels)

Partial (as
fields, <=
8 / chan-

nel)

Paraimpu [57]

(as sen-
sors and

actuators)

KM solutions and reference implementations in literature

Dynamic-map
container

terminal in [58]

No mention or indication of granular access to
underlying assets or how this data is defined and

represented

PeopleFinder
and

ShelterFinder in
[30]

Based on manual input and web-scraping of
information conforming to a strict schema

(people, locations) as opposed to collecting
sensor data. DM application but not based on

sensor networks

WoT
architecture in

[52]

IoT-A reference
architecture [54]

(as de-
vices)

(as sen-

sors, actu-
ators and

tags)

SENSEI [45]

(as re-
source
hosts)

(as re-

sources)

(O&M and other suites

from OGC’s SWE
package are used to

model and store
devices and data)

 50

SmartSantan-
der [59]

(O&M and other suites

from OGC’s SWE
package are used to

model and store
devices and data)

2.3.8 Comparison of existing knowledge management solutions in
relation to semantic capabilities

Table 2-2 presents a summary of all KM solutions that describe some form of

semantic technology for annotating sensing device definitions and data.

Again, each solution is compared against the list of functional requirements

presented in section 2.3.6.

It is apparent from the analysed literature that there is a clear lack of

autonomous semantic annotation capabilities and mechanisms. A majority of

the major vendors are opting for OGC’s SWE suite of standards which

provide syntactic-level of interoperability. Various ontologies are then used to

enhance the metadata contained within the data stores and to annotate the

sensing devices and data. This, of course, achieves some form of semantic-

level interoperability and enables M2M interactions over the data. However,

the issue of autonomous or semi-autonomous semantic annotation remains

a pressing issue. In the WoT where hundreds or even thousands of devices

are expected to appear in a short intervals, manual semantic annotation of

artefacts is simply unfeasible, and automated or semi-automated annotation

of resources is a key priority [20].

Kno.e.sis linked sensor data platform is a major effort in collecting weather

data from weather data stations, and then encoding these in O&M. However,

it is not clear whether there exist any mechanisms to automatically enhance

the encoded O&M data store with semantic annotations, and if they do, then

whether there are provisions to annotate a broader range of devices. On that

 51

front, SENSEI is a broader and more comprehensive platform which provides

semantic annotation capabilities as an optional enhancement to its O&M

encoded resource and entity directories. However, the process for doing so

is manual and there is no support for providing automatic annotations for

sensing devices, entities and observations.

Table 2-2: Comparison of existing semantic annotation solutions

Requirements/
Solutions

Annotation methodology
and ontologies used

Further comments

Kno.e.sis linked
sensor data [60]

Encoded using: OGC’s
Observation & Measurement

(O&M) standard [61].
Ontology: Custom-made

Sensor-Observation ontology
(based on O&M concepts)
Procedure: Encode raw

textual data obtained from
MesoWest in O&M and then
turn it into RDF statements.

Info: Published datasets contain
description of 20K weather stations in

US. Approximately 5 sensors per
weather station measuring temperature,

visibility, precipitation, pressure, wind
speed and humidity.

Drawbacks: Limited scope, only deals
with known sensor types from weather

stations. Sensor definitions are very
top-level and no way to define a sensor
as part of a bigger platform. From what

can be observed (as the actual
annotation mechanisms are not

detailed) annotation requires manual
adjustment and there is no autonomous

feature to learn from existing
annotations.

Sense2Web
linked sensor
data platform

[62]

Encoded using: RDF.
Ontologies: Custom-made

local ontologies.
Procedure: Manual annotation

via web interface

Info: Uses DBpedia for Sensor Types
Drawbacks: Focuses only on

describing sensors on a very top-level
and provides no support for describing

observation and measurement
principles. Manual annotation and no

autonomous features to speed up
annotations.

SensorMasher
[63]

Encoded using: RDF.
Ontologies: Custom core
ontology and an extended
ontology inspired by the

SWEET [64] and SANY [65]
ontologies.

Procedure: Manual annotation

Drawbacks: Shallow device hierarchy,
doesn’t use the more prominent SSN

ontology which provides better
interoperability, no automated

annotation capability.

WoT
architecture in

[52]

Encoded using: Microdata.
Ontologies: Mixture.
Procedure: Manual.

Drawbacks: Limited scope, manual
annotation, very top-level and simplistic.

SENSEI [45]

Encoded using: O&M and
RDF.

Ontologies: Unclear
Procedure: Manual

Drawbacks: Manual annotation, no
learning mechanism.

SPITFIRE [66]

Encoded using: RDF.
Ontologies: Custom ontology

based on DULE and SSN.
Procedure: Semi-automatic

Info: Semi-automatic creation of
semantic sensor descriptions is

achieved by comparing the sensor
output of newly deployed sensors

 52

annotation based on sensor
output

against already deployed sensors.

The WoT architecture presented in [52] is overly simplistic in terms of

providing semantic annotations. It uses Microdata which is not as diverse

and flexible as RDF, the official annotation language used in many of the

present-day frameworks and systems for annotation. On the other hand, the

Sense2Web linked sensor data platform in [62] does a much better job by

using a suite of custom local ontologies and interfacing with DBpedia to

inference some information (e.g. pulling sensor types). However, once again,

there is no learning system or autonomous annotation capability and

semantic metadata has to be entered manually.

SPITFIRE in [66] achieves some form of semi-automated capability to

annotate sensors semantically by comparing the output of newly deployed

sensors against those already deployed over some period of time. By

comparing the time series of devices, SPITFIRE can correlate new devices

against those already deployed and producing a similar time series. If

multiple correlations are present, then the user has to manually select the

most correct one. Over time, the system is expected to increase in accuracy

as more devices are added to the network and annotated successfully. What

is not clear is the success rate of this algorithm for similar devices that are

deployed in completely different environments, or a great distance apart; for

example two motion sensors, one deployed in a busy university laboratory

and another in a fire exit of a shopping centre.

In all, there is a definite lack of attention and innovation in the field of

automated annotation for sensor devices and data.

 53

2.4 Identity & Access Management

2.4.1 Overview of IAM

IAM is the functionality to manage the visibility of assets to users of the

system providing they are authorized to do so. This may be done via

numerous methods and approaches (and not necessarily containing

functionalities for identity (who are you) and authorization (can you do a, b

and c) in each case). Typical DM and collaboration frameworks have limited

collaboration facilities and therefore only focus on the internal IAM

functionalities, i.e. the ability of users within the organisation to access

resources, carry out tasks and view information. However, in the context of

WoT access to information from external assets is also vital, the concept of

IAM needs to be expanded. For example, if an autonomous agent wants to

scrape and process semantic metadata from an IoT repository, what kind of

access policies will it require? Will registration be a prerequisite? What about

if it’s a temporal interaction and registration, therefore, becomes an

unnecessary and even prohibitive hurdle? The problem is no longer

managing access from internal users (which has received due attention); but

now it’s becoming more important to consider how external collaboration

agents wishing to interact with the network, can do so without necessarily

having to register, but at the same time, retaining control over access

privileges. This study only deals with the latter problem; that of managing

access to unbounded, temporal and dynamic resources, and SAW

contributes a potential solution to this problem by presenting an enhanced

token-based approach for managing access rights and policies.

 54

The purpose of access control is to limit access to privately-owned resources

and assets by the owner of these resources. In this regard, a few

methodologies exist:

 User/Identity-Based Access Control (UBAC/IBAC)

 Authorization-Based Access Control (ABAC)

 Role-Based Access Control (RBAC)

 Token-Based Access Control (TBAC)

2.4.1.1 UBAC/IBAC

The most basic type of access control is UBAC which forms the basis for

security standards like SAML [67]. In this scheme, access to resources is

controlled by the identity of a user and is therefore very problematic when it

comes to public sharing of resources directly. Furthermore, since policies are

tied to user accounts, if a user account is revoked or deleted, the related

policies also disappear and have to be generated again for any successive

users who might assume the same role. If the policies are stored in an

access control list (ACL), then the ACL needs to be updated as and when

users accounts are revoked or deleted which can quickly become messy in a

real WoT scene [68]. It is highly unfeasible to use this scheme in the WoT

due to its numerous restrictions, even though it can be considered to be the

most secure out of the other schemes. It is only really suitable for

applications where users and their roles within the application domain remain

constant over a long period of time, for example, in a business environment.

2.4.1.2 ABAC

ABAC is very similar to UBAC in that it is still based around the existence of

users but instead of using the identity of a user (i.e. who is the user), it

 55

focuses on making use of the actual authorization data for the identity (i.e.

what can the user do). In doing so, it eliminates the problems related to

distributed identity management since each participating service domain has

information about its own services and the relevant authorizations required to

carry out those services. Then each domain only needs to be presented with

the correct authorization to invoke a service, as opposed to revealing the

caller identity as is the case in UBAC [69]. Whilst ABAC achieves many

advantages over UBAC, it is still user-centric and therefore unsuitable for a

resource-centric WoT where access to resources by anonymous agents is a

key requirement.

2.4.1.3 RBAC

UBAC introduces many problems in large organisations where users are

prone to changes in jobs, roles and duties. Any change in the job or role of a

user would result in a complete rewrite of the policies for the user to align it

with the subject’s new job or role. Aside from this, two users with similar jobs

and roles will have two separate access policies in an UBAC system. RBAC

was introduced to offset some of these managerial disadvantages of UBAC

[70], and it is based on the premise of roles which belong to users and have

access policies [58]. The scheme relies on the hypothesis that roles and

responsibilities largely remain constant within an organization and it’s the

users that change, therefore modeling access policies through user roles

instead of user identities provides a more convenient and maintainable

solution [71]. However, RBAC is unsuitable for modelling access control

where roles are hard to define and/or unsuitable to use. Take, for example, a

typical WoT scenario where hundreds of devices are being connected daily

 56

such that multitudes of DS are being added to the network and thousands of

sensor readings are being published. How can roles be defined for each user

for each device for each DS in this case? It is both illogical and unfeasible to

define roles in this dynamic setting, especially when the ability to control

access right down to individual DS of data is needed. Furthermore, and as it

has been alluded to previously, RBAC is based on roles which are tied to

users and therefore promote a user-centric scheme which prohibits

anonymous access of resources by non-registered agents.

Context-based Access Control (CBAC) is an extension of RBAC, since it also

takes into account the context of the user when requesting access to

resources (e.g., user location, device where request is made from, etc.) [72].

However, it still does not remove the user-centricity from the control

mechanism.

2.4.1.4 TBAC

TBAC systems are based on the premise of reusable and reconfigurable

tokens that grant access to a set or group of resources for a particular user

[73]. After generation, they are transmitted to agents who need to consume a

set of private resources that are normally hidden from public view and

accessible only by the resource owner. Tokens can be configured to only

expose the relevant resources and assets without leaking any information

regarding the identity of the resource owner. This is advantageous over

UBAC which requires the identity of the user to be transmitted with a request.

Whereas roles in RBAC are a part of the overall organizational structure and

are therefore more permanent and long-term artifacts, tokens in TBAC are

much more decoupled and can be easily generated, modified and revoked

 57

without affecting the organization structure. This provides a significant

managerial advantage when tokens are used to control access to temporal

assets of the network. Finally, since tokens are tied to resources as opposed

to users who own those resources, this scheme provides a resource-centric

access control scheme which is perfect for managing interactions with

resources in an enterprise-grade WoT setting.

2.4.2 Comparison of access control mechanisms

Table 2-3 presents a summary and relative comparison of the various access

control mechanisms that have been discussed so far. In the WoT context,

the access control mechanism needs to be resource-centric ideally so that it

is not tied down to user identities which are not significant in WoT

repositories. This necessitates the capability of enabling anonymous (non-

registered) agent authorisation to enable access to resources, which of

course means that resources need to be shared publicly in the first place.

UBAC is highly unsuitable in the temporal characteristic domain of the WoT

and ABAC doesn’t fare much better either as it is still user-centric. RBAC

makes some leaps in masking user identities when cross-domain service

requests are made but its user-centricity, again, makes it unsuitable for use

on temporal resources and services. TBAC, on the other hand, provides a

decoupled resource-centric mechanism of access control which is capable of

scaling, efficiently, with the dynamic environment of temporal assets in the

WoT. It suffers, in part, from lower security because at its core, TBAC offers

a single-step authentication service (i.e. the presence of a token is sufficient

to access a service). In contrast, the other schemes generally require two-

step authentication which increases security.

 58

From the analysis so far, it can be seen that a flexible and extensible access

control mechanism is required to manage access to the various assets that

are available in the network. It should be easy to spawn, grant and revoke

access rights dynamically when the need arises (as actors emerge

onto/leave the scene). It should also be easy and possible to grant access to

selected resources without requiring explicit registration of the external party

to the network so that inter-department and cross-vendor collaboration can

be provisioned on the go. TBAC is evaluated to be the most suitable access

control mechanism to achieve this task.

Table 2-3: Comparison of access control schemes in the context of temporal resources in the WoT

UBAC ABAC RBAC TBAC

Centricity User User User Resource

Anonymous access?

Public sharing of
resources?

ID protection in cross-
domain invocations?

Suitable for temporal
assets?

Dynamic scaling
efficiency

Very low Low Medium High

Security High High High Lower

2.4.3 Derivation of functional requirements for IAM

To compare existing works in light of the performed analysis and deduced

principles, a formal list of functional requirements for IAM is presented below.

FR2: Comprehensive and extensible IAM: The framework should be able

to provision access to assets at any level of granularity, from the top-level DF

(e.g. an Arduino board and all its related DS) right down to the low-level DP

 59

(e.g. light sensor readings on an Arduino board), without requiring extensive

policy rights management and without registration being a prerequisite for

access.

1. General Capabilities [Core]:

a. Capability to manage identities & access for internal (and

trusted) users of an organisation;

b. Capability to manage access for external/temporary (and

untrusted) users of participating networks. In the case of

external parties, managing identities is not as important or

crucial as federating temporal access, enabling audited and

controlled multi-party collaboration.

2. General Capabilities [Optional]:

a. Capability to support federated identities if possible (i.e.

authentication provided by 3rd party services like Google and

Facebook).

3. Access Management Capabilities [Core]:

a. Capability to issue & revoke access rights (also called “grants”)

for creating, modifying, viewing and deleting DF;

b. Capability to issue & revoke grants for creating, modifying,

viewing and deleting DS;

c. Capability to transitively apply grants for ease of access. For

example, it should be easy to grant access to a DF and all of its

DS, without having to explicitly apply this grant for each

resource;

 60

d. Capability to easily and conveniently exclude sub-resources

from grants applied in (iii). For example, it should be relatively

easy to exclude a single DS, or a group of them, from having

the same access rights as their parent DF.

4. Access Management Capabilities [Optional]:

a. Capability to define white and blacklists for a variety of server

environment variables (e.g. IP, Referring URI, Browser Agent);

b. Capability to control the lifespan of grants;

c. Capability to specify the permitted and forbidden contexts for

grants;

d. Capability to mark grants as “volatile” (these access rights must

be renewed after some set condition has been met and are

designed to improve security and/or remove inactive users),

and to provision for their renewal.

Comparison and analysis of existing IAM solutions

Table 2-4 presents a summary and relative comparison of the various

solutions in terms of their IAM capabilities. Where “(implied possibility)” is

mentioned, it means that the necessary functionality has not been mentioned

explicitly in the corresponding study/medium but that by applying the derived

principles and mechanisms, it is theoretically possible to achieve the desired

outcome.

From the currently available commercial solutions, Xively offers the best

access policy model for controlling access to temporal and dynamic sensor

devices and data. The web service assigns each user a master API key

which grants CRUD actions on all resources owned by the user. However, it

 61

hits a roadblock when it comes to using a single key/token to control access

to multiple DF and DS, as this is not possible in Xively. A single API key can

only manage access to DS of a single device in Xively, and this is not ideal

for the WoT domain where greater token flexibility is required.

Table 2-4: Comparison of existing solutions against requirements to satisfy IAM

Requirements/
Solutions

Fine-grained access control for each
of the following resources: Anonymous but audited

access to DF, DS and DP

Further comments DF DS DP

Commercial and publicly available solutions

Xively

Drawback: One API key

can only control access to a
maximum of one DF.

ThingSpeak

Paraimpu

Applied IAM solutions in literature

ARCE in [71]

(implied
possibility)

Drawbacks: Focuses on
high-level organisational

access as opposed to low-
level and fine-grained
access to resources.

CBAC in [72]

(implied
possibility)

Drawbacks: Same as

above except for the added
convenience of being able
to refine access according

to defined contexts.

CapBAC in [70]

(implied
possibility)

(implied

possibility)

(implied

possibility)

Drawbacks: Requires

credentials as well as the
capability token to access
services, so while it seems

to enable anonymous
access at first, that’s not the

case.

ABAC for SoA in
[69]

(implied

possibility)

(implied

possibility)

(implied

possibility)

Drawbacks: No

anonymous access,
requires policy store.

 62

SENSEI

Drawbacks: Several steps

need to be performed to
enable access from another

domain (provide token,
negotiate a security

session, agree keys, setup
security session, and so

on.). Anonymous access is
impossible.

In comparison, Thingspeak is more limited. Its model only extends access

rights to DF, and there is no way to fine-grain access to the individual DS.

Even then, the access model is shallow at best as it does not allow selective

choosing of individual CRUD operations for the DF, and only offers two

preconfigured sets: (1) Write actions (create, update, delete) and (2) Read

action.

In literature, [71] presents a web-based EIS that is built upon a Role-Based

Access Control model and aims to tackle the issue of managing diversity of

actors within an EIS environment when accessing hypermedia (web content)

and their ensuing roles and responsibilities within the whole system. It relies

on the hypothesis that roles and responsibilities largely remain constant

within an organisation and it’s the users that change, therefore a RBAC

model offers a convenient and maintainable solution that is based on access

policies and can be modified readily as new requirements arise and is

especially useful when the number of users is huge (as is common in web-

based systems). Whilst the access-based model proposed by the study

produces a highly transparent and secure data access system, the authors

exclude the issue of enabling cooperation/collaboration (whether internal or

external) within the RBAC model, thereby limiting the full potential of the

system and hindering third-party integration, something which is becoming

 63

very important in the modern world of growing publically-exposed APIs.

Furthermore, the study does not deal with data/KM issues at all and

therefore can only be considered a partial EIS solution at best. A similar

(albeit more comprehensive) model is presented in [58] where the authors

discuss a service-oriented and resource-based information modelling

architecture that is capable of providing users with personalized information

and/or services based on their profiles (composed of the user’s role and

associated tasks within the crisis response team). However, and once again,

lack of focus on developing semantics and the inability to share data without

requiring explicit registration with the network dampens the outreach of the

proposed solution.

Still very much related to RBAC, the CBAC approach in [72] brings

enhancements in terms of restrictions based on contexts. The contexts

describe the situation in which the request to resources is made and control

when the grants can be applied. Restrictions can be imposed in terms of the

source (device type, IP, software), location, user role, security level, session

restrictions, and similar parameters. The implementation of the access model

is, however, quite complex and is more suited towards access control for

static services as opposed to fine-grained and dynamic resources.

The CapBAC system presented in [70] is more promising as it provides

better scalability and permits temporal access to services. Before a user can

access a resource, he/she needs to obtain a “capability token” from a Policy

Decision Point (PDP), which considers the details of the requesting user as

well as the service in subject and then either grants or denies the token. The

method is suitable for temporary access to services and resources and does

 64

not force the user to register with the service provider. This approach solves

issues with managing trust between heterogeneous service providers. Still, it

can only be considered a semi-anonymous access solution at best since the

user still has to register with the PDP and a client profile for the user needs

to be maintained.

In all, it is apparent that literature is ripe with RBAC models that have been

enhanced to deal with a variety of organisational access control problems.

Whilst this is important and great leaps have been made in this regard, it is

now becoming equally important to invest in more dynamic and token based

access policies for the management and distribution of sensor devices and

data in the WoT. Proof of this claim lays in the access policy mechanisms of

the biggest commercial IoT repository on the market today, Xively. SAW

contributes to this problem by enhancing the access policy mechanism of

Xively and making it suitable for an environment where access to temporal,

dynamic and volatile sensor devices and data is becoming increasingly

important.

2.5 Concluding Remarks

Almost all of the solutions discussed in the literature have very weak cross-

vendor collaboration models, if present at all. The main reasons for this are

the following:

 The favouring of proprietary schemas to store and represent

definitions and data. This data can only be understood by the internal

network, and therefore hinders collaboration.

 The lack of semantics in annotating and representing data, producing

many definitions and representations of the same data.

 65

Many of the analysed works use rigid, proprietary schemas and force the

users to conform to these in a strict manner. This raises the entry-barrier,

makes it harder to extend the system, and prevents cross-vendor

collaboration. A live example of this is the well-known internet repository

called Xively (formerly Cosm and Pachube). Xively uses a rigid and

proprietary schema and forces users to adhere to this when defining devices

and uploading data. While it works wonderfully inside Xively, it is not so user-

friendly for external networks who may want to make use of the wealth of

publicly available sensor data in the internet repository. External users will

need to develop special adapters to translate Xively’s schema into their own,

before they can process the information. If, instead, Xively had annotated

and represented its data in a semantic fashion, then any external user could

have understood that data by simply conforming to the set of ontologies used

to annotate the dataset (semantic concepts such as annotation and

ontologies are explained later on in the thesis). Furthermore, semantic

annotation of data can even enable semi-autonomous machine-processing,

thereby yielding even greater returns.

Analysis of the current literature in the field of DM and collaboration systems

reveals the dire need for a unified and extensible collaboration model. This

collaboration model needs to be flexible enough to cater for cross-vendor

collaboration so that the in-house data and knowledge can be shared readily

and effectively, whilst at the same time, data and knowledge from suitable 3rd

party services can be easily brought in-house and exploited to create

advanced mashups and intelligent services. It is paramount to keep in mind

that crucial data can no longer be kept in-house and exposed to a select few

 66

through conventional collaboration schemes; there is now an ever-increasing

need to integrate with social networks and enable the capability to inspect

multiple sources of information (including other (commercial) IoT service

providers like Xively, Thingspeak, Paraimpu, etc.). This requires the

undertaking of further research in regards to the modelling of data in such a

way so as to enable this level of cross-vendor collaboration and data access.

Furthermore, many systems reviewed earlier employ RBAC which, while

suitable for a set of uniform organisations with similar roles and hierarchies,

is insufficient for representing a generic data model which is not

organisation-based. For example, if there is a need to grant access rights to

an unregistered user (registration not being a pre-requisite for using the

framework) to embed a graph generated by a registered user, this can’t be

done through an RBAC system. A more comprehensive and decoupled

access control mechanism is required to fulfil these supposedly exceptions

that are becoming the norm in the WoT realm. Furthermore, current

proposed solutions lack comprehensive semantics and therefore, most of the

times, act as monolithic repositories as opposed to decentralised information

and collaboration hubs. Modelling data with semantic metadata to enable

and promote semi-autonomacity within networks will not only increase the

productivity and efficiency of a system as more tasks can be automated, but

it should also foster better understanding and sharing of data amongst

different vendors since common ontologies can represent data in a unified

manner in most networks and thereby facilitating a greater level of

collaboration. Overall, it can be concluded that existing implementations in

the studied literature have the following limitations and drawbacks:

 67

 Limited Collaboration Facilities: This is by far the biggest limitation in

current systems and deserves the most attention in future research

simply due to its overwhelming importance in the modern WoT.

Because these systems are largely unable to obtain information from

multiple sources (or make no effort to do so), they are unable to build

a more relevant, accurate and consistent picture of the current

environment in a given scenario. For example, in an earthquake,

information from affected people in the area could prove invaluable as

they can share up-to-date information regarding the situation on the

ground in areas perhaps not covered by the response team (for

example, due to lack of equipment, facilities and expertise). It is even

possible to imagine people uploading data to IoT repositories like

Xively as a disaster unfolds (e.g. real-time radiation monitoring in

Japan in the wake of the nuclear catastrophe [74]). Being able to use

this type of 3rd party and external information within the DM

application can prove to be invaluable and it means that the

responders, themselves, do not have to cover the entire affected area.

Rather they can make use of existing setups and leverage 3rd party

data and services to augment their understanding of the situation on

the ground and increase their relief capabilities and outreach.

 Lack of Semantics: As we move towards a semantic web, i.e. a state

of the web where machines can understand and derive meaning from

data that is present on the web providing it is marked up and

annotated in a certain way, there is a need to design DM applications

and general collaboration frameworks with semantics from the

 68

ground-up. This will primarily foster machine-learning and allow us to

automate rudimentary tasks, thereby reducing the time (and

complexity) to setup. For example, the first time a multi-sensor

platform like a SunSPOT device is connected to the network, the user

may have to define the relevant properties and capabilities of the

device which are then marked with semantic metadata and stored in

the repository. The next time the same or another user wants to

connect a similar device to the network, the system can offer

“suggestions” to the user as the device description is entered by

making use of the existing semantic metadata and Linked Data

principles. This leads to a higher likelihood of users specifying

properties and capabilities of devices, sensors and data in a unified,

standardised manner, and therefore better probability that machines

can understand and act upon this data by themselves, with as little

manual intervention as possible.

 Unsuitable data and access control models: When design is

considered with generality in mind, it is not possible to strictly model

data and access rights in an RBAC fashion simply because the idea of

“organisations” clashes with the fundamental principle of generality,

“decoupled systems”. Instead, a more comprehensive and decoupled

access control mechanism is required to satisfy (albeit ironically) the

constraints imposed by generality.

Looking at the current state of the web and the growing need for open

distributed systems, it is proposed that a semantics-driven, service-oriented

and resource-based asset model would be ideal for creating a decoupled,

 69

easily extensible, plug and play framework that can be customised for a

variety of applications ranging from DM and relief work to monitoring and

interacting with next-generation WoT applications (e.g. smart cities). The

SAW framework is proposed as an enabler of the above vision.

Chapter 3: SAW - Semantically-enriched & semi-Autonomous
Collaboration Framework for the WoT

3.1 SAW Concept

SAW is envisioned as an enabler of the next-generation cross-vendor

collaboration through the development of a decoupled, semantics-enabled,

service-oriented and resource-based data model and the corresponding

collaboration mechanisms. It is important to point out at this stage that the

focus of SAW is on developing the actual collaboration mechanisms to

achieve the vision of cross-vendor collaboration which necessitates the

development of the underlying data model. However, as SAW is designed to

be generic in nature, there is no intention to provide all the functionalities

required by a DM application, even though the problem of managing

disasters effectively through cross-vendor collaboration is used as the test

case and scenario for developing and evaluating the prototype. Rather, the

aim is to provide the underlying functionality and the necessary mechanisms

to enable the extension of SAW to any WoT-related application. Therefore,

the focus of SAW is on tackling the problem of collaboration amongst

vendors that ultimately do not trust each other but still want to make use of

each other’s data, information, knowledge and expertise, in a uniform and

consistent manner.

 70

The outlining issues faced by WoT applications and the resultant goals in

achieving to remedy these issues have already been defined in the

preceding chapter. Furthermore, the underlying functional requirements have

also been defined and the basis laid for the foundations of the two major

systems:

1. Resource-based asset model;

2. Semantics-based interaction models.

The goals mentioned previously necessitate the design of a distributed

systems architecture whereby different instances of the framework can be

individually maintained by different actors but at the same time, can

collaborate not only amongst each other, but also make use of information

and knowledge present in 3rd party (and commercial) IoT offerings, as

illustrated in Figure 3-1.

Figure 3-1: SAW: The concept of a distributed system architecture

A system like the one illustrated above is truly decentralised as no single

instance has the capability to administer any of the other instances. This

means that each instance can operate independently of the other instances

 71

and can be customised for a particular application. If sometime down the line

there is need for collaboration with another instance of the system (which

might be customised for the same or even a different application), then this

can be easily achieved and data, information and knowledge can be

conveniently exchanged without relinquishing any partner’s control over their

private instance. This distributed approach to collaboration also means that

underlying assets can be reused and removes the burden of each actor

having to collect the same portion of data that may have already been

collected, processed, analysed and converted into information and

knowledge by another actor.

3.2 System Overview & Architecture

The overall system architecture for SAW is presented in Figure 3-2.

Figure 3-2: SAW system architecture

It consists of:

 72

 External Networks Integration: These might be local Wireless Sensor

Networks (WSN), internet repositories or even other instances of SAW

itself;

 The SAW Network: The SAW network consists of:

o An API that enables external networks to communicate with

SAW. The API exposes where endpoints to provide different

types of interactions with the sensing devices and data.

o A web application that provides administration capabilities for

the SAW network.

o A real-time server that provides real-time statistics (e.g. number

of devices, requests coming in, semantically annotated

devices, etc.).

o A semantics engine that semantically annotates resources. The

semantics engine relies on ontologies to define semantic

concepts that can be applied to annotated devices.

The above is a comprehensive system architecture and envisions the SAW

framework being hosted in a cloud computing environment. However, due to

shortness of time and limitation of scope, only the following features are

designed and implemented in this thesis (and the implemented prototype):

 External Networks Integration: Integration with a local WSN only.

More details about this are provided in Chapter 4: (prototype

implementation);

 The SAW Network:

o Only the following API endpoints are designed and

implemented: Tokens (CPPM-TBAC – section 3.4.3), Feeds,

 73

Streams and Points (the Asset Model – section 3.4.1). These

enable basic device interactions such as registering devices

and uploading sensing data. Other endpoints such as event,

subscriptions and publications are not designed or

implemented in this thesis.

o The web application.

o The semantics engine. The capability to annotate sensing

device properties is provided. The capability to define semantic

concepts for measurement data are marked as an item for

future work.

In brief, this thesis is not investigating the design or usage of the real-time

server, cloud computing hosting and events and publishing/subscription

endpoints and these should be considered items for future work.

3.3 Design Considerations

3.3.1 Ontology Selection

SAW is a semantic solution to the generic problem of collaboration in a multi-

party environment. The basis of using semantic technologies to tackle and

solve this issue of cross-vendor collaboration has been established in earlier

chapters and so it is evident that a comprehensive, flexible and all-

encompassing ontology needs to be adopted to make possible the design of

a generic and extensible collaboration platform. In this regard, the SSN

ontology stands out for its adaptability and extensive nature.

SSN can be considered the semantic equivalent of the highly popular OGC

SWE suite. In fact, SSN is designed as an enhancement of some of the

founding standards of SWE, for example, SensorML and Observations &

 74

Measurements (O&M). This makes the SSN ontology a highly valued

semantic adaptation of the popular OGC SWE suite.

The OGC SWE standards provide description and access to data for sensing

devices. However, the suite does not provide facilities for abstraction,

categorization, and reasoning of devices and data. This is made possible

through the semantics offered by SSN. In effect, SSN provides a domain-

independent, end-to-end model for sensing applications which is ideal not

only for DM applications, but also as a whole for the WoT domain wherever

sensing devices and data is considered.

Another reason for the selection of SSN over other ontologies is its

expressive nature, and the fact that it has been designed after reviewing

many of the major existing ontologies. This has enabled SSN to learn from

the mistakes and limitations of existing vocabulary systems and produce a

more generic and extensible ontology.

Existing ontologies for sensing devices and data can be split into two

predominant categories:

1. Sensor ontologies which focus on defining devices; and

2. Observation ontologies which focus on quantifying the actual

observations and measurements processes.

Various efforts exist for each of the above two categories. CSIRO Sensor

Ontology [75], OntoSensor [76], Sensor Web for Autonomous Mission

Operations (SWAMO) ontology [77], Sensor Data Ontology (SDO) [78],

Coastal Environmental Sensor Networks (CESN) ontology [79], WIreless

Sensor Networks Ontology (WISNO) [80] and Ontonym – Sensor [81] are

example sensor ontologies that have been reviewed by the SSN group as

 75

part of their design process. Similarly, Semantic Reference Systems

(SeReS) O&M [82], Stimuli-centered ontology [83], Sensei O&M [84], O&M-

OWL (SemSOS) [85] and Socio-Ecological Research and Observation

oNTOlogy (SERONTO) [86] are examples of observation ontologies which

have also helped shape the final SSN ontology. Since a comprehensive

survey and analysis of these ontologies is presented in the SSN final report

[87], the same will not be provided here in favour of brevity.

SSN combines efforts of existing sensor as well as observation ontologies to

produce an all-inclusive vocabulary system that can be extended to

application-specific domains easily. The broadest definitions for concepts

have been chosen in this ontology so that in the future, domain-specific sub-

concepts can be defined and extended easily and intuitively. The ontology,

therefore, allows modelling of sensing devices, their measurement

capabilities, operating and survival restrictions and deployments on multi-

platform systems and physical sites. The decision to align the core ontology

concepts to the DOLCE-UltraLite (DUL) upper level ontology ensures future

extensibility of the vocabulary definitions and usage in a broad array of

applications.

The SSN ontology is designed around the Stimulus–Sensor–Observation

(SSO) pattern [88] and can be viewed from four differing perspectives:

 From the sensor perspective with a focus on the sensing of the

device: what is sensing, what is being sensed, and how it is being

sensed.

 From an observation perspective with a focus on what is observed.

 76

 From a system perspective with a focus on deployments and multi-

sensor platforms (sensors)

 From a feature and property perspective with a focus on observable

properties, what senses them and how observations are made about

them.

In SAW, since the SSN ontology is used to annotate sensing devices and

data, it makes to take the ontological architecture into consideration when

designing the data and asset model for the framework. To do this, the SSN

ontology needs to be viewed from the system perspective. In this

perspective, the following core concepts are used:

 Platform;

 System; and

 Sensors and Devices.

A “System” is the overarching concept which can have many subsystems

(Sensors and Devices) attached to it (i.e. sensing devices). Systems can, in

turn, be mounted on platforms in deployments. A practical example of this is

an Arduino Board which is a “System” (a multi-sensor platform), has

subsystems (sensing devices): light and temperature sensors, has platform:

laptop, and has deployment: wireless sensor network (or any other arbitrary

name used to refer to the system of interconnected devices).

 77

Figure 3-3: SSN System perspective showing relationship

between System, Deployment, Platform and Devices

Figure 3-4: Device hierarchy of SSN

ontology

Figure 3-3 shows the relationships between core concepts in this

perspective. If this was to be modelled in a hierarchical data model, then it

would produce a 3-tier hierarchy like the one shown in Figure 3-4 which

shows a deployment platform containing many systems (multi-sensor

platforms), and each system containing many devices (the actual sensing

devices). This is, of course, quite extensive, and retaining all 3 tiers when

mapping this semantic model to a non-semantic one might be unnecessary

since the Platform (deployment site) and top-tier System (multi-sensor

platform) can, essentially, be represented as one entity: a multi-sensor

platform. This will achieve the required simplicity in the non-semantic model

without impacting the expressivity of the semantic model.

3.3.2 Extension of the SSN Ontology

SAW’s semantic annotation system, as is explained later on in this chapter,

revolves around the usage of arbitrary tags specified by users of the system

to identify devices. Users of the system are not semantically restricted when

it comes to defining tags for their devices, so the keywords specified in the

payload in the form of tags can be arbitrary strings of data. The first

challenge is to represent these arbitrary tags as semantic concepts that can

 78

be linked to sensing devices. The second challenge is to map these arbitrary

tags to the sensing devices associated with their representation through the

inference of the semantic concepts relating to the specified tags. The final

resultant ontology is attached in the appendix.

3.3.2.1 Defining Types of Sensing Devices

The first step is to define the various types of sensors to bootstrap the

system and build the initial knowledgebase. Each type of sensor will be a

subclass of the SensingDevice concept (e.g. TemperatureSensor

rdfs:subClassOf ssn:SensingDevice). This allows retention of the semantic

definitions and restrictions applied to the SensingDevice concept from the

SSN ontology whilst permitting instantiation of devices as instances of a

particular type of sensor. A small variation of sensors has been defined in the

initial ontology as shown in Figure 3-5. End-users can extend the ontology to

refine definitions for individual sensors or to add further device concepts

easily and in an extensible manner.

Figure 3-5: SAW sensor type concepts as a subclass of ssn:SensingDevice

If the user is registering a new type of device whose concept doesn’t exist in

the bootstrapped knowledgebase, then the system should facilitate the

addition of the new device concept as a subclass of ssn:SensingDevice. This

 79

will enable community-driven enrichment of the knowledgebase and

extension of the system.

Furthermore, the ontology uses the owl:sameAs property to contribute to

published linked data. Figure 3-6 shows an excerpt from the ontology where

the CO2Sensor concept is being defined. This concept corresponds to a

sensing device measuring the carbon dioxide gas. An owl:sameAs assertion

is made on line 252 in the figure to indicate that this concept is similar to

another sensing device concept which exists in DBpedia and identified by the

URI: http://dbpedia.org/resource/Carbon_dioxide_sensor. This concept of

“class equality” allows the ontology to be extended in the future and

interlinked with published semantic metadata on the web to integrate with

similar semantic concepts from other knowledge bases.

Figure 3-6: Excerpt from SAW ontology showing the CO2Sensor concept

A similar approach is adopted to define concepts for multi-sensor platforms

as shown in Figure 3-7. On line 34, a concept is defined for an Arduino

board, a multi-sensor platform. On line 36, a primary tag for the concept is

added to the definition. This process will take place when a new device is

added to the network.

On line 38, an instance of this multi-sensor platform is created and on the

following line a primary tag is inserted for this new instance. When searching

for tags corresponding to a device, both the parent concept and the

individual instances will be traversed to produce an all-inclusive list of tags.

 80

Figure 3-7: Excerpt from a device definition file showing description of a concept for the Arduino multi-

sensor platform

3.3.2.2 URI Structure for Ontology Concepts

A logical URI structure is used to reference not only the ontological concepts

defined above, but also the sensing devices and their deployment

characteristics within the network. To begin, the base URI is set to:

http://saw.local/sw/ (please note that the domain name, “saw.local” is used

for illustrational purposes only and resolves to a local instance of the

network, and is thus not available on the web directly). Then the ontology

URI is set to: http://saw.local/sw/ontology#. All ontological concepts derived

by SAW are referenced to this URI, for example,

http://saw.local/sw/ontology#PressureSensor for referring to the pressure

sensor ontological concept, and http://saw.local/sw/ontology#Arduino for

referring to the Arduino multi-sensor platform class. The individual instances

of DF and DS are referenced to the URIs http://saw.local/sw/feeds# and

http://saw.local/sw/streams# respectively. This would imply that an instance

of an Arduino board labelled “Arduino-UoB-001” would be referenced to the

URI http://saw.local/sw/feeds#Arduino-UoB-001. Similarly, a position sensor

labelled “PositionSensor-UoB-001” would be referenced to the URI

http://saw.local/sw/streams#PositionSensor-UoB-001. A coherent and

comprehensive URI is essential for developing an easily traversable linked

data map of the semantic information contained within the knowledgebase.

The URI structure presented above achieves this aim by splitting up assets

 81

into logical groupings and separating the ontological concepts from individual

instances.

SAW also defines URIs corresponding to three other overarching concepts

found in the SSN ontology: ssn:System (multi-sensor platforms),

ssn:Platform (host machines on or through which the multi-sensor platforms

operate, such as PCs, laptops, servers, etc.) and ssn:Deployment

(characteristics of the actual deployment, for example, location information).

The corresponding URIs for these three concepts are

http://saw.local/sw/deployment/system,

http://saw.local/sw/deployment/platform and http://saw.local/sw/deployment

respectively. Using this URI scheme, SAW is able to easily distinguish

between the different levels of granularity involved in the semantic mapping

of devices and their properties in the network.

3.3.2.3 Representation of Tags as Semantic Concepts

SAW extends the SSN ontology to define concepts to represent tags. The

main concept is an owl object property termed DeviceTag, with the sub-

properties: DevicePrimaryTag and DeviceSecondaryTag as shown in Figure

3-8. The DevicePrimaryTag is defined as a tag that has a direct and

unambiguous relation with the tagged device, for example, the tag “temp” for

a sensing device that is an instance of the TemperatureSensor concept.

DeviceSecondaryTag, on the other hand, is defined as a tag that has an

indirect and possibly ambiguous relation with the tagged device, for example,

the tag “position” for a sensing device that is an instance of the

ProximitySensor concept, or the tag “sensor” for any device. Finally, by

applying an rdfs:domain restriction on the DeviceTag concept to ssn:System,

 82

it is ensured that the tag properties can be applied to any type of device

modelled through the SSN ontology.

Figure 3-8: Illustration of the "DeviceTag" tag in the SAW ontology

Since the DeviceTag is modelled as an owl object property, it can be

assigned to instances of ssn:SensingDevice and its sub-concepts. For

example, Figure 3-9 shows an excerpt in the Turtle format that first creates

an instance of the CO2Sensor concept, and then assigns tags to it:

Figure 3-9: Sample Turtle excerpt showing device instantiation and tagging

Lines 1 & 2 instantiate a sensing device called “CO2Sensor-Ard-001” as an

instance of the CO2Sensor concept. A list of primary tags for the device are

then defined on line 6. These are tags that have a direct and easily

identifiable relation with the tagged device. Line 7 then defines some

secondary tags which don’t have any direct association with the tagged

device but might prove useful as a stepping stone. The real challenge,

however, is to categorise tags defined by the user as either primary or

secondary tags, and then to append these onto the actual sensor type

definitions so that a degree of semi-autonamicity can be achieved in future

annotations.

 83

Putting this altogether, individual types of sensing devices can now be

modelled through the corresponding ssn:SensingDevice sub-concepts from

the SAW ontology. Each of these sub-concepts can then be enriched by

specifying a list of tags (both primary and secondary), which can be used to

profile new devices being added to the network according to the correct

concept.

3.3.2.4 Methodology for Extracting & Classifying Tags

An initial list of primary and secondary tags can be specified for each

concept in the beginning to bootstrap the system. Eventually, however, an

actual mechanism will be needed to extract user defined tags for a device.

This mechanism will revolve around one of the following scenarios:

 The device being modelled is a new type of sensor whose concept

does not exist in the knowledgebase;

 The device being modelled has a corresponding concept in the

knowledgebase.

If the device being modelled is a new concept, then the system can define

the new concept and assign non-ambiguous tags as the primary tags for the

new device. Non-ambiguous tags are those tags which don’t already have an

association with another sensor type concept in the knowledgebase. All other

tags should be assigned as secondary tags for the new concept.

The mechanism for classifying tags of a device belonging to an existing

concept is slightly more complex. First the user-defined tags will be used to

search the knowledgebase for any associations to a sensing device concept.

If no associations can be found, then either the user has provided an

inadequate list of tags, or the device concept does not exist in the

 84

knowledgebase. The mechanisms for dealing with this are detailed in the

semantic annotation section.

If a primary association has been found (i.e. one of the provided tags

matches an instance which is DevicePrimaryTag of a sensing device), then

the device should be modelled as the corresponding sensing device concept.

Any tags provided for the new device by the user registering the device

should then be added as secondary tags for the corresponding sensing

device concept provided that they are not already modelled as DeviceTag

properties for the sensing device concept.

If more than one primary association has been found, then the secondary

tags need to be processed to produce a similarity rank. The primary

association with the most secondary tags associated to it should be chosen.

If more than one primary association still remains after this process, then the

user should be presented with the associations and asked for the final

selection. If this is not possible (e.g. when mining data from other

repositories that don’t implement the feedback loop), then an association

should be chosen at random.

If no primary associations are found but one or more secondary associations

are found, then the secondary association with the largest number of

corresponding tags should be chosen. If there is a tie, then the user should

be presented with the associations and asked to make the final selection. If

this is not possible, then an association should be chosen at random.

Finally, it is highly recommended to exclude from the onset or remove later

on really ambiguous concepts like “sensor”, “device”, “sensing device”, etc.

 85

from the knowledgebase as these can lead to false positives resulting in

faulty modelling of devices.

3.3.3 Database Types

Two different types of databases need to be used to store the different types

of data present in SAW.

First of all, a relational database system called MySQL needs to be used to

store data with a known and fixed schema. Examples of this include user

details, user permissions, user group assignment, system and error logs, etc.

At the same time, a non-SQL database is needed to store data that has an

unknown or dynamic schema that changes depending on the object being

stored. Examples of this type of data include token permissions (there can be

one permission policy definition or more than 10, each with different fields,

ids, keywords, etc.), and DF, DS and DP definitions (each with varying

properties). MongoDB is an example of a prominent no-SQL and non-

relational database system and needs to be used to store token policies and

DF, DS and DP definitions and sensing data.

3.4 Proposed System Architecture

In line with the functional requirements, achieving the vision for SAW

necessitates the creation of an abstract and resource-based asset model

and a service-oriented and semantic interaction model. The resource-based

asset model is essential for provisioning multiple layers of inspection so that

assets can not only be built as mashups, but also decomposed into their

fundamental origins upon inspection. The service-oriented interaction model

will foster the birth of a set of decentralised and distributed collaboration

mechanisms and, alongside the resource-based asset model, will lay the

 86

foundations for an extensible collaboration model. Put together, these two

approaches will enable representation of assets at different levels of

granularity and expressiveness (from data to information to knowledge and

the other way around), with the capability to easily expand their semantic

definitions through generic and extensible templates. Secondly, the

distributed nature of the interaction model will make it possible for individual

instances of SAW to contain custom extensions and enable the instance

administrators to augment the framework with problem-specific functionalities

without affecting its ability to interact with other instances. Finally, by

exposing the framework as a RESTful API, it becomes convenient and

feasible for 3rd party networks to use the network’s assets and vice versa.

3.4.1 Asset Model

3.4.1.1 Conceptual Architectures

Any resource that is captured, processed, derived or published is considered

a network asset in SAW. The purpose of modelling assets is to allow

abstraction of resources and empower the framework with the capability to

define generic and extensible templates. The by-product of this process (and

a much-needed functionality of the framework) is the possibility to compose

assets from raw resources to form complex mashups, and then to also

decompose compounded representations into their fundamental origins. The

following steps are undertaken when modelling assets:

1. Define data in terms of its expressiveness: This is the capability of

assets to hold a meaningful representation.

2. Define a data hierarchy so that assets can be categorised in terms of

granularity.

 87

In SAW, there exist 3 layers of data in terms of its expressiveness (Figure

3-10), as has been mentioned previously in section 2.4:

1. Data, which is the raw and unprocessed representation of sensor

data;

2. Information, which is the processed and tagged sensor data that may

or may not be semantically annotated; and

3. Knowledge, which is the derived rich set of information composed

through via semantic technologies.

Figure 3-10: Data expressiveness in SAW

This structure makes it possible to break down high-level knowledge into the

underlying information and even down to the very fundamental raw pieces of

data which is useful for introspection of assets. Furthermore, the process of

producing information from data and then deriving knowledge from

information through the use of semantics presents a common methodology

for participating networks to generate and understand network assets.

SAW provides a simple but extensible data hierarchy as illustrated in Figure

3-11 and explained previously in section 2.4. A DF implements a generic

device template which can be used to model and represent any kind of

physical or virtual device, for example, an Arduino board or a twitter user

respectively. A DF has 1 or more DS that describe a particular sensor or

actuator asset of the DF, for example, a light sensor on an Arduino board or

 88

a twitter user’s tweet DS. Finally a DS can have 0 or more DP, where each

DP references a particular value at a given instance in time, for example, a

time-stamped light sensor value or a particular tweet from the DS of a twitter

user. It can be seen that this model is derived through the simplification of

the SSN device hierarchy with DF representing the top-tier “System” and DS

representing the “Device” concepts of the ontology. Aligning the non-

semantic data model to the semantic device hierarchy of the SSN ontology

ensures that SAW is easily able to map devices and data to the relevant

concepts in the ontology, whilst retaining a sense of freedom and flexibility in

the non-semantic modelling of devices and data.

Figure 3-11: Data hierarchy

DF, DS and DP are described initially using a set of generic templates called

the Generic Device Definition (GDD) templates which are domain-

independent and can be customised to fit into any application domain. Once

these initial payloads have been submitted to register the devices, further

semantic templates referred to as Semantic Annotation (SA) templates can

be used to add well-defined and cross-network semantic metadata to the

device definitions. SA templates are discussed later on in this chapter.

The GDD templates constitute the initial generic templates which are mainly

used to register the devices to the network. The purpose of these payloads is

to provide an intuitive and flexible template which can be used to define and

register devices at a very basic and non-semantic level. GDD templates are

therefore:

 89

1. Extensible, so that more fields can be added as and when needed;

and

2. Transport-independent so that they can be represented in any data

transport technology (XML, JSON, etc.). In SAW, the JSON format is

used by default as it is more lightweight and widespread in the

RESTful web than other representations.

3.4.1.2 Generic Device Definition Templates

When DF (whether physical or virtual) are connected to the network, they

need to be registered to the network before they can be deployed and

interacted with. To do this, the user specifies a set of mandatory properties

for the device being registered, but is free to add other arbitrary definitions

which are not understood but can be supported by the network, but can still

be used to interact with the device. These templates are described below.

3.4.1.2.1 DF Template

The DF template is used to register a multi-sensor device platform, such as a

SunSPOT device or an Arduino board. Figure 3-12 shows a DF template

with only the three network-defined fields in the template.

 Title: The name or identifier of the device which can easily distinguish

and identify the device. This doesn’t have to be a unique identifier.

 Visibility: Either public or private. Public devices can be viewed

without the use of a token (see the section on CPPM-TBAC) whereas

private devices can only be viewed if the requester produces a valid

token. In the absence of this definition, the visibility of the device is set

to public.

 90

 Tags: A comma-separated list of tags that identify some property of

the device. These are not required, but highly recommended since

they form the basis of the semantic annotation interactions (detailed

later on in this chapter).

Figure 3-12: GDD template for a DF with only

the network-defined fields

Figure 3-13: GDD template for a DF with additional

arbitrary definitions

The template presented above is, of course, very rudimentary. In effect, that

is the entire purpose of GDD templates: that they are generic and simple.

This is feasible because the actual semantics are added to the devices later

on via the SA templates, so there is no need for complicating the baseline

device registration templates. But this does not mean that these templates

cannot be expressive or extensible. Figure 3-13 shows a slightly more

expressive registration payload where the user has specified additional

arbitrary fields to enhance the description of the multi-sensor platform. Whilst

the additional fields hold no semantic value as far as the SAW platform is

concerned, they can nonetheless be treated as such with extensions to the

system. Therefore it can be seen that SAW offers unparalleled functionality

and freedom by offering generic and extensible device registration templates

which promote usage of the platform by lowering the entry barrier and

catering for extensibility within the framework.

 91

Once the user fills the above template and sends it to the network for

processing, the device registration process can take place and upon

successful registration, the user will receive a unique device ID (labelled

“feed_id”) that forms the resultant URI which can be used to browse to and

interact with the device. This is described in greater detail in the section

pertaining to the implementation of the framework.

3.4.1.2.2 DS Template

The DS template is almost exactly like the DF template, with the exception of

one additional mandatory field: feed_id (Figure 3-14). This new mandatory

field (if the DF ID is not specified in the URI) specifies which DF the new DS

is being added to, since each DS must have a parent DF.

Figure 3-14: GDD template for a DS with only the network-defined fields

Similarly, users can extend the core GDD template for DS by specifying

additional arbitrary fields and properties for their devices, just like they are

able to when registering DF.

The visibility of a DS might be restricted depending on the visibility of its

parent DF. If the parent DF is a public device, then the child DS can take

either the public or the private visibility. If, however, the parent DF is a private

device, then the child DS must specify a private visibility scope. This means

that sensing devices attached to private multi-sensor platforms are always

private and require a token with the necessary grants before they can be

browsed or interacted with. If the user has a multi-sensor platform with an

array of sensing devices but only wants to make a few of them open for

 92

public dissemination, then this can be easily accomplished by setting the

visibility of the corresponding DS to public, and leaving the rest with the

private visibility scope.

3.4.1.2.3 DP Template

After the two-tier devices have been defined using the DF and DS templates,

only the problem of uploading the actual sensor data remains. This is done

through the simplistic DP template as shown in Figure 3-15.

Figure 3-15: GDD template for DP with only the network-defined fields

In a DP template, the only network-defined fields are:

 DF and DS ID: All DP belong to a DS which, in turn, belongs to a DF.

These two fields are not mandatory if the respective IDs are present in

the request URI, e.g.:

POST

http://saw.local/api/v1/feeds/FEED_ID/streams/STREAM_ID/points

 At: A date-time stamp (formatted according to the ISO 8601 date and

time standard) which specifies when the observation took place;

 Value: A string representing the observed value at the time the

observation took place. This can be any type of string or integer.

Again, the DP template can be extended even though there might be very

limited reasoning for doing so since the actual device definitions are already

stored in the DP and DS templates. For the sake of extensibility, however,

this functionality has been maintained as with the DF and DS templates.

 93

If numeric values are specified for a reading, then it is easier for the

framework to chart these values in a time series on a graph. The same may

not be possible for textual and descriptive sensor readings such as “hot”,

“cold”, etc. However, the functionality can certainly be developed within the

framework should the need arise due to the extensible nature of the

templates and the service-oriented architecture of the framework.

3.4.2 RESTful Resource Exposition

3.4.2.1 Overview of REST and URIs

To enable web-based interaction based on resources, the framework needs

to extend an API based on the RESTful architecture of the web. This

architecture is chosen because the vision of WoT hinges on turning everyday

connected things into web-based resources that can be browsed and

interacted with much like we browse and interact with webpages today. To

enable this vision over the HTTP protocol of the internet, the RESTful

architecture needs to be adopted [89].

REST, which stands for Representational State Transfer, provides a

resource-based, web-oriented architecture for achieving interoperability and

decoupling of distributed applications on the web [90]. It is more lightweight,

widespread, and simpler than the more verbose and complex WS-* (Web

Services) suite (based on SOAP). A RESTful architecture leverages all the

inherent power and features of HTTP to deliver services to the accessing

agent (e.g. a web browser) by modelling objects and services to be

interacted with as resources that can be browsed, navigated, linked and

bookmarked.

 94

The RESTful architecture relies on Uniform Resource Identifiers (URIs),

which are more commonly known as Uniform Resource Locators (URLs) on

the web. The origins of the URIs began as document identifiers on the web

which pointed to a document’s location on the network. This definition was

quickly changed as it became apparent that URIs did not always point to

documents, and could essentially be used to refer to any type of artefacts

presented on the web. URIs, thus, were redefined as endpoints that lead to

resources [90]. Now that resources can be identified through URIs on the

web, the only remaining problem is now one of interaction with these

resources. REST solves this problem through the following four well-defined

HTTP verbs:

 GET: Request/browse to a resource identified by the URI;

 POST: Create a new resource according to the presented URI and the

attached payload;

 POST: Update an existing resource according to the attached payload

and identified by the URI;

 DELETE: Delete the resource identified by the URI.

Through the above four HTTP verbs, it is possible to browse and interact

with a web-based resource in any manner possible.

3.4.2.2 RESTful API for SAW’s Asset Model

The resource-based asset model in SAW is exposed through a RESTful API,

just like the growing number of Web 2.0 applications that use the same

principle to expose their services for mass consumption. Basic CRUD

(Create, Read, Update, Delete) operations on resources are enabled through

the use of the corresponding HTTP verbs: POST for creating, GET for

 95

reading, PUT for updating, and DELETE for deleting resources. In SAW’s

own terminology, POST, PUT and DELETE actions are collectively referred

to as modify actions, whilst GET is referred to as a read action.

All actions require a token with the necessary grants before the action can be

carried out. This requirement is imposed regardless of whether the subject

resource has been set as private or public visibility. Read actions on public

visibility resources are the only exception to this norm as in this case, no

token is required to carry out the action. The workings of access control are

detailed later on in this section, so only the process required to specify

tokens in the request is detailed here.

Tokens can be specified with the request in one of two ways: (1) Through the

HTTP Headers and (2) As a URL query parameter. The former method is

preferred and leads to better URIs. With the former method, the token must

be specified in the HTTP Headers. This can be done by specifying a new

header field/key called “X-ApiToken”, and then specifying the token as a

value of this new header field like so: X-ApiToken: 5195feafe. If this is not

possible, then the second method can be used. In this method, the token

needs to be appended as a query string to the end of the URI with the query

parameter: “token”. An all-inclusive URI with an appended token would look

something like this: http://saw.local/api/v1/feeds?token=5195feafe. Both

methods achieve the same result, but the former is preferred since it does

not clutter the URI.

Similarly, the client must also remember to specify a “Content-Type” HTTP

Header. This basically informs the server of the client’s wishes in retrieving

the response in a certain fashion (e.g. JSON document, XML document,

 96

HTML document, etc.). By default, the server returns all responses in JSON

format.

DF, DS and DP are manipulated as resources through the API by virtue of

the four HTTP verbs. Each resource has a clearly identifiable and traversable

URI as is detailed below. Please note that the domain name, “saw.local” is

used for illustrational purposes only and resolves to a local instance of the

network, and is thus not available on the web directly. Similarly, the trailing

“api/v1” is used by the framework to access the API endpoints corresponding

to the version specified, which is “v1” in this case. Thanks to the service-

oriented architecture of SAW, the framework could be designed so that it can

easily accommodate updates and extensions. The versioning of the API

helps ensure that clients can keep on using an older version of the API when

(and if) updates are made to the programming interface.

3.4.2.2.1 DF Endpoints

To create a new DF (i.e. device registration); a POST request needs to be

submitted to the POST URI shown in Table 3-1 alongside the necessary

payload. A sample is presented in Figure 3-16 to illustrate the process.

The visibility property is required (public or private) alongside the title, as has

been mentioned before. Everything else is optional, but it is highly

recommended to set the DF description for ease of identification, and specify

some tags to enable the semantic annotation of the device.

If the DF is successfully created, then the response will contain a HTTP

Header called “location” which contains the URI for accessing the newly

created DF.

Table 3-1: Resource endpoints for DF

 97

Action URI (http://saw.local/api/v1 has been omitted for the sake of readability)

POST /feeds

GET

 View a single resource:

/feeds/FEED_ID

 View a list of resources accessible by the specified token:

/feeds

 Sample: Fetch the DF with ID 51c:

/feeds/51c

PUT

/feeds/FEED_ID

 Sample: Update the DF with ID 51c:

/feeds/51c

DELETE

/feeds/FEED_ID

 Sample: Delete the DF with ID 51c:

/feeds/51c

Method: POST, URI: /feeds

Figure 3-16: Sample payload for creating a new DF

The process of updating the DF is similar to that of creating it. The only

difference is that the HTTP verb used now is the PUT verb and the ID of the

DF is required in the URI. The payload, illustrated in Figure 3-17, should only

contain values for fields that are being updated.

Method: PUT, URI: /feeds/FEED_ID

Figure 3-17: Sample payload for updating an existing DF

Deleting a DF resource is far simpler. It only requires a request to be made

with the DELETE verb and the ID of the DF to be deleted appended to the

URI, as follows:

Method: DELETE, URI: /feeds/FEED_ID

 98

Fetching an already existing resource is also quite simple as it requires no

payload to be specified with the request. The requester should make the

request using the GET verb and append the ID of the DF of interest to the

URI, as shown below:

Method: GET, URI: /feeds/FEED_ID

This will return a response like the one shown in Figure 3-18:

Figure 3-18: Sample response when fetching a DF

It is even possible to fetch a list of feeds that are accessible by the specified

token by trimming the DF ID from the URI like so:

Method: GET, URI: /feeds

This will return a list of DF as shown in Figure 3-19. The list contains unique

IDs of the DF that are accessible by the specified token. In turn, these IDs

can be appended to the request URI to fetch more details about that DF.

Figure 3-19: List of DF that are viewable by the specified token

 99

3.4.2.2.2 DS Endpoints

DS endpoints branch off from DP endpoints since DS belong to DF. This

produces a resource architecture that is logical, consistent, linked and

traversable.

Creating, updating, deleting and fetching DS resources is just like

manipulating DF resources with the exception that the API endpoints are

different. The only other difference is that for POST and PUT requests, the

parent DF ID needs to be specified in the payload if it is not present in the

URI. If the URI structure being used is similar to the one presented in Table

3-2 where DS are branched off of DF, then specifying the DF ID in the device

registration and update payloads is not necessary as it’s already present in

the URI. If however, an instance of the framework decides to use a more

concise URI format which excludes the DF ID from the URI (e.g. PUT

/streams/STREAM_ID), then the DF ID will need to be specified explicitly in

the payload of POST and PUT requests.

When a new DS is created successfully, a HTTP Header called “location” will

be returned with the response to identify the unique ID of the newly created

resource and the full URI which can be used to interact with the new DS.

Similar to viewing DF, a list of DS can be fetched by trimming the DS ID from

the GET URI. The ID of each DS can then be taken and appended to the

URI request to browse the individual DS resources.

Table 3-2: Resource endpoints for DS

Action URI (http://saw.local/api/v1 has been omitted for the sake of readability)

POST /feeds/PARENT_FEED_ID/streams

GET

 View a single resource:

/feeds/ PARENT_FEED _ID/streams/STREAM_ID

 View a list of resources accessible by the specified token:

 100

/feeds/PARENT_FEED_ID/streams

 Sample: Fetch the DS with ID 51d, belonging to DF with ID 51c:

/feeds/51c/streams/51d

PUT

/feeds/ PARENT_FEED _ID/streams/STREAM_ID

 Sample: Update the DS with ID 51d, belonging to DF with ID 51c:

/feeds/51c/streams/51d

DELETE

/feeds/ PARENT_FEED _ID/streams/STREAM_ID

 Sample: Delete the DS with ID 51d, belonging to DF with ID 51c:

/ feeds/51c/streams/51d

3.4.2.2.3 DP Endpoints

DP endpoints branch off from DS endpoints since DP belong to DS. Again,

this architecture is adopted to produce a logical, consistent, linked and

traversable resource tree.

Creating, updating, deleting and fetching DP resources is just like

manipulating DF and DS resources with the exception that the API endpoints

are different. The only other difference is that for POST and PUT requests,

the parent DF and DS IDs need to be specified in the payload if they are not

present in the URI. If the URI structure being used is similar to the one

presented in Table 3-3 where DP are branched off of DF and DS, then

specifying the DF and DS IDs in the DP creation and update payloads is not

necessary as they’re already present in the URI. If however, an instance of

the framework decides to use a more concise URI format which excludes the

DF and DS IDs from the URI (e.g. POST /points), then the DF and DS IDs

need to be specified explicitly in the payload of POST and PUT requests.

Table 3-3: Resource endpoints for DP

Action URI (http://saw.local/api/v1 has been omitted for the sake of readability)

POST /feeds/PARENT_FEED_ID/streams/PARENT_STREAM_ID/points

GET

 View a single resource:

/feeds/ PARENT_FEED

_ID/streams/PARENT_STREAM_ID/points/POINT_ID

 101

 View a list of resources accessible by the specified token:

/feeds/PARENT_FEED_ID/streams/ PARENT_STREAM_ID/points

 Sample: Fetch the DP with ID 51e, belonging to the DS with ID 51d,

belonging to DF with ID 51c:

/feeds/51c/streams/51d/points/51e

PUT

/feeds/ PARENT_FEED _ID/streams/

PARENT_STREAM_ID/points/POINT_ID

 Sample: Update the DP with ID 51e, belonging to the DS with ID 51d,

belonging to DF with ID 51c:

/feeds/51c/streams/51d/points/51e

DELETE

/feeds/ PARENT_FEED _ID/streams/

PARENT_STREAM_ID/points/POINT_ID

 Sample: Delete the DP with ID 51e, belonging to the DS with ID 51d,

belonging to DF with ID 51c:

/feeds/51c/streams/51d/points/51e

3.4.3 Enhanced Token-Based Access Control Mechanism

The constant fluctuations and rapid variations in data present in the WoT

makes traditional access control mechanisms such as User-Based,

Authorization-Based and Role-Based Access Control (UBAC, ABAC and

RBAC respectively) highly unsuitable for the task at hand, which is to flexibly

manage access to (often times, dynamically generated) data at varying

levels of granularity. In a WoT setting, it cannot be assumed that the users of

the system are known, i.e. access by anonymous data access points, which

may be users or other machine endpoints, needs to be catered for and

provisioned within the system [91]. Token-Based Access Control (TBAC)

mechanisms cater for this need of secure and anonymous data access

through interrogation of RESTful resource endpoints, but just on their own,

do not contain the flexibility to refine access to fine levels of granularity

without resorting to mass-generation of tokens, which is not manageable in a

realistic WoT application. This study introduces a Cascading Permissions

Policy Model (CPPM) for the TBAC system (henceforth referred to as CPPM-

TBAC) such that access control policies can be extended to not only allow

finer control over granularity of visible resources, but also contain context-

 102

specific parameters that can further refine access based on the request

origin context.

3.4.3.1 Catering for Unbounded, Temporal and Dynamic Resources

Repositories in the WoT have very different characteristics than traditional

data stores. In the WoT context, consideration has to be given to the

potential of handling an unbounded number of devices (sensors, actuators,

and virtual entities), services (composition, processing, transformation, etc.)

and interactions (capture, publication, querying, etc.) [92]. Furthermore, the

resources themselves are much more temporal and short-lived which gives

birth to dynamic and unpredictable application scenarios and interaction

patterns [93]. In short, the following characteristics of cloud-based WoT

repositories can be concluded:

 Unbounded: New devices, services or interactions can be introduced

at any time. For example, new devices may be introduced as more

equipment becomes available at a disaster scene.

 Temporal: Resources are generally short-lived and undergo various

changes in their properties and definitions. For example, legacy or

faulty devices will be replaced with newer or more capable platforms

over time. Also, the repositories may only store a certain amount of

historical data and any data outside this boundary will become

unavailable.

 Dynamic: Resources, their properties and definitions can change

dynamically in response to events. For example, a monitoring event in

a refugee camp may cause several devices in the near vicinity to

activate automatically.

 103

Furthermore, for the WoT to truly flourish and be deployed in a useful

context, accessing resources should be easy, intuitive and hassle-free. Take

the example of a disaster event like the likelihood of a major flood along the

River Thames, London. Whilst governmental bodies will employ the

necessary measures to monitor this type of event and to keep track of

developments (e.g. water level across areas of high risk), keeping this data

confined and restricted internally will hinder public use of this critical

information, which might prove fruitful if the power of crowdsourcing can be

leveraged appropriately and responsibly. If the information was instead

exposed to the general public in a controlled manner, hobbyists and

enthusiasts could easily conjure intelligent agents that monitor key events

and push alerts or compose mashups to not only aid in the awareness of the

disaster situation, but to also prepare a response in a timely manner. Even

more-so, the publicly exposed data might be used for other purposes, for

example to monitor environmental changes in neighbouring areas or for

composing other useful mashups. But this can only really become possible

(both in terms of exposing data as public resources and consuming the

resources by the general public) if the mechanisms behind doing so are

intuitive, flexible and speedy. If the governmental body has to setup a horde

of accounts and roles and if the public agents have to register accounts to

publish or use this data, then the likelihood of its adoption and the usefulness

of its exposure will quickly deteriorate due to the expensive investment in

time. Instead, if all this access control information could be stored in a few

well designed tokens, and then these tokens distributed to those with a need

to consume the data without requiring them to register an account, then it

 104

can be seen that the effort is more likely to be rewarded with higher adoption

and consumption. It is with this reasoning that this study has opted to

develop an enhanced model of the token-based access control mechanism

to control and audit access to temporal and dynamic resources within the

framework.

3.4.3.2 How does the TBAC scheme work?

TBAC systems are based on the premise of reusable and reconfigurable

tokens that grant access to a set or group of resources for a particular user

[73]. After generation, they are transmitted to agents who need to consume a

set of private resources that are normally hidden from public view and

accessible only by the resource owner. Tokens can be configured to only

expose the relevant resources and assets without leaking any information

regarding the identity of the resource owner. This is advantageous over

UBAC which requires the identity of the user to be transmitted with a request.

Whereas roles in RBAC are a part of the overall organizational structure and

are therefore more permanent and long-term artifacts, tokens in TBAC are

much more decoupled and can be easily generated, modified and revoked

without affecting the organizational structure. This provides a significant

managerial advantage when tokens are used to control access to temporal

assets of the network. Finally, since tokens are tied to resources as opposed

to users who own those resources, this scheme provides a resource-centric

access control scheme which is perfect for managing interactions with

resources in an enterprise-grade WoT setting.

 105

3.4.3.3 CPPM-TBAC

TBAC, as opposed to UBAC and RBAC, provides a decoupled resource-

centric mechanism of access control which is capable of scaling efficiently

with the dynamic environment of temporal assets in the WoT. It suffers, in

part, from lower security because at its core, TBAC offers a single-step

authentication service (i.e. the presence of a token is sufficient to access a

service). In contrast, the other schemes generally require two-step

authentication which increases security. This study is not addressing the

security concerns of TBAC, so the problem then is one of modeling the

necessary policy systems that allow tokens to be used efficiently in the face

of big data in the WoT, otherwise the advantages gained through resource-

centricity will quickly be lost against the volume of tokens needed to model

access controls for volatile and highly unpredictable temporal assets. Current

literature in TBAC models is scarce to say the least and it is hard to find any

relevant publications which discuss TBAC in a WoT setting, let alone any

enhancements on top of the scheme. This study proposes the CPPM as an

effective and comprehensive modeling scheme that enables tokens to be

used in a large WoT setting without incurring costs in terms of generating

large volume of tokens, extensive maintenance and un-intuitive usage

thereof.

The CPPM-TBAC works over the asset model for SAW which represents

resources at different levels of granularity and expressiveness, as has been

presented earlier. By utilizing a RESTful API, resources are first exposed as

web-accessible URIs which can be interacted with using the 4 common

HTTP verbs: POST for creating, GET for querying, PUT for updating and

 106

DELETE for removing resources. CPPM-TBAC controls access to resources

in this asset model at the various levels of granularity; starting from the most

verbose, expressive and comprehensive DF right down to the least

expressive and cardinal DP.

A set of tokens are generated automatically for each DF to represent a

common set of read and write permissions and further tokens can be

generated by users for refining access to DF and DS.

Tokens effectively enable the modelling of multi-faceted and cascading sets

of permissions for accessing resources on the network. In SAW’s

implementation of TBAC (the CPPM), the 1st step is to define two top-level

visibility controls for resources:

1. Public access: These resources can be searched and viewed by

everyone and do not require a token.

2. Private access: These resources can only be accessed if a token with

the necessary permissions is used. Child resources of a private

visibility resource are always private.

The 2nd step is then to categorise actions as either:

 Read actions: Identified by the GET HTTP verb, these actions view

resource information. A public resource can be read freely whereas a

token with the necessary permissions will be required for reading a

private resource.

 Modify/write actions: Any action that uses the remaining HTTP verbs

(PUT, POST, and DELETE) has the potential to modify resources on

the network. Regardless of the visibility of a resource, a token with the

necessary permissions is required to carry out these actions.

 107

The general process for creating tokens is shown in Figure 3-20. In the

beginning there is the option of restricting the token scope to particular DF

for a given user (and subsequently, selected DS with those DF). In the next

step, actions that are permitted on the selected resources can be chosen

and finally, due to the extensible nature of SAW’s architecture, additional

restrictions can be defined to refine the scope of the token even further by

adding context-specific constraints (e.g. location) or usage limits (e.g. max

requests per defined threshold). Furthermore, each token can have multiple

sets of permissions in a cascading fashion thanks to CPPM which enables

more fine-grained access control for network resources. Finally, the tokens

can be used to audit resource access as each request is logged. This TBAC

model presents a comprehensive and extensible access control mechanism

for a WoT network’s temporal resource-based asset model and allows users

to easily provision and audit access to private resources.

Figure 3-20: CPPM-TBAC model showing token construction process

CPPM defines two upper-level scopes when forming the tokens: (1) Global

scope and (2) Local scope. The global scope can contain the basic grants

(CRUD operations, i.e. create, read, update and delete) and the extended

 108

access restrictions whereas the local scope can only specify the basic

grants, but can do so for any group of resources. Permissions defined in the

global scope cascade to all public and private resources of the resource

owner. The local scope can then be used to refine these permissions further

if needed, or to remove certain resources from the permission set altogether,

as shown in Figure 3-21. The eventual applied grants are calculated

according to the following methodology:

1. If global grants are present and local grants are absent then apply the

global grants on all public and private resources for the resource

owner.

2. If local grants are present and global grants are absent then apply the

local grants on the specified resources for the resource owner.

3. If both global and local grants are present, then do the following:

a. Apply the global grants on all public and private resources of

the resource owner;

b. For the DF and DS specified in local grants:

i. Keep the global grants which have not been specified in

the local scope.

ii. Apply the local grants which have not been specified in

the global scope.

iii. Overwrite the global grants which exist in the local scope

with the local scope grants.

This methodology is only applied on the basic grants and not on the

extended access restrictions which are always defined in the global scope

and cannot be overwritten locally. This is an area where the CPPM can be

 109

improved in future iterations.

Figure 3-21: Pictorial illustration of the CPPM Algorithm

In the global scope, the basic grants consist of the CRUD operations and any

or all of these can be defined with a value of 1 (grant) or 0 (restrict). CPPM

employs the least access methodology so that the absence of a grant is

equal to its restriction. Usually, it is discouraged to define global grants

because they apply to all the resources of the resource owner and if the

relevant local scopes are missing, they can result in the unwanted exposure

of sensitive resources or the unintentional cloaking of others.

The local scope is used to refine access restrictions to resources on a finer

level. Here, it is possible to specify grants and restrictions for a group of

resources based on their visibility (e.g. “public/private” for the respective

public/private-visibility resources, or “all” for all resources). Further

extensions to the CPPM may permit other types of resource groupings as

well in the future. The local scope also makes it possible to define access

controls for specific resources denoted by a resource ID, which will be a DF

ID at the topmost level. Going even further, the CPPM adheres to the asset

 110

model presented earlier and allows refining of access down to the individual

DS, again, either by their visibility group keyword or by specific DS IDs. This

cascading permissions style allows CPPM to easily create tokens with any

level of access control for any type of resource in the asset model.

It should also be noted that the GET (read) grant is not specified for public

resources in the local grant scope. This is because public resources do not

require a token to be queried and read, so the GET grant is meaningless in

this context since it will always resolve to 1 (grant).

3.4.3.4 CPPM-TBAC Deployment in Disaster Management: Example
Scenario

CPPM-TBAC can be used to model access policies for sensing devices and

data in a DM situation in cases of pre, intra and post disaster. The scenario

below considers CPPM-TBAC usage pre and during the disaster.

Take, for example, a flood occurring in a location known for flooding and

therefore having existing sensing infrastructure to monitor the appropriate

environmental variables. Pre-disaster, CPPM-TBAC can be used to manage

access policies of the sensing infrastructure for known parties (e.g.

governmental organisations). This can include controlling which aspects of

each device can be managed by whom, and who can see the sensing data

that is being collected. These access policies will typically be long-term and

not change as frequently. As the disaster is unfolding, CPPM-TBAC can

similarly be used to expand the range of access policies and create temporal

access tokens to give new actors on the ground the relevant access to help

and facilitate them in their disaster management and relief work. This can

include giving first responders and relief agencies limited and short-term

access to consume sensing devices data on the fly and revoking this access

 111

as soon as their work is finished. It can also include opening up the sensing

devices data to the larger public so that hobbyists can conjure up their own

data-driven applications to monitor the scene on the ground and provide their

communities with tailored updates. It can be seen that CPPM-TBAC can be

used for a wide range of access control activities to effectively manage

distribution of access to sensing devices in what is likely to be a chaotic DM

environment.

3.4.4 Interaction Models

Composition of interactions makes possible semi-automatic processing,

enrichment and publication of network assets to other agents for

consumption, whether internally or externally. Generally speaking,

interactions in the WoT domain come in one of the following flavours:

 Eventing systems that publish information in response to events

based on pre-defined triggers and/or time-based schedules.

 PubSub systems that enable subscription to assets and the publishing

of these assets thereof according to some predefined rules and/or

criteria to designated agents for consumption.

 Profiling systems that work to achieve an enrichment and semantic

betterment of data.

To narrow the scope of possible work and finish it within the allocated

timeframe, this study only focuses on the latter interaction, that of profiling

network assets in order to provide semantic metadata that can be used to

enable cross-vendor, multi-party collaboration and achieve semantic

interoperability in the WoT. The following section details the novel

 112

mechanisms developed in SAW to semantically annotate sensing devices

and data using the SSN ontology.

3.4.5 Semantic Annotation

The process of profiling DF and their respective DS involves the semantic

annotation of the device properties, attributes, characteristics and related

metadata. This is done by applying semantic concepts to the device

definitions and data and then storing these concepts in the form of semantic

metadata which can be shared and distributed to achieve an interoperable

representation of data and devices across the multi-party collaboration

framework. Over time, the framework will become more capable of

automatically annotating devices semantically when they are connected to

the network as more and more semantic annotations are added to the

framework. This will make it easier for the system to recognise common

devices and offer suggestions during the profiling phase, thereby quickening

the annotation process and improving its accuracy.

Assets in the SAW framework are annotated using the SSN and SAW

ontologies as has been illustrated before. The maximum benefits are reaped

when users are highly expressive and precise during the semantic

annotation process. Whilst this is ideal, it is not practical to assume that

regular non-tech users will be capable of effectively annotating their

resources, which means that direct serving of semantic templates to users is

not the best solution. To account for this practical limitation, SAW offers a set

of supplementary approaches that should help annotate resources even

when the user cannot do so directly and on the fly.

 113

When a DF or DS is registered to the network, it may be profiled in one of

two ways: (1) Directly, and (2) Indirectly.

3.4.5.1 Direct Semantic Annotation via Tags

The direct annotation method requires explicit input from the user and it is

illustrated in Figure 3-22. The direct method relies on the actual user to

power and drive the semantic annotation process, and its accuracy and

effectiveness depends on the richness of the semantic knowledgebase. As

more devices are registered and annotated, the accuracy and efficiency of

the system will increase, ultimately enabling semi-automatic semantic

annotation of assets.

When a new device (DF or DS) is being registered with the network, a set of

tags will need to be provided to begin the semantic profiling mechanism. The

mechanism takes into account the three possible variations in this case:

1. Scenario 1: The provided tags map to one or more semantic concepts

and the user has selected one of the provided concepts for mapping

of the device. In this case, the device is mapped to the selected

concept.

2. Scenario 2: The provided tags map to one or more semantic concepts

but the user is not happy with the provided results and opts to create a

new concept. In this case, a new concept is created for the device and

the device is then mapped to this newly created concept.

3. Scenario 3: The provided tags do not map to any known semantic

concept in the knowledge base. In this case, the user is given the

option of creating a new semantic concept for the device and then

 114

map the device to this new concept. Otherwise, the whole process

repeats again until the user makes a choice/selection.

Figure 3-22: Asset profiling process illustration

Each scenario is described step by step in more detail below in Table 3-4.

In the first two scenarios, the limiting factor is the user’s ability to identify the

corresponding asset. In the last scenario, the limiting factor is the lack of a

comprehensive knowledgebase from which to fetch the relevant semantic

concepts to build the semantic template for annotation.

In the first scenario, the user is registering a device for which semantic

definitions already exist in the knowledgebase. If the user is using the web

interface, as is the case in this scenario, then the user can easily select the

corresponding device from a drop-down suggestion list and receive the

corresponding semantic template for annotation. In most cases, since the

definitions for the device already exist in the knowledgebase, the user will

only need to modify a small number of concepts specific to his/her device

(e.g. location, observation interval, host platform, etc.) as most static

properties will already be stored for that device.

 115

Table 3-4: Possible scenarios in the semantic annotation process for profiling DF and DS

Scenario 1: Asset definitions exist in knowledgebase AND user is able to select the

corresponding definitions (e.g. when using the web interface).

Step 1: Register DF.

Step 2: Select the corresponding asset from the knowledgebase for that DF.

Step 3:
Fill in/modify (if required) the received semantic template for the DF and

upload to server.

---------- Repeat these steps for registering DS.

Scenario 2: Asset definitions exist in knowledgebase BUT user is unable to select the

corresponding definitions (e.g. when using the RESTful API).

Step 1: Register DF.

Step 2: Update the DF with a list of tags identifying the device.

Step 3:

Select from suggestions provided in the response those tags which most

closely match the device being registered. Repeat steps 2 to 3 based on

personal discretion and then upload the final list of tags to the server.

Step 4:

The server will return a semantic template with each response in step 3. Fill

in/modify (if required) the received semantic template for the DF and upload

to server.

---------- Repeat these steps for registering DS.

Scenario 3: Asset definitions don’t exist in knowledgebase OR user is unable to select

the corresponding definitions (e.g. by not specifying the correct tags).

Step 1: Register DF.

Step 2:

Update the DF with a list of tags identifying the device. If no tags are

provided, the system will still proceed to the next step as is the case in this

scenario.

Step 4:

The server will return a generic semantic template if the list of tags submitted

is either empty, or does not match any stored semantic concepts. Fill in the

received semantic template as much as possible for the DF and upload to

server.

---------- Repeat these steps for registering DS.

In the second scenario, the user is registering a device for which the

semantic definitions already exist in the knowledgebase, but the user cannot

directly select the corresponding device because of interface limitations (e.g.

when the user is interacting with the network through the RESTful API). In

this case, the user will need to send a list of tags identifying the device in a

separate payload after the device has been registered. Once the server

receives these tags, it tries to retrieve matching concepts from the

 116

knowledgebase, the process for which is detailed further on in this

subsection. At this juncture, the server generates a semantic template with

semantic concepts most closely matching the provided tags, and then sends

this semantic template along with a short list of tag suggestions to the user.

The user, in turn, can either fill in the received semantic template if it closely

matches the device in question, or can provide further tags including those

provided by the server to refine the process further until he/she is happy with

the received semantic template. The template can then be filled in and sent

to the server.

The third scenario is similar to the first scenario. In this scenario, the user is

registering a device for which one of the following is true:

a. The definition for that device does not exist fully in the

knowledgebase;

b. The user is not providing a list of tags, or the list of tags provided is

incomprehensive.

In this case, the server will return a generic semantic template for the user to

be completed in the response payload.

To sum up, when profiling DF or DS, the users will be able to enter arbitrary

tags to describe their assets. These tags are not semantically-restricted and

can be anything the user wants them to be, for example, “light sensor”,

“Oracle”, “Arduino”. The system might try to infer semantic meaning from the

tags as they are entered by the user and offer further suggestions for tags.

Furthermore, as tags are entered by the user and their semantic relation is

recognised by the system, SAW will be able to provide tailored DF and DS

templates to the users dynamically, thereby improving the accuracy of the

 117

semantic annotation process. For example, the user may enter the tags:

“light sensor” and “SunSPOT”. From this information, the system may be

able to work out that the “SunSPOT” is a multi-sensor device and “light

sensor” is possibly a sensor object that measures photons. Equipped with

this information, the system will be able to offer the user a tailored DF

template for a SunSPOT device and a DS template for a generic light sensor.

The actual tag-based semantic annotation mechanism is illustrated in Figure

3-23. In the first step, DF (multi-sensor platforms) and DS (sensing devices)

are registered to the network with an arbitrary payload where only the asset

name, visibility and associated tags are required. Once this payload has

been submitted (labels 1.0 and 1.1), a query builder is used to parse the

specified tags and generate synonyms, possibly using open tools like

WordNet [94].

Figure 3-23: Asset profiling scheme showing how tags are used to derive semantic definitions

 118

SAW tries to generate an exhaustive list as false positives are not a major

issue since the aim is to give the end user a comprehensive list of

corresponding asset definitions from which the correct or most relevant

artefacts can be selected. After building the augmented list, the query builder

calls the SPARQL query agent which runs a semantic query against the

knowledgebase to find semantic concepts relating to the specified keywords.

Since the internal knowledgebase will be limited in the beginning, manual

configuration may be required to bootstrap the system. As more and more

semantic annotations are added to the framework, however, it will become

easier for the system to recognise common assets and offer suggestions in

the feedback loop (labels 1.2 and 1.3) during the profiling phase, providing

the client supports the feedback mechanism.

In the second step, matching semantic definitions are returned to an

annotation agent where a semantic template is generated and sent to the

client for annotation (labels 1.6 to 1.8). If the client does not support a

feedback mechanism, then the system will self-annotate the template based

on the available information, as might be the case when mining data from

external repositories like Xively and ThingSpeak.

Finally, the client submits the annotated semantic template to the system and

the annotation agent forwards the response to the semantic engine where

semantic metadata in the form of RDF statements (or triples) are inserted

into the knowledgebase.

The above procedure can result in one of 3 cases, as described previously:

1. The client is using the web GUI and can identify the relevant assets

directly. In this case, there is no need to provide tags.

 119

2. The client cannot directly select the relevant assets or the client is

communicating via the API. In this case, the client provides tags to

describe the assets.

3. The system is unable to retrieve the relevant asset definitions from the

knowledgebase. In this case, the system returns a generic semantic

template leading to the creation of a new semantic concept.

3.4.5.1.1 Mapping Devices to Existing Concepts – Process Explanation

When a new device (DF or DS) is registered with the network, the requester

has the option of specifying device-specific tags to aid the network in

semantically annotating the device. When these tags are submitted to the

SAW framework, the system tries to fetch the corresponding semantic

associations for these tags from the RDF triple store (openly available

database for storing semantic data). The URI for submitting these tags is:

http://localhost:8111/fetch-associations/. The requester must then append a

comma-delimited list of tags at the end of the URI (i.e. the query string), for

example, http://localhost:8111/fetch-associations/tag1, tag2, tag3. Each tag

in this list is then processed by the system to try and fetch the corresponding

semantic concepts from the knowledge base. Figure 3-24 shows the web

form where tags are entered at the bottom. After clicking on the “Fetch

Associations” button, the “Matched Concepts” section at the top is populated

with a list of corresponding concepts.

Each semantic concept has an initial list of primary and secondary tags, as

has been explained before in Chapters 2 and 3. When a new device is

registered to the network and a list of tags is provided, then each tag from

this list is processed by the system to search for any matching concepts. The

 120

device tags are queried against the primary and secondary tags of all

concepts to derive mappings. Each mapping is then classified as a primary

or secondary mapping depending on whether the device tag mapped to a

primary or secondary tag of the concept. If the same concepts are retrieved

multiple times through different device tags, then the weight of those

concepts are increased to highlight their raised rank and matching

correlation. Mappings through primary tags contribute a weight of 2 whilst

mappings through secondary tags contribute an additional weight of 1.

Figure 3-24: Semantic profiling screen, showing

the tag mapping facility at the bottom and the

selectable matching concepts at the top

Figure 3-25: Sample annotation process showing

a list of primary and secondary concepts and their

respective weights

Figure 3-25 (above) shows a sample annotation where the submission of

tags for a newly registered device has resulted in the system returning a set

of primary and secondary concepts back to the user, each with a

corresponding weight. This list may very well contain concepts that are

similar or even duplicates of each other simply due to the community-driven

 121

nature of the system whereby users are able to create new concepts on the

fly.

If the user is able to interact with the SAW network, as is the case here, then

he/she can select an appropriate semantic concept from the provided list and

click on the “Apply Mapping” button shown in Figure 3-24. Doing so will

create a new mapping for the device to the selected concept, and generate a

new semantic ID for the device as well (e.g. SunSPOT-1). The semantic ID

of the device forms a linked data URI which can be used to interact with the

device in a semantic fashion. The final traversable URI of the device may

look something like this: http://saw.local/sw/feeds#SunSPOT-1 for DF or

http://saw.local/sw/streams#CO2Sensor-251 for DS. When the mapping is

applied, the provided tags are classified as primary or secondary tags by

matching them against the primary and secondary tags of the semantic

concept the device is mapped against. A slight limitation of the SAW network

here is that when mapping to existing semantic concepts, there is no way for

new devices to add new primary tags to the mapped concept. The new

device can only contribute secondary tags with the current mechanism. A

possible solution to this would be to maintain a persistence of weights when

devices are mapped to concepts, and if any secondary tags reach a certain

defined threshold, then they can be promoted to primary tags. This takes

care of case 1 where the provided tags map to one or more semantic

concepts and the user has selected one of the provided concepts for

mapping of the device.

 122

3.4.5.1.2 Creating New Semantic Concepts for Devices

Both cases 2 and 3 presented earlier lead to the creation of a new concept.

This is done by clicking on the “Create New Concept” button in Figure 3-24.

When a new concept is created, a new concept ID is generated and this

publishes the new concept as a linked data concept, e.g.

http://saw.local/sw/ontology#MicaMote, where MicaMote is the new concept

ID. Once the new concept has been created, the device is mapped to it and

a unique semantic ID for the device is generated as explained before. In this

case, all the device tags are classified as primary tags for the new concept.

When devices are mapped to semantic concepts, the knowledge base is

enriched further and the system is able to infer and aggregate the primary

and secondary tags of the devices that are mapped to the concepts to the

primary and secondary tags of the concepts themselves. This results in

continuous enhancement of the knowledge base and better accuracy of

mapping when new devices are registered to the network. However, at the

same time, a systematic and regular review of the knowledge base will be

required to clean up and remove ambiguous tags such as “device”, “wireless

sensor” and alike to improve the annotation accuracy and decrease the

chance of generating false positives during the semantic profiling phase. At

this moment in time, SAW does not implement any such semi-automatic

review mechanisms and this has to be done manually. A potential area of

further research is to use established resources like WordNet [95] and

ResearchCyc [96] to help in the automation of removing ambiguous or

erroneous tags and enhancing the existing knowledge base by enriching

tags with synonyms and semantically-similar concepts.

 123

3.4.5.1.3 Challenges in Creating a New Semantic Concept

In the case of a new device being registered to the network for which no

relevant semantic concept exists in the knowledgebase, the system creates

a new concept for this device. The challenges in this task are the following:

 Generating a unique concept ID so that the concept can be

represented in a unique fashion without conflicting with existing

concepts. For example, if the concept “saw-ont:Arduino” exists

already, the new concept cannot also be called “saw-ont:Arduino”

since that ID already exists.

 Aligning the new concept with existing concepts that may be similar,

or at times, aliases. The biggest challenge here is the removal of

duplicates when a concept has syntactical differences in

representation and the list of tags attributed to it.

Generation of a unique concept ID is easily resolved by the system. The

system first searches the triple store for existing concepts with the same ID

as the new concept that is to be inserted. If a match is not found, then the

new concept can be added with the ID originally provided. If, however, a

match exists, this implies that the system needs to generate a new unique ID

for the new concept. The system is provided with a list of pre-composed

methods by which it can achieve this, for example, by adding a date-time

value at the end of the concept ID (e.g. “saw-ont:Arduino-2013-11-14”),

amongst other ways. Eventually, the system will be able to derive a unique

concept ID that can be used for the new concept, and upon insertion, it will

return this unique concept ID back to the requester so that the URI for the

new concept is known.

 124

The problem of semantic aligning of semantic concepts and removal of

duplicates is more challenging and involves manual intervention. Due to the

intrinsic community-driven nature of SAW, the likelihood of generating

duplicate concepts remains very high. The scope of the current study does

not permit extensive research into this area, but one way in which this

problem can be effectively tackled is by using the owl:sameAs property to

link concepts together as aliases of one another. Again, in the current setup

this has to be done manually but future enhancements of the framework can

investigate more effective and semi-autonomous approaches in this regard.

3.4.5.2 Indirect, Community-Based Semantic Annotation

By utilising a community-driven contribution system, SAW envisions a

comprehensive and peer-to-peer community tagging system that is built and

driven by members of the system. While this feature is discussed in this

study, limitations in time and resources, unfortunately, did not permit its

implementation in the first prototype of SAW. It is hoped that this feature will

be incorporated in a later iteration of the framework.

SAW is intrinsically a community-oriented solution where the focus is on

collective knowledge and collaboration. By employing a community-driven

contribution system, SAW can make it even easier and viable for users to

flag incorrect annotations and contribute relevant tags and semantic

annotations for DF and DS. This system essentially consists of the following:

a. Ability to flag incorrect annotations. For example, if a SunSPOT

device (a multi-sensor platform which is a DF) has been annotated as

a temperature sensor (a sensor object which is a DS belonging to a

DF).

 125

b. Ability to contribute relevant semantic annotations. For example, a

SunSPOT device may only be annotated by its owner as a “sensor

platform”. Other community members with more technical knowledge

might add further annotations like “has sensor”, “has analogue inputs”,

“has digital outputs”, etc. These public annotations are added to the

relevant DF and DS by default, but the owners of the respective

assets can flag incorrect public annotations for review by the instance

administrators who will have the power to remove irrelevant

annotations.

As mentioned previously, limitations in time and resources does not permit

further study and analysis of this community-driven approach to semantic

tagging but the concept was introduced briefly nonetheless to highlight

possible areas of further work and improvements to the SAW framework.

 126

Chapter 4: Implementation of the SAW Prototype

4.1 The Cloud-Based SAW Framework

Taking the notions of a distributed collaboration framework and semantics

data modelling forward, the top-level concept architecture for SAW is derived

as illustrated in Figure 4-1. An instance of SAW exists in the cloud where the

supporting computing resources (e.g. CPUs, RAM, storage and bandwidth)

can be easily scaled up and down depending on the demand of the network.

The system itself consists of 3 distinct components:

1. Semantics Engine: Enabled by the open-source JENA implementation

by Apache and running on a Java Virtual Machine (VM), the

semantics engine deals with the semantic annotation of resources on

the network as well as semantic reasoning and querying of assets.

The semantics engine is exposed to the web through a Tomcat servlet

provided by Apache. The actual semantic metadata browser is called

a Fuseki server.

2. Webserver: The front-end web application is hosted on an Apache

webserver and exposes the underlying functionalities through a

RESTful API. Amongst other things, the front-end application (i.e. the

web application or the website), deals with the following:

a. Implementing (and exposing) the underlying semantic engine to

the web for applications such as semantic querying of network

assets;

b. Providing a UI for the web application users;

c. Providing a web-based administration client for the instance

administrators;

d. Exposing the framework functionalities through a RESTful API.

 127

3. Real-time server: Powered by Node.js, this acts much like the

webserver above but has a few additional key functionalities that

enable and make possible real-time monitoring and analysis of the

network as well as real-time capture and publication of data,

information and knowledge.

Figure 4-1: SAW - The concept of an extensible system that exposes underlying functionality through

open APIs

The semantics-based modelling of assets and the distributed SoA-based

design of the system enables SAW to easily communicate with and

collaborate amongst not only other instances of itself, but also other

commercial and public IoT solutions like Xively and Thingspeak (with the

help of adapters). By extensively focusing on the problem of collaboration

and tasking itself with the design and creation of a decentralised, RESTful

and semantics-enabled system, SAW has the potential to offer and enable

plug-and-play collaboration amongst WoT applications.

 128

4.2 The OSGi-Based Wireless Sensor Network

Whilst developing the SAW framework prototype, it became apparent that a

local WSN would also need to be built to test and evaluate SAW’s asset

model, the effect of introducing CPPM-TBAC into the equation, and to

measure the accuracy and effectiveness of the semantic annotation process.

The WSN, at the same, needed to be able to host, cope with and interact

amongst various heterogeneous sensor platforms and devices, so an

interoperable solution was required to build the test bed.

Eminent issues relating to device heterogeneity, vendor lock-in and platform

dependencies can be resolved by using an OSGi (Open Service Gateway

initiative) framework as the software fabric for IoT deployment [97], and in

our case, the local WSN. The OSGi standard is essentially a service-oriented

component model and enables high modularity and portability of the

codebase and improved resource utilisation [98]. Managed software

components deployed in the OSGi platform are called “bundles” which can

be installed, updated, or removed on the fly without disrupting the operation

of the host device. These bundles can also dynamically discover and interact

with other OSGi bundles/services, thereby breeding an ecosystem of

modular, independent and self-contained functionalities that can be adopted

and extended with ease.

Executing on a networked device such as gateway, OSGi service platform is

capable of managing the life cycle of the software components in the system.

The provided management functions allow the dynamic installation, update,

and removal of the software components without disrupting the operation of

related devices. Software components in OSGi can dynamically lookup and

 129

use other components, and even integrate with other OSGi-based

components into an application or library.

The OSGi-based Sensor Gateway Node (OSGi-SGN) developed in this

study interacts with a WSN and the cloud-based SAW framework. The

Equinox implementation has been chosen as it is the most common and

established implementation and therefore conveys high code reusability and

extensibility value. Other well-known implementations include Apache Felix

and Makewave Knopflerfish.

The architecture of OSGi-SGN is shown in Figure 4-2. The first three layers

of this architecture (Hardware, Operating System and Java VM) are the

underlying parts of this gateway and must primarily meet minimum

requirements for running OSGi. The fourth layer consists of the OSGi

framework and contains several components, each of which is an OSGi

bundle. These bundles can communicate with one another based on the

service-oriented approach and depending on the task specification provided

during runtime.

Figure 4-2: OSGi-SGN architecture

The OSGi-SGN consists of the following bundles:

 130

1. Device Discovery Bundle: Discover new devices which have recently

been added to the network, collect information about these devices

(device type, communication protocol, address and etc.) and store it

for future use.

2. Device Manager Bundle: Since there are a lot of possible

combinations of devices and communication protocols, there is a need

for a bundle which will provide a unified and abstract interface for

communication between these devices and the gateway. Device

Manager Bundle is responsible for direct communication with all the

devices and it can control the devices, monitor their status and enable

cooperation with other components (such as to receive service

requests, report device status, etc.).

3. Device Bundles: In this architecture, the devices are divided into two

main categories: sensors and actuators. Actuators are “active” and

can be controlled to serve users, whereas the sensors are “passive”

and can only be used to collect data. Sensing devices may also be

considered as “semi-passive” since some devices allow tweaking of

parameters and observational properties.

4. Communication Protocol Bundles: Different devices might have

different means of communication with the gateway. In order to be

able to get data from all these devices, the gateway has to support at

least the most common communication protocols such as Wi-Fi,

Zigbee and Bluetooth. More bundles can be added later on to

increase the range of communication protocols available for

interaction with devices.

 131

5. Other Bundles: Additional bundles built for data processing and

transformation requirements within the network and for interacting with

the SAW framework.

With this architecture, it becomes possible for the OSGi-SGN to integrate a

wealth of heterogeneous devices and act as a test bed for the evaluation and

analysis of the SAW framework.

 132

Chapter 5: Simulation of Framework and Results

5.1 Overview

The SAW framework consists of several elements that are essential for the

correct working of the system but these may affect the overall efficiency and

system performance. This section presents a performance evaluation of

these elements. Namely, the elements to be evaluated are the following:

 CPPM-TBAC Mechanism;

 Semantic Annotation Mechanism.

5.1.1 Simulation Setup

The simulation setup is the same for the performance evaluation of both

elements and is shown in Figure 5-1.

Figure 5-1: SAW simulation setup

The simulation setup consists of a client acting as the Wireless Sensor

Network (WSN), and a server running the SAW framework. The client is an

Intel i3 2.4GHz laptop with 8GB of memory running Microsoft Windows 8 and

the server an AMD Athlon processor PC. An IP-enabled Arduino-based

multi-sensor platform with two sensors is attached to the client. For all

scenarios except one, the client acts as the OSGi-based Sensor Gateway

Node (OSGi-SGN). For one scenario, the client acts as a Native Java-SGN

(OSGi framework is not used). This is explained further in the appropriate

sections below.

 133

The OSGi/Native Java-SGN communicates with the SAW network through a

RESTful API. The function of the client is to collect sensor data and readings

from the attached multi-sensor platform, and then package these as

payloads that can be sent to the server for processing. The function of the

server is to receive the submitted payloads, process them, and then return a

response to the client.

All requests considered in the simulation scenarios below originate from the

SGN when it wants to register a new DF/DS, update an existing DF/DS, or

upload new sensor readings/DP to the SAW network. The server then

processes these requests and returns a response to the client.

5.1.2 Definition of Simulation Scenarios

5.1.2.1 CPPM-TBAC Mechanism

For the CPPM-TBAC mechanism, the parameters to be measured and

evaluated are the response time and the added delay.

The response time is defined as the time taken for a response to be received

from the server after a request has been submitted by the client. In each

scenario, this parameter is measured both when CPPM-TBAC is turned on

(the higher response time) and also when it is turned off (the lower response

time). The difference between the response time when CPPM-TBAC is

turned off and when it is turned on is referred to as the added delay.

𝐴𝑑𝑑𝑒𝑑 𝑑𝑒𝑙𝑎𝑦 = 𝐻𝑖𝑔ℎ𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 − 𝐿𝑜𝑤𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

The added delay can also be turned into a percentage by dividing the higher

response time with the lower response time and taking away 1 and this is

referred to as the percentage added delay.

 134

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑎𝑑𝑑𝑒𝑑 𝑑𝑒𝑙𝑎𝑦 = ((
𝐻𝑖𝑔ℎ𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

𝐿𝑜𝑤𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒
) − 1) × 100

The response time is measured primarily to calculate, compare and analyse

the added delay and percentage added delay parameters. The added delay

and percentage added delay parameters are being calculated to compare

the difference in response times when the CPPM-TBAC mechanism is

turned on in order to determine its effect on the SAW network’s ability to

scale and handle large amounts of data.

Section 5.2 presents a simulation where the performance of the OSGi-SGN

is compared to a Native Java-SGN to analyse the various tradeoffs for using

OSGi as the software fabric for the SGN.

Sections 5.3 and 5.4 then analyse the CPPM-TBAC mechanism

performance with non-aggregated and aggregated payloads respectively.

Non-aggregated payloads refer to the scenarios where sensing device

definitions or data are submitted from the client to the server one by one. On

the other hand, aggregated payloads refer to the scenarios where several

payloads are combined by the client to form one aggregated payload. This

aggregated payload is then submitted by the client to the server in one go. In

section 5.3, the response times are also measured and compared for

different payload sizes in order to determine if this has any adverse effect on

the SAW network.

Finally, section 5.5 summarises the results of the CPPM-TBAC performance

evaluation and presents some final analysis on the proposed mechanism.

 135

5.1.2.2 Semantic Annotation Mechanism

For the semantic annotation mechanism, simulations are carried out to test

the suitability and effectiveness of the semantic profiling mechanisms when

annotating a set of sensing devices semantically. The objective is to

determine the accuracy of the semantic annotation process and the ability of

the system to learn from these annotations and augment the internal

knowledge base.

The semantic profiling of network resources involves the semantic mapping

of DF and DS to their corresponding semantic concepts in the semantic data

store. A semantic concept is a class in an ontology that represents an idea,

feature/property, or object. Examples of semantic concepts include an RDF

class to represent a temperature sensor, or an RDF class to represent a

multi-sensor platform. The process of semantic annotation transforms the

schema-oriented and restricted network resources into schema-less and

open assets that can be browsed, navigated and interacted with by external

agents (both human and machines).

The simulations consist of a list of 50,100 and 500 devices (depending on

the scenario set) with a pre-configured list of tags for each device. The

devices map to 10, 20 or 50 possible concepts, again depending on the

individual scenario set configuration. The basic 10 concepts used in the

simulations are as follows: Arduino, SunSPOT, MicaMote, TelosMote,

EpicMote, WaspMote, MicrochipPIC, DragonBall, AtmelAVR and RFID USB

Reader. Each concept has a list of 2, 5, 10 or 50 possible devices depending

on the scenario set and these are named with the name of the concept and a

 136

number 1-n, for example: SunSPOT-5. The concepts to devices ratio is

worked out by dividing the number of devices with the number of concepts.

𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 𝑡𝑜 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑣𝑖𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠

For a simulation scenario set consisting of 50 concepts and 10 devices, the

concepts to devices ratio will be expressed as 1:5.

Each concept has a list of tags and these tags are submitted with the devices

during the profiling phase in a random manner. The list of tags for each

concept is provided in

Table 5-1 below.

Table 5-1: List of tags being used in each of the simulation scenarios for each semantic concept.

Semantic Concept List of Tags

Arduino Arduino, Arduino Board, Arduino Shield, Uno, Leonardo, Due,

Micro, Lillypad, Nano, Fio

SunSPOT SunSPOT, Sun, SPOT, Oracle, Rev8

MicaMote MicaMote, Mote, ATmega, TinyOS

TelosMote TelosMote, Mote, TelosB, UC Berkeley, Willow, Crossbow

EpicMote EpicMote, Mote, UC Berkeley, Breakout, Devboard, Irene Base,

RUC Mote, HydroWatch, Quanto, Lynx, OpenMote, Nova, Texas

Instruments

WaspMote WaspMote, Mote, Libelium, Zigbee, Wi-Fi, RFID, Bluetooth

MicrochipPIC PIC, Microchip, Microcontroller, PIC16, PIC17, PIC18, PIC24,

PIC32

DragonBall DragonBall, MC68328, Motorola, Freescale Semiconductor,

DragonBall EZ, MC68EZ328, DragonBall VZ, MC68VZ328,

DragonBall MX, i.MX, MC9328MX, MCIMX

AtmelAVR AtmelAVR, Microcontroller, tinyAVR, megaAVR, XMEGA,

 137

FPSLIC, RISC, Raven Wireless Kit

RFID USB Reader RFID USB Reader, Sparkfun, RFID, RFID Tag, RFID Label, RFID

Button, ID-3LA, ID-12LA, ID-20LA

In simulation scenarios where there is a need to create more concepts than

the 10 shown above, the above 10 concepts are replicated one by one until

the number of concepts reaches the required number. The replicated

concepts and their tags have unique numbers appended to ensure that all

concepts are unique.

In each simulation scenario set, the following scenarios are simulated:

1. All devices are submitted in a random fashion and provided with one

random tag from the corresponding concepts.

2. All devices submitted in a random fashion and provided with two

random tags from the corresponding concepts.

3. All devices submitted in a random fashion and provided with three

random tags from the corresponding concepts.

In the semantic annotation process, various parameters need to be

measured and analysed to evaluate the performance of the framework.

In each simulation, the following parameters are recorded:

1. The total number of concepts generated;

2. The total number of concepts which are duplicates. This will reveal

how big of a problem the duplicate generation of concepts is in the

framework.

3. The total number of concepts which have 2/5/10 devices mapped to

them (depends on the concepts to devices ratio in the particular

 138

scenario). This will help to determine if the system is effectively

mapping devices to the corresponding concepts or not.

4. The total number of concepts which have less than 2/5/10 devices

mapped to them. This stats will help to explain trends observed in the

other stats (e.g. highlighting concepts with only 1/x mapped devices or

2/x mapped devices, etc., where x represents the ideal number of

devices that should have been mapped to the concept (see parameter

3)).

5. The total number of concepts which have more than 2/5/10 devices

mapped to them. This will help determine the rate of generating false

positives.

6. The average number of concepts which are returned by the system

when the tags are submitted. This is calculated by dividing the total

number of returned concepts for all of the cases by the total number of

cases, where number of cases is number of devices being mapped in

the simulation scenario;

o Of these, the percentage which are primary concepts and the

percentage which are secondary concepts.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠

7. The number of cases where one concept has a bigger weight than the

rest of the returned concepts. This helps to measure the ability of the

system to differentiate between different concepts in terms of their

mapping suitability and relevancy to the device that is being mapped.

8. The number of cases where all returned concepts have equal weights.

This is the inverse of parameter 7.

 139

5.2 Performance of OSGi-SGN vs Native Java-SGN

Both the OSGi-SGN and the Native Java-SGN use similar setups. The only

difference is that the OSGi-SGN setup has an OSGi application

communicating with the Arduino board and the SAW network on the client

and the Native Java-SGN implementation has a Java Web Service

application on Tomcat 7 (open-source Java HTTP web server environment)

instead.

This simulation is carried out for two different operations: (i) Registering a

new device (DF) with 2 sensors (DS), and (ii) Updating definitions of existing

DS.

Amongst the many functions of the SGN, one key function is to check

whether the source device is a new device in the network. If it is, then the

SGN shall register it with the SAW network by sending an initial payload

describing the device (the DF), which is the Arduino board in this case. Upon

successful registration of the DF, the gateway also registers two DS, one for

each sensor on the Arduino board. Once the DF and DS are registered, the

gateway keeps on submitting sensor readings every 20 seconds, thereby

simulating a typical sensor device in a volatile application scenario like DM

where devices frequently (and dynamically) incur changes in their status and

properties. This is the first operation and the response times are only

collected for the process of registering the DF and 2 DS belonging to it.

In the second operation, the definition of an existing DS is updated. In both

these operations, the simulation scenario does not consider the semantic

annotation of the registered DF and DS as this will be analysed separately in

the following sections. The results of the simulation are shown in Figure 5-2.

 140

Figure 5-2: Comparison of DF/DS registration and DS update times from OSGi and Native Java-SGN

Table 5-2 shows the average response times (and the percentage added

delays in brackets) for registering and updating definitions for 1,000 assets

through the OSGi and the Native Java-SGN. The OSGi-SGN implementation

fares marginally better than the Native Java-SGN in performing similar

requests. While the performance of OSGi in this scenario is only slightly

better, the real benefits are gained in the actual codebase in terms of code

reusability, modularity and interoperability.

Table 5-2: DF/DS registration and DS update times for 1,000 DF/DS

 OSGi-SGN Native Java-SGN

Registration time for 1K DF/DS 680s 699s (2.9% slower)

Definition update time for 1K DS 265s 281s (6% slower)

The percentage added delays in the table above are represented in the

graph in Figure 5-3. It can be seen that Native Java-SGN requests take

slightly longer than OSGi requests, and that the added delay increases with

increasing number of devices.

 141

Figure 5-3: Percentage added delay for Native Java-SGN request when compared to OSGi requests

5.3 Effect of CPPM-TBAC on Response Time (Non-Aggregated
Payloads)

The serial sensor payload submission procedure (non-aggregated payloads)

is shown in Figure 5-4. It shows multiple devices being connected to the

client, each sending sensor readings either periodically or when stimulated.

The purpose of the client is to construct payloads for each device interaction.

The payloads are constructed in a way such that they can be processed by

the SAW network (if they are being submitted to the server) or the connected

devices (if they are being submitted to the devices). Multiple devices can

connect to the client at the same time.

Figure 5-4: CPPM-TBAC serial payload submission procedure

Each payload is processed and transmitted to the SAW API sequentially by

the client. For example, the client will submit the payload D1 to the SAW API,

and then wait for a response. When it has received a response, it will send

the next payload.

2.57%
2.93%

5.24%
5.50%

6.03% 6.08%

0%

2%

4%

6%

8%

100 1000

P
e

rc
e

n
ta

g
e

 a
d

d
e

d
 d

e
la

y

No. of devices

Percentage added delay for Java requests

Feed Registration

Stream Update

 142

Consequently, the API receives and processes each payload in isolation of

the other payloads. This means that the server needs to initialise a new

processing action and a database connection for each payload it receives

under this methodology. So for example, if n number of payloads are

submitted in this manner and assuming that each payload uses the same

access token, instead of the server having to check the access token only

once, it will have to check it n times because each payload is captured and

processed in isolation.

5.3.1 Response Times for DF Registrations with Payloads of Varying
Sizes

The response times are measured for the OSGi-SGN and presented below.

 143

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5-5: DF registration times, in seconds, for minimum, average and heavy payloads and with

TBAC enabled and disabled

 144

Figure 5-5 (a) and Figure 5-5 (b) show the minimum payload. Figure 5-5 (c)

and Figure 5-5 (d) show the average payload. Figure 5-5 (e) and Figure 5-5

(f) show the heavy payload.

Figure 5-6, Figure 5-7 and Figure 5-8 show the minimum, average and heavy

DF registration payloads respectively.

Figure 5-6: Minimal DF registration payload

Figure 5-7: An average DF registration payload

Figure 5-8: A verbose DF registration payload

The minimal payload only contains essential fields as shown in Figure 5-6.

Essential fields are the minimum set of fields that SAW expects the payload

to contain. The size of this payload is a mere 84 bytes. The average payload

in Figure 5-7 contains some optional fields alongside the essential fields

shown in the minimal payload. The size of this payload is around 290 bytes.

The heavy payload in Figure 5-8 is even more verbose and is around 520

bytes.

 145

The comparison of the device registration times with and without the

proposed TBAC mechanism, for the minimum, average and heavy payloads,

are presented in Table 5-3, Table 5-4 and Table 5-5 respectively.

For the minimum payload, it can be seen that registration of 100 DF takes

around 40 seconds when TBAC is disabled, which is increased to 46

seconds when TBAC is enabled, resulting in a percentage added delay of

14.6%. On the higher scale when registering 1,000 DF, it takes nearly 6

minutes and 19 seconds with TBAC disabled and 7 minutes and 30 seconds

with TBAC enabled. This translates to a percentage added delay of 18.7%

which is only marginally higher than the increased delay for 100 devices.

Table 5-3: Comparison of DF registration times with minimum payload with TBAC on/off

Number of DF registered With TBAC disabled With TBAC enabled

100 40.8 seconds 46.7 seconds (14.6% slower)

500 190.8 seconds 224.4 seconds (17.6% slower)

1,000 378.9 seconds 449.8 seconds (18.7% slower)

Table 5-4: Comparison of DF registration times with average payload with TBAC on/off

Number of DF registered With TBAC disabled With TBAC enabled

100 43.8 seconds 49.8 seconds (13.8% slower)

500 195.4 seconds 229.8 seconds (17.6% slower)

1,000 389.3 seconds 459.2 seconds (18% slower)

Table 5-5: Comparison of DF registration times with heavy payload with TBAC on/off

Number of DF registered With TBAC disabled With TBAC enabled

100 47.8 seconds 54.3 seconds(13.6% slower)

500 201 seconds 234.9 seconds(16.9% slower)

1,000 398.9 seconds 468.7 seconds(17.5% slower)

For the average payload, the comparisons are similar. Registration of 100

DF takes around 44 seconds when TBAC is disabled. This is increased to 50

seconds when TBAC is enabled, resulting in a percentage added delay of

 146

13.76%. For 1,000 devices, it takes nearly 6 minutes and 29 seconds with

TBAC disabled and 8 minutes and 39 seconds with TBAC enabled. This

translates to a percentage added delay of 17.97% which, again, is only

marginally higher than the increased delay for 100 DF.

Similarly, for the heavy payload, registration of 100 devices takes around 48

seconds when TBAC is disabled. This is increased to 54 seconds when

TBAC is enabled, resulting in a percentage added delay of 13.6%. Following

the same trend, for 1,000 devices it takes nearly 7 minutes and 39 seconds

with TBAC disabled and 8 minutes and 49 seconds with TBAC enabled. This

translates to a percentage added delay of 17.5%. Once again, this is only a

slight increase over the percentage added delay for 100 devices.

It can be seen from the presented information and statistics that TBAC

introduces a noticeable added delay when registering DF. This is the trade-

off that is incurred in order to get new security features. The added delay

when using TBAC is most significant with a small number of devices, and is

comparatively less with a very large number of devices. Hence it can be said

that for a large scale cloud-based networks, the proposed TBAC would be

highly suitable.

It can also be observed that the added delay increases as the payload size

increases. These increases can be seen in Table 5-6, which displays a

comparison between the average and heavy payloads with TBAC on and off.

For example, the heavy payload takes 47.8 seconds to register 100 devices

without TBAC. The same configuration with the average payload which takes

43.8 seconds. Therefore, the percentage added delay when registering 100

DF with TBAC off is 9.1% for the heavy payload when compared to the

 147

average payload. This is the same as saying that registering 100 DF with

TBAC off is 9.1% slower for the heavy payload when compared to the same

configuration using the average payload.

These statistics indicate that the payload size can have a small influence on

the response times of DF registrations. However, it can be clearly seen that

the percentage added delays tend to decrease as the number of DF

registrations increase, and the decrease is more significant when TBAC is

turned on. This, once again, demonstrates that the proposed CPPM-TBAC

mechanism is suitable for large scale cloud-based networks as the

percentage added delay is minimal when dealing with a large number of

devices.

Table 5-6: Comparison of DF registration times for different payload sizes

Number of DF
registered

Average payload Heavy payload

TBAC off TBAC on TBAC off TBAC on

100 43.8s 49.8s
47.8s

(9.1% slower)

54.2s

(8.8% slower)

500 195.4s 229.8s
201s

(2.9% slower)

234.9s

(2.2% slower)

1,000 389.2s 459.2s
398.9s

(2.5% slower)

468.7s

(2.1% slower)

As to the reason for why TBAC introduces a noticeable delay on the

response times, this is due to the extra processing required at the server-

side for processing the token permissions and resource details. Mostly this

involves extra queries to the database system for fetching the token

permissions and also the details of the resources (DF, DS and DP) to be

acted upon (create, read, update, delete). A potential area for future

development can be the optimisation of the query generation and execution

process when determining and processing access rights for resources (e.g.

 148

not reusing already existing data, not caching frequently-used query calls,

etc.) to reduce the response times when TBAC is turned on.

5.3.2 Response Times for Uploading DP

When devices (DF and their corresponding DS) have been registered to the

network, sensor data can begin to upload to the network. This sensor data is

referred to as DP. A DP payload is simple and usually only contains two

fields: a field to specify the time the measurement was taken and another to

specify the measurement value. The type of measurement (e.g. temperature,

pressure, etc.) and other similar properties should already be defined for the

DS submitting the DP so there is no need to replicate this information at the

DP payload. The typical size of this payload in the SAW network is around

60-80 bytes and examples of it have been illustrated in Chapter 3. The

following experiment tests the response times for sending these DP from the

client to the server. The payload used for this experiment is shown in Figure

5-9.

Figure 5-9: DP payload showing the date of measurement and the sensor reading at that time

The response times for submitting these DP payloads are displayed in Figure

5-10 (a) and Figure 5-10 (b).

The response times for uploading DP are higher compared to registering

new DF because uploading DP requires loading the resource models of the

parent DF and DS as well. This is why it becomes necessary to fetch the

parent resources as well to satisfy the extensive set of permissions that can

be modelled in the CPPM-TBAC tokens. For example, a token can provide

permissions to create new DP. In CPPM-TBAC, permissions of DS cascade

 149

down to DP. In this sort of token, the permissions will be specified for the DF

or DS. Therefore, in order to determine if the provided token can be used to

act on the DP being submitted, the system will have to fetch the parent DS

and DF for the DP and check the permissions provided by the token against

these resources. View section 3.4.3 for more details on this procedure.

Obviously this incurs additional costs in terms of database processing.

Uploading 100 DP takes around 61 seconds when TBAC is disabled. This is

increased to 72 seconds when TBAC is enabled, resulting in a percentage

added delay of 16.6%. On the higher scale when uploading 1,000 DP, it

takes around 10 minutes and 9 seconds with TBAC disabled and 11 minutes

and 57 seconds with TBAC enabled. This translates to a percentage added

delay of 17.8% which is a marginal increase of 1.2% from the percentage

added delay for 100 DP. The full set of comparisons are available in Table

5-7.

(a)

(b)

Figure 5-10: Time taken to upload DP with TBAC enabled and disabled

Table 5-7: Comparison of DP upload times with TBAC on/off

Number of DP uploaded With TBAC disabled With TBAC enabled

100 61.4 seconds 71.5 seconds (16.6% slower)

 150

500 305.7 seconds 357.2 seconds (16.8% slower)

1,000 608.8 seconds 717.2 seconds (17.8% slower)

5.4 Effect of CPPM-TBAC on Response Time (Aggregated Payloads)

The results presented for the asset model in the previous sections have used

serial requests from the client to the server. Under this technique, requests

are submitted one after another with no query optimisation. The large

response time occurs due to the instantiation of the DB for each and every

request. For example, uploading 1,000 DP requires sending each and every

single individual payload by itself to the server. Once the server responds,

the next payload is sent, and so on.

A more efficient method of uploading numerous payloads is to first aggregate

them and then upload them to the server in a single request. There are many

aggregation techniques available and it is obvious that aggregated payloads

will have better performance in terms of response times because the number

of requests from the client to the server will be reduced and more processing

will be undertaken in each request. The aim in this thesis is to analyse and

compare the scale of differences in response times between serial requests

and lumped-sum requests in order to prepare for the selection of an efficient

technique.

The aggregated payload procedure is illustrated in Figure 5-11. As with the

serial sensor payload submission procedure, multiple devices can be

connected to the client, each sending sensor readings either periodically or

when stimulated. This procedure is quite similar to the previous procedure

but varies in two major aspects:

1. At the client end: The client has to decide how many payloads to

combine and how to package this combination as a new aggregated

 151

payload. It should be kept in mind that the current iteration of SAW

only allows usage of a single access token for each request (whether

it’s a single payload or an aggregated payload). Thus, the client has to

ensure that it only aggregates payloads for DF, DS and DP that can

be processed by the network with the supplied token. Since this

intelligence is currently not available in the client node, for simulation

purposes the payloads for aggregation are manually generated

depending on the supplied token to ensure that the request is valid;

2. At the server API end: The server API has to be able to recognise an

aggregated payload submission and then extract the individual

payloads for processing. As mentioned in the previous point, the

server expects a single access token with each request. This access

token is used to check the associated grants stored in the database to

determine whether the client’s request can be fulfilled.

Figure 5-11: CPPM-TBAC aggregated payload submission procedure

There are obvious disadvantages to this, however, and some of these are as

follows:

 There needs to be extra capability and intelligence at the client side in

order to select suitable payloads for aggregation, and to also

determine the optimum number of payloads for aggregation.

 152

 The client or the server will also need extra functionality and

intelligence to handle cases where aggregated payloads are lost

during transmission so that they can be re-transmitted if possible.

 There can be significant added delay in the propagation of a large

payload through the network due to its size.

 The server needs to carry out extra processing to extract individual

payloads from the aggregated payload and then process these

individually.

But the biggest disadvantage by far is that this scheme will only work in the

SAW network if all the individual payloads in the aggregated payload can be

processed using the same single token used by the client. This restriction

applies because the current implementation of SAW can only accept a single

token per request from the client. This restriction has significant implications

on the aggregated payload submission scheme because it can be expected

that aggregated payloads will contain multiple assets (DF, DS and DP),

belonging to multiple users, requiring multiple tokens. Therefore, it must be

kept in mind that while this scheme is being presented here as a really

efficient alternative to the serial payload submission procedure, it cannot

realistically be implemented with the current deployment of the SAW

network. However, it is definitely something that is an area of further

research and development, and hence the decision to include it in the thesis.

In this scenario, the server would handle all the processing in one request.

This means that the connection to the database (both MySQL and

MongoDB) will only be initialised once.

 153

This simulation was run for DF registrations ranging from 100 devices to

1,000 devices. The results of the simulation are presented in Table 5-8 and

plotted in Figure 5-12 (a) and Figure 5-12 (b).

Table 5-8: DF registration times for the aggregated payload submission procedure.

Number of DF
registered

With TBAC disabled With TBAC enabled

100 6 seconds 11.958 seconds(99.2% slower)

500 31 seconds 62.4 seconds(100.9% slower)

1,000 63.1 seconds 127.3 seconds(101.6% slower)

(a)

(b)

Figure 5-12: DF registration time with TBAC enabled and disabled for the aggregated payload

submission procedure

Two things can be noted with these results:

1. The response times are significantly faster in this scenario. There is

an improvement of almost 700% when TBAC is off (Figure 5-13 (b))

and nearly 400% when TBAC is on (Figure 5-13 (a)).

2. The added delay when TBAC is on is almost double.

In regards to the first point, it can be see here that aggregating payloads to

reduce the number of requests made to the server greatly improves the

response time. This is mainly due to the reduction in the number of database

 154

initialisations that need to be done, as this is the most costly operation on the

server. Reducing the number of database initialisations leads to a great

improvement in response times because the server can do more work with

each database connection.

The improvements in response times with TBAC enabled are shown in

Figure 5-13 (a) and the improvements with TBAC disabled are shown in

Figure 5-13 (b).

(a)

(b)

Figure 5-13: Improvement in DF registration time with TBAC enabled and disabled for the aggregated

payload submission procedure

It is seen from Table 5-8 that in this scenario, the response times doubles

when TBAC is enabled. In comparison, the added delay in response times

seen in the serial requests scenarios was in the region of 15-30%. However,

the increase of response times to just over 100% when TBAC is enabled in

the aggregated payload submission procedure can be easily explained.

When TBAC is enabled, the number of queries to the database increase

significantly due to checking of permission policies for the supplied token.

However, the added delay due to this process is relatively small compared to

the time taken to initialise and close down the database, and is thus quite

390.74%

359.63%
353.43%

386.40%

405.45%

320%

340%

360%

380%

400%

420%

Im
p
ro

v
e
m

e
n
t
in

 r
e
s
p
o
n
s
e
 t
im

e
s

No. of devices

Aggregated payloads: Improvement in
Response Times - TBAC Enabled

(Registering DF)

679.30%

614.38%
600.25%

644.62%

674.27%

560%
580%
600%
620%
640%
660%
680%
700%

Im
p
ro

v
e
m

e
n
t
in

 r
e
s
p
o
n
s
e
 t
im

e
s

No. of devices

Aggregated payloads: Improvement in
Response Times - TBAC Disabled

(Registering DF)

 155

largely masked in the overall response time for serial payload submission

procedure scenarios. For the aggregated payload submission procedure

scenarios, however, this delay is more noticeable because the database is

not being initialised or closed down as the payloads are being processed. So

in the aggregated payload submission scenarios, the actual added delay for

using TBAC is being seen.

Figure 5-14: Percentage delay added on DF registration times when using the CPPM-TBAC scheme

for the aggregated payload submission procedure

More importantly, it is important to note that once again, the percentage

added delay remains relatively uniform as we increase the number of

devices being registered from 100 devices to 1,000 devices. The plot for the

added delay for the aggregated payload submission procedure can be seen

in Figure 5-14. The percentage added delay only increases by a mere 2.4%

as the number of devices increases by 10 times from 100 devices.

5.5 CPPM-TBAC Analysis

5.5.1 TBAC Scaling Efficiency

It is clear that any access control mechanism will undoubtedly introduce

some level of delay to the network due to additional processing and

authentication checks, so the actual delay is not the focal point of concern in

this regard. The real problem that needs to be addressed in a dynamic

99.23%

100.93%
101.61% 101.63% 101.43%

98%

99%

100%

101%

102%

100 500 1,000 5,000 10,000P
e
rc

e
n
ta

g
e
 d

e
la

y
 a

d
d
e
d

No. of devices

Aggregated payloads: Percentage Delay Added
to Response Times (Registering DF)

 156

environment like the WoT is the issue of delay caused as the number of

devices increases for very large networks. In this regard, it is important for an

access control scheme to maintain a relatively uniform percentage added

delay across an increasing number of devices.

In Figure 5-15 (a) and Figure 5-15 (b) it can be seen that the proposed

CPPM-TBAC scheme scales very well with both an increase in the number

of DF being registered and the increase in number of DP being uploaded to

the SAW network.

(a)

(b)

Figure 5-15: Percentage delay added on DF registration and DP upload response times when using

the CPPM-TBAC scheme

The added delay with TBAC on in response times when registering 100 DF is

14.59%. For 1,000 devices, this percentage added delay increases by a

mere 4.12% to 18.71%, even though the number of DF being registered

increases by 10 times.

Similarly, the added delay with TBAC on in response times when uploading

100 DP is 16.59%. For 1,000 DP, this percentage added delay increases by

just 1.21% to 17.8%, even though the number of DP being uploaded

increases by 10 times. It can be seen here that the percentage added delay

14.59
%

17.62
%

18.71
%

20.86
%

21.12
%

12%

14%

16%

18%

20%

22%

P
e
rc

e
n
ta

g
e
 d

e
la

y
 a

d
d
e
d

No. of devices

Percentage Delay Added to
Response Times (Registering DF)

16.59
%

16.82
%

17.80
%

18.11
%

18.92
%

16.0%
16.3%
16.5%
16.8%
17.0%
17.3%
17.5%
17.8%
18.0%
18.3%
18.5%
18.8%
19.0%
19.3%

P
e
rc

e
n
ta

g
e
 d

e
la

y
 a

d
d
e
d

No. of devices

Percentage Delay Added to
Response Times (Uploading DP)

 157

for uploading DP to the SAW network remains relatively uniform as the

number of DP increases from a modest 100 DP to a much more resource-

intensive 1,000 DP. This uniform increase in percentage added delay is

paramount for achieving scalability in a dynamic, temporal and high-load

environment.

5.5.2 Tokens as a means of Dynamic Access Control

CPPM-TBAC tokens are designed in such a fashion so as to facilitate the

dynamic generation of access rights for numerous resources of a user by

using a small number of tokens. Each token, if needed, can model access

rights for all resources of a user all the way from coarser DF right down to

the finer DP. However, this may lead to degraded performance due to the

intensive processing of a large number of access rights each and every time

a resource is accessed via the token.

Each token has the capability to specify a set of global permissions for a

specific user. The token can then specify access rights for DF either

according to their visibility grouping (public or private), or according to

specific DF IDs. The token can then specify access rights for the DS of each

DF, again, either by specifying grants according to the visibility grouping of

the DS or, for even finer access, according to the DS IDs. If access rights are

specified for a specific DF or DS, then those access rights can easily be

removed in the future without affecting the token in regards to access for

other resources it has modelled. This effectively allows dynamic granting and

revoking of access rights for each token.

The same is true for when an existing token needs to be updated for

additional resource grants of new or existing resources. This can be useful

 158

for upgrading an agent’s access to new resources or subsets of existing

resources without issuing a new token, thereby improving usability and

manageability of tokens. This technique can also be used to degrade an

agent’s access to resources, again, without necessitating the issuing of a

new token if that is what is desired in the specific application scenario.

However, this may not be the best option because using the same token

over long periods of times can pose a security risk if someone manages to

illegally obtain the token. A token with a shorter life period is considered to

be more secure.

Network administrators can therefore dynamically assign and revoke grants

for each and every single token for any level of granularity by either using

visibility level groupings for coarser control or specific DF and DS IDs for

fine-grained access management. Each token can be enhanced or reduced

whenever the need arises.

5.5.3 Improving Security

Tokens can be set to expire in the near future (temporal tokens) to force

agents to request new tokens for continued access to network resources.

This technique can be used to improve the security of the TBAC system and

mitigate security threats related to compromised tokens (e.g. if a hacker

manages to get access to a legitimate token).

If temporal tokens are not used and access still needs to be revoked for an

agent, then the token in question can simply be deleted. When the agent

tries to access the network resources using the deleted token, then the

request will not be honoured. It goes without saying that this method should

be used with care due to its vague nature.

 159

Network administrators can also setup automated token renewal capability

within the system to automatically expire and renew tokens for agents. This,

again, can help mitigate threats from compromised tokens.

There are also various other issues pertaining to the security implications of

using CPPM-TBAC that have not been discussed in the thesis due to

limitation in time and scope. Some of the more prominent issues are listed

below with brief commentaries that are not aimed at solving the problem of

security but rather highlighting it as an area of future work:

 Token generation and propagation mechanisms/procedures: Currently

all tokens are generated manually with a set of defined permissions

for existing users and resources. They are then manually sent to

clients who need to make use of them. There is no automated

mechanism or procedure in place to propagate the generated tokens

to clients in a secure fashion. Possible solutions to this problem can

be implementation of cryptographic key generation and exchange

mechanisms like Diffie–Hellman key exchange (D–H) and RSA [99].

By using a shared secret, tokens can be securely transmitted to

clients in an automated fashion.

 Automatic token expiration: While network administrators have some

control over the life period of generated tokens to control when they

expire, there is no automated mechanism of identifying compromised

tokens and automatically expiring them to prevent further security

breaches. Various methods and parameters can be employed to

identify compromised tokens (e.g. abnormal differences in source

IP/requester location).

 160

All of these issues can be considered potential areas of future work that can

be investigated further to improve the security of the system.

5.5.4 Automated Access Grants Using Visibility Groups

It has been mentioned earlier that tokens can specify access rights according

to visibility groups of DF and DS. This has the added benefit of automating

the granting of access for new resources that are added to the network, if

this is desired.

For example, if a token grants read and update access for public DF and all

its public DS, then it will automatically grant access to new public DF and

their public DS. If some of the new resources need to be excluded from this

rule, then either their visibility group can be changed or specific access rights

for them added to the token by specifying the DF and DS IDs. The

automated granting of access leads to reduced maintenance and easier

usage and deployment of the tokens, whilst the ability to override grants for

specific resources helps to overcome the drawback in manageability of the

TBAC system.

5.6 Semantic Profiling Analysis

One possible application of the SAW framework is in DM applications where

a multitude of sensing devices will be collecting and uploading large amounts

of sensor data for immediate processing. In this type of application, the

system needs to be able to readily and effectively identify devices accurately

and profile their characteristics in a semantic fashion so as to enable

machine-initiated interaction with the sensing devices and the collected data.

The simulation scenarios presented here take these considerations into

account. The simulations intends to profile and measure the ability of the

 161

framework to map devices to the correct corresponding concepts. When tags

are submitted, more than one matching concept can be returned by the

system. This, of course, depends on the existing knowledge base and the list

of tags provided to the framework. The complete list of experiments carried

out are detailed in Table 5-9 and justified below the table.

The actual semantic profiling mechanisms have been detailed earlier in

Chapters 2 and 3. Simulation scenarios are presented in this section to test

the suitability and effectiveness of the semantic profiling mechanisms when

annotating a set of sensing platforms semantically.

Table 5-9: List of semantic annotation experiments

Experiment
No

Section No. of
Concepts

No. of
Devices

Concepts to Devices
Ratio

1 5.6.1 10 50 1:5

2 5.6.2 20 100 1:5

3 5.6.3 50 100 1:2

4 5.6.4 10 100 1:10

5 5.6.5 10 500 1:50

Sections 5.6.1 and 0 present simulation scenario sets for a concepts to

devices ratio of 1:5. The purpose of experiment 2 is to compare the effects of

increasing the number of concepts and devices whilst keeping the concepts

to devices ratio the same as experiment 1. Section 5.6.3 presents a

simulation scenario set for a hypothetical and improbable concepts to

devices ratio of 1:2. The purpose is not to analyse real-world performance as

this ratio is highly improbably, but rather to identify trends between the

different concepts to devices ratios and provide a basis for further

comparison. For the same purpose, sections 5.6.4 and 0 present simulation

scenario sets for concepts to devices ratios of 1:10 and 1:50 respectively.

 162

Finally, section 5.6.6 compares and analyses the results collected for the

various simulations.

5.6.1 Semantic Profiling Simulation Scenario Set 1: 10 Concepts and
50 Devices

This simulation uses the baseline setup so that the number of devices is 50

and the number of concepts 10. Each concept has 5 possible devices it can

map to. This produces a concepts to devices ratio of 1:5.

In an ideal case, the following values will be expected for each measured

parameter:

1. Total concepts generated: 10.

2. Duplicate concepts: 0. This implies 100% mapping accuracy.

3. Total concepts with 5 mapped devices: 10

4. Total concepts with less than 5 mapped devices: 0

5. Total concepts with more than 5 mapped devices: 0

6. Average concepts returned by the system when tags are submitted:

Ideally this needs to be above 1 to indicate that the system is

returning at least 1 valid concept for each mapping.

7. Percentage of primary concepts returned by the system when tags

are submitted: No ideal value.

8. Percentage of secondary concepts returned by the system when tags

are submitted: No ideal value.

9. Total cases where one concept has a bigger weight than the rest of

the returned concepts: 100% of all cases.

10. Total cases where all returned concepts had equal weight: 0% of all

cases.

 163

5.6.1.1 Simulation 1: All 50 devices submitted in a random fashion and
provided with one random tag from the corresponding concepts

In this scenario a single tag is being used to register the device and to map it

with a semantic concept. As expected, this gives rise to a large number of

semantic concepts being generated as the single tag proves insufficient in

mapping new devices to existing concepts. The results in Table 5-10 show

that the system generates around 73% duplicate concepts in this scenario.

Table 5-10: Results for simulation scenario set 1: Simulation 1 (1 tag)

Statistic Result Comments

Total concepts generated 38

Duplicate concepts 28 73.7% of concepts generated are

duplicates

Total concepts with 5 mapped

devices

0

Total concepts with less than 5

mapped devices

38 29 concepts with 1 mapped device;

6 concepts with 2 mapped devices;

3 concepts with 3 mapped devices;

Total concepts with more than 5

mapped devices

0

Average concepts returned by the

system when tags are submitted

0.26

Percentage of primary concepts

returned by the system when tags

are submitted

100%

Percentage of secondary

concepts returned by the system

when tags are submitted

0%

Total cases where one concept

has a bigger weight than the rest

of the returned concepts

13 100% of total cases

Total cases where all returned

concepts had equal weight

0 0% of total cases

Another expected outcome is the lack of concepts having all their devices

mapped to them successfully. Results show that no concepts were able to

achieve this in the given scenario. In fact, 29 concepts, which accounts for

76% of the total generated concepts in this scenario, were only mapped to 1

 164

device. Only 3 concepts, i.e. around 8% of the total generated, were

successful in mapping at least 3 devices successfully.

Furthermore, the average number of concepts returned when tags were

being submitted to the system is well below 1, which is the reason for the

large number of duplicates seen in this scenario. In fact, only 26% of the

profiling attempts resulted in the system returning one or more matched

concepts, and in all these cases, no secondary mappings were produced.

This is due to the small number of tags which are being stored in the

knowledge base. If, on the other hand, the knowledge base had more data to

work with resulting in it becoming richer with each mapping, then the results

would be significantly different as is seen in the following two simulation

scenarios where more tags are used and therefore more knowledge added

to the repository.

To conclude, submitting a small number of tags leads to a slower enriching

of the knowledge base, less useful results, higher chance of generating

duplicate semantic concepts, but almost 100% chance of obtaining a clearly

distinguished semantic concept which has a higher weight than the rest of

the returned concepts, suggesting very strong likelihood of a positive match.

5.6.1.2 Simulation 2: All 50 devices submitted in a random fashion and
provided with two random tag from the corresponding concepts

In this scenario two tags are being used to register the device and to map it

with a semantic concept. The results show that the system generates around

44% duplicate concepts in this scenario, which is an improvement of 33.3%

from scenario 1. The results, as presented in Table 5-11, also show an

improvement of 11.1% in successfully mapping 5 devices to the

corresponding concept compared to scenario 1, where no concept was

 165

mapped to all of its 5 devices. A negative outcome of the addition of an extra

tag in the profiling phase can be observed in the form of false positives

where 2 concepts ended up with having more than 5 devices mapped to

them. This is a decline in performance of 11.1% compared to the same

statistic in scenario 1.

Table 5-11: Results for simulation scenario set 1: Simulation 2 (2 tags)

Statistic Result Comments

Total concepts generated 18

Duplicate concepts 8 44.4% of concepts generated are

duplicates.

Improvement of 33.3% from scenario 1.

Total concepts with 5 mapped

devices

2 11.1% of total generated concepts.

Improvement of 11.1% from scenario 1.

Total concepts with less than 5

mapped devices

14 77.8% of total generated concepts.

5 concepts with 1 mapped device;

5 concepts with 2 mapped devices;

2 concepts with 3 mapped devices;

2 concepts with 4 mapped devices;

Total concepts with more than 5

mapped devices

2 11.1% of total generated concepts.

Decline of 11.1% from scenario 1.

Average concepts returned by the

system when tags are submitted

1.04 Improvement of 400% from scenario 1.

Percentage of primary concepts

returned by the system when tags

are submitted

78.8%

Percentage of secondary concepts

returned by the system when tags

are submitted

21.2%

Total cases where one concept has

a bigger weight than the rest of the

returned concepts

27 90% of all cases;

Decline of 10% from scenario 1.

Total cases where all returned

concepts had equal weight

3 10% of all cases;

Decline of 10% from scenario 1.

Another obvious enhancement is the 4 times increase in the average number

of concepts returned by the system when two tags are used to map each

device compared to the same statistics observed in scenario 1. This

enhancement results from the better and speedier enrichment of the

 166

knowledge base from using two tags instead of one. The results also show

that due to the enrichment of the knowledge base, secondary mappings are

also more likely to be returned with each request. Finally, it can be observed

that the percentage of cases where all returned concepts had the same

weight (and therefore introducing ambiguity for autonomous profiling)

increased by 10% compared to scenario 1, suggesting that more tags

potentially lead to bigger ambiguity. This is not a big issue for human clients

but can become problematic for machine agents where a decision has to be

made regarding the concept to map the device to according to the weights of

the returned concepts.

To conclude, obvious improvements can be observed in reduction of

duplicate concept generation when using two tags instead of one. The

system also produces more accurate mappings for the devices but

introduces a risk of generating false positives, and at the same time,

ambiguous results.

5.6.1.3 Simulation 3: All 50 devices submitted in a random fashion and
provided with three random tag from the corresponding
concepts

In this scenario three tags are being used to register the device and to map it

with a semantic concept. The results show that the system generates around

23% duplicate concepts in this scenario, which is an improvement of 21.3%

from scenario 2 and a huge improvement of 54.6% from scenario 1. Table

5-12 also shows that there is an improvement of 19.7% in successfully

mapping 5 devices to the corresponding concept compared to scenario 2,

which translates to a respectable increase of 30.8% compared to scenario 1.

 167

The results show significant improvements in the average number of

concepts returned by the system when mapping devices with an increase of

23% from simulation scenario 2. This means that human clients are given

more options when mapping their devices, resulting in higher likelihood of the

correct corresponding semantic concept being selected in the end.

Table 5-12: Results for simulation scenario set 1: Simulation 3 (3 tags)

Statistic Result Comments

Total concepts generated 13

Duplicate concepts 3 23.1% of concepts generated are

duplicates.

Improvement of 21.3% from scenario 2.

Improvement of 54.6% from scenario 1.

Total concepts with 5 mapped

devices

4 30.8% of total generated concepts.

Improvement of 19.7% from scenario 2.

Improvement of 30.8% from scenario 1.

Total concepts with less than 5

mapped devices

7 3 concepts with 1 mapped device;

1 concepts with 2 mapped devices;

1 concepts with 3 mapped devices;

2 concepts with 4 mapped devices;

Total concepts with more than 5

mapped devices

2 7.7% of total generated concepts.

1 concept with 9 mapped devices;

Decline of 4.27% from scenario 2;

Decline of 15.38% from scenario 1.

Average concepts returned by the

system when tags are submitted

1.28 Up 23% from scenario 2.

Up 492% from scenario 1.

Percentage of primary concepts

returned by the system when tags

are submitted

75%

Percentage of secondary

concepts returned by the system

when tags are submitted

25%

Total cases where one concept

has a bigger weight than the rest

of the returned concepts

33 89.2% of total cases.

Decline of 0.8% from scenario 2.

Decline of 10.8% from scenario 1.

Total cases where all returned

concepts had equal weight

4 10.8% of total cases.

Decline of 0.8% from scenario 2.

Decline of 10.8% from scenario 1.

Finally, and as expected, using three tags instead of two or one tags has

resulted in increased likelihood of returning more than one concept with the

 168

same weight, thereby increasing the ambiguity of the returned concepts and

making it especially difficult for machine agents to choose the correct

corresponding concept. The decrease, however, is less than 1% compared

to scenario 2, so it is not a huge change but does, nonetheless, point

towards a correlation where increasing the number of tags during the

profiling phase leads to the generation of more ambiguous returned

concepts.

5.6.1.4 Comparison of Using 1, 2 and 3 Tags

(a)

(b)

(c)

(d)

Figure 5-16: Simulation scenario set 1 results showing duplicate concept generation, fully mapped

73.68%

44.44%

23.08%

0%

20%

40%

60%

80%

1 2 3P
e
rc

e
n
ta

g
e
 o

f
d
u
p
lic

a
te

 c
o
n
c
e
p
ts

No. of tags submitted

Duplicate concepts generated (10
Concepts, 50 Devices)

0.00%

11.11
%

30.77
%

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

No. of tags submitted

Fully mapped concepts (10
Concepts, 50 Devices)

0.26

1.04

1.28

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3

A
v
e
ra

g
e
 c

o
n
c
e
p
ts

 r
e
tu

rn
e
d

No. of tags submitted

Average concepts returned (10
Concepts, 50 Devices)

100.00
%

90.00
% 89.19

%

80%

85%

90%

95%

100%

105%

1 2 3P
e
rc

e
n
ta

g
e
 o

f
u
n
a
m

b
ig

u
o
u
s
 c

a
s
e
s

No. of tags submitted

Cases with one concept having
bigger weight than the rest (10

Concepts, 50 Devices)

 169

concepts, average returned concepts and cases with one concept having bigger weight than the rest

As the number of tags is increased in each of the simulation scenarios

above, the following observations can be made:

1. The generation of duplicate concepts is reduced (Figure 5-16 (a))

significantly. There is an improvement of 54.6% when 3 tags are used

as opposed to 1, meaning that generation of duplicate concepts is

halved by increasing the number of tags from 1 to 3. It can also be

observed that the improvement in reduction of duplicate concepts is

only 21.3% when using 3 tags compared to 2, indicating that the trend

is approaching a saturation point. Increasing the number of tags even

further may help to identify the rough saturation point for this trend.

2. The number of fully mapped concepts increase (Figure 5-16 (b)). This

is due to various reasons but primarily because of the reduction in

duplicate concepts being generated, which in turn is because more

concepts are being returned during each mapping (point 3 below).

This shows that increasing the number of tags leads to better

accuracy of the system in mapping devices to their corresponding

concepts.

3. The average returned concepts increase (Figure 5-16 (c)). As

explained before, this is due to better and speedier enrichment of the

knowledgebase which means that more concepts are turned for each

device mapping, thereby resulting in a higher likelihood of an accurate

mapping and less chance of generating duplicate concepts.

4. The ambiguity increases (number of cases where one concept has a

bigger weight than the rest decrease) (Figure 5-16 (d)). The increase

 170

in percentage for this stat is quite small but it is there nonetheless and

points towards a trend where increasing the number of tags leads to

more difficulty for autonomous agents to identify the correct returned

semantic concept to map the device to.

5.6.2 Semantic Profiling Simulation Scenario Set 2: 20 Concepts and
100 Devices

Table 5-13: Results for simulation scenario set 2

Statistic 100 devices
mapped with 1

tag (S1)

100 devices
mapped with 2

tags (S2)

100 devices
mapped with 3

tags (S3)

Total concepts generated 72 38 27

Duplicate concepts 52 18

-24.9% from S1

7

-46.3% from S1

-21.4% from S2

Total concepts with 5 mapped

devices

0 5

+13.2% from S1

8

+29.6% from S1

+16.5% from S2

Total concepts with less than 5

mapped devices

72 29 15

Total concepts with more than

5 mapped devices

0 4

-10.5% from S1

4

-14.8% from S1

-4.3% from S2

Average concepts returned by

system when tags are

submitted

0.33 0.89

+273% from S1

1.16

+356.9% from S1

+130.3% from S2

Percentage of primary

concepts returned by system

when tags are submitted

100% 88.8% 80%

Percentage of secondary

concepts returned by system

when tags are submitted

0% 11.2% 20%

Total cases where one

concept has a bigger weight

than the rest of the returned

concepts

27 57

-6.1% from S1

33

-6.6% from S1

-0.5% from S2

Total cases where all returned

concepts had equal weight

2 9

+6.6% from S1

4

+6.7% from S1

+0.1% from S2

This simulation uses the same setup as before but instead the number of

devices has been increased to 100 and the number of concepts to 20. In

effect, both the number of concepts and the number of devices have been

 171

doubled. As before, each concept still has 5 possible devices it can map to.

So the ratio of concepts to devices still remains at 1:5. The results for the

simulation are shown in Table 5-13.

It can be seen here that the results for this simulation are comparable to the

simulation scenario set 1 where 10 concepts were being mapped to 50

devices. This was expected as the ratio of concepts to devices was the same

in both cases.

There is a similar drop in the percentage of duplicate concepts generated as

the number of tags is increased from 1-3. The percentage of duplicate

concepts generated drops by 46.3% when 3 tags are used instead of 1. This

is similar to the 50.6% drop observed in simulation scenario set 1.

Similarly, the percentage of fully mapped devices rises by 29.6% when 3

tags are used instead of 1, and again this is the same as the 30.7%

percentage rise seen for the same stat in simulation scenario set 1.

The percentage of cases where all returned concepts had equal weights also

follows the same trend, with usage of 3 tags seeing an increase of 6.7% in

mapping ambiguity when compared to usage of a single tag. This is similar to

the increase of 10.8% seen for the same stat in simulation scenario set 1.

In summary, as the number of tags is increased, similar conclusions can be

made for this simulation scenario set:

1. The generation of duplicate concepts is reduced (Figure 5-17 (a)).

2. The number of fully mapped concepts increase (Figure 5-17 (b)).

3. The average returned concepts increase (Figure 5-17 (c)).

4. The ambiguity increases (number of cases where one concept has a

bigger weight than the rest decrease) (Figure 5-17 (d)).

 172

(a)

(b)

(c)

(d)

Figure 5-17: Simulation scenario set 2 results showing duplicate concept generation, fully mapped

concepts, average returned concepts and cases with one concept having bigger weight than the rest

5.6.3 Semantic Profiling Simulation Scenario Set 3: 50 Concepts and
100 Devices

In this simulation, the number of concepts has been raised to 50 while the

number of devices is still kept at 100. This means that each concept has 2

possible devices that can be mapped to it. The ratio of concepts to devices is

thus 1:2. It should be noted that whilst this simulation is carried out for

analysis purposes, it is highly improbable that in real-life operation of the

system, the concepts to devices ratio would be this small. In real-life

72.22
%

47.37
%

25.93
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
d
u
p
lic

a
te

 c
o
n
c
e
p
ts

No. of tags submitted

Duplicate concepts generated (20
Concepts, 100 Devices)

0.00%

13.16
%

29.63
%

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

No. of tags submitted

Fully mapped concepts (20
Concepts, 100 Devices)

0.325

0.89

1.16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3

A
v
e
ra

g
e
 c

o
n
c
e
p
ts

 r
e
tu

rn
e
d

No. of tags submitted

Average concepts returned (20
Concepts, 100 Devices)

93.10
%

87.02
% 86.52

%

82%

84%

86%

88%

90%

92%

94%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
u
n
a
m

b
ig

u
o
u
s
 c

a
s
e
s

No. of tags submitted

Cases with one concept having
bigger weight than the rest (20

Concepts, 100 Devices)

 173

operation, the number of concepts will be few (these are the different types

of sensing devices and platforms) and the number of devices many (these

are the individual instances of the aforementioned devices). Having said that,

this scenario is still simulated in order to learn the effects of increasing and

decreasing the ratio of concepts to devices. The results for this simulation

scenario set are shown in Table 5-14.

Table 5-14: Results for simulation scenario set 3

Statistic 100 devices
mapped with 1

tag (S1)

100 devices
mapped with 2

tags (S2)

100 devices
mapped with 3

tags (S3)

Total concepts generated 91 72 52

Duplicate concepts 41 2

-14.5% from S1

2

-41.2% from S1

-26.7% from S2

Total concepts with 2 mapped

devices

10 27

+26.5% from S1

47

+79.4% from S1

+52.9% from S2

Total concepts with less than 2

mapped devices

81 44 4

Total concepts with more than

2 mapped devices

0 1

-1.4% from S1

1

-1.9% from S1

-0.5% from S2

Average concepts returned by

system when tags are

submitted

0.1 0.39

+390% from S1

0.59

+590% from S1

+151.3% from S2

Percentage of primary

concepts returned by system

when tags are submitted

100% 100% 100%

Percentage of secondary

concepts returned by system

when tags are submitted

0% 0% 0%

Total cases where one

concept has a bigger weight

than the rest of the returned

concepts

10 29 49

Total cases where all returned

concepts had equal weight

0 0 0

Compared to the preceding scenarios, the following observations can be

made straight away:

 174

 The percentage of duplicate concepts generated is around 20-30%

less compared to the earlier scenarios, with 3 tags only generating

3.9% duplicate concepts (a reduction of 41.2% compared to usage of

1 tag in the same simulation).

 The percentage of fully mapped concepts is almost 60% higher with

the usage of 3 tags compared to the earlier scenarios as it crosses

90%. This translates to an increase of 79.4% in this stat when

compared to the usage of 1 tag.

 The average concepts returned by the system during the mapping

process is a lot lower. This is because of the high mapping accuracy

which leads to only the correct concepts being returned by the

system.

 In all instances, no secondary concepts are returned by the system.

Again, this is due to the high mapping accuracy of the system where

all mappings are being achieved through primary tags.

 In all instances, the system returned a concept with a higher weight

than the rest of the concepts for 100% of the mappings. This is related

to the low average concepts returned stat and the high mapping

accuracy. This translates to a 0% ambiguity for autonomous agents in

all cases which is excellent. However, as mentioned before, this

simulation scenario is unrealistic and not applicable to real-life

operation.

In summary, as the number of tags is increased, similar conclusions can be

made for this simulation scenario set as well:

1. The generation of duplicate concepts is reduced (Figure 5-18 (a)).

 175

2. The number of fully mapped concepts increases dramatically (Figure

5-18 (b)).

3. The average returned concepts increase, but never rise above 1

(Figure 5-18 (c)).

4. The ambiguity remains at 0% throughout (Figure 5-18 (d)).

(a)

(b)

(c)

(d)

Figure 5-18: Simulation scenario set 3 results showing duplicate concept generation, fully mapped

concepts, average returned concepts and cases with one concept having bigger weight than the rest

45.05
%

30.56
%

3.85% 0%

10%

20%

30%

40%

50%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
d
u
p
lic

a
te

 c
o
n
c
e
p
ts

No. of tags submitted

Duplicate concepts generated (50
Concepts, 100 Devices)

10.99
%

37.50
%

90.38
%

0%

20%

40%

60%

80%

100%

1 2 3P
e
rc

e
n
ta

g
e
 o

f
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

No. of tags submitted

Fully mapped concepts (50
Concepts, 100 Devices)

0.1

0.39

0.59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3

A
v
e
ra

g
e
 c

o
n
c
e
p
ts

 r
e
tu

rn
e
d

No. of tags submitted

Average concepts returned (50
Concepts, 100 Devices)

100.00
%

100.00
%

100.00
%

90%

95%

100%

105%

110%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
u
n
a
m

b
ig

u
o
u
s
 c

a
s
e
s

No. of tags submitted

Cases with one concept having
bigger weight than the rest (50

Concepts, 100 Devices)

 176

5.6.4 Semantic Profiling Simulation Scenario Set 4: 10 Concepts and
100 Devices

This simulation uses the same setup as simulation scenario set 1 but instead

the number of devices has been increased to 100, such that each concept

has 10 possible devices that can be mapped to it. The ratio of concepts to

devices is now 1:10.

Table 5-15: Results for simulation scenario set 4

Statistic 100 devices
mapped with 1

tag (S1)

100 devices
mapped with 2

tags (S2)

100 devices
mapped with 3

tags (S3)

Total concepts generated 56 24 16

Duplicate concepts 46 14

-23.8% from S1

6

-44.6% from S1

-20.8% from S2

Total concepts with 10

mapped devices

0 2

+8.3% from S1

4

+25.0% from S1

+16.7% from S2

Total concepts with less than

10 mapped devices

55 21 9

Total concepts with more than

10 mapped devices

1 1

-2.4% from S1

3

-17.0% from S1

-14.6% from S2

Average concepts returned by

system when tags are

submitted

0.78 1.43

+183.3% from S1

1.71

+219.2% from S1

+119.6% from S2

Percentage of primary

concepts returned by system

when tags are submitted

100% 87.6% 78%

Percentage of secondary

concepts returned by system

when tags are submitted

0% 12.4% 21.9%

Total cases where one

concept has a bigger weight

than the rest of the returned

concepts

28 66

+23.5% from S1

77

+29.4% from S1

+6.0% from S2

Total cases where all returned

concepts had equal weight

17 11 7

It was mentioned before that in real-life operation, the number of concepts

will be few and the number of devices many. This simulation scenario set is

therefore conducted primarily to compare it against the simulation scenario

 177

set 1, where the concepts to devices ratio of 1:5. The results for this

simulation scenario set are shown in Table 5-15.

In general, this simulation scenario set has similar results to simulation

scenario set 1.

 The number of duplicate concepts generated decrease as the number

of tags is increased. The percentage of duplicate concepts generated

is around 9%-14% higher in each case compared to simulation

scenario set 1, however.

 The number of fully mapped devices increases as the number of tags

is increased. However, this percentage is smaller compared to

simulation scenario set 1.

 The average returned concepts increase as the number of tags is

increased. However, there are two notable differences:

o The average returned concepts are higher in each case

compared to simulation scenario set 1.

o The increase in the average returned concepts as the number

of tags is increased is noticeably lower.

However, there is a major difference in this simulation scenario set compared

to simulation scenario set 1. Whereas before the ambiguity would increase

as the number of tags increased, now the ambiguity is seen to decrease as

the number of tags increases. This is apparent from the increase of cases

where one concept has higher weight than the rest of the returned concepts

as the number of tags is increased. This appears to show a trend where

having a high concepts to devices ratio actually helps to reduce the

ambiguity of the semantic mapping process as the number of tags is

 178

increased. It is also important to note that the ambiguity hovers around the

10% mark for both simulation scenario sets when 3 tags are used.

(a)

(b)

(c)

(d)

Figure 5-19: Simulation scenario set 4 results showing duplicate concept generation, fully mapped

concepts, average returned concepts and cases with one concept having bigger weight than the rest

In summary, as the number of tags is increased, the following conclusions

can be made for this simulation scenario set:

1. Duplicate concepts generation is reduced significantly (Figure 5-19

(a)).

82.14
%

58.33
%

37.50
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
d
u
p
lic

a
te

 c
o
n
c
e
p
ts

No. of tags submitted

Duplicate concepts generated (10
Concepts, 100 Devices)

0.00%

8.33%

25.00
%

0%

5%

10%

15%

20%

25%

30%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

No. of tags submitted

Fully mapped concepts (10
Concepts, 100 Devices)

0.78

1.43

1.71

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3

A
v
e
ra

g
e
 c

o
n
c
e
p
ts

 r
e
tu

rn
e
d

No. of tags submitted

Average concepts returned (10
Concepts, 100 Devices)

62.22
%

85.71
%

91.67
%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
u
n
a
m

b
ig

u
o
u
s
 c

a
s
e
s

No. of tags submitted

Cases with one concept having bigger
weight than the rest (10 Concepts, 100

Devices)

 179

2. Number of fully mapped concepts increases dramatically (Figure 5-19

(b)).

3. The average returned concepts increase, and are much higher than

the preceding simulation scenario sets (Figure 5-19 (c)).

4. Bucking the trend so far, the ambiguity decreases as the number of

tags is increased (Figure 5-19 (d)).

5.6.5 Semantic Profiling Simulation Scenario Set 5: 10 Concepts and
500 Devices

This simulation uses the same setup as before but instead the number of

devices has been increased to 500, such that each concept has 50 possible

devices that can be mapped to it. In this scenario, the ratio of concepts to

devices is 1:50, making it even more near to real-life operation than

simulation scenario set 4. The results for this simulation scenario set are

shown in Table 5-16.

Most of the statistics follow the same trend as seen in simulation scenario set

4:

 The number of duplicate concepts generated decrease as the number

of tags is increased. The percentage of duplicate concepts generated

is around 7%-15% higher in each case compared to simulation

scenario set 4.

 The number of fully mapped devices increases as the number of tags

is increased. However, this percentage is smaller compared to

simulation scenario set 4, and the difference is even greater when

compared to simulation scenario set 1.

 180

 The average returned concepts increase as the number of tags is

increased. Once again, the average returned concepts in each case

are greater when compared to simulation scenario set 4.

Table 5-16: Results for simulation scenario set 5

Statistic 500 devices
mapped with 1 tag

(S1)

500 devices
mapped with 2

tags (S2)

500 devices
mapped with 3

tags (S3)

Total concepts generated 142 38 18

Duplicate concepts 132 28

-19.3% from S1

8

-48.5% from S1

-29.2% from S2

Total concepts with 50 mapped

devices

0 1

+2.6% from S1

4

+22.2% from S1

+19.6% from S2

Total concepts with less than 50

mapped devices

142 35 13

Total concepts with more than 50

mapped devices

0 2

-5.3% from S1

1

-5.6% from S1

Average concepts returned by

system when tags are submitted

1.29 2.30

+178.1% from S1

2.42

+187.5% from S1

+105.3% from S2

Percentage of primary concepts

returned by system when tags

are submitted

100% 55.8% 53%

Percentage of secondary

concepts returned by system

when tags are submitted

0% 44.3% 47.2%

Total cases where one concept

has a bigger weight than the rest

of the returned concepts

277 415

+12.5% from S1

444

+14.8% from S1

+2.3% from S2

Total cases where all returned

concepts had equal weight

82 48 39

In summary, as the number of tags is increased, similar conclusions can be

made for this simulation scenario set as made for the simulation scenario set

4:

1. The generation of duplicate concepts is reduced (Figure 5-20 (a)).

2. Number of fully mapped concepts increases dramatically (Figure 5-20

(b)).

3. The average returned concepts increase (Figure 5-20 (c)).

 181

4. Similar to simulation scenario set 4, the ambiguity continues to

decrease as the number of tags is increased (Figure 5-20 (d)).

(a)

(b)

(c)

(d)

Figure 5-20: Simulation scenario set 5 results showing duplicate concept generation, fully mapped

concepts, average returned concepts and cases with one concept having bigger weight than the rest

5.6.6 Comparison of the Varying Concepts to Devices Ratio

This section aims to cross-compare the results obtained for the difference

scenarios presented above.

92.96
%

73.68
%

44.44
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
d
u
p
lic

a
te

 c
o
n
c
e
p
ts

No. of tags submitted

Duplicate concepts generated (10
Concepts, 500 Devices)

0.00%

2.63%

22.22
%

0%

5%

10%

15%

20%

25%

1 2 3P
e
rc

e
n
ta

g
e
 o

f
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

No. of tags submitted

Fully mapped concepts (10
Concepts, 500 Devices)

1.292

2.301
2.422

0

0.5

1

1.5

2

2.5

3

1 2 3

A
v
e
ra

g
e
 c

o
n
c
e
p
ts

 r
e
tu

rn
e
d

No. of tags submitted

Average concepts returned (10
Concepts, 500 Devices)

77.16
%

89.63
%

91.93
%

65%

70%

75%

80%

85%

90%

95%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
u
n
a
m

b
ig

u
o
u
s
 c

a
s
e
s

No. of tags submitted

Cases with one concept having
bigger weight than the rest (10

Concepts, 500 Devices)

 182

5.6.6.1 Comparison of Duplicate Concepts Generated

The comparison of duplicate concepts generated for concepts to devices

ratios of 1:5, 1:10 and 1:50 is displayed in Table 5-17. The same results are

plotted and displayed in Figure 5-21.

Table 5-17: Comparison of duplicate concepts generated for 10 concepts with 50, 100 and 500

devices.

Simulation scenario set 1 tag 2 tag 3 tags

10 Concepts, 50 Devices

Concepts to devices ratio: 1:5

74% 44% 23%

10 Concepts, 100 Devices

Concepts to devices ratio:

1:10

82% 58% 38%

10 Concepts, 500 Devices

Concepts to devices ratio:

1:50

93% 74% 44%

Figure 5-21: Comparison of duplicate concepts generated for 10 concepts with 50, 100 and 500

devices

The results show a similar trend in all cases where increasing the number of

tags decreases the percentage of duplicate concepts generated. However, it

is important to note that as the concepts to devices ratio increases, the

actual percentage of duplicate concepts generated increases. There is a rise

of 21% in duplicate concepts generated with the usage of 3 tags as the

concepts to devices ratio increases from 1:5 to 1:50. Taken in the context of

74%

44%

23%

82%

58%

38%

93%

74%

44%

0%

20%

40%

60%

80%

100%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
d
u
p
lic

a
te

 c
o
n
c
e
p
ts

No. of tags submitted

Duplicate concepts generated (10 Concepts, 50-500
Devices)

50 Devices

100 Devices

500 Devices

 183

a real-life application, these results state that as the concepts to devices ratio

increases, the percentage of duplicate concepts generated will also increase.

However, increasing the number of tags used in the mapping process will

help to reduce the generation of duplicate concepts and therefore improve

the mapping accuracy. So this trend is expected to continue as the number

of tags is increased. Further work in this area can look at identifying the

optimum number of tags to be used to achieve the best balance between the

various parameters.

5.6.6.2 Comparison of Fully Mapped Devices

The comparison of fully mapped devices for concepts to devices ratios of

1:5, 1:10 and 1:50 is displayed in Table 5-18. The same results are plotted

and displayed in Figure 5-22.

Table 5-18: Comparison of fully mapped devices for 10 concepts with 50, 100 and 500 devices.

Simulation scenario set 1 tag 2 tag 3 tags

10 Concepts, 50 Devices

Concepts to devices ratio: 1:5

0% 11% 31%

10 Concepts, 100 Devices

Concepts to devices ratio:

1:10

0% 8% 25%

10 Concepts, 500 Devices

Concepts to devices ratio:

1:50

0% 3% 22%

The results show a similar trend in all cases where increasing the number of

tags increases the percentage of fully mapped concepts. However, it is

important to note that as the concepts to devices ratio increases, the actual

percentage of fully mapped concepts decreases. Even with this fact in mind,

it can be seen that there is only a drop of 10% in duplicate concepts

generated with the usage of 3 tags as the concepts to devices ratio

 184

increases from 1:5 to 1:50. The drop in percentage is only 3% when the

concepts to devices ratio increases from 1:10 to 1:50.

Figure 5-22: Comparison of fully mapped concepts for 10 concepts with 50, 100 and 500 devices

5.6.6.3 Comparison of Average Concepts Returned

The comparison of average returned concepts for concepts to devices ratios

of 1:5, 1:10 and 1:50 is displayed in Table 5-19. The same results are plotted

and displayed in Figure 5-23.

Table 5-19: Comparison of average concepts returned for 10 concepts with 50, 100 and 500 devices.

Simulation scenario set 1 tag 2 tag 3 tags

10 Concepts, 50 Devices

Concepts to devices ratio: 1:5

0.26 1.04 1.28

10 Concepts, 100 Devices

Concepts to devices ratio:

1:10

0.78 1.43 1.71

10 Concepts, 500 Devices

Concepts to devices ratio:

1:50

1.29 2.30 2.42

Once again the results show a similar trend in all cases where increasing the

number of tags increases the average concepts returned. However, as the

concepts to devices ratio increases, the number of average concepts

returned also increases in response. This is expected because having a

0%

11%

31%

0%

8%

25%

0%
3%

22%

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
fu

lly
 m

a
p
p
e
d
 c

o
n
c
e
p
ts

No. of tags submitted

Fully mapped concepts (10 Concepts, 50-500 Devices)

50 Devices

100 Devices

500 Devices

 185

higher number of devices in the knowledgebase increases the likelihood of

getting more matches (regardless of whether the actual provided mappings

are accurate or not). Translating these results into a real-life application, this

shows that with a large concepts to devices ratio, the system is expected to

at least return 1 correct or incorrect mapping when any number of tags are

used to map the device to an appropriate semantic concept. With the usage

of 3 tags, the system is expected to return at least 2 concepts for each

mapping.

Figure 5-23: Comparison of average concepts returned for 10 concepts with 50, 100 and 500 devices

5.6.6.4 Comparison of Cases with One Concept Having Bigger Weight
than the Rest

The comparison of cases with one concept having bigger weight than the

rest for concepts to devices ratios of 1:5, 1:10 and 1:50 is displayed in Table

5-20. The same results are plotted and displayed in Figure 5-24.

This is the only case where the general trend varies between the different

simulation scenario sets. For a concepts to devices ratio of 1:5 as explained

in simulation scenario set 1, the trend is that the ambiguity increases as the

number of tags is increased. However, in the following two simulation

scenario sets (4 and 5), the trend is the opposite: the ambiguity decreases as

0.26

1.04

1.28

0.78

1.43

1.71

1.29

2.30
2.42

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3

A
v
e
ra

g
e
 c

o
n
c
e
p
ts

 r
e
tu

rn
e
d

No. of tags submitted

Average concepts returned (10 Concepts, 50-500 Devices)

50 Devices

100 Devices

500 Devices

 186

the number of tags is increased. In all simulation scenario sets, when 3 tags

are used, the ambiguity hovers around the 10% mark (the percentage of

cases with one concept having bigger weight than the rest is around 90%).

Table 5-20: Comparison of cases with one concept having bigger weight than the rest for 10 concepts

with 50, 100 and 500 devices.

Simulation scenario set 1 tag 2 tag 3 tags

10 Concepts, 50 Devices

Concepts to devices ratio: 1:5

100% 90% 89%

10 Concepts, 100 Devices

Concepts to devices ratio:

1:10

62% 86% 92%

10 Concepts, 500 Devices

Concepts to devices ratio:

1:50

77% 90% 92%

Figure 5-24: Comparison of cases with one concept having bigger weight than the rest for 10 concepts

with 50, 100 and 500 devices

This shows two things:

 As the concepts to devices ratio increases, usage of 1 tag increases

the ambiguity and creates difficulty for autonomous agents.

 Usage of 3 tags reduces the ambiguity to the 10% mark regardless of

the concepts to devices ratio.

100%

90%
89%

62%

86%

92%

77%

90%
92%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3

P
e
rc

e
n
ta

g
e
 o

f
u
n
a
m

b
ig

u
o
u
s
 c

a
s
e
s

No. of tags submitted

Cases with one concept having bigger weight than the rest (10
Concepts, 50-500 Devices)

50 Devices

100 Devices

500 Devices

 187

5.7 Final Recommendations

SAW is an extensive collaboration framework powered by semantics and this

is why it has been necessary to propose and implement both a suitable

access control as well as a semantic annotation mechanism. This chapter

has presented simulations for both of these mechanisms in an effort to

evaluate their performance and identify areas of further research and

development.

In regards to CPPM-TBAC, it was observed and evaluated that the proposed

mechanism is highly suitable for scaling in large cloud environments such as

the WoT. Further areas of research in regards to this include investigations

into better forms of security and developing a token propagation mechanism

to securely transmit tokens to clients of interest. Another area of further

exploitation is the idea of using aggregated payloads and determining how

this can best work with the SAW network, and how the limitation on usage of

a single token with each request can be overcome in this case.

With regards to the semantic annotation mechanism, it has been

demonstrated that the proposed mechanism is suitable for annotating

sensing devices in the WoT. It has been shown that the performance of the

proposed mechanism increases as both the quality (more primary tags with a

high semantic correlation to the device being mapped) and quantity

(enrichment of the database and usage of extra tags) of information supplied

during the profiling phase increases. Further areas of research and

development in this regard include increasing the number of tags to more

than 3 to find the saturation point for many of the trends seen in the semantic

 188

annotation results, and investigating if there start to appear any other trends

or trade-offs as the concepts to devices ratio is increased even further.

 189

Chapter 6: Verification & Validation of the SAW Framework

The SAW framework has two major components that need to be tested to

ensure correct operation: (1) The semantics engine powered by the Apache

Jena framework and which takes care of the semantic annotation of

resources, and (2) The PHP-based web application which exposes the

functionalities of the SAW framework to external networks. Both components

were unit tested to ensure correct operation of their individual components.

Unit testing is a testing mechanism whereby small units of functionality (e.g.

a particular function/method within a class) are tested in isolation of other

functionalities to ensure that they operate as expected. It can be used to

perform integration testing as well by using multiple units in a single test. It

involves asserting entities to check whether they match the given criteria

(e.g. does it contain the given string, does it match the given value, is it of the

correct type, etc.). The necessary data required for the unit test is setup

before each test. Similarly, any changes made by the unit test are

reversed/rolled-back after the unit test has finished executing to ensure that

all unit tests are independent of the operation of other unit tests.

The semantic engine extension was written in the Java programming

language. Because Java is very strongly embedded in Object Oriented

Programming (OOP) principles and is strictly typed (e.g. a variable declared

as an integer can only accept integers and not strings), basic type testing is

taken care of during code compilation. Still, it is a good practice to carry out

proper testing to validate the functionality of the system and thus the JUnit

unit testing framework was used to test the functionalities of each method in

each class. Typically each method in a class has one corresponding unit

 190

test. However, more complex methods which can fail at multiple points and

can have a range of varying parameters usually have more than one unit test

to take into account all possible cases.

Similarly, PHPUnit was used to write unit tests for the web application which

was written in PHP. PHP, whilst having support for OOP, is not as strictly

typed nor as strongly embedded in OOP principles. This means that PHP,

unlike Java, can have standalone functions and code that does not exist in a

class. Similarly, a variable initially declared as an integer in PHP can later

accept strings and vice versa. However, since the web application was built

using a PHP framework called Laravel, it simplified the testing procedure

somewhat as it forced the application to use strong OOP principles and

create separation between the back-end logic and the front-end exposition.

As with the Java code, unit tests for written for the PHP code to test methods

of crucial classes and even to test the operation of complete classes and

their integration with other classes.

Each time the semantics engine or the web application code would be

updated, the unit tests would be executed to ensure that the new

functionalities operated as expected and none of the existing functionalities

were broken as a result of the introduction of the new functionalities. This

ensured that the SAW framework was thoroughly tested and validated to

ensure correct operation at all times.

An example of a unit test is as follows. There is a method called

“insertNewDevice” in the semantic engine in the

“src/main/java/org.saw.query.AnnotationAgent.java” class which accepts a

map consisting of the device properties and the semantic concept ID for

 191

which the device should be inserted as its parameters. To unit test this

method, a new class will be created in the test package called

“src/test/java/org.saw.query.AnnotationAgentTest.java”, and it will contain a

method called “insertNewDeviceTest”. Inside this method attempts are made

to call the “insertNewDevice” method with incorrect or invalid parameters

(e.g. specifying a concept ID which does not exist, or leaving out vital

properties for the device being inserted) and test to see if it fails as expected.

This can be done by catching the expected exceptions or monitoring the

return of the method and asserting it to be the expected invalid output (or the

absence of an expected output). Similarly, attempts are made to supply the

correct parameters to the method being tested and test to see if it succeeds

as expected. Again, this can be done by asserting the return/output of the

method to be equal to the expected value, and also by checking other

entities that might have been affected by the method call (e.g. checking the

datastore for the insertion of the new device). At the end of the unit test, any

data generated through the test is deleted to ensure that all unit tests are

independent of each other and that data generated from one unit test does

not affect other unit tests (achieves isolation which is a requirement for

successful execution of unit tests).

 192

Chapter 7: SAW Use Case: Flood Disaster Management in London

This section presents a quick use case study for the SAW framework to

illustrate how it can be used in a real-life situation. Take, for example, a

scenario involving a major flood in London, UK. Management of this type of

disaster will not only involve coordination between different emergency

departments like the Police, Fire Brigade Service, Ambulance Service, HM

Coastguard, etc. but equally important will be the task of disseminating

critical information to the general public, of which include affected people,

people likely to be affected, relative and friends of those in distress, the

general public and of course the media. Thus the problem here is not only of

timely and controlled data dissemination and collaboration amongst the

“active” actors tackling to manage, contain and resolve the disasters but

there is also a problem of distributing useful information and updates to

“passive” parties so as to inform the general masses with the correct and

most up-to-date status information and the relevant procedures to undertake.

Whilst governmental bodies will employ the necessary measures to monitor

this type of event and to keep track of developments (e.g. water level across

areas of high risk), keeping this data confined internally will hinder public use

of this critical information. Exposition of this information would enable

interested parties to compose intelligent agents that monitor key events and

push alerts or compose mashups to not only aid in the awareness of the

disaster situation, but to also prepare a response in a timely manner. But this

can only really become possible (both in terms of exposing data as public

resources and consuming the resources by the general public) if the

mechanisms behind doing so are intuitive, flexible and speedy. If the

 193

governmental body has to setup a horde of accounts and roles and if the

public agents have to register accounts to publish or use this data, then the

likelihood of its adoption and the usefulness of its exposure will quickly

deteriorate due to the expensive investment in time. Instead, if all this access

control information could be stored in a few well designed tokens, and then

these tokens distributed to those with a need to consume the data without

requiring them to register an account, then it can be seen that the effort is

more likely to be rewarded with higher adoption and consumption. In this

regard, SAW can be used to provide audited access to resources, and

semantically annotate them to make them more useful and enable

autonomous agent collaboration. Here is a rough list of steps that might be

taken to realise this:

1. Create a secure network with appropriate token generation and

distribution mechanisms;

2. Register devices to the network and generate admin tokens to enable

their administration. Distribute these admin tokens to the parties who

are responsible for the management of the sensing infrastructure;

3. Carry out semantic annotation of the devices to enable their

representation in a unified schema and interrogation through semantic

technologies by participating agents (whether human or machine);

4. Create additional tokens with the appropriate access policies to

expose the sensing infrastructure to those who need to consume the

data;

5. Revoke tokens for agents that no longer need to consume the data;

 194

6. Repeat steps 4-5 as appropriate. More details on how tokens can be

used in a real-life deployment are provided in section 3.4.3.4.

 195

Chapter 8: Conclusion & Future Work

8.1 Conclusion

8.1.1 Summary of problem statement and proposed solutions

This thesis identified various issues pertaining to the representation,

annotation and sharing of data. These issues were found to be more

apparent and significant when collaborating in multi-party and cross-

organisation settings. An analysis of the existing literature revealed no

suitable or optimised solutions for enabling efficient collaboration and data

exchange in applications involving heterogeneous actors.

Hence, it was the goal of this study to tackle two underlying problems:

 Syntactic-level interoperability: Achieving a consistent data

representation;

 Semantic-level interoperability: Achieving a consistent data meaning.

Syntactic-level interoperability is necessary to model and represent data in a

standardised way across multiple systems. This facilitates interoperability in

terms of terminology and mark-up. To achieve syntactic-level interoperability,

this study presented a resource-based asset model.

Semantic-level interoperability is essential for maintaining a consistent

meaning of data and definitions across multiple systems and platforms,

exposed to multiple actors and vendors. This facilitates interoperability in

terms of meaning and understanding. To achieve semantic-level

interoperability, this study developed a novel semantic annotation and KM

system.

The study has outlined the procedures for developing both the resource-

based asset model and also the semantic interaction model for annotating

resources. In unison, these models form the SAW network which consists of

 196

an OSGi-based WSN and a cloud-based SAW framework in deployment

terms.

8.1.2 Summary of results

The study has carried out an extensive analysis of the three major

components of the SAW framework:

 The asset model;

 CPPM-TBAC;

 Semantic profiling.

8.1.2.1 The Asset Model

Simulations were carried out to test the performance of the OSGI-SGN vs

Native Java-SGN by registering new devices to the network and also

updating definitions of existing devices. It was discovered that the OSGi

requests were faster than the Native Java-SGN requests.

The response times for registration of DF and uploading of DP to the SAW

network with varying payloads were also measured. Each simulation was

performed with both TBAC enabled and disabled. It was ascertained that the

usage of TBAC introduced a noticeable added delay in the response times,

both when registering new devices and uploading data to the SAW network.

This delay increased with the increase in both the payload size and the

number of payloads. More importantly, it was discovered that the percentage

added delay only increased by a few percent as the number of DF/DS/DP

increased from 100 to 1,000. This proved that the proposed CPPM-TBAC

scheme scaled very well with an increase in the number of devices on the

network. This measure was crucial for proving the scalability of the proposed

scheme in a dynamic, temporal and high-load environment.

 197

8.1.2.2 CPPM-TBAC

A comprehensive analysis of the proposed access control scheme resulted

in the deduction of the following main advantages of using the scheme:

 The proposed scheme makes it possible for network administrators to

dynamically assign and revoke grants for each and every single token

for any level of granularity by either using visibility level groupings for

coarser control or specific feed and stream ids for fine-grained access

management.

 Temporal tokens can be used to increase security.

 Extended access restrictions (e.g. source IP) can be used to increase

the security of the tokens.

 Access grants can be automated using visibility groups.

8.1.2.3 Semantic profiling

Finally, a thorough analysis of the semantic profiling process was undertaken

to measure the performance and reliability of the proposed tag-based

semantic annotation process. A number of conclusions were drawn from this

analysis:

 First and foremost, increasing the number of tags used in the profiling

phase lead to a decrease in the percentage of duplicate concepts

generated. However, as the concepts to devices ratio was increased,

the percentage of duplicate concepts generated also increased.

Taken in the context of a real-life application, these results state that

as the concepts to devices ratio increases, the percentage of

duplicate concepts generated will also increase. However, increasing

the number of tags used in the mapping process will help to reduce

 198

the generation of duplicate concepts and therefore improve the

mapping accuracy.

 Secondly, the results showed that increasing the number of tags

increased the percentage of fully mapped concepts. However, as the

concepts to devices ratio increased, the percentage of fully mapped

concepts also decreased, albeit there was only a drop of 10% as the

concepts to devices ratio increased tenfold from 1:5 (less real-life-like)

to 1:50 (more real-life-like).

 A similar trend was observed for the average concepts returned

statistic. Increasing the number of tags increased the average

concepts returned. However, as the concepts to devices ratio

increased, the number of average concepts returned also increased in

response. This is expected because having a higher number of

devices in the knowledgebase increases the likelihood of getting more

matches (regardless of whether the actual provided mappings are

accurate or not). Translating these results into a real-life application,

this shows that with a large concepts to devices ratio, the system is

expected to return at least 1 correct or incorrect mapping when any

number of tags are used to map the device to an appropriate semantic

concept. With the usage of 3 tags, the system is expected to return at

least 2 concepts for each mapping.

 The aforementioned trend was broken in the comparison of the final

statistic: cases with one concept having bigger weight than the rest.

For a concepts to devices ratio of 1:5, the trend was that the ambiguity

increased as the number of tags was increased. However, in all other

 199

simulations, the trend was the opposite: the ambiguity decreased as

the number of tags was increased. In all simulation scenarios, when 3

tags were used, the ambiguity hovered around the 10% mark (the

percentage of cases with one concept having bigger weight than the

rest was around 90%). This showed that as the concepts to devices

ratio increased, usage of 1 tag increased the ambiguity and created

difficulty for autonomous agents. It also showed that usage of 3 tags

reduced the ambiguity to the 10% mark regardless of the concepts to

devices ratio.

The results obtained from vigorous testing and a critical analysis of the

performance metrics reveal that SAW is fit for the purpose it was designed

for, and is successful in achieving both syntactic as well as semantic

interoperability.

8.1.3 Summary of key contributions

SAW primarily contributes 3 main systems that help to produce an overall

distributed and collaboration system for the WoT domain:

1. Resource-based asset model:

a. Provides the capability to represent assets at different levels of

granularity;

b. Provides a logical data hierarchy;

c. Provides generic and extensible data templates.

2. CPPM-TBAC – A resource-based access control mechanism:

a. Allows distributed access to resources of any granularity;

b. Scales efficiently for large number of resources without

projecting a noticeable impact on network performance.

 200

The extensive set of tests carried out and the results recorded in relation to

the asset model also present a baseline for future studies to compare against

for further work in this area. Existing studies were lacking this statistical

analysis into existing access control mechanisms and their impact on the

added delay as the number of resources increased in a network.

3. Service-oriented and semantic interaction model: Enabling the

capability to semi-autonomously profile and annotate resources from

external networks such as Xively so that resources which are already

published on the web but lack semantics can be used effectively.

Once again, the comprehensive set of tests carried out and the metrics

measured present a springboard for future studies to compare their proposed

mechanisms against. Currently, no existing studies present statistical

measures of semantic annotation mechanisms which makes it difficult to

compare new methodologies in terms of their effectiveness. It is hoped that

the findings of this study form this much needed baseline.

8.2 Future Work

There are various areas in the proposed asset model, the CPPM-TBAC and

the tag-based semantic annotation mechanisms that can be improved to

achieve better performance metrics and to also extend the underlying

capabilities of the SAW framework. These improvements and further areas of

potential research are discussed below.

8.2.1 Potential improvements and future work for the asset model

The following improvement is a noteworthy future undertaking for the asset

model:

 201

 Extend the asset model to support circular relationships. This will

enable the asset data templates to have DF within DF. This will be

useful for modelling and representing coarser devices.

An example of this is a laptop which can have built-in sensors. The laptop

can also have other multi-sensor platforms attached to it. With the current

asset model data hierarchy, the attached multi-sensor platforms would be

modelled as DF and their sensors as DS. This presents a problem when

representing the laptop because it would be modelled as a DF and the

attached multi-sensor platforms as DS which is semantically incorrect. With

circular relationships, the laptop can be modelled as a DF containing other

DF (the multi-sensor platforms).

8.2.2 Potential improvements and future work for the CPPM-TBAC

The main improvements and areas of further work in terms of the CPPM-

TBAC mechanism are the following:

 Enable overwriting of extended access restrictions in the local scope:

Currently, extended access restrictions (e.g. IP restrictions, API

invocation limits, token expiration, etc.) are provided in the global

scope, so they apply to all resources that the token applies to. There

is no way to refine the scope of the global access restrictions for

particular resources within the same token. View section 3.4.3.3 for

more details about this feature and the recommendation to enable

overwriting of access restrictions in the local scope.

 Investigate methods of improving security for the proposed token-

based access control mechanism. In the proposed CPPM-TBAC, the

production of a valid token is all that is required to access the

 202

corresponding resources. There is no need to login, so there is no

authentication process (who does the token belong to, although the

extended access restrictions can be used to limit token to certain

source IPs), only an authorisation process (what the token can

access). In contrast, RBAC would typically have a two-step

authentication procedure (provide a username/email and a

password/secret) as well as an authorisation feature (roles). This is a

potential area of future work that can be investigated to improve the

security of the SAW framework.

8.2.3 Potential improvements and future work for the tag-based
semantic annotation mechanism

Finally, it is believed that the following list of improvements will help in

extending the capability of the semantic annotation mechanism and

increasing its performance:

 Create persistent weights/rankings for secondary tags so that system

operators can promote oft-used secondary tags to primary tags.

Primary tags have a higher weighting than secondary tags and

represent a higher likelihood of the tag accurately representing the

resource being annotated. Over time, the knowledgebase may consist

of secondary tags that are as non-ambiguous as primary tags in their

relation to the resources being annotated, but there is currently no

way to promote these high-quality secondary tags to primary tags. On

the surface, this seems to be a good mechanism of increasing the

accuracy of the annotation mechanism, but thorough analysis after its

implementation will be required to evaluate the effectiveness of this

feature.

 203

 Community-based semantic annotation mechanism: Section 3.4.5.2

discusses and proposes an indirect and community-based semantic

annotation mechanism as a complementary annotation mechanism to

the tag-based one. The main advantages of this complementary

mechanism are believed to be the ability to flag incorrect annotations,

and the ability to contribute relevant semantic annotations for existing

resources. Both of these have the potential to improve the accuracy of

the annotation process and lead to a further enrichment of the

knowledgebase.

 Investigate the usage of measurement ontologies. Currently SAW is

based on the SSN ontology which is very effective in semantically

annotating properties of sensing devices. The SSN ontology also lays

the foundations for using specialised measurement ontologies

alongside it to provide semantic concepts defining the measurement

characteristics of sensing devices and data.

Another item for future work is the utilisation of cloud computing for hosting

the SAW framework in order to dynamically allocate the necessary

computing resources such as Central Processing Unit (CPU), Random

Access memory (RAM), hard-disk space and network bandwidth. It is

anticipated that this will dramatically increase the performance of the

framework since computing limitations in the underlying infrastructure can

effectively be eliminated by utilising the elastic scaling capabilities of cloud

computing. Adoption of cloud computing can also lead to higher uptime of

the system and therefore increase the utilisation of the framework and

provide more useful collaboration facilities with other online system.

 204

References

[1] S. Vieweg, A. L. Hughes, K. Starbird and L. Palen, “Microblogging

during two natural hazards events: What twitter may contribute to

situational awareness,” in SIGCHI Conference on Human Factors in

Computing Systems, New York, 2010.

[2] B. Rubenstein-Montano, J. Liebowitz, J. Buchwalter, D. McCaw, B.

Newman and K. Rebeck, “A systems thinking framework for

knowledge management,” Decision Support Systems, vol. 31, no. 1,

pp. 5-16, 2001.

[3] M. Dorasamy, M. Raman and M. Kaliannan, “Knowledge management

systems in support of disasters management: A two decade review,”

Technological Forecasting & Social Change, 2013.

[4] S. Jennings, “Time’s Bitter Flood - Trends in the number of reported

natural disasters,” OXFAM, 2011.

[5] P. Peduzzi, “Is climate change increasing the frequency of hazardous

events?,” in Environment & Poverty Times, Kobe, 2005.

[6] UN/ISDR, “Terminology - UNISDR,” 23 August 2007. [Online].

Available: http://www.unisdr.org/we/inform/terminology. [Accessed 27

January 2012].

[7] R. W. Perry and M. K. Lindell, “Preparedness for Emergency

Response - Guidelines for the Emergency Planning Process,”

Disasters, vol. 27, no. 4, pp. 336-350, 2003.

[8] G. O'Brien, “UK emergency preparedness: a holistic response?,”

Disaster Prevention and Management, vol. 17, no. 2, pp. 232-243,

2008.

[9] I. Davis and Y. O. Izadkhah, “Tsunami early warning system (EWS)

and its integration within the chain of seismic safety,” Disaster

Prevention and Management, vol. 17, no. 2, pp. 281-291, 2008.

[10] M. L. Collins and N. Kapucu, “Early warning systems and disaster

preparedness and response in local government,” Disaster Prevention

and Management, vol. 17, no. 5, pp. 587-600, 2008.

[11] Geographical Survey Institute Japan, “Disaster Prevention Activities,”

in Eighteenth United Nations Regional Cartographic, Bangkok, 2009.

[12] D. C. Whybark, “Issues in managing disaster relief inventories,”

International Journal of Production Economics, vol. 108, no. 1-2, pp.

228-235, 2007.

[13] M. J. Widenera and M. W. Horner, “A hierarchical approach to

modeling hurricane disaster relief goods distribution,” Journal of

Transport Geography, vol. 19, no. 4, p. 821–828, 2011.

 205

[14] E. E. Ozguven and K. Ozbay, “A secure and efficient inventory

management system for disasters,” Transportation Research Part C,

2011.

[15] H. R. Rao, V. S. Jacob and F. Lin, “Hemispheric Specialization,

Cognitive Differences, and Their Implications for the Design of

Decision Support Systems,” MIS Quarterly, vol. 16, no. 2, pp. 145-151

, 1992.

[16] S. Celik and S. Corbacioglu, “Role of information in collective action in

dynamic disaster environments,” Disasters, vol. 34, no. 1, p. 137−154,

2010.

[17] B. Balcik, B. M. Beamon, C. C. Krejci, K. M. Muramatsu and M.

Ramirez, “Coordination in humanitarian relief chains: Practices,

challenges and opportunities,” International Journal of Production

Economics, vol. 126, no. 1, pp. 22-34, 2010.

[18] J. Max Stephenson, “Making humanitarian relief networks more

effective: operational coordination, trust and sense making,” Disasters,

vol. 29, no. 4, pp. 337-350, 2005.

[19] M. S. Jr. and M. H. Schnitzer, “Inter-Organizational Trust, Boundary

Spanning and Humanitarian Relief Coordination,” Nonprofit

Management and Leadership, vol. 17, no. 2, pp. 211-232, 2006.

[20] P. Barnaghi et al., “Semantics for the Internet of Things: Early

Progress and Back to the Future,” International Journal On Semantic

Web and Information Systems, vol. 8, no. 1, pp. 1-21, 2012.

[21] P. Barnaghi et al, “Sense and Sens’ability: Semantic Data Modelling

for Sensor,” in ICT Mobile Summit 2009, Santander, Spain, 2009.

[22] S. Auer et al, “DBpedia: A Nucleus for a Web of Open Data,” in 6th

Int’l Semantic Web Conference, Busan, Korea, 2007.

[23] Guardian News and Media Limited, “Flood hack: UK's top developers

join forces to build flood-relief apps,” 18 February 2014. [Online].

Available: http://www.theguardian.com/technology/2014/feb/17/uk-

flood-relief-apps-hack-day. [Accessed 19 February 2014].

[24] M. Turoff et al., “The design of a dynamic emergency response

management information system (DERMIS),” Journal of Information

Technology Theory and Application, vol. 5, no. 4, pp. 1-35, 2004.

[25] R. Bose, “Knowledge management-enabled health care management

systems: capabilities, infrastructure, and decision-support,” Expert

Systems with Applications, vol. 24, no. 1, p. 59–71, 2003.

[26] D. Stenmark and R. Lindgren, “Knowledge Management Systems:

Towards a Theory of Integrated Support,” in Current Issues in

Knowledge Management, IGI Global, 2008, pp. 181-205.

[27] M. Turoff, C. White and L. Plotnick, “Dynamic Emergency Response

 206

Management for Large Scale Decision Making in Extreme Hazardous

Events,” in 5th International ISCRAM Conference, Washington, 2011.

[28] M. Jennex, “Emergency response systems: lessons from utilities and

Y2K,” in Tenth Americas Conference on Information, New York, 2004.

[29] E. Iakovou and C. Douligeris , “An information management system

for the emergency management of hurricane disasters,” International

Journal of Risk Assessment and Management, vol. 2, no. (3-4) 2001,

pp. 243-262, 2004.

[30] T. Murphy and M. E. Jennex, “Knowledge Management, Emergency

Response, and Hurricane Katrina,” International Journal of Intelligent

Control and Systems, vol. 11, no. 4, pp. 199-208, 2006.

[31] M. Dorasamy and M. Raman, “Information Systems to Support

Disaster Planning and Response: Problem Diagnosis and Research

Gap Analysis,” in 8th International ISCRAM Conference, Lisbon, 2011.

[32] L. V. S. Lakshmanan and F. Sadri, “Information Integration and the

Semantic Web,” IEEE Data Engineering Bulletin, vol. 26, no. 4, pp. 19-

25, 2003.

[33] M. Botts et. al, “OGC Sensor Web Enablement: Overview And High

Level Architecture,” Open Geospatial Consortium, 2013.

[34] A. Sheth, C. Henson and S. S. Sahoo, “Semantic Sensor Web,” IEEE

Internet Computing, vol. 12, no. 4, pp. 78 - 83, 2008.

[35] W3C, “Resource Description Framework (RDF): Concepts and

Abstract Syntax,” 10 February 2004. [Online]. Available:

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. [Accessed

25 September 2013].

[36] A. Gyrard, C. Bonnet and K. Boudaoud, “A Machine-to-Machine

Architecture to Merge Semantic Sensor Measurements,” in 22nd

International World Wide Web Conference, Rio de Janeiro, Brazil,

2013.

[37] W3C, “SPARQL 1.1 Query Language,” 21 March 2013. [Online].

Available: http://www.w3.org/TR/sparql11-query/. [Accessed 25

September 2013].

[38] L. Feigenbaum and E. Prud'hommeaux, “SPARQL by Example,” 30 05

2013. [Online]. Available:

http://www.cambridgesemantics.com/en_GB/semantic-

university/sparql-by-example. [Accessed 13 05 2014].

[39] W3C, “OWL 2 Web Ontology Language Document Overview (Second

Edition),” 11 December 2012. [Online]. Available:

http://www.w3.org/TR/owl2-overview/. [Accessed 25 September

2013].

[40] M. Compton et al., “The SSN ontology of the W3C semantic sensor

 207

network incubator group,” Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 17, p. 25–32, 2012.

[41] D. Brickley and L. Miller, “FOAF Vocabulary Specification 0.99,” 14

January 2014. [Online]. Available: http://xmlns.com/foaf/spec/.

[Accessed 19 May 2014].

[42] A. Gangemi, “DOLCE+DnS Ultralite,” [Online]. Available:

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl. [Accessed 19

May 2014].

[43] V. Mascardi, V. Cordì and P. Rosso, “A Comparison of Upper

Ontologies (Technical Report DISI-TR-06-21),” Università degli Studi

di Genova, Genova, Italy, 2007.

[44] N. Bharosa and M. Janssen, “Extracting principles for information

management adaptability during crisis response: A dynamic capability

view,” in Proceedings of the 43rd Hawaii International Conference on

System Sciences, Hawaii, USA, 2010.

[45] SENSEI, “The SENSEI Real World Internet Architecture,” March 2010.

[Online]. Available: http://www.sensei-

project.eu/index.php?option=com_docman&task=doc_download&gid=

83&Itemid=49. [Accessed 25 September 2013].

[46] M. Büscher, P. H. Mogensen and M. Kristensen, “When and how (not)

to trust it? Supporting virtual emergency teamwork,” International

Journal of Information Systems for Crisis Response and Management

(IJISCRAM), vol. 1, no. 2, pp. 1-15, 2009.

[47] C. Caragea et al., “Classifying Text Messages for the Haiti

Earthquake,” in Proceedings of the 8th International ISCRAM

Conference, Lisbon, Portugal, 2011.

[48] H. G. Bressler, E. M. Jennex and G. E. Frost, “Exercise 24: Using

social media for crisis response,” International Journal of Information

Systems for Crisis Response and Management (IJISCRAM), vol. 3,

no. 4, pp. 36-54, 2011.

[49] I. Becerra-Fernández et al., “Design and Development of a Virtual

Emergency Operations Center for Disaster Management Research,

Training, and Discovery,” in Proceedings of the 41st Hawaii

International Conference on System Sciences, Hawaii, USA, 2008.

[50] G. Wickler et al., “The Virtual Collaboration Environment: New Media

for Crisis Response,” in Proceedings of the 8th International ISCRAM

ConferenceLisbon, Portugal, Lisbon, Portugal, 2011.

[51] R. A. Trancoso et al., “Early warning system for meteorological risk in

Lisbon Municipality: description and quality evaluation,” in

Proceedings of the 8th International ISCRAM, Lisbon, Portugal, 2011.

[52] D. Guinard et al., “From the Internet of Things to the Web of Things:

 208

Resource Oriented Architecture and Best Practices,” in Architecting

the Internet of Things, Springer Berlin Heidelberg, 2011, pp. 97-129.

[53] Microformats, “Microformats,” [Online]. Available:

http://microformats.org/. [Accessed 24 September 2013].

[54] “Project Deliverable D1.2 – Initial Architectural Reference Model for

IoT,” IoT-A, 2011.

[55] LogMeIn, Inc., “Xively REST API,” [Online]. Available:

https://xively.com/dev/docs/api/. [Accessed 20 September 2013].

[56] ThingSpeak.com, “ThingSpeak API,” [Online]. Available:

http://community.thingspeak.com/documentation/api/. [Accessed 20

September 2013].

[57] A. Pintus, D. Carboni and A. Piras, “Paraimpu: a Platform for a Social

Web of Things,” in Companion of WWW2012 - Demonstrations, Lyon,

France, 2012.

[58] N. Chen and A. Dahanayake, “Role-based Situation-aware

Information Seeking and Retrieval for Crisis Response,” Internation

Journal of Intelligent Control and Systems, vol. 12, no. 2, pp. 186-197,

2007.

[59] J. B. Vercher et al., “An experimental platform for large-scale research

facing FI-IoT scenarios,” in Future Network & Mobile Summit

(FutureNetw), Warsaw, 2011.

[60] H. Patni, C. Henson and A. Sheth, “Linked Sensor Data,” in 2010

International Symposium on Collaborative Technologies and Systems

(CTS 2010), Chicago, IL, 2010.

[61] OGC, “Observations and Measurements,” [Online]. Available:

http://www.opengeospatial.org/standards/om. [Accessed 20

September 2013].

[62] P. Barnaghi, M. Presser and K. Moessner, “Publishing Linked Sensor

Data,” in ISWC 2010, Shanghai, China, 2010.

[63] D. Le Phuoc, “"SensorMasher: publishing and building mashup of

sensor data,” in 5th International Conference on Semantic Systems (I-

Semantics 2009), 2009.

[64] NASA, “SWEET Ontologies,” 6 August 2012. [Online]. Available:

http://sweet.jpl.nasa.gov/. [Accessed 25 September 2013].

[65] “SANY Sensor Taxonomy,” [Online]. Available: http://sany-

ip.eu/publications/1954. [Accessed 25 September 2013].

[66] D. Pfisterer et al., “SPITFIRE: toward a semantic web of things,” IEEE

Communications Magazine, vol. 49, no. 11, pp. 40-48, 2011.

[67] OASIS, “Security Assertion Markup Language (SAML) V2.0 Technical

Overview,” 2008.

 209

[68] J. Li and A. H. Karp, “Access Control for the Services Oriented

Architecture,” in Proceedings of the 2007 ACM workshop on Secure

web services, New York, NY, USA, 2007.

[69] A. H. Karp, “Authorization-Based Access Control for the Services

Oriented Architecture,” in 4th International Conference on Creating,

Connecting, and Collaborating through Computing (C5), 2006.

[70] S. Gusmeroli, . S. Piccione and . D. Rotondi, “A capability-based

security approach to manage access control in the Internet of Things,”

Mathematical and Computer, 2013.

[71] I. Aedo, P. Díaz and D. Sanz, “An RBAC model-based approach to

specify the access policies of Web-based emergency information

systems,” International Journal of Intelligent Control and Systems, vol.

11, no. 4, pp. 272-283 , 2006.

[72] H. Scholten, “Context Based Access Control,” Everett BV,

Nieuwegein, The Netherlands, 2007.

[73] “A Token-Based Access Control System for RDF Data in the Clouds,”

in Proceedings of the 2010 IEEE Second International Conference on

Cloud Computing Technology and Science, Washington, DC, USA,

2010.

[74] uh@pachube, “Crowd-sourced realtime radiation monitoring in Japan,”

Cosm Ltd, 24 March 2011. [Online]. Available:

http://community.cosm.com/node/611. [Accessed 6 March 2013].

[75] D. O'Byrne, R. Brennan and D. O'Sullivan, “Implementing the draft

W3C semantic sensor network ontology,” in 8th IEEE International

Conference on Pervasive Computing and Communications

Workshops (PERCOM Workshops), Mannheim, 2010.

[76] J. C. Goodwin, J. Qualls and D. J. Russomanno, “Survey of Semantic

Extensions to UDDI: Implications for Sensor Services,” in International

Conference on Semantic Web & Web Services (SWWS), Las Vegas,

Nevada, USA, 2007.

[77] A. Underbrink et al., “Autonomous Mission Operations for Sensor

Webs,” in American Geophysical Union Fall Meeting, 2008.

[78] M. Eid, R. Liscano and A. El Saddik, “A Universal Ontology for Sensor

Networks Data,” in Computational Intelligence for Measurement

Systems and Applications (CIMSA), Ostuni, 2007.

[79] M. Calder, R. A. Morris and F. Peri, “Machine reasoning about

anomalous sensor data,” Ecological Informatics, vol. 5, no. 1, p. 9–18,

2010.

[80] Y. Hu, Z. Wu and M. Guo, “Ontology driven adaptive data processing

in wireless sensor networks,” in 2nd international conference on

Scalable information systems (InfoScale '07), Brussels, Belgium,

 210

2007.

[81] G. Stevenson et al., “Ontonym: a collection of upper ontologies for

developing pervasive systems,” in 1st Workshop on Context,

Information and Ontologies (CIAO '09), New York, NY, USA, 2009.

[82] F. Probst, “Semantic reference systems for observations and

measurements,” Westfälische Wilhelms - Universität Münster, 2007.

[83] C. Stasch et al., “A Stimulus-Centric Algebraic Approach to Sensors

and Observations,” in GeoSensor Networks (GSN) Third International

Conference, Oxford, UK, 2009.

[84] P. Barnaghi, S. Meissner and M. Presser, “Sense and sensability:

Semantic data modelling for sensor networks,” in ICT Mobile Summit,

Santander, Spain, 2009.

[85] C. A. Henson et al., “SemSOS: Semantic sensor Observation

Service,” in International Symposium on Collaborative Technologies

and Systems (CTS '09), Baltimore, MD , 2009.

[86] B. van der Werf et al., “SERONTO: a Socio-Ecological Research and

Observation oNTOlogy,” in TDWG, Fremantle, Australia, 2008.

[87] W3C Incubator Group, “Semantic Sensor Network XG Final Report,”

28 June 2011. [Online]. Available:

http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/.

[Accessed 6 October 2013].

[88] K. Janowicz and M. Compton, “The Stimulus-Sensor-Observation

Ontology Design Pattern and its Integration into the Semantic Sensor

Network Ontology,” in 3rd International Workshop on Semantic Sensor

Networks, 2010.

[89] D. Guinard and V. Trifa, “Towards the Web of Things: Web Mashups

for Embedded Devices,” in 2nd Workshop on Mashups, Enterprise

Mashups and Lightweight Composition on the Web (MEM 2009),

Madrid, Spain, 2009.

[90] R. T. Fielding and R. N. Taylor, “Principled design of the modern Web

architecture,” ACM Transactions on Internet Technology (TOIT), vol.

2, no. 2, pp. 115-150, 2002.

[91] G. Iachello and G. D. Abowd , “A Token-based Access Control

Mechanism for Automated Capture and Access Systems in Ubiquitous

Computing,” Georgia Institute of Technology, Atlanta, GA, USA, 2005.

[92] D. Miorandi, S. Sicari, F. D. Pellegrini and I. Chlamtac, “Internet of

things: Vision, applications and research challenges,” Ad Hoc

Networks, vol. 10, no. 7, pp. 1497-1516, 2012.

[93] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess and D. Savio,

“Interacting with the SOA-Based Internet of Things: Discovery, Query,

Selection, and On-Demand Provisioning of Web Services,” IEEE

 211

TRANSACTIONS ON SERVICES COMPUTING, vol. 3, no. 3, pp.

223-235, 2010.

[94] G. A. Miller, “WordNet: A Lexical Database for English,”

Communications of the ACM, pp. 39-41, 1995.

[95] Princeton University, “About WordNet,” Princeton University, [Online].

Available: https://wordnet.princeton.edu/. [Accessed 27 April 2015].

[96] Cycorp Inc., “ResearchCyc,” Cycorp Inc., [Online]. Available:

http://vps9304.inmotionhosting.com/node/184.html. [Accessed 27 April

2015].

[97] A. Zaslavsky, . C. Perera and D. Georgakopoulos, “Sensing as a

Service and Big Data,” in International Conference on Advances in

Cloud Computing (ACC), Bangalore, India, 2012.

[98] M. Kuna, H. Kolaric, I. Bojic, M. Kusek and G. Jezic, “Android/OSGi-

based Machine-to-Machine context-aware system,” in IEEE 11th

International Conference on Telecommunications (ConTEL), Graz,

2011.

[99] R. Bhaskar, G. Hegde and P. Vaya, “An efficient hardware model for

RSA Encryption system using Vedic mathematics,” in International

Conference on Communication Technology and System Design,

Coimbatore, 2011.

 212

Appendices
Appendix A – SAW Ontology

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="owl2html.xslt"?>

<!DOCTYPE rdf:RDF [<!ENTITY dct "http://purl.org/dc/terms/"

><!ENTITY cc "http://creativecommons.org/ns#" ><!ENTITY owl

"http://www.w3.org/2002/07/owl#" ><!ENTITY dc

"http://purl.org/dc/elements/1.1/" ><!ENTITY xsd

"http://www.w3.org/2001/XMLSchema#" ><!ENTITY ssn

"http://purl.oclc.org/NET/ssnx/ssn#" ><!ENTITY skos

"http://www.w3.org/2004/02/skos/core#" ><!ENTITY rdfs

"http://www.w3.org/2000/01/rdf-schema#" ><!ENTITY DUL

"http://www.loa-cnr.it/ontologies/DUL.owl#" ><!ENTITY rdf

"http://www.w3.org/1999/02/22-rdf-syntax-ns#" >]>

<rdf:RDF xmlns="http://saw.local/sw/ontology#"

xml:base="http://saw.local/sw/ontology"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:DUL="http://www.loa-cnr.it/ontologies/DUL.owl#"

xmlns:dct="http://purl.org/dc/terms/"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:ssn="http://purl.oclc.org/NET/ssnx/ssn#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:skos=http://www.w3.org/2004/02/skos/core#

xmlns:cc="http://creativecommons.org/ns#">

 <owl:Ontology rdf:about="http://saw.local/sw/ontology">

 <dc:creator rdf:datatype="&xsd;string">Mohammad

Amir</dc:creator>

 <rdfs:comment rdf:datatype="&xsd;string">Describes concepts

for tagging sensing devices.</rdfs:comment>

 <rdfs:comment rdf:datatype="&xsd;string">Developed by

Mohammad Amir, University of Bradford.</rdfs:comment>

 <dc:identifier>http://saw.local/sw/ontology</dc:identifier>

 <dc:rights>Copyright 2013 University of

Bradford.</dc:rights>

 <dct:created>2013-10-14</dct:created>

 <dct:modified>2013-10-14</dct:modified>

 <rdfs:seeAlso>http://saw.local/sw/ontology</rdfs:seeAlso>

 <dc:title>SAW Ontology</dc:title>

 <owl:imports

rdf:resource="http://purl.oclc.org/NET/ssnx/ssn"/>

 <cc:license

rdf:resource="http://www.w3.org/Consortium/Legal/2002/copyright-

software-20021231.html"/>

 </owl:Ontology>

	cover_sheet_thesis.pdf
	University of Bradford eThesis

