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It is now well established that the tumor microenvironment plays an essential role in the 
survival, growth, invasion, and spread of cancer through the regulation of angiogenesis 
and localized immune responses. This review examines the role of the HOX genes, which 
encode a family of homeodomain-containing transcription factors, in the interaction 
between prostate tumors and their microenvironment. Previous studies have established 
that HOX genes have an important function in prostate cancer cell survival in vitro 
and in vivo, but there is also evidence that HOX proteins regulate the expression of 
genes in the cancer cell that influence the tumor microenvironment, and that cells in the 
microenvironment likewise express HOX genes that confer a tumor-supportive function. 
Here we provide an overview of these studies that, taken together, indicate that the HOX 
genes help mediate cross talk between prostate tumors and their microenvironment.
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INTRODUCTION

In addition to cancer cells, tumor tissue contains a 
variety of host cells, extracellular matrix components, 
and secreted proteins that together constitute the 
tumor microenvironment[1]. Crosstalk between the 
tumor and its microenvironment has an important role 
in tumor development, including the recruitment of 
immune cells and vascular cells, both of which can 
have profound effects on the survival and spread 
of the tumor and are therefore targets for cancer 
therapy[2-4]. In this review, we consider the role of the 

HOX family of transcription factors in the interaction 
between prostate tumors and their microenvironment.

THE HOX GENES

Early embryonic development is characterized by a 
number of overlapping signaling events that give rise 
to stable transcriptional states and these in turn confer 
specific identities at both the cellular and tissue level. 
Many of the transcription factors that are responsible 
for regulating embryonic development were originally 
characterized by the distinct phenotypes caused by 
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mutations in either their reading frame or regulatory 
regions, and one of the most notable examples of 
this are the HOX genes[5]. The HOX genes encode 
transcription factors that are characterized at the 
protein level by a highly conserved DNA-binding 
domain, known as the homeodomain, and their 
expression defines the identity of cells primarily along 
the anterior to posterior axis of the embryo, both in 
the main body and within organs and appendages[6]. 
Mammals have 39 HOX genes that are organized 
in 4 distinct chromosomal clusters named A, B, C, 
and D. The HOX genes are named on the basis of 
which cluster they are found in, and their position 
within the cluster. Thus for example HOXB1 is the 3’ 
most member of the HOXB cluster, and its immediate 
5’ neighbor is consequently named HOXB2[7]. 
The clusters arose through multiple duplication 
events during the evolution of vertebrates, and 
consequently HOX genes at equivalent positions 
within each cluster (e.g. HOXA1, HOXB1, HOXC1, 
and HOXD1) share high levels of sequence identity 
beyond the conserved homeodomain region, and are 
referred to as paralogues[5]. The sharing of enhancer 
regions within clusters confers unusual regulatory 
properties on HOX genes, whereby the 3’ members 
are expressed earlier in development (temporal 
collinearity) and more anteriorly (spatial collinearity) 
than their 5’ neighbors[8].

HOX proteins can bind as monomers to DNA, 
although the affinity and specificity of binding are 
considerably increased through an interaction with 
other homeodomain-containing transcription factors 
including Pre-B-cell Leukemia Homeobox (PBX) and 
Myeloid Ecotropic Viral Integration Site 1 Homolog 
(MEIS) proteins[9]. Of these, PBX can bind to HOX 
proteins from paralogue groups 1-11[10-12], whilst MEIS 
binds to HOX9-13 proteins[13]. Despite this increased 
binding specificity, HOX proteins exhibit high levels 
of functional redundancy in some contexts due to 
extensive sequence identity between paralogue group 
members and 3’ and 5’ neighbors[14].

HOX gene expression generally reduces before 
birth and many adult cells show either low levels of 
expression, or no expression. Exceptions include cells 
that maintain proliferative capacity in the adult, for 
example stem cells, and most notably hematopoietic 
stem cells (HSCs), which are dependent on the 
continued expression of HOXB4 for proliferation[15].  
The subsequent differentiation of HSCs along 
different lineages and ultimately to mature blood 
cells is also dependent on distinct patterns of HOX 
gene expression[16]. Other adult processes that are 
known to be at least partly dependent on HOX genes 

include the menstrual cycle[17] and the differentiation 
of mesenchymal stem cells[18]. Over the last 20 years 
it has become increasing clear that HOX genes are 
also very highly dysregulated, and usually strongly 
over expressed in a wide range of haematological 
and solid malignancies compared to the cells form 
which these cancers originate[19,20]. The HOX genes 
have multiple functions in cancer, and can act both as 
tumor suppressors and oncogenes. Examples of the 
former include HOXA5, which can promote expression 
of the p53 tumor suppressor protein[21], and HOXC12, 
which promotes cellular differentiation in follicular 
lymphoma[22]. However, the majority of reports indicate 
that HOX genes have a pro-oncogenic role, including 
functions that support tumor growth and invasion such 
as angiogenesis, metastasis, and immune evasion[23]. 
At the cellular level, a generalized role for many HOX 
proteins in cancer appears to be to prevent apoptosis 
by inhibiting cFos[24-27] and dual specificity protease 
1 (DUSP1) expression[26,28,29]. DUSP1 is a tumour 
suppressor gene[30], and whilst cFos is generally 
considered to be a protoncogene, cFos protein can 
also induce apoptosis through the activation of the cell 
death ligand, FAS1[31-35]. Additional cellular functions 
of individual HOX proteins include DNA repair[36] and 
the regulation of the cell cycle[37]. It has also become 
apparent that the HOX genes function to modify the 
tumour microenvironment, and it is this aspect of their 
biology that we focus on here.

HOX GENES IN PROSTATE CANCER

The role of HOX genes in prostate cancer has in 
general been more extensively studied than for other 
solid malignancies. HOXC4, HOXC5, HOXC6, and 
HOXC8 have all been found to be highly expressed in 
lymph node metastases[38], and HOXC6 and HOXC8 
overexpression has also been demonstrated in 
primary tumors[25]. HOXC8 expression was also shown 
to be higher in tumors with a higher Gleason score[39]. 
Of these 4 HOX genes, HOXC6 is reported to be the 
most highly upregulated in primary, metastasized, and 
castrate-resistant prostate cancer, and the presence 
of HOXC6 RNA in urine might be a diagnostic marker 
for prostate cancer and a potential monitoring tool for 
disease progression[40], and was shown to distinguish 
between high and low grade prostate tumors with a 
very high specificity when used in conjugation with a 
second urinary marker, DLX1[41]. In addition, disrupting 
the interaction between HOX proteins and their PBX 
cofactor using the competitive antagonist HXR9[23] 
causes apoptotic cell death in the prostate cancer-
derived cell lines LnCaP, DU145, and PC3, and was 
shown to block the growth of PC3 tumors in a mouse 
xenograft model[25].
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The most extensively studied HOX gene in prostate 
cancer is HOXB13 due to its apparent role in androgen 
sensitivity. It has been shown to be highly expressed 
in androgen receptor (AR) positive prostate cancer-
derived cell lines, but only at a very low level in AR 
negative cell lines[42,43], and to be strongly expressed 
in hormone-refractory tumors after initial treatment[44]. 
Furthermore, mutations in HOXB13 are associated 
with an increased risk of prostate cancer. The G84E 
variant was found to significantly increase the risk 
of heredity prostate cancer[45], and was present in 
around 5% of families with at least one affected 
member[46]. A second variant, G135E was found to be 
associated with an increased risk of prostate cancer 
in Chinese men[47]. At the cellular level the functional 
significance of these variants remains unclear; for 
example, HOXB13 G84E was not found to result in 
an appreciably different phenotype to the wild type 
gene when expressed in PNT2 cells[48]. However, a 
clear mechanistic basis for the pro-oncogenic role of 
HOXB13 has arisen over the last few years [Figure 1]. 
HOXB13 protein can function both as a repressor and 
activator of transcription. It represses the p21WAF1/
CIP1 (p21) tumor suppressor gene, which can block 

androgen-stimulated cell proliferation[49], and has also 
been shown to bind directly to the enhancer region 
of the RFX6 gene, the product of which inhibits the 
proliferation, migration, and invasion of prostate cancer 
cells[50]. HOXB13 additionally represses prostate 
derived Ets factor (PDEF) expression, which in turn 
blocks the expression of matrix metalloproteinase 
9 (MMP-9) and the anti-apoptotic protein survivin, 
and thus reduces the invasive potential of cells[51]. A 
further pro-oncogenic effect of HOXB13 is exerted 
through the upregulation of zinc transporters that in 
turn results in lower intracellular zinc concentrations. 
This reduces the level of inhibitor of NF-κΒ alpha 
(IκΒα) and promotes NF-κΒα signaling leading to 
increased invasion and metastasis[52]. Thus, HOXB13 
exerts multiple tumor-promoting effects through the 
regulation of specific target genes.

In addition to their roles in regulating the proliferation 
and survival of prostate cancer cells, it has become 
apparent that the HOX genes are also instrumental 
in promoting changes to the tumor microenvironment 
that support metastasis and angiogenesis [Figure 2]. 
Each of these aspects will be considered in detail in 

Figure 1: HOXB13 exerts multiple tumor-promoting effects through the regulation of specific target genes. HOXB13 protein can function 
both as a repressor and activator of transcription. It represses the p21WAF1/CIP1 (p21) tumor suppressor gene, which can block androgen-
stimulated cell proliferation and has also been shown to bind directly to the enhancer region of the RFX6 gene, the product of which inhibits 
the proliferation, migration, and invasion of prostate cancer cells. HOXB13 additionally represses prostate derived Ets factor (PDEF) 
expression, which in turn blocks the expression of matrix metalloproteinase 9 (MMP-9) and the anti-apoptotic protein survivin, and thus 
reduces the invasive potential of cells. A further pro-oncogenic effect of HOXB13 is exerted through the upregulation of zinc transporters 
resulting in lower intracellular zinc concentrations. This reduces the level of inhibitor of NF-κB alpha (IκBα) and promotes NF-κBα signaling 
leading to increased invasion and metastasis. Right pointing arrows in the nucleus indicate transcription. AR: androgen receptor
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the remainder of this review.

HOX TRANSCRIPTION FACTORS AND 
METASTASIS

Metastasis is a complex, multi stage process and the 
tumor microenvironment plays a key role both at the 
earliest stages, in facilitating the movement of cells 
away from the primary tumor, and in the final stages in 
allowing metastatic cells to generate a new tumor at 
a distant site. One of the most important mechanisms 
by which tumors can modify the microenvironment 
is through the release of matrix metalloproteinases 
(MMPs), a family of zinc-dependent endopeptidases 
that can modify the extra cellular matrix (ECM)[53]. Two 
of the most extensively studied of these enzymes with 
respect to prostate cancer are MMP-2 and MMP-9, 
both of which are members of the gelatinase subgroup 
of MMPs characterized by a fibronectin-like, gelatin-
binding domain[54]. MMP-2 expression is higher in 
prostate tumors compared to normal prostate tissue, 
and has also been shown to be secreted by the former[55], 
and reducing its expression in mouse melanoma 
B16F10 cells resulted in significantly fewer lung 
metastases[56]. Both MMP-9 and MMP-2 expression is 
directly activated by the binding of HOXC11 protein to 

the enhancer region[57], and HOXC11 is expressed in 
multiple prostate cancer cell types[25] [Table 1]. MMP-9 
expression has also been shown to be activated by 
HOXB7 in breast cancer cells[58], and both MMP-9 and 
HOXB7 are over expressed in prostate cancer[25,53]. 
The most frequently used prostate cancer-derived 
cell lines are LNCaP, DU145 and PC3, of which PC3 
has by far the higher capacity for invasion in vitro and 
shows a significantly higher level of MMP-9 expression 
compared to the other cell lines[59]. Correspondingly, 
the invasive capacity of LNCaP increased significantly 
when MMP-9 was experimentally over-expressed in 
these cells[60], and invasion by DU145 and PC3 was 
reduced after MMP-9 expression was knocked-down 
using siRNA[61].

In addition to the gelatinase class MMPs, the 
expression of two other MMPs, MMP-3 and MMP-14, 
is activated by HOX transcription factors[62,63]. MMP-
14 differs from other MMPs as it is membrane bound 
through a transmembrane domain with its catalytic 
center on the outside of the cell[64]. Its expression in 
prostate cancer cells is associated with androgen 
independence[65] and aggressiveness[66]. Prostate 
tumors primarily metastasize to bone, and MMP-14 
has a particularly important role in this process due to 

Figure 2: HOX transcription factors regulate genes in prostate cancer cells that modify the tumor microenvironment, as well genes in 
stromal cells that support tumor growth. HOX transcription factors have multiple roles in regulating genes that drive angiogenesis and 
metastasis. HOX targets with a key role in metastases include MMPs 2, 3, 9, and 14, as well as genes such as Snail and E-cadherin that 
are involved in the epithelial to mesenchymal transition. Genes involved in angiogenesis are also regulated by HOX transcription factors 
both in tumor cells and in endothelial cells. HOXD3 drives the expression of integrin alpha 5 beta 1 in endothelial cells which in turn leads 
to immature, leaky vessels. A number of HOX transcription factors can also drive the expression of proangiogenic secretory factors, 
including HOXB7, which regulates the transcription of FGF2, VEGFA, CXCL1, and IL8. An additional proangiogenic gene upregulated by 
HOXB7 is angiopoietin-1, the product of which plays a crucial role in stabilizing newly formed vasculature. Other proangiogenic genes that 
are regulated by HOX transcription factors include eNOs and uPA. HOXA9 expression in progenitor endothelial cells is necessary for their 
commitment to an endothelial lineage as it directly regulates endothelial specific genes such as eNOs, VE cadherin, and VEGFR2. HOXD3 
has also been shown to have a role in vessel formation by endothelial cells through the activation of uPA transcription. In addition to an 
extracellular activity, a scuPA can be taken up by cancer cells in which it binds directly to HOXA5. MMP: matrix metalloproteinase; FGF2: 
fibroblast growth factor 2; VEGFA: vascular endothelial growth factor A; CXCL1: C-X-C motif ligand 1; IL8: interleukin 8; eNOs: endothelial 
nitric oxide synthase; uPA: urokinase plasminogen activator; scuPA: single chain form of uPA
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its ability to degrade collagen[67]. Accordingly, LNCaP 
cells overexpressing MMP-14 were shown to form 
significantly larger bone lesions in mice[67]. MMP-14 has 
been shown to be upregulated by HOXA3 expression[62], 
and HOXA3 is overexpressed in a number of cancers, 
including prostate cancer[25]. Another HOX gene linked 
to the progression of prostate cancer is HOXA1, 
the expression of which promotes the proliferation, 
invasion and metastasis of prostate cancer cells[63]. A 
number of key downstream target genes of HOXA1 
have been identified, including MMP-3, which has 
itself been linked to prostate tumor progression in a 
number of studies[68-71], and polymorphisms in the 
MMP-3 gene have been identified as a risk factor for 
the development of prostate cancer[72].

In addition to the MMPs, HOX transcription factors 
regulate a number of other target genes involved in 
the interaction of prostate cancers cells with the ECM. 
These include HOXA1, which inhibits the expression 
of E-cadherin[63], a major component of the epithelial 
adherence junctions that mediate intercellular 
interactions[73]. The downregulation of E-cadherin 
expression is one of the changes that occurs during 
the epithelial to mesenchymal transition, the activation 
of which in cancer cells is a key step in tumor invasion 
and metastasis[74]. The loss of E-cadherin also results 
in the disruption of the cytoplasmic cell adhesion 
complex, releasing proteins that can further modify 
the tumor microenvironment[73]. Another protein with a 
key function in cell adhesion is integrin β3, elevated 
expression of which is positively associated with high 
levels of HOXD3 expression[75]. Integrin β3 has a role in 
tumor progression, invasion, and metastasis[76-78], and 

is also associated with more aggressive behavior of 
prostate cancer bone metastases[79]. Correspondingly, 
integrin antagonists have been shown to reduce bone 
degradation in clinical trials[80].

HOX TRANSCRIPTION FACTORS AND 
ANGIOGENESIS

Angiogenesis is a fundamental event in the natural 
history of tumors, allowing for their growth beyond 
a size restricted by the diffusion limits of nutrients 
and oxygen, and ultimately their systemic spread 
to form metastases[81]. HOX transcription factors 
have multiple roles in regulating the secretion of 
factors from tumor cells that drive this process in the 
microenvironment, and are also expressed in the cells 
of the tumor microvasculature in which they promote 
tumor-supportive functions. For the latter, HOXD3 has 
been shown to be particularly significant as it drives 
the expression of integrin alpha 5 beta 1 in endothelial 
cells which in turn leads to immature, leaky vessels 
that are typical of many tumor types[82]. Conversely, 
HOXA5, the expression of which results in more stable 
and less permeable vessels, is absent from tumor 
vessels[83,84]. Within tumor cells in has been shown that 
a number of HOX transcription factors can drive the 
expression of proangiogenic secretory factors. One of 
the earliest identified examples of this is HOXB7, which 
drives fibroblast growth factor 2 (FGF2, also known as 
bFGF) expression in multiple cancer types[58,85]. FGF2 
is a well characterized proangiogenic factor, and has 
been shown to induce tubule formation by endothelial 
cells when secreted from a prostate tumor in a rat 
model of this disease[86]. In addition to FGF2, HOXB7 
drives the expression of vascular endothelial growth 
factor A (VEGFA), C-X-C motif ligand 1 (CXCL1), and 
interleukin 8 (IL8)[58]. A role for IL8 in angiogenesis 
and its potential as a therapeutic target in cancer was 
demonstrated using fully-humanized antibodies to this 
protein in a mouse model of melanoma[87], and it was 
subsequently shown that IL8 increases expression of 
the key proangiogenic ligand VEGF in endothelial cells 
resulting in a self-reinforcing, autocrine loop through the 
VEGF receptor 2 (VEGFR2) expressed on the surface 
of these cells[88]. Correspondingly, polymorphisms 
in the IL8 gene were shown to be associated with 
more aggressive prostate cancer[89]. CXCL1 is also a 
proangiogenic cytokine and has a potential role in the 
development of tumor resistance to anti-VEGF based 
therapy[90], and in gastric cancer has been shown to 
promote tumor growth through the VEGF pathway[91]. 
Correspondingly, the down regulation of CXCL1 has 
been shown to mediate the enhancement of the 
antiangiogenic effects of docetaxel by dexamethasone 
in in vitro and in vivo models of prostate cancer[92]. 

Table 1: Direct and indirect regulation of target genes 
by HOX transcription factors in the context of the tumor 
microenvironment

HOX protein Target gene
Direct or 
indirect 

regulation
Reference

HOXA1 MMP-3 Unknown [63]
HOXA1 Snail Unknown [63]
HOXA1 E-cadherin3 Unknown [63]
HOXA3 MMP-14 Unknown [62]
HOXA9 eNOS Direct [99]
HOXA9 VEGFR2 Direct [99]
HOXA9 VE cadherin Direct [99]
HOXB7 MMP-9 Unknown [58]
HOXB7 Angiopoietin-1 Unknown [58]
HOXB7 FGF2 Direct [58,85]
HOXB7 VEGFA Unknown [58]
HOXB7 CXCL1 Unknown [58]
HOXB7 IL8 Unknown [58]
HOXC11 MMP-2 Direct [57]
HOXC11 MMP-8 Direct [57]
HOXD3 Integrin beta 3 Indirect [75]
HOXD3 uPA Unknown [100]
HOXD3 Integrin alpha 5 

beta 1
Direct [82]
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Its proangiogenic effects are also mediated through 
non-VEGF pathways, including the downregulation of 
fibulin-1 in castrate resistant prostate cancer[93]. It is 
targeted by the tumor-suppressor microRNA (miR)-
200 that blocks angiogenesis and inhibits metastasis 
in multiple tumor types[94].

An additional proangiogenic gene upregulated by 
HOXB7 is angiopoietin-1 (Ang-1)[58], the product of 
which plays a crucial role in stabilizing newly formed 
vasculature. The binding of Ang-1 protein to its receptor 
on endothelial cells promotes their adherence to mural 
cells such as pericytes and smooth muscle cells[95-97]. 
Correspondingly, Ang1 secretion by prostate cancer 
cells in a xenograft model was shown to enhance 
tumor growth through an increased level of branching 
in the neovasculature[98].

Additional proangiogenic genes that are regulated by 
HOX transcription factors include endothelial nitric 
oxide synthase (eNOs)[99] and urokinase plasminogen 
activator (uPA)[100]. HOXA9 expression in progenitor 
endothelial cells within the tumor microenvironment 
was shown to be necessary for their commitment to an 
endothelial lineage, and it was also shown to directly 
regulate endothelial specific genes such as eNOs, 
VE cadherin, and VEGFR2[99]. In this context HOXA9 
was identified as a key target of histone deacetylases 
(HDACs), as its expression was significantly reduced 
after HDAC inhibitor treatment and this in turn blocked 
angiogenesis both in mice[99] and in a clinical trial of 
combined HDAC and VEGF inhibitors for multiple 
cancers including advanced prostate cancer[101]. 
HOXD3 has also been shown to have a role in vessel 
formation by endothelial cells through the activation 
of uPA transcription[100]. uPA is involved at all stages 
of angiogenesis, including endothelial cell division, 
migration, the formation of stable vessels, and the 
regulation of vascular permeability through proteolytic 
degradation of the extracellular matrix[102-104]. This is 
mediated through intracellular signaling initiated 
by its binding to receptors including uPA receptor 
(uPAR; CD87), low-density lipoprotein receptor-
related protein receptor (LRP/α2MR), and specific 
integrins[105-110]. In addition, uPA converts plasminogen 
into serine protease plasmin[111,112], which in turn 
breaks down matrix proteins and activates a number 
of MMPs[113-116]. uPAR-bound uPA has been shown 
in a number of studies to be localized to the leading 
edge of migrating cells[117-119] to help ensure a focused 
degradation of the ECM and liberate matrix-bound 
proangiogenic factors, including VEGF[120-122] and 
FGF2[123,124]. In addition to an extracellular activity, a 
single chain form of uPA can be taken up by cancer 
cells and be translocated to the nucleus[125] where 

it binds directly to HOXA5 protein and prevents it 
from activating the transcription of the key tumor 
suppressor gene p53[21]. Taken together, these studies 
imply the existence of a HOX-mediated feedback 
mechanism from the developing neovasculature to 
the tumor whereby HOXD3 promotes uPA expression 
in the endothelial cells, and this in turn blocks p53 
expression in the tumor, promoting cell proliferation 
and survival.

CONCLUSION

The evidence from previous studies indicates that 
the expression of HOX genes in the prostate tumor 
modifies the microenvironment in a manner that 
supports metastasis through degradation of the 
ECM, and angiogenesis through the secretion of 
proangiogenic cytokines. This is complemented by the 
expression of HOX genes in the microenvironment, 
particularly in endothelial cells, that promotes tumor-
supportive functions including angiogenesis and 
the secretion of proteins that directly influence the 
malignant phenotype. Thus, targeting the function of 
HOX proteins may not only have a direct effect on 
tumor cells, but could also help reverse changes in 
the tumor microenvironment that would otherwise 
promote cancer progression.
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