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Biometrics is a unique physical or behavioral characteristic of a person. This 

unique attribute, such as fingerprints or gait, can be used for identification or 

verification purposes. Gait is an emerging biometrics with great potential. Gait 

recognition is based on recognizing a person by the manner in which they walk. 

Its potential lays in that it can be captured at a distance and does not require 

the cooperation of the subject. This advantage makes it a very attractive tool for 

forensic cases and applications, where it can assist in identifying a suspect 

when other evidence such as DNA, fingerprints, or a face were not attainable. 

Gait can be used for recognition in a direct manner when the two samples are 

shot from similar camera resolution, position, and conditions. Yet in some 

cases, the only sample available is of an incomplete gait cycle, low resolution, 

low frame rate, a partially visible subject, or a single static image. Most of these 

conditions have one thing in common: static measurements. A gait signature is 

usually formed from a number of dynamic and static features. Static features 

are physical measurements of height, length, or build; while dynamic features 

are representations of joint rotations or trajectories. 

The aim of this thesis is to study the potential of predicting dynamic features 

from static features. In this thesis, we have created a database that utilizes a 3D 

laser scanner for capturing accurate shape and volumes of a person, and a 

motion capture system to accurately record motion data. The first analysis 

focused on analyzing the correlation between twenty-one 2D static features and 

eight dynamic features. Eleven pairs of features were regarded as significant 

with the criterion of a P-value less than 0.05. Other features also showed a 
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strong correlation that indicated the potential of their predictive power. The 

second analysis focused on 3D static and dynamic features. Through the 

correlation analysis, 1196 pairs of features were found to be significantly 

correlated. Based on these results, a linear regression analysis was used to 

predict a dynamic gait signature. The predictors chosen were based on two 

adaptive methods that were developed in this thesis: "the top-x" method and the 

"mixed method". The predictions were assessed for both for their accuracy and 

their classification potential that would be used for gait recognition. The top 

results produced a 59.21% mean matching percentile. This result will act as 

baseline for future research in predicting a dynamic gait signature from static 

features. The results of this thesis bare potential for applications in 

biomechanics, biometrics, forensics, and 3D animation. 
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Terminologies Glossary 
3D Convex hull 

A 3D convex hull is the efficient 3D representation of convex shape constructed 

through the usage of an algorithm. In gait recognition, certain techniques use 

multiple cameras to reconstruct a 3D shape of the subject. 

3D mesh 

A 3D mesh is a 3D representation of polygon based surface or object. In this 

thesis, 3D mesh is referred to the surface and 3D object created from reverse 

engineering the original points from the scanned point clouds. 

Angle variance  

Angle variance is a term used in gait recognition to identify that the angle of a 

subject’s walk in regards to the camera changes from one sample to the other. 

Appearance based gait recognition 

Appearance based gait recognition creates a gait signature from the pixel 

information extracted from a moving subject. This approach does not attempt to 

extract information of pose or joint rotation, but rather treats the extracted 

silhouette as pixel information. One of the most common features extracted 

using this technique is the Gait Energy Image (GEI). 

Biometrics 

The statistical explicit representation of a biological or behavioral phenomenon. 

This representation is often used to recognize or identify a person. 



xxii 

 

Centroid 

Centroid is the term used to define the centre of an object or region in an 

image. 

Closed circuit television (CCTV) 

CCTV is a term used to describe video cameras and footage that is not meant 

to be used for broadcasting purposes. This term is commonly used for 

surveillance cameras.  

Database covariants 

This is a term used in gait recognition based database which defines the 

variations to a gait sample. These variations might include change of : shoes, 

clothing, gait speed, or lighting conditions of the same subjects in the database. 

Dynamic features 

These are the dynamic features that are extracted from a subject’s gait to form 

a gait signature. Dynamic features relate to the motion extracted from the 

manner in which various joints move in a human. Dynamic features usually 

involve the element of time. Speed, rotation of knees, and stride length are 

examples of dynamic features. 

Electromyography (EMG) 

Electromyography is the process of measuring electrical activity in muscles 

using an electromyogram.  
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Fourier descriptors 

This technique is a method used to describe the outline of an object in image 

processing, using the computed Fourier Transform of the boundary. 

Gait 

The cyclic motion of the joints that produces locomotion 

Gait kinematics 

These are the description of gait movement, which are usually represented as 

angles of joint rotations and distance displacement of motion. Most model 

based dynamic features are considered to be gait kinematics. 

Gait kinetics 

These are the forces in involved that lead to locomotion or gait. These forces 

include forces from muscles or ground reaction forces. 

Histogram similarity 

Histograms are normalized by the number of recorded samples. The similarity is 

calculated by measuring the absolute difference between two histogram 

representations.  

Inertial sensors 

Inertial sensors are sensors that measure inertia. These sensors are used in 

gait recognition to extract dynamic features without resorting to video cameras. 
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Krawtchouk moments 

Krawtchouk moments are a discrete orthogonal moment that are based on the 

Krawtchouk polynomials      

Mahalanobis distance 

This measurement equals to the distance between a point X from the mean Y, 

using standard deviation as a unit of measure.  

Model based gait recognition  

Model based gait recognition techniques create a human model that would fit in 

the extracted silhouette of walking subject. This model includes information that 

can be extracted such as knee rotations, stride length, and hip rotations. 

Motion capture 

This is the process of recording the motion from a subject only using different 

types of sensors that include: cameras, accelerometers, and infrared cameras. 

Motion capture systems have the subject perform an action, and the information 

is saved as the positional and rotational information of each joint. The motion 

capture used in this thesis is an optical based one, in which reflective markers 

are placed on a subject. Several cameras around the subject record the 

markers over time, and reconstruct their positions in 3D on the native software. 

OBJ format 

OBJ is a 3D geometry file format commonly used in 3D graphics and animation 

software. In this thesis, the OBJ format is used in the 3D mesh files. 
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Point cloud 

Point cloud is a term used to describe a set of points in 3D space defined by an 

X,Y, and Z coordinates. The coordinates represent the distance from the point 

to the centre of origin along the designated axes. In this thesis, a point cloud 

refers to the 3D points captured using the 3D laser scanner. 

Point of Light Display 

It is a video that displays motion of a human without showing the person’s 

appearance. This is achieved through the placement of small white spheres on 

a subject wearing a totally black suit shot in a studio with a black background. 

The end result is a video with floating white spheres. 

Principle Component Analysis(PCA) 

PCA is an analysis method that is commonly in gait recognition for dimension 

reduction of a gait signature.  

Procrustes shape analysis 

This analysis is statistical based and is used to compare shapes of an object.  

Radon transform 

This technique is often used in image processing, which computes an image 

along specified directions. 

Static features 

These are the static features that are extracted from a subject’s gait to form a 

gait signature. Static features are usually single measurements that do not 
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involve the element time. They commonly represent measurements of height 

and build. Thigh length, torso width, and head length are example of static 

features. 

Stride cadence 

Is the number of strides per minute, and usually reflect speed of a gait. 

Stride length 

Stride length is the length of a single step in a subject. In gait recognition, stride 

length usually refers to the average length of steps in a subject’s gait.  
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Chapter 1: Thesis Introduction 

1.1. Introduction  

People identification and verification is a very important process that involves 

many aspects of people’s lives; from border control to email access., There are 

currently three methods of human identification or verification(Boyd and Little, 

2005, Sebastian, 2013), which are:  

1- Object based, 

2- Knowledge based, 

3- And biometric based. 

An object-based method would involve a unique object, or token, that would be 

only in the possession of that person, which would act as a verification or 

identification of his/her identity(Boyd and Little, 2005). Keys are a main example 

of an object-based method. A Knowledge based method involves identification 

and verification through a piece of information. An example of such a method is 

an email password. A fusion of the methods is more common, such as a bank 

card, in which the card (object based) and a pin number (knowledge based) are 

required. 

Biometrics can be described as a statistical explicit representation of a 

biological phenomenon (Prabhakar et al., 2011), or alternatively are also 

defined in other literature as a method to identify humans through one or more 

explicit features, both physical and behavioral (Goudelis et al., 2010, Prabhakar 

et al., 2011, Jain et al., 2004).  
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Although all these methods are used in various applications in our daily lives, 

the use of biometrics has several advantages over token or knowledge based 

identification or verification. First, the token in an object based method might be 

stolen, while in a knowledge based method, a password or pin can be 

electronically stolen or obtained (Prabhakar et al., 2011, Gafurov, 2007). 

Second, there are certain practicality issues with knowledge and object based 

methods. Remembering many different passwords for many accounts and 

online emails can be very hard to keep up with. Carrying many objects 

(passport, bank cards, and license) can be also overwhelming (Gafurov, 2007). 

Therefore it is more pragmatic to link the identity of a person to a personal 

distinct physical trait(Prabhakar et al., 2011). This is where biometrics excels, 

as it does not exhibit the disadvantages mentioned of the other two methods 

(Gafurov, 2007). 

Although the origins are in law enforcement, applications of biometrics are now 

commonly seen in civilian situations such as access control(Jain et al., 

2004).Fingerprints are one of the oldest biometrics to have been studied and 

used (Prabhakar et al., 2011). Although using the iris, as a biometric is not as 

old as use of fingerprints, yet it is considered as one of the most used 

biometrics in practical situations. Facial recognition has been a very active 

developing form of biometrics. Other emerging biometrics modalities have been 

developed and studied such as gait, palm print (Kong et al., 2009), 

skin(Goudelis et al., 2010), signature, odor(Delac and Grgic, 2004) , keystroke 

and gait(Prabhakar et al., 2011). 
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1.2. Gait  

Gait can be described as a cyclic motion of the joints that produces locomotion 

or movement, such as a walk or run. An illustration of a human gait cycle can be 

seen in figure 1-1. Using gait, as a method to recognize and identify a person 

has been an attractive approach for two main reasons: its ability to be captured 

at a distance, and its noninvasive capturing method.  

 

Figure 1: An illustration of a human gait cycle 
 

The study of the biomechanics of gait is not limited to biometrics. On the 

contrary, it was involved in the clinical study of gait and its disorders far before 

gait emerged as a biometric. Gait analysis can be tracked back to a pre-

computer age, when Aristotle produced theories around the manner in which 

humans and animals move (Baker, 2007). The Renaissance period witnessed 
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great interest in the human body and its biomechanics, which was advanced 

through human dissection(Whittle, 1996). Gait analysis using computers was 

first introduced during the late 1970’s when suitable computer systems were 

available for use at an affordable budget.  

Gait analysis looks at several aspects, which include: gait kinematics and gait 

kinetics. Gait kinematics is the description of gait movement, which is usually 

represented as angles of joint rotations and distance displacement of motion. 

Such measurements can be captured using a video camera or a motion capture 

system. On the other hand, kinetics are the forces in action during gait, such as 

the forces between the feet and the ground. These measurements can be 

calculated through the use of floor sensors (Whittle, 1996). 

Gait was not introduced as a means to recognize people until Cutting and 

Kozlowski proved that people could identify their friends through a Point of Light 

Display, which is video of moving light spheres, which are placed on a subject 

wearing black clothes(Cutting and Kozlowski, 1977). Later in 1993, Sourabh 

and Edward applied pattern recognition techniques to the kinematic data of a 

subject, and concluded that computer-based gait recognition is possible 

(Goddard, 1992).  Gait recognition, which will be explained in further details in 

chapter 2, has since evolved in many different respects, from gait capture, to 

motion modeling and gait signature (feature) extraction. Until now gait 

recognition has been tested using a range of mediums that include standard 

video cameras, infrared cameras, and motion capture systems. In gait 

recognition human motion modeling can be performed in two or three 

dimensions depending on the application and medium used. Features extracted 
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from a subject include many types of information that range from pixel 

information to motion and trajectories.  

1.2.1. Gait and Latent Information 

 

Most of the early gait recognition studies present conditions that are favorable 

for access control applications(Bouchrika et al., 2011), although biometrics’ 

origins can be traced back to police work in criminal identification (Jain et al., 

2004).Gait recognition has a great potential to be an effective means of 

identification in criminal investigation and forensic cases for several reasons. 

First, the prevalence of closed-circuit television (CCTV) cameras in most places 

provides a great source of information, especially considering that gait can be 

captured at a distance(Bouchrika et al., 2011). Second, the non-invasive 

method in which a gait signature can be captured is very favorable in criminal 

investigations, which usually involve uncooperative subjects. Third, in cases 

where criminals are masked and wearing gloves, gait captured via CCTV 

cameras can be crucial to an investigation, because gait is hard to hide or 

disguise.  

A number of recent studies have emerged to discuss the use of gait in forensic 

cases (Bouchrika et al., 2011, Yang et al., 2014, Guan et al., 2013) It is clear 

that there are specific challenges facing the application of gait recognition in 

forensic cases, the main one being latent (or partial) information. Partial 

information describes the situation where information about the subject’s gait is 

incomplete, e.g. where only a single frame of CCTV footage contains the 

subject, or parts of their body are occluded. This is similar to fingerprints in a 
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crime scene, which are usually skewed, partial, or smeared. Crime scenes 

CCTV cameras came in different resolutions, angles, lens, and frame rate. With 

no constraints, performing comparison for identification becomes more difficult. 

Therefore, the goal in forensic or criminal cases would be to make the most out 

of limited data.  

One approach to solving such a problem is making the optimum use of the 

partial evidence found. This approach has been adapted in cases of low frame 

rate video (Guan et al., 2013). The same approach is used by Yang et al, in 

cases of occlusion, in which part of the body is covered by a foreground 

element between the subject and camera(Yang et al., 2014).  

Although such approaches provide potential solutions for specific challenges 

facing gait recognition’s use in forensics, yet they do not perform a 

reconstruction or prediction of the whole gait dynamics and motion.  Being able 

to predict the dynamics of a walk, regardless of whether the gait sample is 

partial or of a low frame rate can be crucial to the application of gait as an 

emerging biometric in forensic cases. This is one of the main challenges that 

this thesis aims to address. Various factors influence the manner in which a 

human walks. Factors such as age, gender, height, weight, body fat, muscle 

composition and strength(Yun et al., 2014) can influence a gait.  

1.3. Research Aims 

This thesis aims to study the relationship between 2d and 3d dynamic and static 

features through a correlation analysis. To conduct this analysis a database 

was created using motion capture and 3d laser scanning systems to provide 



7 

 

optimum accuracy. Based on the correlation analysis, the study will conclude 

with the quality and accuracy assessment of the predictability of dynamic gait 

features that are specifically used for gait recognition applications.  

The benefits of understanding the nature of this relationship is not limited to 

biometric and forensic based applications, but also transcends to biomechanics, 

clinical gait analysis, and 3D animation. The relationship between static and 

dynamic measurements from a computer vision point of view can provide an 

alternative insight into biomechanical human motion modeling. Being able to 

predict the dynamics of a gait from static measurements can potentially reduce 

the cost of gait analysis by taking away the need of using expensive gait motion 

capturing systems. Finally, predicting the motion component of gait through 

static measurement can provide an automatic method of animating walk cycles 

for 3d characters in animations and games, instead of the laborious manual 

process of hand key frame animations.   

The following chapter will survey the background of gait research, and chapter 

3 will describe the process of creating the database and its content and data. 

Chapter 4 will analyze the relationship between 2d static and dynamic features, 

while chapter 5 will discuss the relationship between the 3d static and dynamic 

features. Chapter 6 will discuss the creation of a prediction methodology as well 

as evaluate the accuracy and quality of the predictions. Finally, chapter 7 will 

discuss the main conclusions, contributions, and future research.  
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Chapter 2: Gait Recognition 

 

2.1. Introduction 

This chapter will build an understanding of what gait recognition is, how it has 

evolved, and the overall process of most gait recognition techniques. The 

chapter will specifically look into the various features that relate to gait, both 

static and dynamic. The chapter will conclude with the main challenges 

currently facing gait recognition progress, as well as defining the gap in 

previous work and the research questions in this thesis. 

 

According to JE Boyd and J.J. Little, the definition of gait is the “coordinated, 

cyclic combination of movements that result in human locomotion”(Boyd and 

Little, 2005).  Only cyclic motion is regarded as gait such as: walking, running, 

and jogging. Movements such as sitting down, carrying an object from the 

ground are not cyclic, and do not lead to motion, and are therefore not regarded 

as gait. Figure 2 shows multiple gait cycles, with one gait cycle specifically 

highlighted.  
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Figure 2: An example one complete gait cycle within cyclic walking motion. 

2.2. History of gait recognition 

Johansson was able to prove in an objective manner that human observers can 

discriminate people from animals when using point light displays (Johansson, 

1973). Point light displays, are a video recording where white lights spheres are 

placed on a subject who is wearing black and are shot against a black 

background. The result is a video featuring floating white spheres, where the 

outline of the subject is not visible. Using the same Point of Light Displays, 

Cutting and Kozlowski managed to show that people can recognize their friends 

through their gaits, which went against the common convention that people 

recognize other people via physical appearance only (Cutting and Kozlowski, 

1977). In addition to perception based studies, Nigel H Goddard showed in 

1992, that computer based recognition was achievable from motion features in 

point light displays (Goddard, 1992).The study presented a method for 

differentiating between random moving points or those of a lights placed on a 
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walking subject, and therefore demonstrated that human motion recognition 

was achievable in computer vision, without having to resort to using shape or 

colour information.  It was not until 1994 in a study conducted by Niyogi and 

Adelson that pattern recognition techniques were used to recognize a person 

from the extracted subject’s joint angle rotation signal, which in this case were 

extracted directly from ordinary video sequences without point of light displays 

(Niyogi and Adelson, 1994).    

Following those initial findings, gait recognition grew to become an appearance 

(pixel based) technique. The introduction of the Gait Energy Images (GEI) 

allowed that technique to flourish. While in model based approaches, the 

introduction of phase-weighted magnitude as part of a gait signature was 

regarded as a major milestone in increasing the discriminating characteristics of 

a human’s gait.  

Many advancements in the field of biometrics overall, and gait recognition in 

particular, were assisted by the Human at a distance ID challenge (Sarkar et al., 

2005). Sarkar et al.’s study provided the research community with a database 

for analyzing gait, as well as presenting main challenges, and outlining a 

baseline algorithm for testing and comparison. This was followed by growing 

interest in the field from several researchers and institutes such as MIT, 

Southampton University (Seely et al., 2008), University of Central Florida 

(Sarkar et al., 2005), and Osaka University (Makihara et al., 2012).   



11 

 

Gait has always been studied as an emerging biometric, yet in 2013 witnessed 

an increase in the studies around using gait recognition as a forensic and 

investigation tool, which will be discussed in a later section. 

2.3. The Gait Recognition Process 

Although gait recognition has evolved from its primitive beginnings, yet the 

general structure has remained consistent (Sebastian, 2013). Most gait 

recognition techniques follow a unified path. It first starts with the method of 

capturing; which can vary from standard video cameras to wearable sensors.  

The second step is silhouette extraction. This step involves motion detection 

and classification, which defines the regions in which the data belongs to a 

human’s gait motion rather than an object’s motion, such as a car or tree 

movement, or movement of the camera. Thirdly, a certain motion description or 

model is derived from the silhouette. In the fourth step, features are extracted 

from the model and are used to form a gait signature. Following this some 

techniques perform a fifth step of a feature selection or dimension reduction of 

the gait signature. Finally, a classifier method is used to find the closest match 

between the gait signatures captured and the gait signatures in a database. 

Figure 3 summarizes the gait recognition process.  
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Figure 3: A diagram of the gait recognition process. 

2.3.1. Gait capture 

Just as facial recognition was tested using different capturing techniques and 

technology, gait capture has been tested using several different technologies as 

well. Although most are video based, there are a few exceptions in which other 

technologies were used for gait capture. Gait can be captured using any of the 

following mediums and methods: standard video (Sarkar et al., 2005), floor 

sensors (Middleton et al., 2005), wearable sensors (Rong et al., 2007), infrared 

cameras (Tan et al., 2006), motion capture (Razali and Manaf, 2012), laser 

scanning (Alawar et al., 2013), 3D stereo cameras (Ioannidis et al., 2007a), and 

time-of-flight cameras (Sivapalan et al., 2011). A summarized explanation of 

each of the capturing devices’ usage and description can be found below.  

Video 

identification/recognition 

classification 

feature selection  or dimension reduction 

feature extraction 

motion modeling 

sillhouette extraction 

gait capture 



13 

 

Video recorded using standard RGB cameras, is the most commonly used 

medium in the field of gait recognition research. Different cameras of different 

resolutions have been used in different techniques and databases. There have 

also been studies based on cameras with different frame rates and different 

levels of noise (Hayfron-Acquah et al., 2003), in order to simulate real world 

data that would usually be recorded by a low resolution and low frame rate 

surveillance system.  Single camera systems are very common as they 

represent a similar setup to CCTV cameras in public spaces. Yet the nature of 

single cameras leads to several additional challenges, most importantly, 

occlusion; whether that is the self-occlusion of an individual’s by their torso (for 

example) or occlusion by other objects within the scene. 

Multiple cameras 

Although a multiple camera setup can be regarded as standard video setup, it is 

important to distinguish this medium by itself, because of the nature in which 

such data is analysed and processed.  In such setups, the problem of self-

occlusion can clearly be reduced relative to single cameras. In addition to 

reducing occlusion the set-ups allow researchers to study the influencing factor 

of the camera angle variance, which is the angle variance at which the camera 

faces the subject,  geometry in capturing different aspects of the gait cycles. 

These setups sometimes include a camera at 45 degrees from the subject to 

imitate a standard surveillance cameras. The CASIA database, for example, 

included numerous cameras at equal angle intervals, forming a 360 degrees 

video capture around the subject (Yu et al., 2006). 
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In 2006, a 3D Gait chamber was developed at the University of Southampton. 

The 3D gait chamber was created using 8 calibrated cameras to capture three 

dimensional gait data (Seely et al., 2008).  In that study the data from the 

individual cameras went through the process of silhouette extraction, which is 

followed by the creation of 2.3.1. of the walking subject that is reconstructed 

from the individual silhouettes.. Although such systems provide a better 

alternative to single cameras, yet it is very uncommon for such a setup to be 

found in public areas with CCTV cameras due to cost effective measures in 

place. .  

Floor sensors and Wearable sensors 

There are a few gait recognition techniques that use data from non-imaging 

devices, such as floor sensors or wearable sensors. These studies were 

motivated for specific applications. Floor sensors are sensors that are pressure 

or force sensitive and are mounted in a fixed position on the floor (Middleton et 

al., 2005). Floor sensor based gait recognition can be used in different 

applications, including building access application, and passport control. 

Depending on the algorithm and technique used, features such as stride length, 

stride cadence, and time on toe to time on heel ratio can be extracted from the 

floor sensors, and are used in the study by Middleton et al. In their study an 

80% recognition rate was achieved in a database of 15 subjects. 

Wearable sensors, can include many different types of sensor, in gait the most 

important are accelerometers (e.g. those present in typical mobile phones), 

which can potentially be used for identity authentication in mobile devices.  In a 

study by Gafurov et al., wearable sensors were used to measure the 
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acceleration of the body part they were attached to (Gafurov et al., 2010). The 

signal extracted from the sensor was then compared to other signals using a 

histogram similarity method. In this method, using the number of recorded 

samples; the histograms are normalized. The similarity is calculated through the 

matching score between the two gait signal’s absolute distances.  Although in 

the past these sensors were placed on the waist, Gafurov et al. have placed the 

sensor on the ankle, because it undergoes greater accelerations than other 

body parts while walking. 

More recent studies have looked at the usage practicality of gait recognition in 

mobile phones. In a study by Hoang et al., the use of gait data from different 

accelerometers on different mobiles was tackled (Hoang et al., 2013). An 

adaptive mechanism was proposed by studying the effect of various 

preprocessing steps including: data segmentation, noise reduction and feature 

extraction.   

 The use of wearable sensor technology in gait recognition has the potential of 

being applied to identity authentication, as well as providing information about 

the identity of a mobile user in criminal investigations if such data has been 

recorded in similar manner to how GPS location is stored on a mobile.  

Infrared 

Infrared imaging was introduced as a solution for some of the problems faced in 

facial recognition applications (Goudelis et al., 2010). In facial recognition, 

infrared imaging has been able to extract features that are not present in 

standard cameras; in particular it is able to make certain features more visible in 
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faces such as: veins or tissue maps. However, in gait recognition the major 

benefit is its effectiveness in night time surveillance where visible light is usually 

scarce. In some studies, the use of infrared was reported to help in providing a 

better silhouette (Ming et al., 2009). Later studies by DeCann et al looked 

further into the use of the infrared spectrum in gait recognition (DeCann et al., 

2013). They created a database of gait samples captured using a short-wave 

infrared sensor. The aim was to test the state of the art gait recognition 

techniques at that period of time, and understand the challenges that are faced 

when using such a medium. Although using they suggest that the infrared 

spectrum is ideal for covert missions or nighttime applications. Although 

silhouette extraction using infrared involves less complex processing than 

standard video,  yet challenges such as low contrast can create problems with 

silhouette extractions (DeCann et al., 2013). 

Motion capture 

Motion capture can provide more accurate motion data than most modalities 

mentioned in this section. In a study by Razali and Manaf, gait recognition was 

conducted using motion capture data. Principle component analysis (PCA) was 

used to reduce the dimensionality of the gait motion data, as well as represent 

the subject’s gait in a PCA feature vector (Razali and Manaf, 2012). Euclidean 

distance was used to measure the match rate between the test subject’s 

principal components to the principal components of subjects in the database. 

Although using motion capture provides optimum accuracy, yet because it 

involves extensive subject cooperation, the primary usage of it is to provide 

ground truth data rather than identify people in real-life situations. A subject 
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wearing a motion capture suit with the motion capture cameras in the 

background on tripods can be seen in figure 1-3. 

 

Figure 4: A subject wearing a motion capture suit with motion capture cameras on tripods in the 
background 

3D and Laser scanners 

3D scanning methods can differ in their technology or method of 

implementation. Most of these devices produce 3D coordinates that can be 

represented by point positions forming a point cloud (Böhler and Marbs, 2002). 

Few studies have made use of such technology. In 2008, Posada et al. 

developed a system that used a low cost 3D surface scanner that was used for 

clinical gait analysis application (Posada-Gomez et al., 2008). The aim was not 

to capture a full 3D surface of a subject, but rather specific parts of a leg pre-

defined by physical markers placed on the subject. This analysis was conducted 

pre-treatment and post-treatment.  

It was also proposed by Barnich et al. to use a biometric curtain in gait 

recognition (Barnich et al., 2010). In this system, two laser scanners would be 
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placed on two adjacent corners in a path. These two scanners would form a 

virtual curtain. When a subject passes through the virtual curtain, a 3D slice of 

the subject’s profile that intersects with the curtain is extracted. As the subject 

passes through this curtain, a series of slices are captured; forming temporal 3D 

features that are used to create a gait signature. Although this technique 

produces a novel and alternative approach to gait recognition, yet the setup and 

equipment needed are more complex and unpractical when compared to video 

based gait recognition. 

In a study by Yamauchi et al., laser range sensors were also used (Yamauchi et 

al., 2009). In this process, the human motion was extracted using a 3D model 

that was fitted to the captured 3D data. Kinematic (dynamic features) and static 

features were extracted from the 3D model, which were then used for gait 

recognition.  Although such technologies provide an alternative approach to the 

other sensors mentioned above, yet their high cost and lack of significant 

increase in performance or recognition rate does not make them an ideal 

approach in practical situations. However, in a similar manner to motion 

capture, laser scanners can provide the most accurate 3D measurements of a 

subject, and are therefore useful for providing ground truth data.  

3d stereo and depth cameras 

3D stereo cameras have been recently used in multiple disciplines including gait 

recognition. In (Ioannidis et al., 2007a), a 3D stereo camera was used to study 

the possibilities of utilizing the additional depth information in gait recognition. 

The depth data and the binary silhouette were grouped together using two 

methods of transform: 3D Radial silhouette distribution transform and 3D 
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geodesic silhouette distribution transform. Their results show that the approach 

is viable, and achieves improved performance over the baseline of Sarkar et al. 

(2005)  

Time-of-flight (ToF) and structured light cameras have also received attention in 

gait recognition studies, especially after the introduction of the Microsoft Kinect. 

ToF cameras use knowledge of the speed of light to determine the distance 

between a point and the camera, therefore reconstructing a three-dimensional 

representation of what the sensor is viewing. Several gait recognition studies 

have reported their results and attempts at using such technology. Milovanovic 

et al. used the Kinect camera to perform gait recognition on frontal facing 

subjects (Milovanovic et al., 2013). In  (Lu et al., 2013), test subjects were 

recording walking arbitrarily  using a Microsoft Kinect camera. Although the 

Kinect camera provides the beneficial addition of depth, yet its limited distance 

coverage proves currently inefficient for gait recognition at a distance.  

As new imaging technology is developed, the number of ways of capturing gait 

increases. There is no one technology that provides the ideal tool, but the 

choice is rather based on the scope of its application, by understanding its 

limitations and utilizing its strengths. 

2.3.2. Motion detection and extraction 

 

Different gait recognition techniques use different methods to extract features 

from subjects, but the majority requires a silhouette. The silhouette is defined as 

the range of pixels that contain a subject in a video (Sarkar et al., 2005). This 

process can generally be processed in the following steps: Background 
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estimation (environmental modeling), silhouette or motion detection, motion 

classification and tracking. Each of the steps will be described in the following 

subsections. 

2.3.3. Background subtraction 

It is important for any gait recognition technique to acquire a background image 

in order to define the foreground from the background. In ideal lab conditions, 

light, background, and foreground elements can be controlled kept consistent, 

making background subtraction relatively straightforward. But in real world 

environments the distinction between foreground and background is often not 

clear, and the challenge lies in identifying the dynamics of an environment, from 

illumination variance to background movement (trees, leaves, flags, etc.) (Wang 

et al., 2004). 

The most commonly used method to extract a background would be to compute 

temporal average, or some related quantity (Sarkar et al., 2005, Hu et al., 2004, 

Ioannidis et al., 2007a). In (Sarkar et al., 2005), the background plate extraction 

is calculated by computing the mean and the covariance of the color channel in 

each pixel. The decision on whether a pixel is classified as background or 

foreground is based on the Mahalanobis distance between the pixel value and 

the mean value, where large values indicate the presence of motion. In (Hu et 

al., 2004), the Least Median of Squares method was used to compute a 

continuously updated background.  
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There are several methods to extract the silhouette, but the three main methods 

are: background subtraction, temporal differencing, and optical flow (Wang et 

al., 2004). 

Optical flow techniques involve the use of flow vectors of moving regions 

(surfaces or edges) which are calculated in each frame, at each pixel, of a video 

to categorize local motion. Because of the heavy computational costs, 

techniques that use this method require special hardware for real-time 

application (Wang et al., 2004). Therefore a more computationally efficient 

method is required for background subtraction. 

Background subtraction is a common method and is very effective in lab 

scenarios. This method involves the pixel by pixel subtraction of a current frame 

to a background reference. It is very dependent on a good background 

estimation, therefore any changes in background lighting or slight movement in 

any background elements can induce challenges (Wang et al., 2004). An 

example of background subtraction is shown in figure 5. To overcome such 

difficulties, temporal difference methods can be used. This method involves 

detecting the difference (at a pixel level) between two or more consecutive 

frames. It is robust to changes in background, but can result in holes present in 

an extracted silhouette as shown in figure 6 (Wang et al., 2004). Therefore, 

fusing the strengths of different methods, as has been demonstrated in the 

study by Wang et al, who used a combination of background subtraction and 

temporal differencing to create a computationally cheap and effective solution 

(Wang et al., 2004). 
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Figure 5: A silhouette is extracted when the captured video is subtracted from a background plate 

 

Figure 6: Silhouette extracted using temporal differencing 

Other segmentation methods have also been used. In a study by Sarkar et 

al.,the background is estimated by calculating the mean of every pixel over the 

entire sequence(Sarkar et al., 2005). To extract a silhouette, the Mahalanobis 

distance between the current pixel value and the mean value of the pixel over 

the whole sequence. Based on a manually defined threshold, the pixel is 

labeled as a background or foreground element. This technique produced a 

silhouette that is adaptive to a changing background, yet there are four major 

issues that interfere the creation of a perfect silhouette that include: shadows, 

setting the appropriate threshold, and moving objects in the background, as well 

as compression artifacts.  

captured 
video 

background Silhouette 
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Segmentation will detect moving objects regardless of what the moving object 

is. The object can be a human, animal, car, or a plastic bag being blown away 

by the wind. Therefore, in gait recognition, it is important to separate human 

motion from other types of motion. This can be achieved using pattern 

recognition techniques, which might include shape based classification, or 

motion-based classification (Wang et al., 2004). It is also possible to merge both 

methods to increase accuracy. These methods involve the analysis of points, 

outlines, or even the bounding box surrounding the captured motion to classify 

the region as human, group of humans, or an object (Wang et al., 2004). Aspect 

ratio, area, and dispersedness are all features that have been measured in 

order to perform the classification. 

Given that gait is a periodic and cyclic motion (Wang et al., 2003); this 

characteristic can be used to identify a walking human from a moving object, 

such as a car. Some techniques use self-similarity computations over a 

specified time of the same object to study the characteristic of the periodic 

motion (Wang et al., 2004). 

One of the most shared challenges in any silhouette extraction is the change in 

lighting conditions, casting of shadows, and occlusion. In 2002, the HumanID 

gait challenge put forward one of the first gait recognition databases shot 

outdoors, in order to create an obstacle for the research and professional 

community to tackle (Sarkar et al., 2005). 

Dealing with occlusion is unavoidable, whether it is self-occlusion or an object 

or foreground element occlusion, as in figure 7 (Wang et al., 2004).  One of the 
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recommended solutions is using a multiple camera setup in a way where it is 

possible to view the subject from most angles. Another solution is the use of 3D 

capture techniques similar to SOTON 3D Gait Database (Ariyanto and Nixon, 

2011, Liu and Tan, 2010, Seely et al., 2008, Middleton et al., 2006).  

 

Figure 7: The subject's leg is occluded by a foreground element(a car). 

Shadows cast by moving subjects can be problematic in silhouette extraction as 

shown in figure 8, since shadows also have cyclic motion that is different from 

the background. There are several methods to solve this in which the proposed 

algorithm makes use of color information in order to lower the effect of 

shadows. Many of those are dealt with in (Wang et al., 2004), while a similar 

method is used in (Ioannidis et al., 2007a), in which an analysis of image in the 

HSV color space over a sequence of frames helps to remove shadows.  
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Figure 8: Shadows present a challenge in silhouette extraction. 

The method of choosing the right silhouette extraction method is crucial and 

heavily depends on the specific challenges facing the application, and the 

method of gait recognition used. Lighting conditions, unstable backgrounds, 

non-human moving objects, and occlusion are all challenges faced in silhouette 

extraction. There are studies mentioned earlier that tackle each of the 

challenges except for occlusion. Occlusion is one of the challenges that will be 

later discussed in the Forensic approach challenges, and will be referred to as 

partial spatial information.   

2.3.4. Human motion representation 

After a silhouette is extracted, gait recognition systems must make sense of the 

changing pixel values that are associated with the walking person. Ideally 

minimalistic or feature based representation of human motion needs to be 

extracted to provide concise and a complete description of motion. The first step 

in representing human motion in gait recognition applications is defining a gait 

period.  A gait period is considered one complete walk cycle. The main 

characteristic of a walk that is most commonly used is the distance between 
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each foot. When the feet are furthest apart (full stride stance, or double foot 

support), the silhouette would be the widest. When the two feet overlap, the 

pixel width of the silhouette would be at its lowest (Sarkar et al., 2005). 

Therefore the time elapsed between the minimum and maximum width of the 

silhouette can be used to define the gait period. This technique is only effective 

in the case when the walk is parallel to the camera lens (fronto-parallel). In 

(Huang and Boulgouris, 2010), instead of measuring the whole binary 

silhouette, only the lower part was measured to find the start of a gait cycle. 

Another method is to use the number of pixels of the extracted human gait, 

where the time point at which the number of white pixels in a binary silhouette 

image are at their lowest is used as a point of reference (Hosseini and Nordin, 

2013).  

After defining a gait period, most gait recognition techniques represent human 

motion by two different approaches. They can either be: an appearance based 

method; or a model based method(Hu et al., 2004). 

Appearance based methods 

Appearance based methods can be described as features that are extracted 

based on pixel information or silhouette without consideration of the kinematic 

or kinetics of a gait (Hu et al., 2004, Wang et al., 2003). Appearance based 

methods in their simplest form can represent the temporal aspect of a gait in a 

single representation by averaging the sequence of frames of a gait cycle 

(Hosseini and Nordin, 2013). An example of an averaged walk sequence is 

illustrated in figure 9. Such techniques had great appeal in early studies of gait 
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recognition, and are also used in current real time applications, because of their 

low computational cost and complexity (Hu et al., 2004).  

Although appearance based methods might be thought of as being restricted to 

two dimensions, in (Shakhnarovich et al., 2001, Liu and Tan, 2010, Seely et al., 

2008) a 3D hull can be treated and processed in the same manner as a single 

2D binary silhouette would be processed. From a single 3D hull, an unlimited 

number of 2D silhouettes can be created. 

 

Figure 9: An averaged sequence of extracted silhouette of a walking subject 

 

Model based methods 

Although appearance based methods are computationally cost effective, yet 

changes such as wearing a trench coat, carrying a bag or backpack, or wearing 

a skirt can effectively change the extracted silhouette, hence affecting the 

extracted appearance (pixel based) features. Several studies suggested that an 

accurate model-based feature extraction in which joint location and movement 
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is measured, can overcome challenges faced in appearance based methods. 

Although model based approaches have a great potential, their high 

computational cost remains an issue when compared to the less intensive 

appearance based methods (Hu et al., 2004). 

Model based methods can be described as techniques in which features are 

extracted from the modeling of human motion’s kinetic and kinematic features 

(Hu et al., 2004). Kinetics of a gait are the forces acting upon a gait, from 

muscle and joint induced forces, to ground reaction forces. The kinematics of 

gait are the range of motion, trajectories, and angles of various joints’ motion. 

Model based techniques’ dynamic features  are usually constituted of kinematic 

measurements rather than kinetics because, kinetics are not measurable using 

vision based sensors. The dynamic features are also divided into two 

categories: 2D and 3D modeling techniques.  

Human motion can be modeled and predicted because the range of motion is 

restricted and can be estimated through rules defined by biomechanical gait 

models. Motion modeling usually involves prior knowledge to predict the present 

and the following pose. This knowledge and model is represented in many 

forms, ranging from a simple stick figure, to a detailed 2-D or 3-D contour 

(Wang et al., 2004). In 1994, one of the first model based techniques used a 

simple stick-figure which was fitted to a silhouette to describe the motion of the 

upper and lower legs (Niyogi and Adelson, 1994).  

Ziheng Zou et al’s study made use of as many 2D model based features as 

possible (Zhou et al., 2006). In their study, a simplistic 2D articulated model of a 
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walker consisted of boxes to represent: torso, upper leg, lower leg, and feet. 

The parameters used in this model are divided into static and dynamic. The 

parameters that described the model were: head radius, torso width, torso 

length, leg width, thigh length, and calf length. A circle is used to represent the 

head. The model had no recognition of whether the leg was right or left because 

it was difficult to differentiate feet angles and orientation, as they are hard to 

recognize in outdoor conditions with changing lighting and other complexities.  

In a study by Lee and Grimson, ellipses were used instead of boxes(Lee and 

Grimson, 2002). These ellipses roughly represented: upper and lower leg parts, 

torso, arms, and head. The ellipses were applied to the binary silhouette after it 

was divided into 7 regions. This method attempts to define the size and 

orientation of the different parts.  

Zhou et al. attempted at modeling gait using a Bayesian framework (Zhou et al., 

2006). It was based on strong prior knowledge which was formed from 

knowledge of the basic composition of joints, which was implemented as a 

specific model, alongside data that was built upon a hidden Markov model 

(HMM). The model consists of 12 parameters (both static and dynamic). The 

dynamic features were only of the lower limbs (thigh, shin, and feet),while the 

static features  included: head radius, torso width, torso length, leg width, thigh 

length, calf length, the right and left thighs’ angle, the right and left calves’ 

angle, and the right and left foot angle.  

The previously mentioned model based techniques lacked any use of 

biomechanical or physics based techniques. These were introduced in 
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Johansson’s study, which described human motion as several pendulum 

motions that are linked at various joints (Johansson, 1973). These pendulums 

have start and end points that are constant in length. Similarly, modeling 

techniques using the core idea that leg motion is based upon pendulum-like 

mechanics are deployed (Yam et al., 2002). These same techniques are later 

used in a study at the University of Southampton. For example, Ariyanto and 

Nixon try to create 3D motion models of humans using the SOTON 3D Gait 

database (Ariyanto and Nixon, 2011). In this work, 3D cylinders were best fitted 

to the gait samples, and were limited only to the thigh and shin. This provided a 

model with an accurate estimation of three dimensional degrees of freedom 

compared to other limiting two dimensional techniques. This technique, 

however, was only successful when multiple cameras are present. Therefore in 

a study by Zhao et al, the authors deployed a technique that would work with a 

single camera. In the study by Zhao et al, a more complicated model for three-

dimensional human form was used to extract gait features (Zhao et al., 2006). 

In addition to extraction of lower limb 3D dynamics, other features were used, 

such as upper arm, lower arm, shoulders, and head (Ariyanto and Nixon, 2011). 

In the study by Yamauchi et al., a 3D model was used to sample gait, through 

the accurate estimation of the key 3D poses, and then performing an 

interpolation for the angles in between (Yamauchi et al., 2009).  

Krzeszowski et al. deployed a more detailed 3D model by using 11 segments: 

pelvis, spine, head, right and left upper arm, right and left forearm, right and left 

upper leg, and right and left lower leg. Each segment was specified a degree of 

freedom (Krzeszowski et al., 2013). 
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2.3.5. Feature extraction 

Depending on the method of motion representation (appearance or model 

based), features are extracted to create a vector or variable that contains the 

distinct characteristic of an individual gait cycle. Before such a process is 

performed, most gait recognition techniques crop a gait sequence to one gait 

cycle. One gait cycle, as mentioned earlier, can be described as the period 

between two heel strikes of the same feet. Therefore; as an example, the gait 

cycle would start from when the left heel touches the ground. It would include 

the data of when the foot is planted on the ground as the right foot moves 

forward and is then planted, while the left foot will be raised once more and 

moved forward. The gait cycle will end once the left foot’s heel strikes the 

ground again. Using appearance based methods, this is most commonly 

achieved by defining the point where the bounding box surrounding the person 

in motion is at its maximum width, which corresponds to when a heel strike 

occurs. This technique is also used in 3D gait data, where the 3D bounding box 

formed by the 3D volume representation surrounding all silhouettes is used to 

define one gait cycle, starting when the width of bounding box is at its 

maximum, and ending at the following maximum (Ariyanto and Nixon, 2011).  

Other techniques calculate a gait sample by initializing it when the number of 

pixels in a silhouette is at its minimum (Ioannidis et al., 2007a, Boulgouris et al., 

2004). This does not represent a heel strike, but rather a mid-stance in which 

one foot is on the ground, while the alternate foot is raised and has travelled 

approximately half the distance. Similar to the previously mentioned techniques, 

every other consequent minimum equates to one gait cycle. Whether using 
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appearance or model based methods, defining a unified start and end of a gait 

cycle is essential in biometric application for the validity of the comparison 

between an unknown subject and the subjects in a database. 

Appearance and pixel related features 

Appearance based feature extraction depends directly on the binary silhouette 

extracted. It is usually followed by an extraction technique that would describe 

the silhouette in an efficient manner. Some methods use techniques to define 

the outline, while others take into consideration the whole binary shape, while 

some use the output of optical flow functions. 

Binary shape images are a common gait signature representation. . Han et al. 

introduced the use of the Gait Energy Image as a gait feature. In essence, it 

describes the whole gait cycle using a single image that is equivalent to the 

average image of all frames in a single gait cycle(Han and Bhanu, 2006). In the 

study by Huang and Boulgouris, based on the Gait Energy Image, a weight 

shifted energy image is used as a feature (Huang and Boulgouris, 2010). This 

technique takes into consideration the discriminatory value of each three 

sectors of the silhouette separately: legs, torso, and head. In other studies, 

three views of the silhouette were extracted: frontal, side, and top. Each set was 

then averaged to form a single 2D image of the silhouettes (Liu and Tan, 2010, 

Seely et al., 2008). 

The main challenge in using GEI is angle variance. Depending on the angle 

between the subject and the camera, the GEI can considerably change; 

therefore reducing recognition rates. To overcome this challenge, Liu et al. 
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created a new gait feature descriptor using two methods fused into one. They 

fused the Radon Transform technique and the Gait Energy image, and created 

the REI (Radon transform based energy image). Using this feature it was found 

that different individuals could be discriminated with similar recognition rates to 

standard camera geometries, suggesting that the method makes gait 

recognition robust to changes in camera geometry (Liu and Tan, 2010). Most of 

the appearance based techniques assume that the subject will walk in one 

direction. Yet in many real life scenarios, a subject would arbitrarily move in 

changing directions. Therefore in a recent study by Lu et al. the gait sequence 

was clustered depending on the direction of the subject’s walk. Since the 

subjects were walking arbitrarily, it was not possible to automatically detect a 

gait period. Therefore, frames of a similar view were clustered together. Each 

cluster was then averaged using the GEI technique(Lu et al., 2013). The results 

of using this technique achieved similar results to most state of the arts 

techniques.  

Another form of using GEI was proposed by Wang et al. In an averaged image, 

timing information is lost. Therefore in their study they combined the GEI feature 

with a colour map which preserved temporal information to create a chrono-gait 

image (CGI) (Gu et al., 2010). While in the study by Xu et al, local augmented 

features were used to extract features from the GEI(Xu et al., 2012).  

Although the use of GEI and its varieties is common, yet other feature spaces 

such as the EigenGait have displayed similar accuracy rates. BenAbdelkader et 

al. created a feature called the EigenGait. It is similar to EigenFace which was 

developed by Sirovich and Kirby in 1987, and later used by Mathhew Turk and 
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Alex Pentland in face classification.  In the EigenGait method, self-similarity 

feature is extracted from each pair of frames in a gait sequence. This output is 

then processed using dimensionality reduction, producing a feature that can be 

used for recognition using common pattern recognition algorithms. Using the 

EigenGait, classification rate of 77% has been achieved(BenAbdelkader et al., 

2001).. In another study, Eigenspace is also used but in a different manner 

(Hosseini and Nordin, 2013). The average silhouette undergoes an Eigenspace 

transformation that is based on Principal Component Analysis (PCA), which is 

then used as a gait feature.  

To reduce computation and dimensions of a signature matrix or vector, some 

techniques use the outline of a silhouette instead of the whole shape. In one 

study, general Radon based transforms are used to describe the shape . This 

method proves to be able to save detailed data regarding the binary image, 

especially the leg and arm area (Ioannidis et al., 2007a). Wang et al. used an 

Eigen-shape as a gait signature which was driven from the binary silhouette 

using Procrustes shape analysis(Wang et al., 2003). PCA was used in another 

study to reduce the dimensionality of the averaged silhouette (Hosseini and 

Nordin, 2013). Other techniques use Fourier descriptors to describe the 

boundaries or outline of a gait’s silhouette’s shape. In a study by Mowbray et 

al., the outline of the silhouette was expressed using the Fourier series’ 

coefficients as descriptors (Mowbray and Nixon, 2003). In another study, 

Fourier descriptors were used to define local and global features(Guang-Jian et 

al., 2004). While Xiaoqi et al target the use of Fourier descriptors on four frames 

only, which represented key poses in a gait cycle (Xiaoqi et al., 2008).  
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Static features and dynamic features 

Appearance based techniques extract features directly from images, whereas 

model based techniques use the image information to fit the parameters of a 

pre-defined model, and underlying motion parameters are then extracted from 

the model. Model based approaches extract two distinctive types of features: 

static and dynamic. Static features can be described as features that do not 

have a temporal component, and can be extracted from one frame within a 

sequence. They are also described as measurements of body build and height 

(Hu et al., 2004). 

One of the early attempts at extracting dynamic features from a gait sample was 

conducted by Lee and Grimson. In this technique ellipses were fitted to 7 

regions in the silhouette: head, front of torso, back of torso, right thigh, right calf, 

left thigh, left calf. Although the technique’s main aim was to extract dynamic 

features, static features such as: the centroid, aspect ratio of width to length, 

and the orientation of the ellipses were also used (Lee and Grimson, 2002).  

Static features are also extracted in 3D based models and gait recognition 

techniques. In a study by Ariyanto and Nixon, certain features such as height 

and stride length are extracted (Ariyanto and Nixon, 2011). A unique feature in 

this technique was the use of a footprint pose as a static feature. The footprint 

features consist of width, length, and orientation. Zhao et al., extracted other 3D 

static features such as length of upper arm, lower arm, head, shoulders, upper 

leg, lower leg, upper body, and hips which were used for gait recognition (Zhao 

et al., 2006).  
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Dynamic features 

On the contrary to static features, dynamic features differ in that they involve the 

extra dimension of time, and usually involve joint angles and trajectories (Hu et 

al., 2004). The most common feature representation is the phase-weighted 

magnitude based on the Fourier Transform of a cyclical gait signal, which is in 

turn is created from the registered rotation of the thigh and knee joints. It was 

first introduced in a study by Cunado et al. at the University of Southampton 

(Cunado et al., 1997).  

As mentioned earlier, Lee et al.’s study conducted one of the earliest attempts 

at extracting dynamic features from a gait sample.  In this study ellipses were 

fitted to the 7 regions in the silhouette. The relationships between the ellipses 

were then analysed in a temporal manner to extract features to represent the 

dynamic component of the gait.. Both an averaged result and a magnitude and 

phase were computed for the features over time (Lee and Grimson, 2002).  

Unlike two-dimensional models, three-dimensional models can provide extra 

information in trajectories and angle rotations. In Ariyanto and Nixon’s study, 

dynamic features from the hip, thigh, and knee are used(Ariyanto and Nixon, 

2011). Cylinders are fitted to the 3D gait data, and are used to extract both the 

lateral and frontal rotations of the thigh and knee joints. These angles are then 

used as gait features after applying a Discrete Fourier Transform to acquire 

information about the frequency component, which is similar to the phase-

weighted magnitude features extracted by Yam et al. (Yam et al., 2002) and 

Cunado et al. (Cunado et al., 1997). While the hip’s transformational data, 3D 

world position, was used as a dynamic feature. This early technique in 3D gait 
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recognition technique managed to achieve a 79% recognition rate on an 

internal database of 48 subjects.  

 

There are certain gait recognition techniques combine features from multiple 

approaches. Wang et al. used appearance based features, as well as dynamic 

features to recognize the identity of a subject in an internal database of 20 

subjects (Wang et al., 2004). The fusion of both methods increased the 

recognition rate by 10%; from 87.5% to 97.5%.    

There are other dynamic features that could potentially be considered in 

computer vision based gait recognition from other applications. There are 

features that were used by the Institute of Forensic Medicine in Copenhagen, 

that were not considered by most computer vision based gait recognition 

techniques such as: inversion/eversion in ankle, and the lateral flexion of the 

dorsal column in the spine (Larsen et al., 2008). These Lateral flexion and 

inversion and eversion of the ankle usually require 3D measurement of the 

rotation of the joints. Although mentioned By Larsen et al as not being used in 

computer vision based gait recognition, in a 3D based gait recognition 

technique developed at the University of Southampton, the knee angle from a 

frontal view was also used as a dynamic feature (Larsen et al., 2008), which 

proves that consideration of features used from other disciplines can improve 

efficiency and accuracy of gait recognition techniques. 

 Table 1 lists features of different types used in gait recognition. 
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Table 1: A list of various appearance, static, and dynamic features used in gait recognition 
techniques 

 

Feature Feature type Gait recognition 
technique method 

Extraction method 

Height static (Johnson and 
Bobick, 2001) 

model based 

Length of legs static (Johnson and 
Bobick, 2001) 

model based 

Length of torso static (Johnson and 
Bobick, 2001) 

model based 

Length of stride static (Johnson and 
Bobick, 2001) 

model based 

Phase weighted magnitude 
Knee angle 

dynamic (Zhou et al., 2006) model based 

Phase weighted magnitude 
thigh angle 

dynamic (Zhou et al., 2006) model based 

Binary silhouette similarity DYNAMIC/STATIC (Gafurov, 2007) appearance 

Phase based features 
extracted from dense flow 
distribution 

Dynamic (Little and Boyd, 
1998) 

appearance 

Eigen shape from Binary 
silhouette outline from 
Procrustes Shape analysis 

Dynamic (Wang et al., 2003) appearance 

Weight Shifted Energy 
Image 

Dynamic (Wang et al., 2003) appearance 

Height amplitude oscillation Dynamic (Boyd and Little, 
2005) 

appearance 

Length of upper arm Static (Zhao et al., 2006) model 

Length of lower arm Static (Zhao et al., 2006) model 

Length of shoulder Static (Zhao et al., 2006) model 

Length of upper body Static (Zhao et al., 2006) model 

Length of hips Static (Zhao et al., 2006) model 

Length of upper leg Static (Zhao et al., 2006) model 

Length of lower leg Static (Zhao et al., 2006) model 

Length of head Static (Zhao et al., 2006) model 

Distance from knee to root Dynamic (Zhao et al., 2006) model 

Distance from ankle to root Dynamic (Zhao et al., 2006) model 
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Distance between right and 
left knee 

Dynamic (Zhao et al., 2006) model 

Distance between right and 
left ankle 

Dynamic (Zhao et al., 2006) model 

Gait frequency Dynamic (Guo and Nixon, 
2009) 

model 

Gait phase Dynamic (Guo and Nixon, 
2009) 

model 

Ankle rotation Dynamic (Guo and Nixon, 
2009) 

model 

Hip rotation Dynamic (Guo and Nixon, 
2009) 

model 

Head width Static (Guo and Nixon, 
2009) 

model 

Head length Static (Guo and Nixon, 
2009) 

model 

Width of torso Static (Guo and Nixon, 
2009) 

model 

Head x offset Static (Guo and Nixon, 
2009) 

model 

Head y offset Static (Guo and Nixon, 
2009) 

model 

Leg width at hip Static (Guo and Nixon, 
2009) 

model 

Leg width at knee Static (Guo and Nixon, 
2009) 

model 

Leg width at ankle Static (Guo and Nixon, 
2009) 

model 

Hip y offset Static (Guo and Nixon, 
2009) 

model 

Foot width Static (Guo and Nixon, 
2009) 

model 

Foot length Static (Guo and Nixon, 
2009) 

model 

Centre of torso Dynamic (Guo and Nixon, 
2009) 

model 

Pelvis width Static (Guo and Nixon, 
2009) 

model 

Gait symmetry map Dynamic (Guo and Nixon, 
2009) 

appearance 

Gait Energy image Dynamic (Han and Bhanu, 
2006) 

appearance 
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Radon Transform based 
Energy Image 

Dynamic (Liu and Tan, 2010) appearance 

EigenGait Dynamic (BenAbdelkader et 
al., 2001)[ 

appearance 

HTI(Head-Torso-Thigh) Dynamic (Tan et al., 2006) appearance 

Height Static (Johnson and 
Bobick, 2001) 

model based 

Length of legs Static (Johnson and 
Bobick, 2001) 

model based 

Length of torso Static (Johnson and 
Bobick, 2001) 

model based 

The features listed in the table above contain 47 gait features. They are based 

on appearance and model based gait recognition techniques.  Out of the 47, 26 

are static features, while 21 are regarded as dynamic. The features do cover 

many different feature spaces and approaches of representing a human’s gait, 

yet they are all two dimensional in their representation.  Even in previous 

studies in which claimed to have approached gait in a 3D manner, end up using 

two dimensional features in classification. Such as the 3d hull in which a 2D GEI 

is extracted depending on the angle needed (Seely et al., 2008). 

2.3.6. Dimension reduction and feature selection 

Various techniques use different numbers and vector sizes to represent a gait 

signature. In some cases dimension reduction or feature selection is important. 

There are three main reasons such a step is required and can be summarized 

as (Guo and Nixon, 2009): 

1- Avoid low performance in classification,      

2- Avoid use of redundant features, 
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3- Reduce storage, computation load, and bandwidth requirements in gait 

recognition systems. 

In the study by Han and Bhanu, Principal Component Analysis (PCA) and 

Multiple Discriminant Analysis (MDA) are used for dimension reduction of the 

Gait Energy image(Han and Bhanu, 2006). PCA is also used to reduce the 

dimensions of a similarity plot to produce the EigenGait(BenAbdelkader et al., 

2001). 

It has also been shown that not all features initially extracted are important in 

recognition. In one study, 32 features out of the original 56 were selected based 

on ANOVA, and the recognition rate was very similar to when using all 

features(Lee and Grimson, 2002). In the study by Little and Boyd,  ANOVA was 

used to measure the discriminatory characteristic of a feature(Little and Boyd, 

1998). Although no features were excluded in this study, the effect of each 

individual feature was studied. In another study, Mutual Information is used to 

evaluate and select the highly discriminatory features (Guo and Nixon, 2009). 

Mutual information was compared to ANOVA and the use of the correlation 

coefficient for feature selection and reduction. Mutual information was found to 

be a stronger feature selector. Mutual information achieved a 90% correct 

recognition rate using only 25 features, while ANOVA required 29 features and 

the correlation-based method required 35 features to reach to the same correct 

recognition rate. 
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2.3.7. Classification and Recognition 

The final step in most gait recognition techniques is classification. In this step, 

the test subject is compared to the subjects in the database. Depending on the 

classification method used, the technique will suggest the closest gait in the 

database to the test subject. In some studies, three classifiers were used: 

Nearest Neighbour, Kth Nearest Neighbours, and Nearest Neighbour with class 

exemplars(Little and Boyd, 1998, Wang et al., 2003). The Kth  Nearest Neighbor 

and leave-one-out cross validation classifier can be seen to be one of the most 

common techniques and used in several studies (Ariyanto and Nixon, 2011, 

Yam et al., 2002, BenAbdelkader et al., 2001).  

A genetic algorithm was used in on study to fuse three different sets of features 

to find the best match(Ioannidis et al., 2007a). Johnson and Bobick suggested 

the use of an expected confusion matrix instead of a recognition rate, to report 

the results of the classification (Johnson and Bobick, 2001). It was suggested to 

use this method in order to predict how a feature will translate to a larger 

population than the tested sample databases, which usually contain between 

20-200 subjects. Despite the range of different classifiers used, it is still not 

clear which will deliver the best classification, and different classifiers may need 

to be applied depending on the application and features of interest. 

2.4. Challenges in gait recognition 

Gait recognition techniques have evolved from their primitive methods in the mid 90’s 

to its current status. Different methods have been studied that include pixel 

appearance based methods and model based methods. The gait recognition process 

has been constant as explained in the previous sections. Perfecting each step and 
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identifying the limitations and challenges faced will lead to better application of this 

emerging biometric.  The Human Gait Challenge was one of the first published 

attempts at identifying the main challenges in gait. (Sarkar et al., 2005) The challenge 

offered a database and a baseline algorithm for other research and studies to compare 

with. In this Challenge only five covariates were taken into consideration: angle 

variance, carrying a briefcase, time, surfaces, and shoes. Other challenges also 

emerged later that relate more to the practical application of gait recognition, such as 

forensic usage of biometrics, unconstrained walk direction, occlusion, and comparisons 

between different camera sensors. Each of the previously mentioned challenges will be 

briefly described as well as mentioning proposed solutions and approaches to such 

challenges. 

2.4.1. Angle variance 

Since most early gait recognition techniques used subjects walking in a single direction 

perpendicular to the camera, it was clear that the first challenge was change of angle. 

Angle variance was an early issue recognized by various studies as a main challenge 

for actual implementation of gait recognition. Several studies suggested the use of 

features that were unaffected or minimally effected by the angle at which the video 

sequence was shot at. Huang and Boulgouris proposed the use of an algorithm, which 

would be a potential solution for angle variance. It builds upon the fact that people in 

real life situations would not walk in a straight line(Huang and Boulgouris, 2010). 

Therefore; the algorithm extracts features from the first gait cycle in which the subject 

is parallel to the camera plane. Such a solution will only work if the subject ever walks 

parallel to the camera plane. Therefore an alternative solution was proposed in a study 

by Johnson and Bobick. The  features used in defining the gait signature were 

transformed using a depth compensation method(Johnson and Bobick, 2001). This 

compensation is driven by pre-calibrating a camera with a subject of known height and 
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body parameters. This method achieved a recognition rate ranging between 91-100%. 

The test was conducted on a database of only 18 subjects, and the test was limited to 

using static features to build a gait signature for the subjects. Therefore, the depth 

compensation method was only tested for its effectiveness on measuring static 

features, and no tests were conducted using the dynamic features.  

Ultimately, to solve such a challenge it would be necessary to record gait samples 

using three-dimensional techniques. Because of the nature of 3D data being invariant 

to camera angle, gait signatures captured from such systems can be used to overcome 

the angle variance challenge (Ariyanto and Nixon, 2011).  

2.4.2. Clothing and carrying objects 

Clothing is one of the main problems in most gait recognition techniques, 

especially ones that depend on appearance based methods. Wearing a skirt or 

long jacket can affect the silhouette; therefore; reducing recognition rate One 

approach is to use the Bayesian framework in extracting a gait model from a 

single frontal camera(Zhou et al., 2006). This was tested on subjects with 

different clothing, including trench coats and skirts. The results found were 

promising and have achieved a recognition rate of 68%. It is interesting to note 

that trench coats and long skirts had a similar effect on the accuracy of the gait 

model. These two variants proved to produce less accuracy compared to the 

effect of carrying a bag back.  

Two other approaches are proposed by Lee and Grimson(Lee and Grimson, 

2002). The two methods of dealing with the features proposed were: averaging, 

and spectral analysis (phase and magnitude of the Fourier transform). It was 

found that the Spectral component performed considerably better than the 
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average component, and was less affected by change of clothing. Another 

solution was purposed by Guan et al. (Guan et al., 2012). The study takes into 

consideration that when applying machine learning algorithms for recognition 

purposes, overfitting of the database data can be a problem for appearance 

based methods. Instead of training on extraction of gait features, clothing 

appearance features will be picked up when one subject appears wearing a 

trench coat in one sequence, and without a trench coat in another. Therefore; 

the study proposes classifying using a random subspace method and 

combining multiple inductive biases to avoid overfitting. Using this approach 

provided a result similar to the state of the art, as well as being more robust to 

change in walking conditions, including change of clothing.  

Clothing is a major influencing factor to gait recognition, especially if 

appearance pixel based methods are used. In the study by Yu et al, the aim 

was to quantify the effect of angle variance, clothing, and carrying an object on 

gait recognition(Yu et al., 2006). It came to the conclusion that clothing can 

have a greater affect on recognition than carrying an object. It is important to 

note here that an appearance based method was used (GEI-Gait Energy 

Image), which would be highly affected by appearance change. Therefore, 

using model based approaches would make feature extraction more robust to 

these variants than in pixel based methods. Yet the unanswered question would 

be, how much does clothing affect the kinematic or dynamic features, rather 

than the appearance based features.  
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2.4.3. Physical body changes 

Physical body changes include weight gain, pregnancy or medical procedures. 

Studies conducted in the clinical gait analysis field have looked previously at 

such factors. In their study, Chang and Bekey created an experiment to predict 

changes in electrical activity of muscles around the ankle post ankle surgery 

(Chang and Bekey, 1978). Although the study was conducted in 1978, it is still 

an indicator that even a small alteration can cause possible changes in gait 

mechanics. There is yet to be a study in computer vision based gait recognition 

that studies these changes and their influence in gait recognition accuracy. 

2.4.4. Shoes and surfaces 

Although different shoes are considered a problem in gait recognition, it was 

found to be less significant than changes in surfaces, carrying a briefcase, or 

passage of time (Sarkar et al., 2005). 

Surfaces have been reported to be one of the most influential factors on gait 

recognition. In the Human ID challenge gait database, change in surfaces on 

which the subjects were walking resulted in the lowest recognition rates when 

compared to other covariants using the baseline algorithm (Phillips et al., 2002). 

A justification for such an influence can be found in biomechanical studies. 

Based on biomechanical studies, any change in surfaces can cause changes in 

ground reaction forces causing a change in kinetics and kinematics of a gait 

dynamic (Feehery Jr, 1986).  Although in a later study byTillman et al  the 

authors  found no significant change in ground reaction forces, yet in another 

study the electromyography(EMG) data, which describes muscle activity, was 

different when running on different surfaces(Tillman et al., 2002) (Wang et al., 
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2014). These changes can be due to personal judgement of humans in order to 

compensate for the difference in impact sensation between surfaces (Feehery 

Jr, 1986). 

2.4.5. Time passage between two gait samples 

Time has been reported by several pieces of research to be a significant 

influencing factor in gait recognition. In one study, it was found that passage of 

time between two gait captures lowers recognition rate more than the other 

covariates (shoes, surfaces, angle variance, carrying a briefcase) (Sarkar et al., 

2005). The problem of time passage in gait recognition could be caused by 

several factors. The method of acquisition of the video might differ, as well as 

change of clothes and shoes (Sarkar et al., 2005). The same conclusion was 

also reached to in 2010 by Gafurov et al., in which wearable sensors were 

used(Gafurov et al., 2010).  

The work of Matovski et al. suggests the opposite of the conclusions of similar 

studies. (Matovski et al., 2012) Their study was conducted in a manner in which 

time passage was tested independently and in a manner in which clothing, 

shoes, and setting were controlled. It was found that there was not a significant 

effect on a gait signature when time passage spanned from six to nine months. 

Therefore, the problem was not mainly passage of time, but rather other factors 

that included clothing, shoes, and angle variance. 

2.4.6. Large databases for benchmarking 

Gait recognition based database are considerably smaller in subject numbers 

than their counterparts in other major biometric modalities. Major biometric 
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modalities, such as iris, fingerprint, or face, have databases with significantly 

more examples than most gait recognition databases. Such numbers provide a 

more accurate insight into the feasibility and actual individuality and 

discriminatory characteristic of a biometric trait. These unified databases also 

provide a unified platform on to which various algorithms and techniques can be 

benchmarked. Most research in gait recognition is tested on local databases 

usually containing an average of 20 subjects, which does not provide a clear 

manner in how different recognition techniques can be compared. A need for a 

unified database like the ones used in the field of fingerprint matching is 

required.  

The Human Gait challenge in 2002 was one of the first attempts at offering a 

shared gait database for the research community, in which recognition 

techniques can be benchmarked (Sarkar et al., 2005). Up until 2011, most gait 

databases did not have more than 152 subjects. Since then the OU-ISIR gait 

database has been often used as a benchmarking platform and currently 

contains more than 4000 subjects (Makihara et al., 2012).  

2.4.7 Practical and Forensic challenges 

Although the majority of the previously mentioned challenges (Such as physical 

change, clothing, and time passage) can fall under forensic challenges, yet 

forensic criminal evidence has specific challenges. These challenges include: 

difference in video sensors, difference in camera lens, difference in frame rates, 

and Latent (or partial) information or samples.  
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2.5. Forensic challenges  

Although several previously mentioned studies have proved that gait can be 

used as a biometric using computer vision based techniques, the majority were 

tested in favorable conditions. Yet in forensic based approaches several 

challenges arise and must be studied and overcome for a practical application 

of gait recognition techniques. Some of these challenges are being addressed 

by other studies such as different lighting conditions, angle variance, shoe type, 

time passage between gait capture, and flooring. But there are other challenges 

more specific to forensic applications of gait recognition that are less 

addressed.  One of the main forensic challenges is latent information.  The 

problem of latent information can further be broken down into: low temporal and 

spatial resolution, and partial temporal and spatial gait cycles.  An illustration of 

these challenges can be seen in figures 10-13. 

 

Figure 10: An example of a low spatial gait data (pixelated) 
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Figure 11: An example of a low temporal resolution of a gait data (Low frame rate) 

 

 

Figure 12: An example of gait data with partial spatial data, where not the whole subject appears on 
camera. 
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Figure 13: An example of gait with partial temporal data, where the subject does not complete a full 
gait cycle on camera 

For gait to be used in forensic applications, the source of the gait signature 

would usually be extracted from CCTV footage. CCTV footage’s spatial and 

temporal resolution can greatly vary. Spatial resolution can be described as the 

number of pixels representing the person in focus in a single frame. Temporal 

resolution on the other hand is the number of frames representing a certain 

period of time, which is usually measured in frames per second (fps). Partial 

temporal gait cycle is an incomplete gait cycle, which can be caused by the 

subject leaving the field of view of the camera, or being totally occluded by an 

object in the foreground. Partial spatial gait cycle is the condition when only part 

of the body appears in a gait cycle because of an object hiding part of the body, 
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as in when a subject walks behind a fence, and only the upper body appears on 

camera.   

 In certain situations, the CCTV camera footage is of a low frame rate or low 

resolution. Most model based gait recognition studies extract gait signatures 

using videos that are 60, 30, or 25 frames per second (fps). Some CCTV 

cameras record as low as 1 fps (Akae et al., 2012). Depending on how far the 

subject is from the camera, the amount of pixel data available to extract model 

based gait features can vary. Potential approaches to tackle low frame rate 

videos have been conducted in two studies (Mori et al., 2010, Akae et al., 

2012). Akae et al. tackle the low frame rate challenge by using a super 

resolution approach. High frame rates gait sequences are used in the training 

stage. This techniques is currently performs better than other approaches, 

especially when the frame rate is lower than 5 frames per second. Although 

these approaches offer an initial solution to such a challenge, yet they would 

potentially not perform well if angle variance is introduced. The methods are 

only applicable in cases where angle variance is minimal, and using 

appearance based gait recognition techniques. There is no 3D or model based 

solutions for low frame rate footage in gait recognition. 

2.5.1. relationship and prediction (in biomechanics) 

As mentioned earlier, this thesis aims to predict dynamic features from static 

features. Although various gait recognition techniques take into consideration 

both static and dynamic features, there are no study in gait recognition research 

that attempts to describe a detailed relationship between both types of features. 
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For example, certain gait recognition techniques use dimension reduction in 

which the redundant and the least discriminative features are excluded. Guo 

and Nixon conducted a feature selection based on Mutual Information. Although 

a by-product of this study is the elimination of features that show a statistical 

dependency, yet the nature of the dependency and relationship was not 

explored (Guo and Nixon, 2009). 

On the contrary to gait recognition related research, in biomechanics there is a 

particular interest in the relationship between static measurements and their 

ability to predict gait dynamics in order to diagnose abnormalities of a person’s 

gait.  In 1989, Hamill et al.   conducted a test to study the relationship of static 

physical measurements of the lower extremity and dynamic features(Hamill et 

al., 1989). The measurements included: foot arch index, range of motion of the 

ankle, and other orientation and angular measurements. These were compared 

to data collected from a floor force platform, a 3D electrogoniometer, and angle 

measurements extracted from a high-speed camera. The outcome of the 

research proved that there is a limited canonical correlation between the data 

from angle measurements and measurements taken solely from the lower 

extremities. 

Although in the study by Hamill et al.  (Hamill et al., 1989) the static 

measurements were limited to the lower extremities; according to McPoil et al. 

not all measurements were included in the study(McPoil and Cornwall, 1996). 

They included more static measurements but reached a conclusion similar to 

Hamill et al. In a later study, measurements taken from a radiograph were 

compared to the same foot’s regional plantar pressure distribution (Cavanagh et 
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al., 1997). Using multiple regression analyses, only 35% of the variance in the 

dynamic features can be predicted by the measurements taken. Cavanagh 

came to the conclusion that factors other than lower feet measurements need to 

be considered. In more recent studies, other static measurements were used to 

predict either dynamic motion or disabilities(Hunt et al., 2000) (Cornwall and 

McPoil, 2011). They share similar conclusions that some measurements are a 

good predictor of motion, but not disabilities. Because medical gait analysis is 

concerned with predicting possible injuries or abnormalities, promising results 

concerning rotation of knees in the mentioned studies were disregarded (Hamill 

et al., 1989, McPoil and Cornwall, 1996). These correlations between the knee 

rotations and static measurements suggest a relationship that could be 

exploited in the area of gait recognition research.  

A piece of research published in 1978 studies the transformational matrix 

between a gait feature vector pre and post operation (Chang and Bekey, 1978). 

To the contrary of most gait signatures discussed in this chapter, this research 

extracted its features from EMGs (electromyograms) which measure the activity 

of muscles. In the field of biomechanics, studies were conducted to study the 

relationship between diseases or disorders and gait kinematics and 

kinetics(Crowther et al., 2007). Such relationship studies help in the 

understanding of where rehabilitation programs can concentrate their efforts. 

The study of the relationship between mass related static features and dynamic 

features, and the prediction potential of mass related measurements has also 

been looked at in previous studies. There are several studies that have looked 

at volume or mass related static measurements. In a study by Van Den Bogert 
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et al., adding mass to the limb contributes directly to effort and stride length 

(van den Bogert et al., 2012b). This indirectly suggests that a change in mass 

can contribute to a change in kinematics; which would need to be taken into 

account to improve existing gait models. In another study, Wong et al  looked at 

how static parameters or features of a human can affect body kinematics and 

improve tennis serves (Wong et al., 2014). The results showed that body-mass 

index was correlated to serve speed; therefore the mass of a person is 

correlated to certain dynamic and motion related features. The relationship 

between body fat composition and gait speed was the focus of a study that 

aimed to understand which body part contributes most to gait speed (Beavers 

et al., 2013).  

2.6. Gap 

As mentioned in section (about forensic challenge of latent information) , one of 

the main challenges in gait recognition is processing latent information, which 

includes low resolution temporal and spatial data, and partial temporal and 

spatial data. Here we observe that even in the absence of full temporal data, 

there is usually access to an image of the subject that includes some static 

information. Whether low resolution, slow frame rate, incomplete gait cycle, or 

body occlusion; certain measurements using photogrammetry can be extracted 

from these images. Therefore, if a relationship can be established between 

static and dynamic features, such measurements can potentially translate to a 

dynamic gait signature. 
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Based on the biomechanical studies that have explored the relationship 

between static and dynamic features mentioned earlier, there are two points 

that need to be taken into consideration. First, it is very clear that no study has 

evaluated a comprehensive set of static features that include measurements of 

the upper and lower body. Secondly, previous research indicates the existence 

of a correlation between certain static and dynamic features, but these results 

were disregarded because of their irrelevance to the objectives of those studies.  

Therefore in this thesis one of the main aims is to carry out a more complete 

investigation of the relationship between static and dynamic gait features, and 

to evaluate the potential application to gait recognition. 

There is also a need in computer vision related gait recognition research to 

study the subject as a 3D form. Although the mentioned studies in section 2.6 

use mass related measurements, yet they are not measurable by image or 

video based sensors. The use of volume, rather than mass, is a more pragmatic 

static feature to measure using vision-based systems. In a study by Hajný and 

Farkašová, the weight of body segments was predicted. The prediction was 

based on using three coefficients, and the measure of the height and weight of 

a subject. Each body segment had an assigned value for the three coefficients.  

The study mentions that a more accurate representation would be better, but 

not possible in their study. In this thesis 3D features will be explored in much 

greater depth, particularly considering the relationship to 3D dynamic gait 

features(Hajný and Farkašová, 2010),.   
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2.6.1. Research Questions. 

From the above, it is clear that the prediction of dynamic features from static 

features, or latent information, is an important challenge in gait recognition, and 

yet has only been addressed in a very limited way. This thesis will do this by 

exploring four main research questions:  

1- Is there a relationship between static and dynamic features? 

2- How accurate and discriminative is the predicted dynamic features from 

static features? 

3- Can dynamic features that have been predicted from static features be 

used for gait recognition? 

4- Does using 3D rather than 2D increase the dependency between static 

and dynamic features?  

This thesis will draw upon a similar methodology used in biomechanical studies 

in studying the relationship between dynamic and static features; yet the 

features used are based on static and dynamic features used in computer 

vision based gait recognition and the final goal will be to test the relationship in 

a gait recognition paradigm. 

2.6.2. Assumptions and hypothesis 

There are two main hypotheses in this thesis, which are: 

1- There is a relationship between human’s static features and the 

dynamics of a gait; 

2- The predicted dynamic features from static features can be used for gait 

recognition. 
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In the study and analysis carried out, several assumptions are taken into 

consideration. First of all, it is assumed that all subjects have conducted a 

normal walk, and have not attempted to deliberate change the manner of their 

gait. It is also assumed that the subjects suffered no previous bone or muscle 

related injuries in the past.  

It is also assumed that the data used from the motion capture and laser scanner 

are error free, and create a perfect representation of the dynamic and static 

features. In chapter 4 when 2D static features and correlated to 2D dynamic 

features, it is assumed that the measurements are taken from a frontal facing 

camera. While in chapter 5, it is assumed that the static measurements (volume 

and surface area) , are taken using multiple cameras or a camera with a depth 

component.  

2.7. Conclusion 

Gait has the potential to act as an emerging biometric for several reasons. It 

can both be recognized at a distance and can be tracked for use in surveillance. 

Depending on its application, several different technologies can be used to 

capture gait data such as; floor sensors, wearable sensors, and video cameras. 

Gait recognition is usually achieved using two main methods: appearance 

based (non-model), and model based. Non-model appearance based 

represents gait by its pixel value and changes of the silhouette’s outline or 

shape. Model based methods rely on building models to extract the kinematics 

of a gait. Appearance based methods are computationally cost effective, but are 

prone to lowered accuracy by several factors such as: changing of lighting 
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conditions, change of clothes, or the carrying of a bag.  Model based methods 

are resistant to such changes because of their approach, which relies on the 

underlying dynamics rather than appearance and shape.  

Gait recognition faces several main challenges.  The forensic application of gait 

recognition faces specific challenges such as coping with latent information. In 

this thesis, the possibility that dynamic features might be predicted from latent 

information, or even a single image, will be explored. This has not been 

attempted in previous studies. In biomechanical studies, the relationship 

between static and dynamic features has been studied, and this thesis will draw 

upon this research for its methods, yet adapt them to computer vision based 

gait recognition. This thesis therefore addresses the topic of defining if there is 

a relationship between dynamic and static features, as well exploring as the 

potential of predicting dynamic features from 2D and 3D static features.  
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Chapter 3: University of Bradford 
Multi-Modal Gait Database 

 

3.1. Introduction 

Gait databases are a very important factor in the evolution of gait as an 

emerging biometric. Creating databases and making them available to the 

research community has proven to be a main contributor to the development of 

various gait recognition techniques. One of the earliest was the USF HumanID 

gait challenge database (Sarkar et al., 2005). This database provided gait 

samples recorded using standard 2d cameras, of each subject with different 

covariants that were regarded as the main challenges in that period of time; 

such as: angle variance of camera, clothing, surface, and shoes.   Other 

databases followed their lead. CASIA gait database (Yu et al., 2006) offered 

three different databases that were an alternative to the USF gait database. 

They both provide abundant 2D video data of walking subjects with different 

variants (Clothing, shoe, surface, and angle). A lot of gait recognition related 

databases emerged following DARPA’s Human ID at a Distance program such 

as the University of Southampton’s 3D Gait Database(Seely et al., 2008), the 

Carnegie Mellon University’s MoBo database, the HUMABIO database. Other 

Databases concentrated on the subject sampling choices such as the MMUGait 

database that included male subjects wearing Malaysian national cloths that 

were long and covered most of the legs(Ng et al., 2014). The OU-ISIR Gait 
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Database(Iwama et al., 2012) contains a better distributed sample of gender 

and age, while other databases, have a strong bias towards young males.  

Before the assembly of the OU-ISIR database, none of the previous mentioned 

databases had more than 152 subjects. The OU-ISIR currently has over 4000 

subjects.   

Some databases specifically targeted certain sensors for their capture of gait. 

The West Virginia University’s outdoor short-wave infrared dataset used 

infrared sensors that are relevant to surveillance and military applications of gait 

recognition(DeCann et al., 2013). Ngo et al. used in their study  the largest 

database using inertial sensors to capture gait (Ngo et al., 2014). 744 subjects 

were asked to attach a smartphone around their waist to capture data from the 

accelerometer and gyroscope. Table 2 lists the various databases including 

information about its size, recording medium, and the variants used in the 

sample.   

Table 2: A list of gait databases used for gait recognition testing and studies 

Database name Subjects Samples Method of 

recording 

 

Data covariates Year 

HumanID Gait 

Challenge 

Problem(Sarkar 

et al., 2005) 

122 1870 single Video 

camera 

Five covariates:  

1- Angle 

2- shoe type  

3- walking surface 

4- carrying briefcase  

5- elapse of time 

2002 

UCSD(Hayfron-

Acquah et al., 

2001) 

6 42 single Video 

camera 

1- walking surface  

2- incline 

1998 



62 

 

Georgia 

Tech(Johnson 

and Bobick, 

2001) 

20 Not 

available

(N/A) 

Video 1- angle variance 

2- Location 

variance(in/outdoors)  

  

2001 

Carnegie Mellon 

University 

(MoBo)(Gross 

and Shi, 2001) 

25 100 6 video 

cameras 

1- Gait speed 

2- incline walk  

4- walking with a ball 

2001 

University of 

Maryland HID 

Database dataset 

1(BenAbdelkader 

et al., 2002) 

25 N/A Video camera 1- Angle variance 2001 

University of 

Maryland HID 

Database dataset 

2(BenAbdelkader 

et al., 2002) 

55 N/A Video Camera 1- arbitrary walking 2001 

Southampton gait 

3d 

chamber(Seely et 

al., 2008) 

N/A N/A Multiple 

cameras 

forming a 3d 

gait capture 

1- 3d gait capture 2008 

Southampton 

Soton 

Database(Nixon 

et al., 2002) 

~100 N/A Video camera angle variance 

 

  

2002 

University of 

Bradford multi-

modal gait 

database(Alawar 

et al., 2013) 

38 1520 1- two video 

cameras 

2- motion 

capture 

3- laser 

scanner 

1- Gait speed 

2- Carrying a bag 

3- gait transition from 

walk to run 

2011 

HUMABIO(Ioanni

dis et al., 2007b) 

75 & 51 

(48 

shared) 

N/A 1- single 

camera 

2- stereo 

camera 

1- shoe types  

2- with a hat  

3- with a briefcase  

4- time passage 

between recording of 

subjects 

2007 

CASIA Dataset A 

(Yu et al., 2006) 

20 240 single camera 1- Angle variance 2001 
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CASIA Dataset B 

(Yu et al., 2006) 

124 372 11 cameras 1- Clothing(coat)  

2- Carrying a bag  

3- angle variance 

2005 

 

CASIA Dataset C 

(Yu et al., 2006) 

152 610 1 infrared 

(Thermal) 

camera 

1- Walk speed 

2- carrying a 

backpack  

 

2005 

West Virginia 

University’s 

Outdoor Short-

wave infrared 

dataset (DeCann 

et al., 2013) 

155 N/A 1- Short-wave 

infrared 

camera 

1- unconstrained 

outdoor environment 

2- spatial resolution 

2013 

Inertial sensor-

based gait 

database (Ngo et 

al., 2014) 

744 N/A 1- 

Accelerometer 

2- gyroscope 

1- inclination 2014 

MMUGait 

Database (Ng et 

al., 2014) 

82 1640 video camera 1- clothing(long male 

clothing) 

2014 

OU-ISIR Gait 

Database 

(Makihara et al., 

2012) 

4007 N/A Video camera 1- angle variance 

2- spatial resolution 

3- gender 

2011 

 

 Although there are many databases available for gait recognition, none of them 

could provide an accurate representation of joint movement and rotation; as 

well as an accurate representation of the 3D human body form. Therefore; the 

core of this database was the use of motion capture and 3D laser scanning 

technology. The motion capture data would provide the accurate dynamics of a 

walk, while the 3D laser scanner would provide the accurate 3D human body. 

This kind of accuracy would facilitate the study of the relationship between the 

body’s physical composition (size, height, build) and the walking dynamics. 

Further research goals will be discussed in section 4 of this thesis.  
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The aim was to develop a multi-modal gait database to be used as a 

benchmark to apply various gait recognition experiments and techniques. The 

database used video, multiple view cameras, motion capture, and laser 

scanning. 

3.2. The Set up 

The main objective of the database was to provide one unified database that 

includes different modalities in regards to recording mediums used. In this 

database, every gait sequence is available in 3 formats: 

1- video recording of a subject parallel to the camera’s recording plane, 

2- an alternative video recordings of the subject at an angle as shown in 

figure 14, 

3- And motion capture data (3D motion data). 

 

Figure 14: Sample from the video capture of subjects in the database. (left) A frontal paralel angle 
(right) an angled video camera. 

Accompanying the motion data formats is two 3D point cloud (3D measurement 

data) datasets: 



65 

 

1- 3D scan of room 

2- 3D scan of the participant  

Since the use of treadmills is debatable (Shutler et al., 2004), it was decided to 

not use them in this database and rely on the length of motion capture studio.  

The database initially developed in 2011 and included 20 participants. 18 

further participants were added in 2013, including repeats of 3 subjects to 

ensure the long-term repeatability of measurements. Currently the database 

includes 38 participants. Each participant was asked to wear the motion capture 

suit. First, a 3D laser scan was captured of the subject. The four scans taken of 

every subject were conducted separately. First, a front scan was taken, followed 

by the right side, the back, and the left side. To maintain the same pose 

between scans, placement points for the feet were used, as well as a defining 

the position of the arm through the use of two chairs (the subjects would rest 

the tip of their finger on the chair to maintain stability). Although there were 

minimal movements between scans, yet it provided a more accurate measure of 

volume than the use of volume estimating algorithms from single scan. The 

same procedure was followed to scan subjects from two sides only.  and 

conduct the following actions in the chronological order within an estimated 1-

hour duration: 

1- conduct a walk 8 times across the room 

2- conduct a run 8 times across the room 

3- conduct a walk to run transition 8 times 
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4- conduct a walk carrying a bag using the left arm 8 times 

5- conduct a walk carrying a bag using the right arm 8 times 

Each walk and run was conducted over a distance of 13.5 metres. The subjects 

were asked to walk or run at their own comfortable pace. One walk or run 

consisted of walking/running from one end of the motion capture studio to the 

other end. This procedure would be repeated 8 times for each type of gait 

captured. Samples of the five actions are illustrated in figures 15-19. 

 

Figure 15: Sequence image from a walk sample in the gait database 

 

Figure 16: Sequence image from a run sample in the gait database 
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Figure 17: Sequence image from a walk to run transition sample in the gait database 

 

Figure 18: A database Sequence image of a walk sample carrying a bag on the right side 

 

Figure 19: A database Sequence image of a walk sample carrying a bag on the right side  
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3.2.1. Hardware and software used 

The recording of the data took place at the Motion Capture Studio at the School 

of Computing, Informatics, and Media, University of Bradford. In the following 

section, a detail of the each aspect of the set up will be discussed in details 

The database was used in this thesis as well as being used as a test bed for 

new Gait-based techniques. In this multi-modal database, gait was captured 

using three mediums: Motion capture, video camera, and 3D laser scans. Each 

medium is discussed in more details in the sub-sections to follow. 

Motion Capture 

The motion capture system used in this database consists of 16 Vicon T20 

cameras. Figure 20 shows the motion capturing area encapsulating within the 

box lines, and part of the Vicon T20 cameras on tripods. These cameras offer a 

resolution of 2 megapixels and capture at 500 frames per second 10-bit 

grayscale images. The cameras and motion capture process are managed and 

controlled by software called Vicon Blade. Blade provides the control and 

management of actor (subject) setup, recording the motion capture data, and 

clean up. These steps will be explained in more details in the following sections.  
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Figure 20: An image of a subject performing a walk in the University of Bradford Gait Database. 

Marker setup is the manner in which the white reflective markers are placed on 

a subject. The marker setup, as shown in figure 21, used in this database is the 

standard used at the University of Bradford motion capture studio, which is 

usually intended for real-time 3D simulation for the fields of entertainment and 

video games.  The marker setup is illustrated in figure 21.  

 

Figure 21: illustrates the marker setup used in capturing the gait cycles in the database 
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Video camera setup  

The subject’s Gait was captured using two cameras. Both cameras were placed 

on a tripod. One camera was placed parallel to the walk direction of the walk in 

order to capture a side view of the walk. The second camera was placed in an 

angled position. Figure 22 illustrates the camera setup and positioning relatively 

to the subject walking. 

 

Figure 22: An illustration of the video camera setup used in the database 

The cameras used in this database were the Canon EOS 5D Mark II. The video 

recorded was of a full HD resolution (1920 x 1080), at 25 frames per second.  

3D Laser scanning  

The 3D laser scanner used in this database is the Faro Laser Scanner Photon 

120. This scanner scans a 360-degree horizontal field of view with a speed of 

120,000 points per second. In this setup, the laser scanner was controlled, and 

the recording was managed through, the use of the software Faro Scene 
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version 5.1. Faro scene provided an interface to control the quality, resolution, 

focus, and management of the point cloud captured using the laser scanner.  

The first phase of data capture, as illustrated in figure 23, the scanner was used 

to take two scans of the subject: one from the front, and another from the back. 

During the collection of the second set of subjects, four scans were captured: 

front, back, right and left. The four sides scan is illustrated in figure 24. The 

scans were done before the motion capture recording started. Although there is 

a very minimal risk of using a laser, precautions were taken by the use of safety 

goggles. 

 

Figure 23: An example of the 2 laser scans conducted in the first phase of the database. 
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Figure 24: An example of the 4 laser scans captured in the second phase of the database. 

3.3. Ethical Procedures 

The process of capturing subjects as explained in previous sections has been 

ethically approved in March of 2011. An extension for the ethical approval was 

applied for in March 2012, to conduct the study until February of 2014. The 

extension was approved of on May 2012. The application consisted of project 

proposal, consent form, information sheet, and an application form which can 

be found in appendix 3.1 and appendix 3.2  

Certain precautions had to be in place in regards to health and safety. The two 

main harm or distress would be caused by the laser used in the 3D laser 

scanning and possible running injuries involved in the motion capture. A safety 

goggle was used to avoid harm caused by the laser, and to reduce potential 

injury from running, subjects were asked to run at a comfortable pace that 

wouldn’t cause distress.  
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To ensure confidentiality and anonymity, no personal data related to identity 

were stored with information captured. Subjects are identified by their subject 

number (subject 01 , subject 02, subject 03…etc.). The video does reveal their 

faces, but this information is blurred to avoid any identification of the identity of 

the subject, unless the subject has signed an agreement and release form for 

pictures of his/her face to appear in the database or further publications.  

3.4. Subjects 

The initial subjects were contacted through the use of flyers within the Visual 

Computing Centre and the School of Engineering, Design, and Technology at 

the University of Bradford.  Each volunteer was required to read an information 

sheet about the database and the process of recording. They were each 

requested to sign a consent form before any recording session took place. 20 

subjects were recorded initially in 2011, and 18 more subjects were added in 

2013.  

The first set of subjects consisted of 3 females and 17 males. The average age 

was 30, and ranged from 22 to 45. The Average weight was 76.9 Kilograms, 

ranging from 50 to 130 kilograms. The average height was 172.3 centimetres, 

with a range of 158 to 190 centimetres. The ethnicity of the participants 

included: European white, Asian British, Middle Eastern, Chinese, Indian, and 

Persian. The database was later expanded to include 18 further subjects using 

identical protocols. The new subjects consisted of 14 males and 4 females. 
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3.5. Data collection and storage 

After the recording session of the subject, the video, motion capture, and laser 

scan data was saved to an individualised folder following a naming system 

(Sub_####) that included primarily the Subject ID number, in order to maintain 

anonymity of subjects. For example all of subject #1’s data is included under the 

folder Sub_0001. Under each subject’s folder are another five folders: video 

(/vid) , motion capture data (/mcp), 3d scan point cloud data (/3dp), subject 

information (/inf), and processed data (/dat).  

The /Vid folder contains the two video files: side and front; and are named by 

the following convention:  

Sub_####_Vid_XX, 

where #### is the subject id number, and XX is the camera angle (SD for side, 

and FT for front). For example, the frontal camera video of subject 1 would be 

named: Sub_0001_Vid_FT. 

The /mcp folder contains all the motion capture data and is divided into five 

folders: walk (/wlk), run (/run), walk to run transition (/w2r), carrying a bag with 

right arm (/bgR), and carrying a bag with left arm (/bgL). Each folder 

respectively contains the motion capture data affiliated with its class. The files 

follow the following naming convention:  

Sub_####_mcp_xxx_yy, 
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where #### is the subject id, xxx is action type (wlk, run, w2r, bgR, and bgL), 

and yy is the sample number. For example, subject #1’s second walk motion 

capture data would be named as: Sub_0001_mcp_wlk_02. 

The /3dp folder contains the 3d point clouds recorded by the Faro laser 

scanner. Within this folder are the two scans of the subject and use the 

following naming convention 

Sub_####_3dp_XX, 

where #### is the subject’s id , and XX is the angle of the scan: FR for front, 

and BK for back. For example, subject #1’s front point cloud file will be named 

as Sub_0001_3dp_FR.  

The /inf folder contains one txt file that holds various information about the 

subject which includes age, weight, gender, and other static measurements of 

the subject’s body. The contents of this file will be discussed in more details in 

section 3.5 and section 4.  

The /dat folder contains a single txt file that holds the processed dynamic 

features of a subjects gait, and will be discussed in details in section 3.5 and 

section 4. 

3.6. Data processing and analysis 

Each data type followed a specified procedure to convert the raw data into 

useable data for further analysis and testing. 

3.6.1. Video 

The video data requires being:  
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1- Classified and cut;  

2- And processed manually to track dynamic features.  

The data recorded in the session was shot continuously, which means for each 

subject; all forms of gait are included in one continuous video file. Therefore 

there is a need to cut the video into sections according to their form (walk, run, 

walk to run transition, walking with a bag). Instead of using a video editor do 

perform the cuts and output several other files, it was rather divided within the 

same program that was used for video tracking. The video tracking software 

was used to track the different features of a subject’s gait. Pixel Farm’s PFTrack 

(version 5.0) was used to divide the videos. The videos were divided based on 

one gait sample per gait type. Pixel Farm PFTrack was also used to track the 

joints that are required to process the dynamic gait features.  

Once the video divided according to its sequence number and form, tracking of 

key joints was done on the subject using PFtrack’s automated tracking tool. 

When the automatic tracking tool failed to track properly, manual tracking from 

user input was used. The joints that were tracked include: mid-section of the 

hip, left and right knee, left and right ankle, left and right ball of the feet, left and 

right feet tip, left and right shoulders, left and right elbows, left and right wrist, 

and finally the top tip of the head.    

Finally, the tracked data is exported as individual files that represent the 

vertical(X) and horizontal(Y) positions of the tracked point. The files are saved 

using the following naming convention: 

Sub_####_dat_xxx_yy_o_Joint_A 
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Where #### is the subject ID, xxx is the gait form, yy is sequence number, o is 

the left(L) or right(R) side of the body, joint is the name of the joint being 

tracked, and A is the axis(X or Y). Therefore, subject #1‘s X-axis tracking of the 

right knee when the subject conducts his/her first walk sample is named as: 

Sub_0001_dat_wlk_01_R_knee_X.txt.  

3.6.2. Motion Capture 

For the motion capture data to be usable, it must be converted to either 

positional data in <x,y,z> or rotational data <𝜃𝑥, 𝜃𝑦, 𝜃𝑧>. The current marker 

setup cannot provide us a direct positional or rotational data of the joints 

required. Therefore a reconstruction of the human skeleton is required, and is 

processed through the use of Vicon Blade (version 1.7.0).  

The process used in this database is closer to that used in the entertainment 

and gaming industry than the way it is traditionally dealt with in biomechanics. In 

most biomechanical based studies, the markers just focus on lower limb 

movement, while the setup used in this database involves lower and upper 

limbs, as well as spine movement. The data is first processed for what is called 

ROM (Range of motion), in which the range of motion of the subject is 

identified. It is followed by a calibration, in which the generic skeleton in Blade is 

adjusted according to the subject’s body size. Figure 25 shows the generic 

skeleton and how it is matched to the markers from the ROM recording.  Finally, 

the new skeleton is used as a base for solving all the gait samples. Solving the 

gait samples involves fitting the calibrated skeleton to the recorded markers on 

the suite during a walk. Figure 26 further illustrates the calibrated skeleton 

solved for one of the gait samples. The solution results rotational values for all 



78 

 

the joints available in the used marker setup. Rotational information matches 

state of the art information extracted in gait recognition techniques using 

dynamic features. Positional data will be indirectly inferred via the 

measurements extracted from the 3D scans. Some joints are constrained on 

their degrees of freedom, such as the knee joint, which rotates only around one 

axis (X). The data is then exported as an ASCII file containing the rotational 

data of all the joints and is saved according to the following naming convention: 

Sub_####_dat_mcp_xxx_yy_.txt 

 Where #### is the subject ID, xxx is the gait form, and yy is sequence number.  

 

Figure 25: An illustration of the character calibration process in Vicon Blade. a) The points 
reconstructed from the motion capture session. b) The non-calibrated character is imported into 
the file. c) The character is calibrated to fit the points captured from the motion capture.  
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Figure 26: An example of a calibrated character that has been solved for the motion capture 
sessions of the subject walking.  

3.6.3. 3D Laser Scan 

The aim of recording an accurate 3D representation of the subject was for two 

reasons: 

1- To be able to accurately provide scalar data in regards to 2D 

measurements of the human body (length of leg, width of arm, etc.…) 

2- To be able to study the body from a 3D point of view (volume, surface 

distribution, etc.…) 

In regards to the first aim, direct measurements using the point-measuring tool 

in Faro Scene is utilised. Within Faro Scene, the points to measure between 

were manually chosen. This involves choosing the 2D measuring tool, and 

clicking between two points on surface to perform the measurement. Automatic 

division of the body was not applicable, therefore’ manual labeling of the joints 
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was used.  The specific parameters chosen to measure will be discussed in 

later chapters. 

  

For the purposes of studying the body in 3D space, the two separate scans 

were merged together. Because there was very minimal overlap between the 

two scans of every subject, Polyworks software was not capable of 

automatically aligning the scans. Therefore, it was required for this step to be 

done manually. Same procedure was applied for the second set of scans, in 

which four sides of a subject were captured. The processing of the 3D laser 

scans involves: point cloud conversation to a 3D surface or mesh, manual 

alignment of scans, and finally manually fitting a 3D human mesh. The first step 

involves creating a 3D mesh from the point cloud using InnovMetric Polyworks 

(version 10). This step would convert the dispersed point clouds into a 3D 

surface in the OBJ format. The two or four separate OBJ files were then 

imported into Autodesk Maya (2011 version). Using Autodesk Maya’s 3D move 

and rotation tool, each scan was manually aligned to fit all the different captured 

sides. Figure 27 illustrates how the different sides are aligned together.   
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Figure 27: General steps in manually merging the 3D scans in Autodesk Maya (A) the different 
scans unaligned, (B-C) rotate and move the first scan to the origin(centre) , (D) move and rotate the 
following scanned side to match the first scan, (E-F) rotate and move the last piece to match the 
remaining aligned scans.  

It is important to notice that there are holes present, especially on both sides. 

Therefore; 4 scans were recorded of the second batch of 18 participants, which 

included front, back, right, and left side of the subject. The resultant files were 

saved in the /inf folder using the following naming convention: 

Sub_####_inf_3dp.obj, 

where #### is the subject ID number.  

3.7. Database availability  

The database has been mentioned in paper that will be published in the British 

Journal of Applied Science and Technology.  The database will also be made 

available online to the research community through the Centre of Visual 
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Computing at the University of Bradford website. To gain access to the 

information, they are required to fill in a form available online, and upon 

approval; user name and password will be provided for a one time download of 

the data. The data that will be provided will only contain the volume and surface 

area measurements, and rotational data of the joints. For anonymity, the 

subjects will only be named using numbers (1,2,3…etc.).  

3.8. Conclusion 

This database is the first known example of a database that includes accurate 

3d gait parameters of 3d body measurements. As such it is the first truly 3D gait 

database of its kind, and sets the benchmark for future databases. In the 

remainder of the thesis, we will use the data to investigate possible correlations 

between static and dynamic gait measurements and features.  
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Chapter 4:  Relationship between 
2d static and dynamic features 
 

4.1. Introduction 

The overall goal of this thesis is to investigate the relationship between static 

measurements of the body and dynamic features of gait. This is done with the 

aim of investigating the potential of using partial gait data, which will be defined 

in the following section, to model and predict full gait cycles. In this chapter we 

build the foundation for the thesis by exploring the relationship between 20 

static features and dynamic features. 

Although various gait recognition techniques take into consideration both static 

and dynamic features, there are no studies that attempt to describe a detailed 

relationship between both types of features. On the contrary to gait recognition 

related research, in biomechanics there is a particular interest in the relationship 

between static measurements and their ability to predict gait dynamics in order 

to diagnose abnormalities of a person’s gait.  In 1989, Hamill et al conducted a 

test to study the relationship of static physical(Hamill et al., 1989)  

measurements of the lower extremity and dynamic features. The outcome of the 

research proved that there is a limited canonical correlation from using 

measurements taken solely from the lower extremities. In more recent studies, 

other static measurements were used to predict either dynamic motion or 

disabilities (Hunt et al., 2000)(Cornwall and McPoil, 2011). They share similar 

conclusions that some measurements are a good predictor of motion, but not 
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disabilities. Although these results might seem discouraging in the area of 

medical biomechanics, they carry great potential in gait recognition studies. 

Based on the mentioned studies, there are two points that need to be taken into 

consideration. First, it is very clear that no study has taken into consideration a 

comprehensive set of static features that would include measurements of the 

upper and lower body. Secondly, previous research indicates the existence of a 

correlation between certain static and dynamic features, but these results were 

disregarded because of their irrelevance to the objectives of those studies.  

4.2. The chosen features and post processing 

In most gait recognition techniques, the static features are extracted from the 

2D or 3D model used to describe the subject’s gait (Wang et al., 2004, Ioannidis 

et al., 2007a, Huang and Boulgouris, 2010, Guo and Nixon, 2009, Johnson and 

Bobick, 2001, Niyogi and Adelson, 1994, Zhao et al., 2006, Ariyanto and Nixon, 

2011). In this study, the purpose is to study the relationship of the body and its 

relationship to gait; therefore, it was a necessity to acquire all the information 

using a tool that can provide the most accurate result.  

4.2.1. Static features 

Computer vision based static features extraction techniques can have a 

considerable amount of error, especially when it comes to upper body 

dynamics. Therefore; in order to acquire data that is as accurate as possible, 

the features were manually extracted from the three dimensional point cloud 

data of the 3d scan mentioned in chapter 3. The measurements were taken 
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from specific static features using the Faro Scene software. All measurements 

were manually extracted.  

The choices of features were based on logical landmark physical characteristics 

as well as static features mentioned in Guo and Nixon’s work  in which feature 

selection was examined to find the most influential features in recognition(Guo 

and Nixon, 2009). The static features are based on the assumption of a video 

being recorded from a frontal view. There are 19 2D static features. The 

features that were used from the study conducted by Guo and Nixon are: torso 

height(H2), length of thigh(H3), length of shin(H4), foot length(FL), length of 

head(HL), width of head(HW), width of leg at top of the thigh(L1), and width of 

leg at the knee joint(L2). The other features that were introduced in this thesis 

are logical landmarks that included: total height(H1), length of shoulder to 

elbow(A1), length of Elbow to wrist(A2), length of hand(A3), arm thickness at 

shoulder joint(A4), arm thickness at elbow(A5), arm thickness at wrist(A6), torso 

width at shoulder level(T1), torso width at waist level(T2), torso width at hip level 

(T3), and width of the leg at the ankle joint(L3). It was also taken into 

consideration that only the right side of the subjects would be used for two main 

reasons. First, because the dynamic features were extracted from a 2D video, 

the left side of the body was occluded behind the body of the subject. Second, 

we carry out the study based on the notion of symmetry of motion dynamics 

between the right and the left sides of the body, which is a practice commonly 

conducted in 2d video based gait recognition.  Two other factors were included 

from the information provided by the subject, which included: age (Ag) and 

weight (Wg). Figure 28 illustrates subject’s static features used. 
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Figure 28: An illustration of the static features extracted from every subject in the database 

4.2.2. Dynamic features 

The dynamic features used in the correlation study were the phase-weighted 

magnitude (PWM) of the different joint rotations of a subject. This method is 

driven from a technique developed by Cunado et al. In this method the phase 
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and magnitude component of the Fourier transform applied on the thigh and 

knee rotations from the gait sample, are used(Cunado et al., 1997). Magnitude 

provides the range of motion a joint goes through, while the phase component 

describes the time component of the movement. It was used in later studies and 

applied to both 2D and 3D models(Yam et al., 2002, Ariyanto and Nixon, 2011). 

A major difference in this conducted study is that the same technique is also 

applied to the upper and lower arm temporal rotational data. The angles are 

extracted from the manually labeled joint 2D pixel location in a single image.   

The final feature is formed by multiplying the magnitude component by its 

corresponding phase component. Therefore; PWM is defined as;  

𝑥𝑙,𝑘
𝑖 =  | (𝑒

𝑙,𝑖

kj
)|  arg ( (𝑒

𝑙,𝑖

kj
)),    (1) 

Nk ,...,2,1 , 

where i

klx , , is the Phase-Weighted magnitude signature for the thl  sequence of 

subject i  and the k
th Fourier transform component.  The | (𝑒

𝑙,𝑖

kj
)| represents 

the absolute value of the thk  Discrete Fourier Transform magnitude component, 

while  arg ( (𝑒
𝑙,𝑖

kj
)) is the complex form representation of the phase 

component. The   implies the multiplication of each component in the first 

vector by its corresponding component in the second vector.  

Only the lower order components are used to avoid noise and irrelevant data. 

The first two components are used in the thigh rotation, while the first three 

components in the knee rotations were used. This decision was based on a 
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study by Yam et al, in which the mentioned components were found to be highly 

discriminatory while other components consisted of noise, which could not be 

used for recognition(Yam et al., 2004). The outcome result showed that in most 

gait samples the magnitude spectrum produced by a Fourier Transform 

algorithm converged to a zero value beyond the fifth harmonic. It was also 

proven that a phase-weighted magnitude, in which the phase component is 

multiplied by the magnitude component, provides stronger discriminatory 

potential then the use of the phase or magnitude component independently. 

This is likely to be related to the fact that gait is not defined only by the range of 

movements, but also with timing.  

Based on the mentioned gait signature, a total of 10 dynamic features were 

used and were extracted from the right side of the subjects. As mentioned 

earlier, the left side was disregarded because it would be occluded from the 

camera view. Since the camera was placed perpendicular to the walking path, 

the left arm was always behind the torso of the subject. Because it is not visible 

to the camera, it was not included. The same structure used for the leg was 

used for the arm in this study. Since the first two harmonics were used for the 

thigh, only the two harmonics were used for the shoulder. They are both the first 

joint in their respective joint chain. The three harmonics of the elbow were used, 

which is similar to the harmonics used for the lower leg rotations. Therefore; the 

2D dynamic features include: second and third phase-weighted components of 

the right shoulder (PSa,PSb), second and third phase-weighted components of 

the right thigh (PTa, PTb), second, third, and fourth phase-weighted 

components of the right lower leg(PKa, PKb, PKc) and elbow(PEa, PEb, PEc).. 
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4.3. Correlation analysis and results 

There were a total of 21 static features and 8 dynamic features. All the features 

and their abbreviations are listed in Table 3.  

Table 3: A list of all the dynamic and static features used in the study 

abbreviation feature description type 

H1 Total height Static 

H2 Torso length Static 

H3 Thigh length Static 

H4 Shin length Static 

FL Foot length Static 

A1 Length between shoulder and elbow Static 

A2 Length between elbow and wrist Static 

A3 Hand length Static 

HL Head length Static 

HW Head width Static 

A4 Width of arm at shoulder Static 

A5 Width of arm at elbow Static 

A6 Width of arm at wrist Static 

T1 Width of torso at shoulder level Static 

T2 Width of torso at waist level Static 

T3 Width of hip Static 

L1 Width of upper thigh Static 

L2 Width of knee Static 

L3 Width of ankle Static 

PSa 1st component PWM of the Shoulder 

rotation 

Dynamic 

PSb 2nd component PWM of the shoulder 

rotation 

Dynamic 

PEa 1st component PWM of the elbow 

rotation 

Dynamic 
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PEb 2nd component PWM of the elbow 

rotation 

Dynamic 

PEc 3rd component PWM of the elbow 

rotation 

Dynamic 

PTa 1st component PWM of the thigh 

rotation 

Dynamic 

PTb 2nd component PWM of the thigh 

rotation 

Dynamic 

PKa 1st component PWM of the knee 

rotation 

Dynamic 

PKb 2nd component PWM of the knee 

rotation 

Dynamic 

PKc 3rd component  PWM of the knee 

rotation 

Dynamic 

Wg Weight of subject static 

Ag Age of subject static 

 

The aim of the study was to investigate the relationship between static and 

dynamic features.  This was achieved through the use of the correlation 

coefficient. The correlation coefficient matrix; ),( jiR  is defined as; 

),(),(

),(
),(

jjCiiC

jiC
jiR  ,    (2) 

where C  is the covariance, and i , j  are the features extracted. The covariance 

was calculated using the following formula; 

])],[])([[(),( jEjiEiEjiC      (3) 

where E is the expected value; or weighted average. 
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Only features with a p-value smaller than 0.05 (p<0.05) were considered to be 

significant.  Out of the possible relationships, eleven correlations fit this 

criterion. The eleven relationships are listed below in table 4. 

Table 4: A list of the top 11 significantly correlated 2D static and dynamic features 

Dynamic Feature Static Feature Correlation 

Coefficient 

P-value 

1st comp elbow PWM foot length 0.48 0.0429 

1st comp elbow PWM length forearm 0.50 0.0365 

2nd com shoulder PWM shoulder width 0.68 0.0020 

2nd comp thigh PWM elbow width 0.55 0.0194 

3rd comp knee PWM wrist width' 0.50 0.0365 

2nd com shoulder PWM width torso-shoulder 0.49 0.0409 

2nd comp thigh PWM width torso-shoulder 0.48 0.0434 

2nd com shoulder PWM width torso – hip 0.55 0.0180 

2nd com shoulder PWM width of upper thigh 0.50 0.0349 

1st comp shoulder PWM Weight 0.55 0.0186 

2nd com shoulder PWM Weight 0.78 0.0001 

 

The results show that there are static measurements that relate to the dynamics 

of gait. Specifically, the 2nd component of the shoulder’s PWM is significantly 

correlated to 5 static features. Even though an arm static feature would seem to 

be the ideal static feature relating to the arm related dynamic feature, yet, 

weight in this analysis has shown to have the highest correlation coefficient. It 

has a correlation coefficient of (0.7799) with the 2nd component of the 

shoulder’s PWM. Figure 29, represents the plotted data of the PSb (2nd 

Component of Shoulder’s PWM) against the weight of subjects analyzed in the 
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sample. Figures 29-33 are a visual plot of the highest five correlations in the 

study.  

 

Figure 29: Plot of 2nd component of the shoulder’s PWM against a subject’s weight 
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Figure 30: Plot of  2nd component of the shoulder’s PWM against A4 

 

Figure 31: Plot  2nd component of the shoulder’s PWM against T3 
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Figure 32: Plot of 1st component of the shoulder’s PWM against subject’s weight 

 

Figure 33: Plot of 2nd component of the thigh’s PWM against A5 
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To further provide an insight on the correlation analysis, the top 5 correlated 

static features with each dynamic features is shown in tables 5-14. 

Table 5: Top 5 correlated features to 1st component shoulder PWM 

Static feature Correlation coefficient  p-value 

Weight 0.548 0.019 

width torso-shoulder  0.417 0.085 

shoulder width 0.394 0.105 

Age 0.301 0.225 

width torso – hip 0.293 0.238 

 

Table 6: Top 5 correlated features to 2nd component shoulder  PWM 

Static feature Correlation coefficient  p-value 

'weight' 0.780 0.0001 

'shoulder width' 0.678 0.002 

'width torso - hip' 0.550 0.018 

'width of upper thigh' 0.499 0.035 

'width torso-shoulder' 0.486 0.041 
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Table 7: Top 5 correlated features to 1st component elbow PWM 

Static feature Correlation coefficient  p-value 

'length forearm' 0.496 0.036 

'foot length' 0.482 0.043 

'age' -0.461 0.054 

'hand length' 0.405 0.096 

'thigh length' 0.340 0.167 

 

Table 8: Top 5 correlated features to 2nd component elbow PWM 

Static feature Correlation coefficient  p-value 

'weight' -0.370 0.131 

'torso length' -0.342 0.165 

'total height' -0.328 0.184 

'shoulder width' -0.328 0.184 

'width torso - hip' -0.301 0.225 

 

Table 9: Top 5 correlated features to 3rd component elbow PWM 

Static feature Correlation coefficient  p-value 

'head width' 0.370 0.130 

'head length' 0.313 0.206 
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'foot length' 0.283 0.255 

'width of knee' 0.225 0.370 

'width torso - waist' -0.208 0.407 

 

Table 10: Top 5 correlated features to 1st component thigh PWM 

Static feature Correlation coefficient  p-value 

'head length' -0.456 0.057 

'head width' -0.392 0.108 

'width of knee' 0.391 0.108 

'shin length' -0.371 0.129 

'width torso-shoulder' -0.371 0.130 

 

Table 11: Top 5 correlated features to 2nd component thigh PWM 

Static feature Correlation coefficient  p-value 

'elbow width' 0.545 0.019 

'width torso-shoulder' 0.481 0.043 

'shin length' 0.454 0.059 

'head length' 0.432 0.073 

'width of ankle' 0.425 0.079 
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Table 12: Top 5 correlated features to 1st component knee PWM 

Static feature Correlation coefficient  p-value 

'thigh length' -0.443 0.065 

'shoulder width' -0.376 0.124 

'shin length' -0.286 0.250 

'width of knee' 0.232 0.354 

'width torso - waist' 0.229 0.361 

 

Table 13: Top 5 correlated features to 2nd component knee PWM 

Static feature Correlation coefficient  p-value 

'shin length' -0.448 0.062 

'thigh length' -0.430 0.075 

'head length' -0.350 0.154 

'width of ankle' -0.305 0.218 

'shoulder width' -0.276 0.268 

 

Table 14: Top 5 correlated features to 3rd component knee PWM 

Static feature Correlation coefficient  p-value 



99 

 

'wrist width' 0.495 0.037 

'width torso - waist' 0.432 0.073 

'age' -0.340' 0.168 

'length forearm' 0.338 0.170 

'head width' -0.327 0.185 

 

There are certain measurements in which the difference in measurement 

between subjects is relatively similar to the potential error in measurement. 

Measurements such as width of ankle, wrist width, and foot width are very small 

measurements. The resolution, at which the scan was taken and the angle at 

which the scanning was set to; can potentially introduce errors in measurement. 

To a lesser extent measurement such as width of thigh, knee, shoulders and 

elbows are close to the potential error. 

Although weight is one of the top correlated static features, yet one subject has 

a weight of 130kg (an outlier), that is creating a favorable situation for a 

stronger correlation as in figures 29 and 32. To assess the influence of the 

outlier information, that subject (subject_03), was removed from the correlation 

analysis. Instead of resulting in 11 correlations with a P-value less than 0.05, it 

resulted in a total of 5 correlations fitting the criterion. The five correlated 

features are listed in table 15. 
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Table 15: A list of the significant correlations between static and dynamic features after removal of 
outlier (weight outlier) 

 Dynamic Feature Static Feature Correlation 

Coefficient 

P-value 

1 1st comp elbow PWM length forearm  0.515 0.034 

2 1st comp knee PWM shoulder width -0.544 0.024 

3 2nd comp thigh PWM elbow width  0.552  0.022 

4 3rd comp knee PWM wrist width  0.511 0.036 

5 3rd comp knee PWM width torso - waist  0.567 0.018 

 

Although the previous tables show that certain upper body static measurements 

are correlated with lower body dynamic features, there is the constant question 

of whether there is a stronger correlation between the lower body dynamic 

features and its lower body static measurements.  Table 16 quantifies the 

correlation coefficient and P-values between lower limb dynamic features and 

lower limb static features only.  

Table 16: Coreelation coefficient and P-values between lower limb 2D static and dynamic features 

Static feature Dynamic feature Correlation 

coefficient 

p-value 

Thigh length(H3) '1st comp knee PWM' '  -0.44296' '  0.065621' 

 '2nd comp knee PWM' '  -0.42971' '  0.075118' 

 '3rd comp knee PWM' '   0.29137' '   0.24076' 

 '1st comp thigh PWM' '  -0.13178' '   0.60219' 

 '2nd comp thigh PWM' ' -0.057351' '   0.82117' 
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Shin length (H4) '2nd comp thigh PWM' '    0.4538' '  0.058542' 

 '2nd comp knee PWM' '  -0.44838' '  0.062005' 

 '1st comp thigh PWM' '   -0.3709' '    0.1297' 

 '1st comp knee PWM' '   -0.2858' '   0.25028' 

 '3rd comp knee PWM' '  -0.23872' '   0.34009' 

Width of upper thigh (L1) '2nd comp thigh PWM' '   0.42249' '  0.080697' 

 '1st comp knee PWM' '   0.22166' '   0.37672' 

 '1st comp thigh PWM' '  -0.21153' '   0.39944' 

 '3rd comp knee PWM' '  0.058431' '   0.81786' 

 '2nd comp knee PWM' '  0.010435' '   0.96722' 

Width of knee (L2) '1st comp thigh PWM' '   0.39115' '   0.10847' 

 '2nd comp thigh PWM' '    0.3514' '   0.15275' 

 '1st comp knee PWM' '   0.23218' '   0.35389' 

 '3rd comp knee PWM' '   0.23093' '   0.35654' 

 '2nd comp knee PWM' '    0.2069' '   0.41008' 

 

Although none of the correlations in the table above fit the P-value criterion of 

0.05, yet the average of the correlation coefficients and the P-values can give 

us some an insight into the relationship and influence of certain type of 

measurements (width versus length) over the other. The average absolute 

correlation coefficient for the thigh length is 0.2706 and P-value of 0.361, and 

the shin length had a 0.35952 and P-value of 0.1681. On the other hand, the 

width of the thigh had an average absolute correlation coefficient of 0.1849092 

and a P-value of 0.528; and the width of the knee had a 0.283 and a P-value of 

0.276. In both cases, the length of the leg segment had a stronger correlation 
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then the width. It was also clear that the shin measurements, both length and 

width, had a stronger correlation with the dynamic features of the lower limbs 

than the thigh measurements. This finding can be explained by the various 

models such as the pendulum model, in which the length of the lower limb is a 

major part of the motion model of the leg(Yam et al., 2004).  

In conclusion, the correlation analysis conducted to study the relationship 

between 2d static and dynamic features resulted in several key results. There 

were 11 feature correlations that were considered statistically significant 

(p<0.05). There were static features that need to be evaluated because of the 

existence of an outlier in the data sample, which has shown to influence the 

correlation analysis. Static features such as weight were removed from a follow 

up analysis to see the influence of certain outlier containing subject data can 

have a great effect on the results. Removing the subject with the outlying weight 

static feature reduced the correlation coefficient and became statistically 

insignificant. Further insight into the influence of lower limb static measurements 

directly to its dynamic feature revealed that length of limbs were more related to 

the dynamics of the lower limb movement. Within the whole leg, the shin 

measurement shows a stronger relationship then the thighs. 

In a study by Hanlon and Anderson, a r2 value between 0.49-0.64 was regarded 

to be a moderate indication of prediction(Hanlon and Anderson, 2006). The r2 

values in the current study have a higher value, indicating a higher potential of 

strong predictions, therefore based on the correlation analysis conducted, 

prediction of some of the dynamic features is potentially possible.  
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4.5. Conclusion 

There are numerous literatures supporting the existence of a relationship 

between the physical characteristics of a person to the main gait dynamics. 

Although several studies  suggest that there are no clear relationships in the 

features they chose, yet the specific dynamic features covered are not the 

dynamic features that gait recognition focuses on(Hamill et al., 1989, McPoil 

and Cornwall, 1996, Cavanagh et al., 1997, Hunt et al., 2000, Cornwall and 

McPoil, 2011). Our study suggests that there is a relationship between some 

static features and dynamic features.  

Further dynamic features and static features must be considered, as well as 

other advanced statistical tools must be explored to study the relationship 

between the two types of features, which will further enhance the understanding 

of gait. Future results will hold great benefits to several fields including: 

computer vision based gait recognition, biomechanical medical gait analysis, 

and the entertainment based computer animation application. 

Although the criteria used in this study to define which features could be 

considered correlated is high, there were correlated static and dynamic 

features. Therefore, based on these indicators, the goal of this chapter was to 

use a more comprehensive approach to include more static and dynamic 

features using a unique set of data available, described in the previous chapter. 

The results of this study hold great potential for several reasons. Once an 

understanding of the relationship between the two set of features is defined, 

static features will enable us to predict the dynamic features and vice versa. In 
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the field of biometrics and security, this would imply that less information would 

be needed to acquire a signature of a suspect or a criminal, which would benefit 

future criminal investigations that use gait as a source of identification. In 

biomechanics, physical measurements will allow the analysis of one’s gait 

without resorting to the use of expensive systems. It will also have potentially 

great importance in further enhancing the knowledge about the specific 

mechanics of a human’s gait. These results hold great potential for further 

studies in modelling the relationship between a human’s static and dynamic gait 

features, and help in modelling the prediction, which will be explored in chapter 

6. 

There are certain factors that can be taken into consideration in future research.  

1- Although the study has captured various aspects of the human body, 

there are other valuable factors to consider, for example, 3D volume static data 

extracted from the 3D point clouds. 

2- The inclusion of additional 2D static features could potentially provide 

further insight into other possible relationships.  

3- The correlation coefficient was used in this study to investigate if a 

relationship exists. Other statistical tools must be considered to interpret this 

relationship further. There is potential in the usage of non-linear statistical tools, 

as well as the use of autocorrelation and cross correlation with temporal data.  
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Chapter 5: Relationship Between 3d 
Static and Dynamic Features 

5.1. Introduction 

As mentioned in the previous chapter, although various gait recognition 

techniques take into consideration both static and dynamic features, there are 

no studies that attempt to describe a detailed relationship between both types of 

features.  

Previous research indicates the existence of a correlation between certain static 

and dynamic features, but was disregarded because of their irrelevance to the 

objectives of those studies. In the previous chapter, two dimensional static and 

dynamic features where examined using a correlation coefficient analysis. The 

study concludes that there were eleven significantly correlated features.  

Therefore, based on these indications, the current chapter; first, looks at three 

dimensional static and dynamic features; and second, uses a high accuracy 

data capture method that includes motion capture and three dimensional laser 

scanned subjects, instead of 2d video object tracking and 2d measurements.  

5.2. Review of related literature 

There are several studies that have looked at volume or mass related static 

measurements. In a study by Van Den Bogert et al.,adding mass to the limb 

contributes directly to effort and stride length(van den Bogert et al., 2012b). This 

indirectly suggests that a change in mass can contribute to a change in 

kinematics. In another study, Wong et al’s study looked at how static 
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parameters or features of a human can effect body kinematic and improve 

tennis serves(Wong et al., 2014). The relationship between body fat 

composition and gait speed was the focus of a study that aimed to understand 

which body part contributes most to gait speed (Beavers et al., 2013). Although 

the mentioned studies use mass related measurements, yet they are not 

measurable by image or video based sensors. The use of volume, rather than 

weight, is a more pragmatic static feature to be considered when using vision-

based medium in capturing gait.  

Since the subjects were captured using the Faro Ls laser scanner, it is possible 

to measure the volume and surface area of each individual segment of the 

body. Hence, following a similar methodology in studying the relationship 

between features, volume based static features and 3d dynamic features will be 

studied using a correlation analysis. Volume based static features were 

extracted from the 3d scans as described in chapter 3, while the 3d dynamic 

features were extracted from the motion capture data in the same mentioned 

database. 

5.3 Feature choices and processing 

In this correlation study, phase-weighted magnitude (PWM) of the different joint 

rotations of a subject was used as dynamic features. The joints used include: 

waist spine joint, upper spine joint, neck, shoulders, elbows, wrists, thigh joints, 

knees, ankles, ball of the foot, and shoulder traps. Each joint has three 

rotational axes[x, y, z], except for the knee which a hinge joint; therefore, has 

only one axis. The method is driven from a technique developed by Cunado et 
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al. which was also used in chapter 4’s correlation analysis(Cunado et al., 1997). 

In this method the phase and magnitude component of the Fourier transform 

applied on the rotations of every individual joint in a gait sample are used. The 

final feature is formed by multiplying the magnitude component by its 

corresponding phase component. Therefore,  PWM is defined as,  

𝑥𝑙,𝑘,𝜎
𝑖 =  | (𝑒

𝑙,𝑖,𝜎

kj
)|  arg ( (𝑒

𝑙,𝑖,𝜎

kj
)),   (4) 

Nk ,...,2,1  

where
i

klx , , is the Phase-Weighted magnitude signature for the  thl  sequence of 

subject i  on the 𝜎 axis (because angle rotations are represented in three 

dimensions x, y, and z), the )( kje   represents the absolute value of the thk  

Discrete Fourier Transform magnitude component, while ))(arg( kje   is the 

complex form representation of the phase component. The “ “ implies the 

multiplication of each component in the first vector by its corresponding 

component in the second vector. N is the number of subjects in the database, 

which in this analysis is 38. 

Similarly to what was mentioned in the previous chapter, anything beyond the 

fifth phase harmonic can be ignored because of the insignificance of its 

magnitude component. In the mentioned study, only the first two harmonics in 

the thigh rotational data and the first three harmonics in the lower leg rotational 

data were used because of their highly discriminative properties(Yam et al., 

2004). Therefore, only the 2nd to 5th components were used in the analysis to 

avoid noise and irrelevant data (Yam et al., 2004). 
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With most gait recognition techniques, the static features are extracted from the 

2D or 3D model used to describe the subject’s gait (Guo and Nixon, 2009). 

Computer vision based static features extraction techniques applied to video or 

two dimensional images carry a considerable amount of error, therefore; in 

order to acquire data that is accurate, a reconstruction of the subject’s three 

dimensional body volume was created from the four 3D laser scans using 

Geomagic Polyworks to reverse engineer the point cloud to a mesh, and 

Autodesk Maya to combine the various meshes.  The choice of features and the 

manner in which the subject’s 3D volume was divided was based on logical 

physical landmarks of discriminative static features mentioned in the study by 

Guo and Nixon  as well as in chapter 4(Guo and Nixon, 2009). Each individual 

part’s volume and surface area was then calculated using Autodesk Maya’s 

MEL commands (‘computePolysetVolume’ and ‘polyEvaluate –area’).  There 

were a total of 42 3D static features used. A visual representation of the division 

map of the body is show in Figure 34, while table 17 lists all body segments 

used, in which each segment was represented as a volume and surface area. 

Table 17: A list of the 3D static features extracted from the 3D laser scanned subjects 

Body segment Description 

Left leg  Starts from the top of the left thigh and 

ends at the left ankle 

Right leg Starts from the top of the right thigh and 

ends at the right ankle 

Left thigh Starts from the top of the left thigh and 

ends at the left knee 

Right thigh Starts from the top of the right thigh and 

ends at the right knee 

Left shin Starts from the left knee and ends at the 
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left ankle 

Right shin Starts from the right knee and ends at the 

right ankle 

torso It includes the whole torso from the hip to 

the neck, without the arms 

Left arm Starts from the left shoulders to the left 

wrist 

Right arm Starts from the right shoulders to the right 

wrist. 

Left shoulder Starts from the left shoulder to the left 

elbow 

Right shoulder Starts from the right shoulder to the right 

elbow 

Left forearm Starts from the left elbow to the left wrist 

Right forearm Starts from the right elbow to the right 

wrist 

Body Includes the whole body without the 

hands, feet, and head. 

Upper body Include the torso and arms, without the 

head or hands. 

Lower body Includes the legs only without the feet 

Left body Includes the left arm, left leg, and the left 

half of the torso 

Right body Includes the right arm, right leg, and the 

right half of the torso 

Hip From the top of the leg to the waist 

chest From the waist to the beginning of the 

neck 

No arms body  Similar to the body segment but without 

both arms  
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Figure 34: a visual representation of the 3D body segments 

5.4. Correlation analysis 

The correlation coefficient was used to serve the study’s main aim at examining 

the relationship between the static and dynamic features.  The correlation 

coefficient matrix ),( jiR    is defined as, 

),(),(

),(
),(

jjCiiC

jiC
jiR      (5) 

where ),( jiC   is the covariance, i  and, j  are the extracted features. The 

covariance was calculated using the following formula,  

])],[])([[(),( jEjiEiEjiC     (6) 

 where E is the expected value or weighted average. 

5.5. Results 

Based on the previous chapter, the correlation was considered to be significant 

if it met the criterion of having a p-value less than 0.05(p<0.05). With this 
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criterion there were 1196 pairs of features that expressed significant correlation. 

All significantly correlated features are listed in a table in appendix 5.1.    The 

20 strongest correlated feature pairs are listed in Table 1 (In the dynamic 

feature's name, "L" or “R” define if it is a joint from the right(R) or left (L) side 

(some features do not have a right or left such as the head, root, and spine). 

The second word specifies the name of the joint (as an example: hand, thigh, 

elbow…). The last portion of the name describes the axis(x, y, z) and the 

Fourier component (1-4). Therefore L_hand_Yrotation1 represents the 1st PWM 

component of the left hand y-axis rotation). 

Table 18: A list of the top 20 correlated 3D static and dynamic features. 

 Dynamic Feature Static Feature Correlation 

Coefficient 

P-value 

1 L_hand_Yrotation1' Right forearm 

volume 

0.982 0.0004 

2 Root_Yposition4' Lower body volume -0.979 0.0007 

3 R_elbow_Yrotation4' Left Forearm 

surface area 

-0.980 0.0006 

4 head_Xrotation4' Right shoulder 

volume 

-0.979 0.0007 

5 R_hand_Yrotation3' Left body volume 0.976 0.0009 

6 R_foot_Yrotation3' Right body surface 

area 

-0.972 0.001 

7 L_hand_Yrotation4' Right forearm 

volume 

0.973 0.001 

8 R_foot_Zrotation2' Right body volume -0.971 0.001 

9 L_shoulder_Xrotation2' Right Leg volume 0.970 0.001 

10 L_shoulder_Xrotation3' Right Leg volume 0.970 0.001 

11 L_shoulder_Xrotation4' Right Leg volume 0.970 0.001 

12 L_shoulder_Xrotation1' Right Leg volume 0.970 0.001 

13 R_hand_Xrotation2' Left arm Surface -0.969 0.001 
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Based on the results above, there are certain correlations that exhibit a high 

correlation coefficient. On the contrary to the dynamic features used in chapter 

4, the dynamic features used in this correlation analysis include the three axes 

(X, Y, and Z).  The findings that there is a relationship between static and 

dynamic features in chapter 4 are echoed in these results, and furthermore 

provide a more detailed insight into the contribution of each individual rotational 

axis in a joint to the correlation. The dynamic features in table 18 include 

features extracted from hands, elbows, spine, head, shoulder, and foot 

rotations, while the static features included those of the forearm, thigh, body, 

arm, leg, shoulder, and whole body measurements. The features mentioned 

vary differently in regards to which body region they come from; therefore, to 

simplify the understanding of this huge dataset, the next set of analysis will look 

at specific regions of the body. Lower body or leg based dynamic features are 

the most commonly used features for gait recognition, therefore the next set of 

area 

14 L_hand_Yrotation4' Left forearm surface 

area 

0.964 0.002 

15 head_Xrotation4' Right thigh volume -0.964 0.002 

16 L_hand_Yrotation4' Left forearm volume 0.963 0.002 

17 R_elbow_Zrotation2' Total body surface 

area 

-0.963 0.002 

18 R_foot_Yrotation4' Right body volume -0.961 0.002 

19 Spine_1_Yrotation2' Right thigh surface 

area 

0.959 0.002 

20 L_hand_Yrotation3' Right forearm 

volume 

0.959 0.002 
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analysis will look specifically at contribution of different regions’ static features 

to lower body dynamic features.  

First, Similar to the analysis in chapter 4, the lower limbs dynamic features is 

compared to two different sets of static features: upper limbs static features and 

lower limbs static features. This initial comparison was conducted to compare 

the statistically based influence on the way legs move in a human’s gait. Based 

on the two analyses, it is clear that both the upper and lower limbs static 

features are correlated to the movement of the legs. A list of all statistically 

significant correlated lower limb static to lower limb dynamic features are listed 

in appendix 5.2, and appendix 5.3 lists all the significant correlations between 

upper limb static features to lower limb dynamic features. 

Secondly, to further simplify the analysis, a specific correlation analysis was 

conducted to investigate the correlation between lower limb dynamics and over 

all general regions of the body such as: overall body, upper body, lower body, 

right side of the body, and left side of the body. This analysis would offer us an 

insight into whether there is a stronger correlation to the general mass of the 

body to the dynamics of the legs, rather than specific body parts such as 

forearm or shoulder.  Table 19 lists statistically significant correlations that fit the 

criterion of having a P-value less than 0.05. 

Table 19: A list of all significantly correlated 3D torso and body static measurements and lower 
limb dynamic features. 

 Dynamic feature Static feature Correlation 

coefficient 

P-value 

 'R_thigh_Zrotation2' 'body_vol' ' 0.51113' '  0.021264' 

 'L_knee_Xrotation3' 'body_vol' '-0.54426' '  0.013102' 
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 'L_foot_Yrotation3' 'body_vol' ' 0.46351' '  0.039557' 

 'R_thigh_Zrotation3' 'body_vol' ' 0.49566' '  0.026255' 

 'L_thigh_Zrotation4' 'body_vol' ' 0.44425' '  0.049717' 

 'L_knee_Xrotation4' 'body_vol' '-0.47719' '  0.033373' 

 'L_foot_Yrotation4' 'body_vol' ' 0.44607' '  0.048681' 

 'R_thigh_Zrotation4' 'body_vol' ' 0.63293' ' 0.0027421' 

 'R_thigh_Zrotation5' 'body_vol' ' 0.45002' '  0.046484' 

 'R_thigh_Zrotation2' 'body_sur' ' 0.46956' '  0.036719' 

 'R_thigh_Zrotation3' 'body_sur' ' 0.48156' '  0.031566' 

 'L_thigh_Yrotation4' 'body_sur' '-0.48449' '  0.030399' 

 'L_thigh_Zrotation4' 'body_sur' ' 0.54975' '  0.012037' 

 'L_foot_Yrotation4' 'body_sur' ' 0.46927' '  0.036854' 

 'R_thigh_Zrotation4' 'body_sur' ' 0.62486' ' 0.0032228' 

 'L_thigh_Yrotation5' 'body_sur' '-0.53959' '  0.014068' 

 'R_thigh_Zrotation1' 'upper_vol' ' 0.47283' '  0.035254' 

 'R_thigh_Zrotation2' 'upper_vol' ' 0.51944' '  0.018914' 

 'Root_Xposition3' 'upper_vol' ' 0.45971' '  0.041423' 

 'L_knee_Xrotation3' 'upper_vol' '-0.59852' ' 0.0053038' 

 'L_foot_Yrotation3' 'upper_vol' ' 0.47963' '  0.032355' 

 'R_thigh_Zrotation3' 'upper_vol' ' 0.49362' '  0.026977' 

 'L_knee_Xrotation4' 'upper_vol' '-0.53565' '  0.014928' 

 'R_thigh_Zrotation4' 'upper_vol' ' 0.61064' ' 0.0042398' 

 'R_thigh_Zrotation5' 'upper_vol' ' 0.45836' '  0.042098' 

 'Root_Xposition2' 'upper_sur' ' 0.46077' '  0.040893' 

 'R_thigh_Zrotation2' 'upper_sur' ' 0.52785' '  0.016752' 

 'Root_Xposition3' 'upper_sur' ' 0.54693' '  0.012576' 

 'L_knee_Xrotation3' 'upper_sur' '-0.49779' '  0.025517' 

 'R_thigh_Zrotation3' 'upper_sur' ' 0.45753' '  0.042521' 

 'Root_Xposition4' 'upper_sur' ' 0.47987' '  0.032254' 

 'L_knee_Xrotation4' 'upper_sur' '-0.56485' ' 0.0094606' 

 'R_thigh_Zrotation4' 'upper_sur' ' 0.60421' ' 0.0047797' 
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 'Root_Xposition5' 'upper_sur' ' 0.49971' '  0.024866' 

 'R_thigh_Xrotation5' 'upper_sur' ' -0.5611' '  0.010055' 

 'Root_Zposition1' 'lower_vol' '  0.4912' '  0.027851' 

 'L_thigh_Zrotation1' 'lower_vol' ' 0.70624' '0.00050104' 

 'L_thigh_Zrotation2' 'lower_vol' ' 0.61834' ' 0.0036603' 

 'L_foot_Yrotation2' 'lower_vol' '-0.53507' '  0.015057' 

 'L_thigh_Zrotation3' 'lower_vol' ' 0.48539' '  0.030048' 

 'R_foot_Xrotation3' 'lower_vol' '-0.46198' '    0.0403' 

 'R_toe_Xrotation3' 'lower_vol' ' 0.46152' '  0.040526' 

 'L_thigh_Zrotation4' 'lower_vol' ' 0.51999' '  0.018767' 

 'R_thigh_Zrotation4' 'lower_vol' ' 0.45536' '   0.04364' 

 'R_foot_Xrotation4' 'lower_vol' '-0.46885' '  0.037042' 

 'L_thigh_Zrotation1' 'lower_sur' ' 0.56183' ' 0.0099362' 

 'L_thigh_Zrotation2' 'lower_sur' ' 0.52742' '  0.016858' 

 'L_foot_Yrotation2' 'lower_sur' ' -0.5547' '  0.011137' 

 'L_thigh_Zrotation3' 'lower_sur' ' 0.50934' '    0.0218' 

 'L_thigh_Zrotation4' 'lower_sur' ' 0.52076' '  0.018561' 

 'L_thigh_Yrotation5' 'lower_sur' '-0.45275' '  0.045014' 

 'L_thigh_Zrotation5' 'lower_sur' ' 0.51483' '   0.02019' 

 'L_knee_Xrotation2' 'left_vol' ' -0.5005' '  0.024602' 

 'R_thigh_Zrotation2' 'left_vol' ' 0.45515' '  0.043749' 

 'L_knee_Xrotation3' 'left_vol' '-0.48721' '  0.029345' 

 'R_thigh_Zrotation3' 'left_vol' ' 0.48407' '  0.030566' 

 'L_thigh_Zrotation4' 'left_vol' ' 0.44858' '  0.047279' 

 'L_knee_Xrotation4' 'left_vol' '-0.50591' '  0.022856' 

 'R_thigh_Zrotation4' 'left_vol' ' 0.59732' ' 0.0054194' 

 'L_thigh_Yrotation5' 'left_vol' '-0.45329' '  0.044728' 

 'Root_Yposition2' 'left_sur' '-0.45514' '  0.043751' 

 'L_knee_Xrotation2' 'left_sur' '-0.61527' '  0.003883' 

 'R_thigh_Zrotation3' 'left_sur' ' 0.44511' '  0.049226' 

 'L_knee_Xrotation4' 'left_sur' '-0.44768' '  0.047774' 
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 'R_thigh_Zrotation4' 'left_sur' '   0.508' '  0.022208' 

 'L_thigh_Yrotation5' 'left_sur' '-0.49219' '  0.027491' 

 'L_knee_Xrotation2' 'right_vol' ' -0.4781' '   0.03299' 

 'R_thigh_Zrotation2' 'right_vol' ' 0.48691' '   0.02946' 

 'L_knee_Xrotation3' 'right_vol' '-0.52524' '  0.017399' 

 'L_foot_Yrotation3' 'right_vol' ' 0.45478' '   0.04394' 

 'R_thigh_Zrotation3' 'right_vol' ' 0.46646' '  0.038153' 

 'L_knee_Xrotation4' 'right_vol' '-0.57969' ' 0.0073853' 

 'R_thigh_Zrotation4' 'right_vol' ' 0.59694' ' 0.0054574' 

 'R_thigh_Zrotation5' 'right_vol' ' 0.47544' '  0.034119' 

 'L_knee_Xrotation2' 'right_sur' '-0.61833' ' 0.0036615' 

 'L_knee_Xrotation4' 'right_sur' '-0.50586' '  0.022871' 

 'R_thigh_Zrotation4' 'right_sur' ' 0.46905' '  0.036954' 

 'R_thigh_Zrotation1' 'noArms_vol' ' 0.45903' '  0.041763' 

 'R_thigh_Zrotation2' 'noArms_vol' '  0.5062' '  0.022764' 

 

The table above indicates that overall there is correlation between the body 

static measurements and the dynamics of a gait. The whole body volume and 

surface area display a significant correlation to the rotation of the right and left 

thigh, knee, and foot rotations on all axes. The same results were also achieved 

when correlating the leg dynamic features to the static features: the upper and 

lower body volumes, and the right and left volume and surface area. It is also 

important to note that volume of the whole body with no arms showed the least 

number of significant correlated features, which can potentially indicate the 

importance of the volume and surface area of the arms in influencing the leg 

dynamics.   
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In addition to looking specifically at only the significantly correlated features, the 

third analysis looked at the overall correlation between the body regions and the 

leg dynamics. Table 20 shows the average absolute value of correlation 

coefficients of all correlations, alongside the average P-value.  

Table 20: The average absolute correlation coefficient and average P-value of body and torso static 
features to lower limb dynamic features 

Static feature Average absolute 

correlation coefficient 

Average p-value 

Whole body volume 0.171 0.548 

Whole body surface area 0.188 0.511 

Upper body volume 0.177 0.532 

Upper body surface 

area 

0.203 0.473 

Lower body volume 0.174 0.549 

Lower body surface area 0.166 0.551 

Left side volume 0.173 0.540 

Left side surface area 0.183 0.507 

Right side volume 0.165 0.556 

Right side surface area 0.168 0.536 

Body volume with no 

arms 

0.167 0.557 

Body surface area with 

no arms 

0.170 0547 
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All the average absolute correlations above range between 0.165-0.203. It is 

clear from these results that the upper body surface area has the strongest 

correlation with lower limb dynamic features. It is also clear that when we 

compare between the whole body to the body without the arm, the correlation 

strength decreases in both volume and surface area. This can be contributed to 

the upper limb’s relationship with lower limb dynamics, although the effect is 

relatively small. 

Of particular concern is the volume of the body with no arms, as it was intended 

to study the actual contribution of arms to the lower extremities of gait. To get 

further indications of whether upper or lower body has a stronger correlation to 

lower limb dynamics, we calculated the average of the absolute value of the 

correlation coefficient and the p-values of the correlations with a P-value less 

than 0.05 of static feature of lower limbs and upper limbs. Results can be found 

in table 21.  

Table 21: Average absolute correlation coefficients and average P-values of significant 
correlations between upper or lower limbs static features to lower limbs’ dynamic features. 

Static features Dynamics feature Average absolute 

correlation 

coefficients 

Average p-values 

Lower limb Lower limb 0.5101 0.0258 

Upper limb Lower limb 0.5398 0.0194 

 

The table above takes into consideration the statistically significant correlations. 

But for an overall understanding of the other static features that don’t fit the 

criterion, are listed in table 22.  
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Table 22: Average absolute correlation coefficients and average P-values of all correlations 
between upper or lower limbs static features to lower limbs’ dynamic features. 

Static features Dynamics feature Average absolute 

correlation 

coefficients 

Average p-values 

Lower limb Lower limb 0.1833 0.5135 

Upper limb Lower limb 0.2199 0.4394 

 

In both cases in the two tables above, the upper limb static features show a 

slightly stronger correlation to lower limb dynamic features than lower limb static 

features. 

More importantly, it was critical to focus on the contribution of the volume of 

each segment of the body, to its dynamic counterpart. We have seen previously 

that the strongest correlation to lower limb dynamic features was with the upper 

limbs’ static features. To evaluate if such a correlation observation is present 

between right and left parts of the body, the average absolute correlation 

coefficient and average p-values of each side’s static feature to the of one side 

to the opposite side’s dynamic features. The results can be found in table 23.   

Table 23: Average absolute correlation coefficients and average P-values of significant and all 
correlations between right and left static features to right and left dynamic features. 

Static features Dynamic features Average absolute 

correlation coefficient 

Average p-value 

Right side  Right side  0.5008 (p<0.05) 

0.2073 

0.028(p<0.05) 

0.4582 

Right side  Left side  0.5134(p<0.05) 

0.1992 

0.0251(p<0.05) 

0.4746 

Left side  Right side  0.5377(p<0.05) 

0.2215 

0.0202(p<0.05) 

0.4416 



120 

 

Left side  Left side  0.5390(p<0.05) 

0.2148 

0.0197(p<0.05) 

0.4540 

 

Looking at the results above at first sight, there is not an obvious difference in 

strength of correlation between opposite sides or same side. When comparing 

the correlation between the right side dynamic, and it’s counterpart static 

features on right or left, the difference is approximately 0.014, with the left side 

(opposite) bearing a stronger correlation. The correlation between the left side 

dynamic features to the right and left static features, the difference is 

approximately 0.016. On the contrary to the right side dynamic features, the left 

side dynamic feature favored a stronger correlation to left side static features 

(same side). The difference between the correlations are minimal, and is not 

consistent, therefore; on the contrary to the results for top versus bottom static 

features correlating to their opposite dynamic features, horizontally opposite 

features do not appear to correlate more strongly than features on the same 

side of the body.  

Two different types of static measurements were used in the correlation study: 

volume and surface area. Since they both represent different aspects of a body 

volume’s characteristic, it is important to measure their contribution to 

correlation strength. Therefore to measure the average absolute correlation 

coefficient was measured for two sets: between surface static features and 

dynamic features; as well as between volume static features and dynamic 

features. The results are show in table 24.  
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Table 24: Average absolute correlation coefficients and average P-values of significant and all 
correlations between surface area and volume static features to all dynamic features. 

Dynamic features Static features Average absolute 

correlation coefficient 

Average p-value 

All dynamic features Surface areas 0.536(P<0.05) 

0.224 

0.021(P<0.05) 

0.437 

All dynamic features volumes 0.518(P<0.05) 

0.217 

0.024(P<0.05) 

0.446 

 

In both cases, surface area presented a stronger correlation to dynamic 

features. The difference though is very small; therefore it does not form a clear 

cut difference between surface area and volumes. Although in the general 

outlook there were no clear differences, further analysis was done to see the 

difference between correlations of volumes and surfaces areas, but divided into 

upper and lower body, instead of considering them as a whole. The results of 

upper static features are presented in table 25, and the results of lower static 

features analysis are presented in table 26.  

Table 25: Average absolute correlation coefficients and average P-values of significant and all 
correlations between surface areas and volumes of upper body static features to all dynamic 
features. 

Dynamic features Static features Average absolute 

correlation coefficient 

Average p-value 

All dynamic features Surface areas upper 

body 

0.554 (P<0.05) 

0.252 

0.019 (P<0.05) 

0.395 

All dynamic features Volumes upper body 0.516 (P<0.05) 

0.234 

0.024 (P<0.05) 

0.413 
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Table 26: Average absolute correlation coefficients and average P-values of significant and all 
correlations between surface areas and volumes of lower body static features to all dynamic 
features 

Dynamic features Static features Average absolute 

correlation 

coefficient 

Average p-value 

All dynamic 

features 

Surface areas 

lower body 

0.509 (P<0.05) 

0.197 

0.026 (P<0.05) 

0.476 

All dynamic 

features 

Volumes lower 

body 

0.519 (P<0.05) 

0.197 

0.024 (P<0.05) 

0.477 

 

Although the differences are small between the correlations to surfaces and 

volumes, yet the surface area of the upper body shows a relatively stronger 

correlation with the dynamic features than the volume of the upper body. The 

difference between the correlation coefficient when using surface areas and 

volumes of the upper body, is approximately 0.018. This is not the same case 

with the results of the lower body static measurements. In the lower body static 

features, the average absolute correlation coefficient is approximately the same 

for both surface areas and volumes. Although the upper body shows a greater 

correlation between surface areas and dynamic features than volumes, yet the 

difference is not large enough to show a clear effect.  

5.6. Discussion 

Although there were a considerable number of significantly correlated features, 

the majority of static features did not contribute directly to their body part’s 

dynamic features. On the contrary, correlated features displayed a relationship 
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between dynamic features and their vertically opposite corresponding static 

feature. Such findings support studies that relate weight and size and their 

mirror influence on gait kinematics.  Yen et al. describe the effect of load on 

carriage on the temporal relationship between the trunk and the leg (Yen et al., 

2011). Another study by Collins et al. describes the contribution of arm 

movement to the reaction moment from the ground (Collins et al., 2009). The 

study compared a gait cycle in which arm movement was restricted, and was 

found to directly contribute to greater reaction moment from the ground, hence 

requiring the human body to adapt and increase energy expenditure and 

muscle usage. Therefore, the motion of the arms directly contributes to the 

effort of the legs during gait.  David et al. conducted a study on the effect of 

carrying a bag on static posture and gait dynamics(Pascoe et al., 1997). It 

describes a direct influence of an increase in size and weight in the upper 

extremities (carrying a bag), on gait dynamics relating to lower extremities, such 

as stride length and frequency. 

Therefore, firstly, there is a clear stronger relationship between the upper body 

static features and the leg dynamics, than the lower body static features to the 

leg dynamics. Although intuitively, one might think that the size of the legs 

would influence the leg’s dynamic more strongly, yet the analysis showed that 

the upper body had a stronger correlation to the dynamics of the leg. Based on 

previous studies mentioned above, this can be explained as the weight or size 

of the upper body is continuously balanced by the legs, hence influencing the 

way it moves more. 
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Secondly, surface areas have displayed a stronger correlation to the dynamics 

of the legs rather than volumes. Although larger volumes tend to have bigger 

surfaces areas, yet it is not always true. There are subjects in the database that 

share very similar volumes, yet vary proportionally in surface areas. Surface 

areas potentially provide more information in regards to the shape of the body 

rather than size, which indicates in some case the obesity or fitness of a person. 

Thirdly, arms’ volume and surface area are strongly correlated to the leg 

dynamics and contribute greatly to gait. Within the results section, the two static 

features: surface area of the whole body, and the surface are of the whole body 

without the arm; were compared in regards to their correlation to the dynamics 

of the leg. The body’s volume without the arms had a weaker correlation with 

leg dynamics, than with the arms included. This once again can also be 

contributed to the legs balancing the weight of the arms as shown in the study 

by Collins et al. in which arm movement was restricted. 

5.7. Conclusion  

On the contrary to the findings of biomechanics studies of the relationship 

between static features and dynamic(kinematics) features, this study exhibits 

strong correlation between 1196 pairs of features with (P<0.05). These results 

bare great potential for further investigation in the relationship between dynamic 

and static features, which would contribute to various applications such as: 

clinical gait analysis, security related gait recognition application, and 3D 

computer animation.   
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The results direct towards several future directions for further research is 

required and can be summarized in three main points: 

1. There is potential in investigating the ability of the correlated features in 

creating a prediction model to allow the visualization and simulation of gait 

using only static features.  

2. It is important to note that the work here is based on a single gait cycle 

for each of the observers. It is well known that there is some within-individual 

variability and we would need to take this into account to help establish which 

correlations might be due to noise rather than any causal link. In particular we 

would investigate significant correlations involving higher Fourier components, 

which we expect to contain a higher noise component than the lower 

components. 

3. Considering phase and magnitude independently could provide a 

detailed understanding of the relationship of each component to static data. 

4. Although the study took in consideration numerous features, including 

other dynamic and static features could prove to provide more insight into the 

nature of the correlation between the two sets of data 

The results of this study hold great potential for several reasons. Once an 

understanding of a more detailed relationship between the two sets of features 

is defined, static features will enable us to predict the dynamic features and vice 

versa. This would potentially allow physical measurements to predict the 

kinematics of a gait without resorting to the use of expensive systems. It will 
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also bear great importance to further enhancing the knowledge about the 

specific mechanics of a human’s gait.  
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Chapter 6: Prediction of gait 
signature 

 

6.1. Introduction 

In the previous chapter, some static features portrayed strong relationships with 

dynamic features. Lower limbs dynamic and static features are especially 

important, because they are the main focus of most clinical biomechanics 

studies and analysis, as well as being most commonly used in model based gait 

recognition techniques mentioned in previous chapters.  Since the main aim of 

the correlation study was to study the potential of using static features to predict 

dynamic features, this chapter focuses upon the prediction aspect. This chapter 

will cover an overview of dynamic gait prediction in other past and present 

studies, and the prediction methodology used in this study and its results. The 

understanding of this relationship and being able to predict dynamic features 

from static features can greatly contribute to both forensic and biomechanics 

applications.  

6.2. Definition and scope 

Gait prediction is an area that has interest from different disciplines, such as 

clinical gait analysis and robotics. Gait prediction (or gait pattern prediction) can 

be defined as calculating or defining an optimized motion model or dynamic gait 

features or parameters using limited or static gait features or parameters (Yun 

et al., 2014).    
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6.2.1. Biomechanics gait prediction  

Prediction studies relating to gait are not only oriented towards building a 

motion model necessarily for gait recognition, but also contribute to clinical 

analysis for pathological gait problems, gait simulation, sport sciences, and 

robotics.  

A major part of human gait simulation is prediction (Xiang et al., 2011) . In 

clinical gait analyses, simulations (or models) are used to predict or accurately 

estimate certain values such as muscle forces. Predictions or simulations based 

on energy cost and efficiency have been used for over 20 years. In 1995, a 

study by Chou et al. based their algorithm for estimating a limb swing by 

choosing the most energy efficient trajectory(Chou et al., 1995).  Understanding 

the muscle forces and the kinetics of a gait, facilitate in the diagnosis of a 

person’s gait, as well as building an understanding for enhancing footwear and 

athletes’ training (van den Bogert et al., 2012a). It is also used to model the 

effect of prosthetics or medical interventions on human gait (Millard et al., 

2008). Not limiting prediction to gait, a study was conducted to test whether 

certain body parameters can predict if a person has the potential to be a more 

athletic cross-country sprint skier(Stöggl et al., 2010) 

Most clinical gait analyses use model based techniques(Yun et al., 2014). 

These techniques utilize energy cost theories in gait biomechanics to build 

mathematical models of predicting or simulating the optimum solution for limb 

kinematics(Yun et al., 2014). Energy cost theories simply state that for any 

speed or distance traveled, the human body attempts to move in a way that 

exerts the least amount of energy. There are two most commonly used model-
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based optimization approaches in simulation which are: forward dynamic 

optimization and inverse dynamics-based optimization (Xiang et al., 2011).  

Inverse dynamic simulation is not a kinematic predictive approach. It is best 

described as an approach that predicts the forces (or gait kinetics)  that are in 

place based on a specific motion, gait kinematics or pose(Millard et al., 2008). 

Inverse dynamic approaches are often used in gait analysis laboratories to 

evaluate the moments and forces effecting a joint(Kiernan et al., 2014) . 

Forward dynamic optimization on the other hand, looks at forces and their 

influence on gait kinematics; therefore, making it predictive.  Forward dynamic 

approaches can be optimized using various techniques. An example would be 

the use of metabolic efficiency, in which the model is constructed to choose the 

metabolically efficient simulation of human like gait kinematics and 

mechanism(Millard et al., 2008). Forward dynamic optimization approaches are 

usually computationally heavy(Ackermann and van den Bogert, 2010).  Others 

approaches include the collocation method, predictive dynamic approaches, 

and the temporal finite element method(Yun et al., 2014).  

Other than predicting the kinetics of a human’s gait, prediction is also involved 

in the analysis of the effect of certain parameters or influencing factors on gait. 

For example, in (Predicting peak kinematic and kinetic parameters from gait 

speed) an equation was developed to express the influence in change of speed 

on the peak sagittal angles. Furthermore, a study by Hanlon et al. examined the 

effect of speed on the whole gait cycle(Hanlon and Anderson, 2006). In this 

study, the gait cycle was divided into 22 parts, 11 in the stance period and 11 in 

the swing period. This approach according to the study provided a method to 
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measure kinematic values.  At each point, an angle was extracted. These angle 

measurements along with the minimum and maximum angles of the swing and 

stance phase, a total of twenty-six points in a gait cycle were correlated against 

gait speed. Because most gait databases used to drive gait simulation data are 

captured from healthy subjects, both mentioned studies studied the relationship 

and influence of speed to help in the analysis of pathological gait problems, in 

which the patients usually walk at a slower pace than healthy subjects(Lelas et 

al., 2003). 

Although most prediction or gait simulation techniques are model-based, a 

statistical approach better handles the deviations and uncertainties in gait(Yun 

et al., 2014). In the study by Hanlon and Anderson, angle measurements were 

taken at 11 points in swing, 11 points in stance, and the minimum and 

maximum angles in both phases for five joints (Hanlon and Anderson, 2006). A 

correlation study was conducted between the angle measurements for the three 

gait speeds. The results stated that there were significant correlations between 

the two sets of data, therefore; biomechanical gait prediction models should 

take speed into consideration.  At the same time as this study was conducted, 

another study took a similar approach. The aim of the study by  Yun et al. was 

to build a statistically based function  that predicts 14 joints’ gait kinematics from 

14 gait static parameters (Yun et al., 2014). The study used gait parameters 

(stride length and cadence) and static features (ASIS breadth, thigh length, calf 

length, and foot length) to predict the Fourier coefficient vector, which would 

provide a stochastic model for the motion of the subject(Yun et al., 2014).  
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In (Yun et al., 2014) , gait parameters and anthropometric measurements were 

used to predict Fourier coefficient vectors, which were used to simulate the 

kinematic and dynamic motion of the subject.  

Prediction is vital to robotic applications as it provides the basis on which walk 

simulations are executed. Specifically, creating or predicting gait patterns is 

important in robotic assisted gait rehabilitation(Yun et al., 2014).  

6.2.2. Gait prediction from a forensic perspective 

 

Although several previously mentioned studies have proved that gait can be 

used as a biometric using computer vision based techniques, the majority was 

tested in favorable conditions. Yet in forensic based approaches several 

challenges arise and must be studied and overcome for a practical application 

of gait recognition techniques. Some of these challenges are being addressed 

by other studies such as different lighting conditions, angle variance, shoe type, 

time passage between gait capture, and flooring. But there are other challenges 

more specific to forensic applications of gait recognition that are less 

addressed.  These challenges can be summarized as: low temporal and spatial 

resolution, and partial temporal and spatial gait cycles as mentioned in chapter 

2. 

For gait to be used in forensic applications, the source of the gait signature 

would usually be extracted from CCTV footage. CCTV footage’s spatial and 

temporal resolution can greatly vary. Spatial resolution can be described as the 

number of pixels representing the person in focus in a single frame. Temporal 

resolution on the other hand is the number of frames representing a certain 
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period of time, which is usually measured in frames per second (fps). Partial 

temporal gait cycle is an incomplete gait cycle, which can be caused by the 

subject leaving the field of view of the camera, or being totally occluded by an 

object in the foreground. Partial spatial gait cycle is the condition when only part 

of the body appears in a gait cycle because of an object hiding part of the body, 

as in when a subject walks behind a fence, and only the upper body appears on 

camera.   

 In certain situations, the CCTV camera footage is of a low frame rate or low 

resolution. Most model based gait recognition studies extract gait signatures 

using videos that are 60, 30, or 25 frames per second (fps). Some CCTV 

cameras record as low as 1 fps (Akae et al., 2012). Depending on how far the 

subject is from the camera, the amount of pixel data available to extract model 

based gait features can vary. Potential approaches to tackle low frame rate 

videos have been conducted other studies (Mori et al., 2010, Akae et al., 2012). 

Therefore in this chapter we propose gait predication as a solution for some of 

the presented challenges. In all of the above-mentioned challenges, the only 

common characteristic is the presence of one single image of the subject. 

Whether low resolution, slow frame rate, incomplete gait cycle, or body 

occlusion; certain measurements using photogrammetry can be extracted from 

the images. Therefore our aim is to be able to translate such measurements to 

a gait signature representing the extra dimension of time. This chapter will 

investigate the potential of using static measurements to predict dynamic gait 

signature features.  
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6.3. Prediction methodology 

To critically look at the potential of static features to predict dynamic features, several aspects 

of the workflow have to be taken into consideration. The common prediction workflow 

involves four major factors: the regression model, what to predict, choice of predictors, and 

the assessment of the prediction. Because the goal of prediction in this study is to use the 

predicted dynamic features as a gait signature, classification assessment must be included as 

a fifth factor. Figure 39 illustrates the workflow of the prediction methodology used.  

 

Figure 35: A diagram of the prediction methodolgy implemented in the prediction of the dynamic 
gait signature 

Linear regression is used in this study to create a model to predict dynamic 

features from static features. Linear regression was used to predict gait 

kinematics or the influence of certain factors on gait kinematics(Hanlon and 

Anderson, 2006) (Lelas et al., 2003). The choice of the predicted and predictors 

will be discussed further in the next two subsections. 

Cassiification assessment 

Prediction assessment 

Regression model 

Choosing predictors 

What to predict 
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6.3.1. The predicted 

 

The Fourier transform is commonly used in gait recognition applications and 

studies to represent the cyclic gait motion(Yun et al., 2014).   Although in the 

study by Yun et al, the Fourier transform was used to extract the Fourier 

coefficients vectors, in this study phase and magnitude were extracted instead.  

The results of the correlation study conducted in the previous chapter suggest 

that there needs to be a focus on specific dynamics features. Since the aim is to 

predict a gait signature, the thigh and knee joints were used. They are the most 

commonly used joints for the creation of a dynamic signature in model based 

gait recognition techniques. As mentioned in the previous section, the knee and 

thigh dynamic features were extracted through the magnitude and phase 

components extracted by the use of the Fourier transform. MatLab FFT was 

used. There Fourier transform components are based on the three axis of the 

thigh rotation, and only a single (x) axis of the knee rotation. Based on the 

model used to extract the motion capture data discussed in chapter 3, the knee 

had only one degree of freedom.  The magnitude and phase components were 

multiplied to form the phase-weighted magnitude (PWM), which was discussed 

in previous chapters. Unlike the previous chapter, only the 2nd, 3rd, and 4th 

components’ PWM were used in prediction. To further understand and explore 

the effect of each component; a second correlation study was conducted in 

which magnitude and phase were considered independently as individual 

dynamic features. Since magnitude and phase represent different aspects of 

the gait signal, it would be logical to consider them independently.  Using the 

Pearson coefficient and the p-value as a mean of ranking statistical significant 
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relationships, tables 27-39 list the significantly correlated features between all 

static features, and only the right lower limb (In the static feature’s name, "L" or 

“R” define if it is a segment from the right(R) or left (L) side (some features do 

not have a right or left such as the head, root, and spine). The second word 

specifies the name of the segment (e.g. arm, thigh, body…). The last portion of 

the name describes whether it is a volume measurement (vol) or a surface area 

measurement (surf). Therefore L_arm_vol is the left arm’s volume 

measurement). 

Table 27:  2nd component Magnitude of the  thigh X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_arm_vol' 0.198 0.300 

'L_shoulder_vol' 0.256 0.267 

'upper_sur' 0.346 0.222 

'L_shoulder_sur' 0.375 0.209 

'R_shoulder_sur' 0.461 0.175 

 

Table 28: 2nd component Magnitude of the thigh Y-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_arm_sur' 0.0002 -0.734 

'L_forearm_sur' 0.0004 -0.712 

'L_shoulder_sur' 0.0009 -0.683 

'L_forearm_vol' 0.0026 -0.635 

'R_arm_sur' 0.0069 -0.583 

 



136 

 

Table 29: 2nd component Magnitude of the  thigh Z-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_arm_sur' 0.0035 -0.621 

'L_shoulder_sur' 0.0049 -0.603 

'L_forearm_sur' 0.0086 -0.570 

'body_sur' 0.0303 -0.485 

'L_forearm_vol' 0.0320 -0.480 

 

Table 30: 2nd component Magnitude of the knee X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'R_leg_vol' 0.0423 0.458 

'R_thigh_vol' 0.0476 0.448 

'lower_vol' 0.1328 0.348 

'R_shin_vol' 0.1342 0.347 

'L_thigh_vol' 0.1640 0.324 

 

Table 31: 3rd component Magnitude of the thigh X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_shin_sur' 0.0129 -0.545 

'L_leg_sur' 0.0264 -0.495 

'lower_sur' 0.0305 -0.484 

'R_leg_sur' 0.0396 -0.463 

'R_forearm_sur' 0.0407 -0.461 
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Table 32: 3rd component Magnitude of the thigh Y-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'R_forearm_sur' 0.0910 -0.388 

'L_shin_sur' 0.1186 -0.360 

'R_forearm_vol' 0.1210 -0.358 

'L_leg_sur' 0.2302 -0.281 

'L_shin_vol' 0.2330 -0.279 

 

Table 33: 3rd component Magnitude of the thigh Z-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_shoulder_sur' 0.0209 -0.512 

'L_arm_sur' 0.0394 -0.464 

'body_sur' 0.0531 -0.439 

'R_thigh_sur' 0.0704 -0.413 

'noArms_sur' 0.0705 -0.413 

 

Table 34: 3rd component Magnitude of the knee X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_forearm_vol' 0.0208 0.513 

'L_forearm_sur' 0.0435 0.456 

'L_arm_sur' 0.0660 0.419 

'L_shoulder_sur' 0.1038 0.375 

'hip_sur' 0.1136 0.365 
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Table 35: 4th component Magnitude of the knee X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_shin_vol' 0.0182 0.522 

'L_arm_vol' 0.0471 0.449 

'right_vol' 0.0538 0.437 

'upper_sur' 0.0566 0.433 

'right_sur' 0.0683 0.416 

 

Table 36: 2nd component phase of the thigh X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_forearm_sur' 0.0558 0.434 

'L_shin_vol' 0.1171 0.362 

'R_arm_sur' 0.1193 0.360 

'L_arm_sur' 0.1340 0.347 

'R_shoulder_sur' 0.1411 0.341 

 

Table 37: 2nd component phase of the thigh Y-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'chest_sur' 0.0137 0.541 

'R_forearm_sur' 0.1786 -0.313 

'L_shin_vol' 0.1896 -0.306 

'L_leg_vol' 0.2099 0.293 

'L_thigh_sur' 0.2258 0.284 
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Table 38: 2nd component phase of the thigh Z-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'lower_vol' 0.0039 0.615 

'L_leg_vol' 0.0080 0.575 

'L_thigh_vol' 0.0083 0.573 

'R_leg_vol' 0.0147 0.537 

'R_thigh_vol' 0.0197 0.517 

 

Table 39: 2nd component phase of the knee X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'left_sur' 0.0018 -0.654 

'right_sur' 0.0024 -0.640 

'left_vol' 0.0039 -0.615 

'right_vol' 0.0046 -0.607 

'L_arm_vol' 0.0063 -0.589 

 

Table 40: 3rd component phase of the thigh X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_shoulder_sur' 0.0008 0.688 

'L_arm_sur' 0.0022 0.643 

'L_arm_vol' 0.0069 0.584 

'L_forearm_vol' 0.0175 0.525 

'L_forearm_sur' 0.0313 0.482 
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Table 41: 3rd component phase of the thigh Y-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_shoulder_sur' 0.0392 -0.464 

'L_shoulder_vol' 0.0422 -0.458 

'L_arm_sur' 0.0477 -0.448 

'L_arm_vol' 0.0535 -0.438 

'R_forearm_sur' 0.0586 -0.430 

 

Table 42: 3rd component phase of the thigh Z-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'lower_vol' 0.0109 0.556 

'R_leg_vol' 0.0179 0.523 

'L_thigh_vol' 0.0194 0.518 

'R_shoulder_sur' 0.0210 0.512 

'L_leg_vol' 0.0269 0.494 

 

Table 43: 3rd component phase of the knee X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'L_shin_vol' 0.1406 0.341 

'L_thigh_vol' 0.2246 -0.284 

'L_leg_vol' 0.3150 -0.237 

'right_sur' 0.3222 -0.233 

'R_thigh_vol' 0.3321 -0.229 
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Table 44: 4th component phase of the knee X-axis rotation’s correlation to static features 

Static feature P-value Correlation Coefficient 

'hip_vol' 0.0070 -0.583 

'torso_vol' 0.0076 -0.579 

'upper_vol' 0.0089 -0.568 

'chest_vol' 0.0092 -0.567 

'noArms_vol' 0.0103 -0.559 

 

Although both correlation studies show different correlation coefficients and p-

values, their prediction potential can only be compared through a classification 

assessment of the predicted dynamic features, which will be described in 

following sections 

6.3.2. Choosing predictors 

 

The first step in the proposed workflow is the choice of predictors. Previous 

studies vary in their choice of predictors, but they can be categorized as either: 

static features, limited temporal dynamic features, upper body dynamic 

features, or a mixed module of features.  

In Yun et al’s study, static features such as: ASIS breadth, thigh length, calf 

length, and foot length were used as part of the prediction inputs(Yun et al., 

2014). While the use of limited temporal data in dynamic features is evident in a 

study by Findlow et al., in which acceleration and angular data from motion 

sensors placed on the leg were used to predict gait kinematics(Findlow et al., 

2008). Sensors were placed on the shank and feet on each leg.   
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Other predictor choices such as gait speed are used in the study by Hanlon et 

al(Hanlon and Anderson, 2006). Gait speed was used to predict the changes in 

the lower extremities’ kinematic parameters. A relationship between two 

dynamic features was explored to answer clinical based questions in 

diagnosing abnormal gaits.  Some methods merge the use of static and non-

static features. In Yun et al’s study, static features were used alongside non-

static features such as: stride length and cadence(Yun et al., 2014).  

The mentioned studies that use linear regression deal with a small number of 

predictors compared to this study’s 42 static features. Therefore, a major 

challenge in building the prediction model was predictor choice. Three proposed 

methods in predictors (static features) choice were used: statistical significance, 

top-x correlated features, and a mixed method. The statistical significance 

method depends on p-values in selecting the predictors. For example, the 

predictors can be chosen based on their statistical significance, where 

significant features are defined as those for which (p<0.05). With such a 

threshold, static features that fit this criterion will be included as predictors. 

Unfortunately not all dynamic features have correlated static features, which 

meet this criterion. Based on the results from the previous chapter and the 

results of the correlation analysis with phase and magnitude independently, to 

allow each dynamic feature to have at least one correlated static feature, a 

threshold of p<0.19 must be used. Although this would give every dynamic 

feature a minimum of one correlated static feature, it would also include too 

many predictors for other dynamic features.  
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As an alternative solution, the second method proposed; top-x method is used. 

In this method the correlated predictors (static features) were ranked based on 

the p-value. Based on the rank, the static features with lowest p-value were 

used as the explanatory variables (or predictors). To decide the number of static 

features used, the study assessed the result of using five, four, three, two, or 

one variable as a predictor. 

Each of the two mentioned methods of choosing an explanatory variable has an 

advantage. The first method only includes highly significant correlated features, 

but leaves some dynamic features with no predictors, or if the threshold is 

changed to accommodate all, some dynamic features will have too many 

predictors. Secondly, although the second method (top-x method) provides 

every dynamic feature with a predictor, yet some static features that are not 

considered highly significant are included. Therefore a third method is 

suggested, in which each dynamic features uses only the highly significant 

correlated static features(P < 0.05), and if none exist, then the highest 

correlated feature method is used. In this manner we combine the logical 

benefits of both methods. To measure which method produces the better 

results, a quantifiable assessment tool is developed, which will be explained 

further in the next section. 

6.3.3. Assessment of Quality and Accuracy  

 

To conclude which predictor choice method is most suitable, a unified 

assessment tool and method must be set. Assessing a prediction model 

depends on the application of the prediction data. Yun et al’s  assessment of 
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the quality of a prediction was conducted using  the correlation coefficient, 

mean absolute deviation and threshold absolute deviation(Yun et al., 2014). 

Findlow et. al  used the same methods as well as the percentage of variance 

unexplained(Findlow et al., 2008). The Leave-one-out cross-validation 

technique is commonly used in various gait recognition or gait pattern 

simulation methods to validate and test a model (Yun et al., 2014).  

In this study, a leave-one-out cross validation method was used. The 

assessment for the prediction quality was expressed using three 

measurements: Cumulative difference, Standard scores based difference, and 

correlation coefficient.  

Cumulative difference is the sum of the absolute differences between the 

predicted and actual features.  

𝐶𝑢𝑚𝐷𝑖𝑓𝑓 =  ∑ ∑ |Α𝑠
𝑓19

𝑓
𝑛
𝑠 −  Β𝑠

𝑓
| ;    (6) 

where 𝐶𝑢𝑚𝐷𝑖𝑓𝑓 is the cumulative difference, Α is the predicted value, Β is the 

actual value, 𝑠 is the subject number (𝑛, number of subjects), and 𝑓 is the 

dynamic features. 

While standardized score difference is defined as  

𝑆𝑆𝑠𝑐𝑜𝑟𝑒(𝑥) =
𝑥− 𝜇

𝜎
 ;     (7) 

where 𝑆𝑆𝑠𝑐𝑜𝑟𝑒 , is the standard score, 𝑥 is the actual value, 𝜎 is the standard 

deviation, and  𝜇 is the mean of the 𝑥 values which is defined as 

𝜇 =  
∑ Β𝑠

𝑓𝑛
𝑠

𝑛
      (8) 
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Therefore the standard score difference can be described as; 

𝑆𝑆𝑑𝑖𝑓𝑓 =  ∑ ∑ |𝑆𝑆𝑠𝑐𝑜𝑟𝑒(Α)𝑠
𝑓19

𝑓
𝑛
𝑠 −  𝑆𝑆𝑠𝑐𝑜𝑟𝑒(𝐵)𝑠

𝑓
|   (9) 

Where 𝑆𝑆𝑑𝑖𝑓𝑓  is the standard score difference, Α is the predicted value, 𝐵 is the 

actual value, 𝑠 is the subject number (𝑛 , number of subjects), and 𝑓 is set of 

the 19 dynamic features. 

6.3.4. Assessment of Classification potential  

 

In this study’s application the aim is to use the predicted values as a gait 

signature. Because gait signatures are used to recognize the identity of a 

subject, there is a more crucial need to assess the results from a classification 

perspective rather than the previously mentioned manner.  

The testing was done initially using the general measurement of each feature 

predicted from its actual feature value. The sum of all the absolute values of 

these differences, summed over all features created a distance score between 

the template and the database for each subject. Since the previous mentioned 

method does not take into consideration the variance in the feature space of 

each individual component, another method was also used in which each 

feature was normalized based on its variance. The standard score method used 

earlier to asses prediction quality, was used as a classification method, but a 

different score is again generated for each subject rather than summing over all 

subjects. The classification is then done by choosing the subject with the lowest 

score. 
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6.4. Results and discussion 

Based on the mentioned predictor’s selection, an assessment is conducted on 

the prediction quality using the difference method, standard score method, and 

the correlation method. The two-predictor selection methods: Top-x method and 

the mixed method will first be assessed predicting the PWM as one variable, 

and later assessed when phase and magnitude are independently predicted.  

The results will be concluded by the assessment of the predicted dynamic 

feature’s classification quality; first as PWM and secondly as Phase and 

magnitude independently. 

6.4.1 PWM prediction assessment  

 

Initially, the model is designed to predict the PWM dynamic feature as one 

component. The assessment on prediction quality is first conducted based on 

using the top-x method. The results of assessment are shown in 45.  

Table 45: Assessment of PWM prediction quality using the top-x method 

Predictor 

selection method 

The difference 

method (𝐶𝑢𝑚𝐷𝑖𝑓𝑓) 

Standard score 

(𝑆𝑆𝑑𝑖𝑓𝑓) 

Mean correlation 

coefficient 

Top-5 50799.31 0.8994 0.9268 

Top-4 51158.33 0.6401 0.9316 

Top-3 50283.41 0.6368 0.9332 

Top-2 48842.48 0.6249 0.9412 

Top-1 48629.99 0.6252 0.9370 

 

The results show that in general the fewer predictors we use the better the 

quality of the prediction. Using the 𝐶𝑢𝑚𝐷𝑖𝑓𝑓 values, it would seem that using 
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one predictor would produce the optimum results. On the contrary, the other two 

assessment tools show that using two predictors produces a slightly better 

result than using one. The better results displayed when using the 𝐶𝑢𝑚𝐷𝑖𝑓𝑓 

assessment can be explained by the non-normalized features representation, 

with the 2nd component magnitude being very big when compared to the other 

features, and therefore dominating the overall score. 

The second assessment is based on predicting the PWM dynamic features, 

using the mixed model as a predictor selection method. The mixed method here 

used a p value of 0.05 (p<0.05). It was assessed with the 6 different thresholds. 

In the first test, there was no limit to the number of predictors as long as they fit 

the criterion.  This was followed by five tests in which the threshold was set to 

10, 5, 4, 3, and 2; where the threshold would state the maximum number of 

predictor’s to use if the number exceeds the threshold.  Using a threshold of 

one, would give us the same results as using the Top-1 method; hence, it was 

ignored. The threshold was used in order to see the influence of the number of 

the predictors even when the statistical significance is high.  The mixed method 

results are shown in 46.  

Table 46: Assessment of PWM prediction quality using the mixed method 

Method used The difference 

method (𝐶𝑢𝑚𝐷𝑖𝑓𝑓) 

Standard score 

(𝑆𝑆𝑑𝑖𝑓𝑓) 

Mean correlation 

coefficient 

Mixed(no limit) 745911.28 12.9680 0.1625 

Mixed (lim 10) 287974.49 4.2938 0.4863 

Mixed (lim 5) 59529.56 0.9918 0.9131 

Mixed (lim 4) 59087.92 0.9854 0.9129 
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Mixed (lim 3) 57837.57 0.9264 0.9155 

Mixed (lim 2) 55800.88 0.8670 0.9179 

 

The trend is similar to the previous assessment, in which the prediction quality 

is improved when using fewer predictors, although the change from using a 

threshold of 5 to a threshold of 1 is minimal. 

6.4.2. Phase and Magnitude prediction assessment 

 

As mentioned earlier, the need to predict the phase and magnitude components 

independently is motivated by the need to understand the predictability of each 

component, as well as assessing their effect on classification.  

Following the same methodology in assessing the predictability of PWM 

dynamic features, the top-x method is first assessed in choosing predictors for 

the phase and magnitude component separately. The results are presented in 

table 47. 

Table 47: Assessment of phase and magnitude prediction quality using the top-x method 

Method used The difference 

method 

(𝐶𝑢𝑚𝐷𝑖𝑓𝑓) 

Mag. Standard 

score 

(𝑆𝑆𝑑𝑖𝑓𝑓) 

Phs. Standard 

score 

(𝑆𝑆𝑑𝑖𝑓𝑓) 

Mean correlation 

coefficient 

Top 5 21415.97 1.0536 1.0484 0.9623 

Top 4 20313.78 0.9819 1.0086 0.9654 

Top 3 18952.61 0.8818 0.9548 0.9707 

Top 2 18334.58 0.8510 0.8814 0.9721 

Top 1 17590.57 0.8145 0.8416 0.9731 
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The results of the prediction quality are similar to predicting PWM in that the 

fewer features used, the better the prediction. Comparing the numbers directly 

would not provide a fair comparison because they belong to two different 

feature spaces. They will be compared in their classification potential in the next 

section.  

The top-x method in predictor choice is also assessed in its prediction quality for 

phase and magnitude separately, with table 48 illustrating the results.  

Table 48: Assessment of phase and magnitude prediction quality using the mixed method 

Method used The 

difference 

method 

(𝐶𝑢𝑚𝐷𝑖𝑓𝑓) 

Mag. Standard 

score 

(𝑆𝑆𝑑𝑖𝑓𝑓) 

Phs. Standard 

score 

(𝑆𝑆𝑑𝑖𝑓𝑓) 

Mean correlation 

coefficient 

Mixed(no limit) 150679.92 4.7962 23.8798 0.4064 

Mixed (lim 10) 94030.91 3.6060 4.0313 0.4999 

Mixed (lim 5) 25967.25 1.4611 1.5962 0.9280 

Mixed (lim 4) 25537.64 1.4308 1.0570 0.9286 

Mixed (lim 3) 22868.91 1.2588 1.0118 0.9582 

Mixed (lim 2) 21158.10 1.1127 0.9319 0.9617 

The mixed method predictor selection, as in the case of predicting PWM, 

performs better with a lower threshold. The best results are computed when 

using a threshold of a maximum of 2 predictors. Although using a threshold of 2 

predictors produced the best results, yet there isn’t a big difference between 

using 5, 4, 3, or 2 in prediction quality.  

It is clear that if quality assessment is dependent on how close the prediction 

value is from the actual value, that using a top-x method in choosing predictors 
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is better. To illustrate the difference between each, figures 40-43 compare the 

two methods using each assessment measurement. 

 

Figure 36: A graph comparing the number of predictors used in a mixed method to a top-x method 
based on CumDiff assessment tool. 

 

Figure 37: A graph comparing the number of predictors used in a mixed method to a top-x method 
based on Magnitude Standard Score tool. 
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Figure 38: A graph comparing the number of predictors used in a mixed method to a top-x method 
based on Phase Standard Score tool. 

 

Figure 39: A graph comparing the number of predictors used in a mixed method to a top-x method 
based on mean correlation coefficient assessment tool. 
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6.5. Classification assessment 

In the previous section, an assessment was done to measure how close the 

predicted value is to the actual value for features based on Fourier components. 

Nevertheless, since the main aim was to establish whether classification can be 

achieved using these predicted values; therefore a classification assessment 

was required.  

Two classification methods were used: the nearest neighbor and a standard 

score based method.   The K-nearest neighbor was used in which the linear 

distance between the predicted feature and the same feature from within the 

database of each subject is calculated, and ranked accordingly. The method 

can be defined as  

𝐷𝑖𝑠𝐷𝑖𝑓𝑓(𝑃, 𝐴) =  ∑ |P
𝑓19

𝑓 −  A
𝑓

| ;    (10) 

Where 𝑃 is the predicted gait signature, 𝐴 is the one of the actual gait 

signatures in the database, 𝑓 is the 𝑓 th feature, and the number of features in 

the signature that are being used is 19. 

The second classification method used is based on the standardized score 

method The standardized score based classification method is based on 

calculating a match score between the predicted dynamic features and each 

subject in the database using the standard score difference. The standardized 

score based classification method can be defined as: 

𝑆𝑆𝑐𝑙𝑎𝑠𝑠(𝑃𝑡,𝑠, 𝐴𝑠) =  ∑ |𝑆𝑆𝑠𝑐𝑜𝑟𝑒(𝑃𝑡,𝑠)𝑓 − 𝑆𝑆𝑠𝑐𝑜𝑟𝑒(𝐴𝑠)𝑓 |19
𝑓   (11) 
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Where 𝑃𝑡 is the predicted gait signature for subject 𝑡,the test subject,  𝐴𝑠 is one 

of the actual gait signtures in the database for subject 𝑠 , and 𝑓 is the 𝑓 th 

feature. 

6.5.1. Ranking percentile  

The leave-one-out cross validation is used in evaluating the classification 

potential of the predicted gait signatures. Where the left out subject’s predicted 

gait signature is matched with the full database of gait signatures. Based on the 

sorting of the matched score, the predicted subject’s correct match will be on 

the nth rank. Using the n-rank, a mean match percentile score can be calculated 

for each of the predictor selection methods used in section 3. The mean 

matching percentile (𝑃𝑒𝑟𝑟𝑎𝑛𝑘
̃ ) can be defined as: 

𝑃𝑒𝑟𝑟𝑎𝑛𝑘
̃ =

𝑛−𝑟𝑠
𝑛−1

 ×100

𝑛
    (12) 

; where 𝑛 is the number of subjects in the test, and 𝑟𝑠is the rank score of the sth 

subject. A score of 100 represents a perfect match, where the test subject is 

always ranked first in the classification. A score of zero means that the test 

subject is always ranked last. Chance performance is obtained at a 50% match 

percentile. 

6.5.2. Classification assessment results 

 

The standard score based classification method is used to rank the best match 

for a test subject. A mean percentile score is calculated for each. Based on 

these assessment tools, the following sections will assess the classification 

quality of predicting a PWM as a single variable, and the classification quality of 
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predicting phase and magnitude independently. Finally, the independent phase 

and magnitude component will be multiplied together to form the PWM; 

therefore reconstructing the PWM instead of predicting it immediately as in the 

first case. These assessments will illustrate which method, regardless of quality 

of prediction assessment, produces better results in a classification scenario.  

The study calculated the classification quality of the predicted PWM using the 

Standard score classification method. The results are presented in table 49. 

Table 49: The mean matching percentile for predicted PWM 

 Mean matching percentile 

(%) 

AUC 

Top 5 55% 0.5452 

Top 4 52.89% 0.5262 

Top 3 53.68% 0.5333 

Top 2 51.05% 0.5095 

Top 1 53.68% 0.5333 

Mixed(no limit) 44.21% 0.4476 

Mixed (lim 10) 42.37% 0.4310 

Mixed (lim 5) 51.56% 0.5143 

Mixed (lim 4) 50.26% 0.5024 

Mixed (lim 3) 51.58% 0.5143 

Mixed (lim 2) 52.11% 0.5190 

 

The average percentile for all the tests performed using the predicted PWM was 

50.76%, with a mean matching percentile ranging between 42.37-55.00%. The 

majority of the predictor choice methods resulted in a mean matching percentile 

close to chance, which is 50%. The only exception is when the top-5 method is 
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used to choose predictors. In this method the mean match percentile was 55%, 

which is 5% better than chance.  

The top-x method produced a better total mean matching percentile of 53.26%, 

while the mixed method resulted in a total mean matching percentile of 48.68%.  

Table 50: The mean matching percentile for independently predicted phase and magnitude 

 Mean matching percentile 

(%) 

AUC 

Top 5 49.21% 0.4929 

Top 4 43.68% 0.4429 

Top 3 50% 0.5000 

Top 2 50.26% 0.5024 

Top 1 50.79% 0.5071` 

Mixed(no limit) 52.11% 0.5190 

Mixed (lim 10) 51.84% 0.5167 

Mixed (lim 5) 49.29% 0.4929 

Mixed (lim 4) 50.79% 0.5071 

Mixed (lim 3) 49.74% 0.4976 

Mixed (lim 2) 48.95% 0.4905 

 

The average percentile for all the mean matching percentile performed using 

the prediction of phase and magnitude independently, as shown in table 50,  

was 49.70%, 1.06% less than the PWM test. The matching percentile ranged 

from 43.68-52.11%, with the mixed method with no thresholds scoring the 

highest matching percentile. The majority of the scores were within 1-4 % of 

one another (with the exception of the percentile obtained when using top-4 

method in choosing the predictors).  
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When comparing the methods used, the top-x method had a total mean 

matching percentile of 48.79%, while the mixed method scored a 50.45% total 

mean matching percentile. In both cases when predicting phase and magnitude 

independently, and using them in that state for classification produces a 

classification that is regarded as equal as or less than the probability of 

classification with pure chance.  

Finally, the independent phase and magnitude component will be multiplied 

together to form the PWM; therefore reconstructing the PWM instead of 

predicting it immediately as in the first case. The mean matching percentile is 

presented in table 51.   

Table 51: The mean matching percentile for PWM produced using the independently predicted 
phase and magnitude 

 Mean matching percentile 

(%) 

AUC 

Top 5 52.11% 0.5190 

Top 4 52.37% 0.5214 

Top 3 53.95% 0.5357 

Top 2 54.47% 0.5404 

Top 1 56.05% 0.5548 

Mixed(no limit) 58.16% 0.5738 

Mixed (lim 10) 59.21% 0.5833 

Mixed (lim 5) 55.26% 0.5476 

Mixed (lim 4) 56.32% 0.5571 

Mixed (lim 3) 57.63% 0.5690 

Mixed (lim 2) 55.00% 0.5452 
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The average of all the mean matching percentiles when multiplying the 

predicted phase and magnitude components to be used in classification was 

55.50%. This score is 4.74% higher than the total mean score of using the 

predicted PWM, and 5.8% higher than when using the predicted phase and 

magnitude components separately.  The increase in mean matching percentile 

further supports the connotation that when phase and magnitude components 

are multiplied to form a PWM, a better classifier is created.  

When comparing both methods used in predictor choices, the top-x method 

produced a total mean of 53.79% mean matching percentile, while the mixed 

method produced a total mean of 56.93% mean matching percentile. It is also 

clear that the highest matching percentile is achieved by using the mixed 

method, with a high threshold of 10. The mean matching percentile is reduced 

when the threshold is reduced from 5 to 2.  

6.6. Conclusion 

Gait prediction methods are used in various fields. Depending on their 

objectives, they vary in the predictors they choose, what they predict, and the 

method in which the prediction takes place. Gait prediction in the field of 

forensic and criminal investigation cases can potentially be used in several 

manners such as, predicting lower dynamic gait features from upper dynamics, 

predicting gait dynamics of low-frame rate video footage, or providing a dynamic 

gait signature from static 2d or 3d measurements. In this study, we examined 

the possibility of using 3d static volume based measurements in predicting 

dynamic gait signatures; specifically the 2nd ,3rd, and 4th phase and magnitude 
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Fourier analysis components of the three rotational axis of the knee and thigh 

joints. The predictions were performed in two manners: predicting PWM as one 

variable, predicting the phase and magnitude independently. Each of these 

methods were assessed in their prediction quality using CumDiff, stand score 

based difference, and the correlation coefficient. They were also assessed in 

their classification potential. A third method for classification was used in which 

the independently predicted phase and magnitude were multiplied by their 

counterpart to form the PWM, which was then used for classification.  The 

classification potential was assessed through the quantification of their mean 

matching percentile.  

First, in regards to the prediction quality assessment, the best results in 

predicting PWM were achieved by using the top-2 method in choosing 

predictors. Although the top-1 scored better using the Cumdiff assessment, yet 

the standard score based score reveals the top-x to be slightly better mainly 

because of the normalization of each feature according to the standard 

deviation, which dilutes the influence of the 2nd magnitude component of the 

thigh rotations.  When predicting phase and magnitude independently, the top-1 

method produces the best results using the quality assessment tools used. In 

both cases when predicting PWM or phase and magnitude independently, the 

fewer predictors used the better quality assessment tools score.  

Secondly, when it came to the assessment of classification potential, the 

prediction quality did not directly forecast their classification potential. When 

directly predicting PWM, the top-5 method in choosing predictors provided the 

highest mean matching percentile of 55%, while the top-2 method, which 
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scored best in the prediction quality assessment, scored 51.05%. When using 

the independently predicted phase and magnitude for classification, the mixed 

method with no threshold scored best with a mean matching percentile of  

52.11%, while the top-1 method which scored best in the prediction quality 

assessment, scored 50.79%.  

The use of predicted PWM or the independently predicted phase and 

magnitude did not create a considerable difference. Rather, the creation of a 

PWM using the independently predicted phase and magnitude, performed 

better in classification then when predicting PWM directly. The highest mean 

matching percentile achieved in all tests was using the mixed method with a 

threshold of 10, with a mean matching percentile of 59.21%.  In most cases, this 

method increased the mean matching percentile, with an average increase of 

4.74%. The change is illustrated in table 53. 

Table 52: The difference in classification assessment between directly predicting PWM and 
creating PWM from the independently predicted phase and magnitude. 

 PWM directly 

predicted 

PWM from 

independently 

predicted phase and 

magnitude 

difference 

Top 5 55% 52.11% - 2.89 

Top 4 52.89% 52.37% - 0.52 

Top 3 53.68% 53.95% + 0.27 

Top 2 51.05% 54.47% + 3.42 

Top 1 53.68% 56.05% + 2.37 

Mixed(no limit) 44.21% 58.16% + 13.95 

Mixed (lim 10) 42.37% 59.21% + 16.84 

Mixed (lim 5) 51.56% 55.26% + 3.7 

Mixed (lim 4) 50.26% 56.32% + 6.06 
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Mixed (lim 3) 51.58% 57.63% + 6.05 

Mixed (lim 2) 52.11% 55.00% + 2.89 

 

The PWM created from the independently predicted phase and magnitude 

managed to achieve a mean matching percentile of 59.21% which is better than 

the probability of pure chance. This is the current baseline for the classification 

potential using predicted dynamic gait signatures from static features. Although 

such a result is achieved, yet there are several factors to consider that would 

provide further insight, and might potential provide a better prediction.  

First, there are static features and body measurement that effect gait kinematics 

that are not considered. Body fat percentage has been shown to effect gait 

speed, especially thigh inter-muscle fat (Beavers et al., 2013). The length 

measurement of various body segments was not included as part of the static 

features used to predict the dynamic gait features. Second, although the 

methods of choosing the predictors was chosen on the overall effectiveness, 

further study looking at each feature individually and its optimum number of 

static features used for prediction would potentially build a better predicting 

model. Third, Lelas et al used quadratic regression was used, and was a more 

effective method to describe the relationship between gait speed and gait 

parameters(Lelas et al., 2003). Findlow et al. , used the generalized regression 

neural networks(GRNN) algorithm(Findlow et al., 2008). This regression method 

was used based on a test they conducted using several regression models, in 

which GRNN proved to be more robust in predicting gait kinematics from motion 
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sensor data. Such findings suggest that the use of non-linear methods in 

prediction may be more appropriate for gait.   
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Chapter 7: Conclusion 
 

7.1. Introduction 

Gait recognition can potentially be a great biometric to be used for surveillance 

and forensic use for several reasons, most importantly is its ability to be 

captured at a distance using non-invasive methods. Different cameras and 

sensors have been used to capture gait, which include; floor sensors, wearable 

sensors, and video cameras. From this data captured using these sensors, gait 

recognition is achieved either through using appearance-based methods (non-

model), or model-based methods. Appearance based methods depend on pixel 

information or silhouettes and shapes; while model based methods rely on 

extracting the kinematics of a gait. Although appearance based methods are 

computationally cost effective, we chose to base this thesis study on model 

based methods because they are resistant to changes in lighting conditions or 

clothing, as they rely on the underlying dynamics rather than appearance and 

shape. Although in theory model based approaches would be the ideal method 

to use; yet it still has to simulate a motion model based on an extracted 

silhouette from the data captured by the sensor. The challenges they face are 

similar, because both have to use the same source of data. The main 

challenges in gait recognition include recognizing aspects of gait that are 

invariant to: angle variance, the capture device, clothing, carrying of objects, 

surfaces, shoes, time passage, and partial (latent) information in forensic cases. 

To do this requires the availability of high quality databases. In this thesis, we 
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focused on two challenges: databases and the issue of limited or latent (partial) 

information, which is common in forensic applications.  

7.2. Future Gait Recognition Research  

The journey of going through the steps in this thesis has brought great insight 

and thought to the manner in which gait recognition and gait analysis are being 

carried out. Although the ultimate goal of the thesis was to assess the potential 

of predicted dynamic gait features to be used in gait recognition, yet the steps 

taken to reach to that point have provided an alternative approach and 

perspective to gait recognition and gait analysis.  

First, the process of creating a database has provided great insight of several 

aspects other than looking at the relationship between static and dynamic 

features. The process of capturing gait in itself through the use of video 

cameras, motion capture, or laser scanning is very crucial. Understanding its 

limitation and strength is equally important. Motion capture provides a dynamic 

signature with minimal errors. Although in the a practical application of gait 

recognition a camera would be the ideal medium to use, yet to overcome and 

understand the changes that happen due to the many factors mentioned in 

previous chapters, motion capture is the ideal tool. Motion capture data can 

provide the ground truth to all gait techniques. Once all challenges are 

understand and addressed using motion capturing, then individual aspects can 

be looked at such as the introduction of noise and error when using video or 

other mediums.  
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Although gait is regarded as an emerging biometric, yet it is moving towards the 

direction of being validated and more robust. It is a new area of interest when 

compared to the years in which fingerprints have been used. For gait to 

progress from the emerging stage to becoming an independent robust biometric 

of its own right, it will require two major directions: validating the uniqueness of 

gait in very large databases, and building a gait signature that is robust to 

changes of clothing, time passage, shoes , and potential spoofing.  These two 

aspects can be approached by either building bigger databases, or unique 

modalities to investigate other features. The Bradford multi-modal database fits 

the unique criterion in accuracy and availability of three rotation axis on every 

joint. While in regards to size, the current Osaka University gait database is 

becoming a standard in the last year in validating and benchmarking video 

based gait recognition techniques.  

Features from the axis other than the obvious one to the more subtle ones 

which involve twists and sways of right and left. Therefore, 3D approach 

provides more details that can be more robust against attempted changes to 

one’s gait. Especially with the technology of cameras with the extra information 

of depth develop, this does not seem to be part of the very far future. 

The whole process of conducting this research has covered several aspects of 

gait recognition as an emerging biometric or forensic tool. Even though gait has 

been studied as an emerging biometric from the 1990s, yet it faces certain 

challenges that need to be overcome in order for it to be used as a robust 

biometric. There are four main aspects that need to be taken into consideration 
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to facilitate the implementation of gait as a usable practical robust biometrics: 

precision of data, gait features, future of capturing mediums, and time passage.  

 

7.3. Contribution and results 

The aim of this thesis was to study the relationship between 2D and 3D 

dynamic and static features, and assess the potential of using the predicted 

dynamic features in gait recognition. The relationship was studied through the 

Bradford Multi-Modal Gait database that was created using motion capture and 

3D laser scanning systems. The major contributions of this thesis can be 

divided into four main areas: gait databases, gait features, forensic biometric 

gait application, and biomechanics. 

7.3.1. Gait Databases 

A first of its type, the Bradford Multi-Modal Gait Database is the only database 

to offer 3D scans of a subject and gait samples that are relevant to gait 

recognition application, and motion capture data of the gait. Many databases 

provide several covariates, but they are captured using 2D video camera 

sensors. The other databases that do use motion capture to record a subject’s 

gait, offer a limited variation of gait samples. Therefore the Bradford Multi-Modal 

Gait database offers several unique and novel contribution to the gait 

databases available for gait recognition studies. These unique aspects include: 

1- Accurate 3D volume representation of subjects 

2- Accurate 3D motion representation of a subject’s gait. 

3- Accurate 3D motion representation of a subject’s run 
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4- Accurate 3D motion representation of a subject’s walk carrying a bag 

5- Accurate 3D motion representation of a subject’s run 

6- Accurate 3D motion representation of a subject’s transition from a walk to 

a run 

7- Accurate 3D motion representation of the same subject over a one year’s 

period. 

Therefore the database’s novelty resides in the accurate medium used, as well 

as the covariates and gait representations recorded. 

7.3.2. Gait Features 

Features used in gait recognition started as appearance based. As gait 

recognition evolved, it was clear that the use of model based features are more 

robust against occlusion, angle variance, and change of clothes. Most gait 

recognition techniques used 2D based dynamic and static features. As 

mentioned earlier, the techniques that use 3D based gait capturing, convert the 

end features to a 2D based feature. This thesis has produced a novel set of 3D 

static and dynamic features.  

First of all, this thesis introduced the usage of novel 2D and 3D static features. 

The 2D static features include: length of shoulder to elbow, length of Elbow to 

wrist, length of hand, arm thickness at shoulder joint, arm thickness at elbow, 

arm thickness at wrist, torso width at shoulder level, torso width at waist level, 

torso width at hip level ,width of the leg at the ankle joint, age, and weight. From 

those static features, several of them exhibited a strong correlation to gait 

dynamic features which include: torso width at shoulder level, torso width at the 
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hip level, and weight. In addition to the use of novel 2D static features, this 

thesis introduced a new set of 3D static features which are: volume and surface 

area. To the best of our knowledge, no previous 3D based gait recognition 

technique used such static features. Both volume and surface area were found 

to correlate to many dynamic features as explained previously in chapter 5.  

Secondly, the 3D dynamic features in this thesis are novel as well. In most gait 

recognition techniques, the rotation axis with the biggest range of movement is 

usually used as dynamic features, such as the rotation of the thigh back and 

forth as a subject walks. Yet, many gait recognition techniques do not use the 

other axes because of the difficulty in measuring such subtle movement with 

current standard technology. In the processing of the motion capture data, 

accurate 3D representation of the rotation of most joints across three axes, 

provided a different approach, which potentially can provide a dynamic gait 

feature that would be harder to spoof.  

7.3.3. Biometric Gait Prediction 

As mentioned before, the final aim of this thesis was to assess the potential of 

using the predicted dynamic features in gait recognition. The results presented 

in chapter 6 have put forth several major contributions to several aspects of 

predicting dynamic gait features, which include: a method of assessing 

prediction quality and accuracy, choice of predictors, and baseline for 

recognition rate. 

In regards to assessment, to our best of knowledge, this thesis introduces the 

use of a standard score based difference to evaluate how close a predicted 
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dynamic features is to the actual dynamic feature. The score was also later 

used for in classification for recognizing the subject from the predicted dynamic 

features and performed better than use a non-normalized difference 

measurement between the actual dynamic features and the predicted dynamic 

features.  

This thesis also introduces a new approach to choosing the predictors from the 

static features: the mixed method. This approach is carried out in a 

computationally efficient manner, in which the choice of predictors is based on 

the P- value from the correlation analysis between the specified dynamic 

feature and all other static features. If dynamic features have one or more 

correlated static features with a P-value less than 0.05, then those will be used 

as a predictor. If that is not the case, then a top-x method is used, as explained 

in chapter 6.  This mixed method is the method that produced the best 

predicted dynamic features to be used for recognition.  

In the classification potential assessment, using a predicted PWM or an 

independently predicted phase and magnitude did not create a considerable 

difference. The performance improved significantly when a new PWM was 

created using the independently predicted phase and magnitude. The highest 

mean matching percentile achieved in all tests was using the “mixed method” 

with a threshold of 10, which produced a mean matching percentile of 59.21%.  

In most cases, creating a PWM from an independently predicted phase and 

magnitude produced an increase in the mean matching percentile by an 

average increase of 4.74%. The improvement of the highest matching 

percentile is shown in table 53. 
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Table 53: Improvement of the mean matching percentile using a PWM created from independently 
predicted phase and magnitude 

 PWM directly predicted PWM from 

independently predicted 

phase and magnitude 

difference 

Mixed (lim 10) 42.37% 59.21% + 16.84 

 

Two prediction approaches were used: predicting PWM as one variable, and 

predicting the phase and magnitude components of the Fourier transform 

independently. Each of these methods were assessed in their prediction quality, 

as mentioned in chapter 6, using CumDiff, standard score based difference, 

and the correlation coefficient. Their classification potential was also assessed 

comparing with a third method in which the independently predicted phase and 

magnitude components were multiplied together to form the PWM.  The 

classification potential was assessed through the quantification of their mean 

matching percentile. We evaluated different methods for selecting predictors by 

assessing their ability to predict dynamic features. In accuracy and quality 

assessment, the “top-2” method performed best at predicting a PWM, while the 

top-1 method produced the best results when predicting phase and magnitude 

independently.  Therefore, to produce prediction that closer to the actual values, 

an adaptive approach to choosing predictors is recommended, were a different 

number of predictors are used depending on what dynamic feature is being 

predicted. We call this a “top-x” method. 

These experiments are the first attempt, to the best of our knowledge, to 

evaluate gait recognition performance on dynamic features that are predicted 

from static feature rather than measured directly. Therefore, these results act as 
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a baseline for the classification potential using predicted dynamic gait 

signatures from static features that can be used as a benchmark for future 

research.    

7.3.4. Biomechanical based contributions 

In biomechanical based studies, most concluded that there is no significant 

relationship between static and dynamic features. In these studies the 

definitions of static and dynamic features differ from the definition of these 

features in computer vision based gait recognition. In the biomechanical 

studies, the static features consisted of measurements of the feet, while the 

dynamic features were represented using measurements such as: stride length, 

max rotations, and range of motion. In this thesis, the correlation analysis 

similar to the ones conducted in biomechanical based studies was used. 

Although the analysis was conducted in that manner, yet the choice of features 

was based on computer vision based gait recognition studies as well as other 

features introduced in this thesis. The static features involved a more holistic set 

including upper and lower body measurements. They dynamic features also 

described motion in a better manner than the dynamic features used in 

biomechanical studies. The Phase weight magnitude dynamic features describe 

both the manner and timing in which a specified joint rotates.  

Therefore on the contrary to biomechanical studies, the first 2D analysis this 

thesis study conducted suggests that there is a relationship between some of 

the static features and dynamic features. Eight dynamic features and twenty-

one static features were used. The static features included width and length 

measurements of body segment. Eleven pairs of features were found to be 
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significantly correlated, using a P-value of less than 0.05. It was also found that 

the length of a body segment is more correlated to dynamic features than width 

measurements.  

Although the first analysis has captured various aspects of the human body, yet 

there are other valuable factors to consider. Therefore 3D volume static data 

extracted from the 3D point clouds were used in the second analysis, which 

included 42 static features. The static features consisted of volumes and 

surface area measurement of predefined body segments. The second analysis 

exhibited a strong correlation between 1196 pairs of features with a P-value 

less than 0.05, with surface area having a stronger correlation to dynamic 

features than volume measurements. The majority of the static features did not 

directly contribute to their dynamic counterpart, as an example the thigh volume 

is not the strongest correlated static feature to the dynamic features related to 

the thigh. On the contrary, there was a common strong correlation between 

vertically opposite static to dynamic features, where lower limb (leg) dynamic 

features were strongly correlated to upper body static features.   

7.4. Forensic application relevance 

The indications from the correlation analysis and prediction assessment 

provided a good indication of enabling static features to predict dynamic 

features and vice versa. This would potentially allow physical measurements to 

predict the dynamic features of a gait, providing a great benefit to forensic 

cases with latent (partial) information.  
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This thesis used as accurate as possible mediums to record the dynamics and 

static measurements of a subject and the gait, to work as ground truth. Because 

no previous studies attempted to predict dynamic features from static features, 

this thesis was set to provide a proof of concept in ideal conditions. Since 

previous studies concluded that there were no relationship between static and 

dynamic features, in our analysis we attempted to conduct this study with a 

more holistic set of features, with the least amount of noise and error. Both the 

correlation analysis of 2D and 3D features and the results of the prediction 

assessment provide a sound base for using dynamic features predicted from 

static features.  

The prediction carried out in this thesis was performed using 3D static features. 

For such results to be implemented in forensic applications, two approaches are 

suggested. First, if multiple cameras captured a suspect, then a 3D 

reconstruction of the person can be created. Using this reconstruction, 3D 

measurements similar to the ones used in this thesis can be used to create a 

dynamic gait signature. Therefore, with multiple cameras, even if the footage is 

of a low frame rate, a dynamic gait signature can be predicted. This dynamic 

gait signature can be compared to other video footage available, or compared 

to a suspect in custody in an investigation.  

Second, the results can also be used when a suspect refuses to provide the 

investigators with a sample gait cycle performed in front of the camera. In that 

case a 3D representation of the suspect, either by using multiple camera laser 

scanner, can be used to predict a dynamic gait signature, which can then be 

compared to a video footage from the actual crime scene.  
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Ultimately, gait can be used as a form of direct identification of a person in a 

criminal investigation, but can provide great support to the body of evidence, 

and provide leads in an investigation. This thesis focused on the possibility of 

using 3d static volume based measurements in predicting dynamic gait 

signatures. The results bare great potential for other approaches in using gait in 

forensic cases: such as, predicting lower dynamic gait features from upper 

dynamics, predicting gait dynamics of low-frame rate video footage, or providing 

a dynamic gait signature from static 2d or 3d measurements.  

7.5. Limitations and Future work 

Although the results are promising, there are several aspects that could be 

taken into consideration to provide better results and a better understanding of 

the relationship between the two sets of features. Further dynamic features and 

static features must be considered, as well as using other advanced statistical 

tools must be explored to study the relationship between the two types of 

features, which will further enhance the understanding of gait. In the following, 

recommendations are made as to what future directions should be explored. 

These recommendations are grouped according to the component they 

influence, which includes recommendations to: database improvements, feature 

choices, alternative relationship analysis and prediction tools, and scope of 

applications. Each subsection below will describe the limitation, as well as 

suggest the future steps and direction for that specific challenge.  
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7.5.1. Database improvements 

The database was recorded over two phases. The only modification to the 

procedures in the second phase, was taking four laser scans of each subject, 

instead of three scans. There are several other recommendations that can 

further enhance the database’s capture procedures and recording techniques in 

two manners: first by increasing accuracy, and secondly by maintaining 

consistency in recording quality and information. These limitations and 

recommendations cover both the 3D laser scanning and the motion capture 

system.  

Motion capture 

The motion capture procedure used a marker set used for real time gaming and 

animation based results and setup. This setup was used for two main reasons. 

First, the setup provided a fast and efficient way of recording motion data. 

Secondly, the use of the marker set in this thesis study was based on the tools 

available under the current system and support at the University of Bradford. 

There are other marker sets used by biomechanical and clinical gait analysis 

systems that attempt to capture more accurate joint information, while set ups 

used for animation, aim to achieve life-like movement rather than accurate 

information. 

Secondly, the placement of the markers themselves, were placed on a suite. 

The markers attempt to represent the position of a joint as accurate as possible, 

yet there are two factors that continually to provide slight bias to the data. First 

of all, the underlying muscle and fat movement cause a general sliding that 

happens between the surface skin and the joint underneath. Second of all, the 
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clothing also acts as a second layer of movement. The clothes tend to slide 

across the skin, introducing slight movement to the markers. Although muscle 

and skin movement is unavoidable, yet in many biomechanical studies, markers 

are placed directly on the skin. This extra step avoids any extra movement the 

cloth might introduce. 

Finally, recording and instructions procedures that would also introduce bias are 

speed of gait, and shoe variance. The subjects were asked to walk at their own 

pace. Changes in speed of 1 to 2 m/s can cause changes in the peak sagittal 

angles between (1.8-11.1 degrees)(Hanlon and Anderson, 2006). Such a 

change can potentially change the PWM used to represent dynamic gait 

features. As well as the effect of speed, shoes have been discussed as a one of 

the main challenges of gait recognition in chapter 2. Shoes can change a gait to 

a certain degree. In the current database, footwear was not controlled, and 

subjects were given the freedom to wear what they feel is suitable. 

To resolve the challenges mentioned, an analysis should be done on the effect 

of slight change of speed in gait, in changing phase weight magnitude, and 

whether that would affect the classification. In addition to this analysis, the 

potential to unify shoe types, by providing subjects with the same type shoes 

might also remove unwanted noise to the gait data. This would further provide 

better ground truth data for correlation and prediction analysis.   

3D Laser scanning 

Although the second stage included four scans of a subject, yet there were still 

areas of occlusion. Secondly, the alignment of the three and four scans can be 
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improved by using other technologies. Currently, every scan is taken at a 

different point of time. It is therefore very difficult to maintain the same position 

and pose of a subject to perfectly align the 3d scans. Even though a chair and 

markers were used when scanning the subjects, there was movement between 

the two or four scans. This is caused for several reasons which include: 

movement of spine, breathing, head movement, and adjusting centre of 

balance. Using technologies that allow the capturing of the 3d surface from all 

sides at the same moment would be able to avoid such a problem. There are 

current technologies that use multiple cameras around a body that can achieve 

these results such as IR’s 3D full body scanning system which uses 150 DSLR 

cameras, and the Ten24’s full body scanning which uses 80 DSLR cameras. 

Subject Sampling 

The gender sampling is currently unbalanced. The database currently has 7 

females and 31 males. This is common in most gait database. The only large 

database that has a more even male to female ratio is the University of Osaka 

gait database. The addition of more females to balance the gender distribution 

can provide a better understanding of the difference between genders in gait..  

7.5.2. Features 

The two stages of the correlation analysis extracted different types of static 

measurements. The first included 2D features: heights and widths, while the 

second involved 3D features: volumes and surfaces areas. This thesis focused 

on the mentioned features for their novelty, yet the inclusion of other features 

can provide additional insight not covered by the current thesis. There are 

features that can be considered that can be extracted from the current data, 
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and there are other features that require additional information not accessible 

from current data. 

2D Features 

The 2D static features used in the correlation analysis in chapter 4 are based 

on the assumption that they were extracted from a frontal viewing camera of a 

subject. The width was measured from a frontal view. While the 2D dynamic 

features were based on a model based recognition feature extraction technique 

in which angles of the rotation of joints were measured. Therefore, appearance 

and pixel based dynamic features were disregarded, as well as other model 

based dynamic features that are used by other gait recognition technique.  

To provide a wider analysis, other static features can be extracted which include 

measuring the width of the body static features used in chapter 4, but from a 

side viewing camera. This would provide two different measurements to predict 

dynamics of a gait, whether a frontal or side viewing cameras is used. This 

would also provide further insight into which measurement displays a stronger 

relationship between that specific static measurement and the dynamic features 

used in the analysis. As well as using the mentioned static features, other 

dynamic features not covered in the analysis could provide an alternative 

approach, such as: stride length, and other biomechanical based dynamic 

features that include max angle rotation, and range of rotation of a joint.     

 

 



178 

 

3D Features 

The 3D static features used in this thesis included volume and surface area. 

They have provided results that have positively indicated the presence of a 

relationship between static and dynamic features, yet they do not describe 

certain other information about a subject’s physical build. Volume of a torso of 

two people can be the same, but one would be more muscular built than the 

other. Secondly, two subjects can share the same volume yet a different length. 

For example, two might share the same volume thigh, yet one subject is taller 

than the other. In the correlation analysis and prediction, they would appear the 

same without the length measurement, yet in reality their build is different. 

Therefore, including other features in future analysis would provide a better 

understanding and create a better representation of the build of a subject. This 

addition can be conducted through different approaches. First, the addition of a 

length measurement to the set of static features, as in chapter 4 of the 2D set of 

features, would provide a variable that is missing from the 3D set of features. 

Second, although surface area provides size information of the surface, yet it 

does not convey information about the curvature of the surface. Such 

information would provide a variable that indicates how fit and healthy a person 

is, without resorting to fat and muscle percentage measurements. Finally, the 

dynamic features extracted involve several components of the fast Fourier 

Transform. Although previous studies have mentioned that the important 

information are in the second, third, and fourth , components of the Fourier 

transform, yet they were conducted on results extracted from a 2D video. The 

data in this thesis is more accurate than 2D video data, as well as dynamic 
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features are available in more than one axes. A analysis of the discriminatory 

characters of each component on the axes is to be conducted in the future to 

determine exactly at which Fourier component, noise presence exceeds actual 

information of the dynamic features.  

There are other features that would require additional information not currently 

available in the Bradford Multi-Modal Gait Database. First, static features and 

body measurement that effect gait kinematics that are not considered, such as 

body fat percentage can be crucial. It has been shown that such static features 

can effect gait speed, especially the thigh inter-muscle fat (Beavers et al., 

2013). Finally, considering the correlation of static features to appearance 

based features can also provide an alternative perspective.  

7.5.3. Relationship analysis and prediction 

The thesis studied the relationship between static and dynamic features using a 

correlation analysis, and addressed the challenge of gait signature prediction by 

using linear regression. Firstly, this thesis used linear regression as a simplified 

tool to examine the existence of a relationship between static and dynamic 

features, since more studies in biomechanics concluded otherwise. Yet the 

nature of motion from the signal created by the rotation of individual joints over 

time to pace of a walk and run, are nonlinear in nature. Secondly, it is important 

to note that the study is based on a single gait cycle for each of the observers 

(subjects). It is well known that there is some within-individual variability and we 

would need to take this into account to help establish which correlations might 

be due to noise rather than any causal link. Thirdly, there are significant 

correlations involving higher Fourier components, which we expect to contain a 
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higher noise component than the lower components. Fourthly, the correlation 

coefficient was used in this study to investigate if a relationship exists. Similar to 

linear regression, the correlation coefficient examines the statistically linear 

relationship between two sets of variables. Finally, the methods of choosing the 

predictors were chosen on the overall effectiveness. When evaluating the 

prediction quality in chapter 6, the assessment number produced an average 

difference between the actual and predicted variable in all dynamic features. 

Potentially, certain dynamic features might perform better using one method of 

choosing predictors, while the opposite happens when using another method. 

There was no individual analysis and comparison of each dynamic feature and 

which predictor choice method worked best with it.  

To further investigate the relationship between static and dynamic features and 

its prediction, there are there different approaches to tackling the above 

mentioned challenges: adjustments to features and predictors used, adjustment 

to relationship and prediction tools, or using a different prediction model. 

Adjustments to the features and predictors used involve modification to the 

feature representation as well as a change of the method used in predictors’ 

choices. Further study looking at each feature individually and its optimum 

number of static features used for prediction would potentially build a better 

predicting model and individual performance measurement for each predictor 

choice method instead of the currently used method mention in chapter 6. 

Multiple gait samples must be taken into consideration for each subject. This 

modification will allow the investigator to look into the inter and intra-variability in 
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the feature set, and also allow for a better differentiate between what is an 

outlier in a subject’s gait sample, from its average counterpart.   

Based on the current results and other parallel emerging relevant studies, other 

tools can be used to both: study the relationship between static and dynamic 

features, and perform prediction.. Because both the correlation analysis and the 

prediction were linear in nature, similar recommendations can be suggested for 

both problems. Other statistical tools must be considered to interpret this 

relationship further. There is potential in the usage of non-linear statistical tools, 

as well as the use of autocorrelation and cross correlation with temporal data. 

Non-linear regression needs to be considered for the study of the relationship 

between the two sets of data, since studies that explore the area of the 

relationship between features in gait often result in better bond when using non-

linear methods(Yun et al., 2014). Lelas et al. have found that some gait features 

have a quadratic relationship with gait speed(Lelas et al., 2003). In the study by 

Lelas et al, quadratic regression was used, and was a more effective method to 

describe the relationship between gait speed and gait parameters (Lelas et al., 

2003). In regards to prediction, Findlow et al., used the generalized regression 

neural networks(GRNN) algorithm (Findlow et al., 2008). This regression 

method was used based on a test they conducted using several regression 

models, in which GRNN proved to be the most robust in predicting gait 

kinematics from motion sensor data. Therefore, the use of non-linear methods 

in prediction needs to be assessed for analyzing and predicting gait signatures.  

 



182 

 

7.5.4. Forensic application 

One of the main hypotheses in this thesis has been inspired by forensic 

challenges in using gait recognition, particular latent information. The notion of 

the existence of a relationship between static and dynamic features was 

opposed to by many studies in the field of biomechanics. In this study, optimum 

accuracy was used to provide ground truth data, to evaluate if the relationship 

exists or not, as such a relationship would serve the future of using gait 

recognition in forensic application.  

Although the results show there is a relationship between static and dynamic 

features and that predicting dynamic features can produce a recognition higher 

than chance, yet there are certain limitations with its application in the current 

technological state of most cameras used in investigations. First of all, the 

current predictions in this thesis are done using an accurate 3D laser scanner. 

Using video cameras or even multiple cameras will potentially create and lower 

resolution 3D representation. The volume and surface area static features 

would be hard to replicate using single 2D cameras. Secondly, the 2D 

measurements used in chapter 4 are based on the assumption that it is a frontal 

camera. Although frontal viewing cameras are a potential camera angle in 

forensic cases, yet others exist, such as top, side, or back camera views. 

Thirdly, the choice of predictors in the current model includes a large number of 

different measurements and segments, some of which might be hard to 

measure or unavailable in certain criminal cases. Finally, predicting dynamic 

features from only static features is only one method of approaching latent 

information. Other approaches can be tackled and will be described. 
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Since the study provided a ground truth to whether a relationship exists, its 

practical application will require certain future steps and assessments to take 

place and build upon the findings in this thesis. First of all, a future study using 

the same methodology in prediction and same set of features used can be 

conducted using video data from the database. A comparison between the 

current predictions in this thesis to the ones from the video only data would 

provide an insight into usability of such a method in in standard 2D CCTV 

videos 

Secondly, a case study of an actual case would provide insightful challenges 

and limitations of a practical application of such a prediction methodology. The 

chosen case study should be based on a case that has been concluded with 

evidence such DNA or fingerprint, used to confirm the identity. Such a criterion 

would provide the ground truth information based on the evidence. In the 

current thesis study, the choice of predictive static features was based on the 

one with the highest correlation. In certain criminal cases, the possible 

measurements to extract would be limited. Using a limited set of static features 

to predict dynamic features should be conducted and assessed. A ranking 

system to evaluate the accuracy of the prediction dependent on the static 

features used should be established.  

Thirdly, although the thesis concentrate on the relationship and predictions from 

static to dynamic features, yet features other static features can be used to 

predict a full dynamic gait signature. Using dynamic features to predict other 

dynamic features would be beneficial.  In cases where only the upper body is 

visible, predicting lower dynamic features from upper dynamic features would 
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be useful. Furthermore, such an analysis would provide more insight into the 

contribution of the arms to the movement of the legs. In chapter 5, the arms 

displayed a high correlation with the dynamic of the legs. 

Finally, although current CCTV cameras are 2D based, yet there are more 

studies being conducted on the usage of cameras that carry 3D depth 

information. Such a medium would be able to replicate the kind of static 

features used in this thesis. Therefore, an analysis used such cameras like the 

Microsoft Kinect, would also be a beneficial in providing an alternative approach 

to using standard 2D CCTV video cameras.  

In conclusion, the results in this thesis built a basis for the ground truth that 

there is a relationship between static and dynamic features. To facilitate the 

practical application of this information to forensic and police work, certain 

approaches must be taken into consideration. First comparing between dynamic 

features predicted from 2D measurements to ones predicted from 3D 

measurements would provide the appropriateness of using the current 

methodology. Secondly, a case study would provide insight into the practical 

challenges than need to be focused upon in further research. Finally, different 

combinations of predictors, such as upper body dynamic features, can be used 

to execute predictions, depending on the forensic case in hand. As technology 

advances and available at a consumer level, the closer the data will be to the 

current static features used in this thesis.  
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7.6. Potential application 

The results in this thesis provided a counter argument to the previous studies 

that say there is no relationship between static and dynamic features. Using 

simple and efficient linear regression, the study was able to produce similar 

predicted dynamic features to the actual dynamic features. Such findings 

provide potential future implementation in various fields that include: forensics, 

clinical gait analysis, and entertainment based 3D computer animation. 

In this thesis, the static features were predicted as a Phase weight magnitude, 

and not the rotations of the joints. Potentially, since phase and magnitude were 

predicted for each component, a signal can be reconstructed using an inverse 

form of the Fourier Transform. Therefore, predicting the rotational values from 

static measurements. This prediction can serve both clinical gait analysis, as 

well as 3D computer animation. 

Clinical gait analysis is currently conducted using high-speed cameras or 

extensive gait laboratories that consist of a motion capture system fused with 

surface sensors. This captured information provides details of the kinetic and 

kinematic measurements. Unfortunately such systems are expensive. 

Therefore, predicting how a person walks from basic physical measurements 

can provide details otherwise only available using a motion capture system. …. 

While in computer animation, animating 3D characters involves intensive work 

and numerous hours depending on the complexity. It requires both a skilled 

person as well as time. Currently in 3D video games, characters have to be pre-

animated by an animator. With the proposed predicted gait, characters in 
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animations and video games will be able to walk using the predicted gait. This 

gait manner will change based on body size and proportion. Therefore, 

reducing the time and type of labour needed to execute the task. 

7.7. Summary 

This thesis has provided a novel database that was used to understand the 

relationship between static and dynamic features. The correlation analysis 

provided evidence that there is a relationship between static and dynamic 

features, both in two and three dimensions. Specifically, the upper body static 

features tend to influence the lower body dynamics. Prediction from static to 

dynamic features using linear regression from has provided gait signatures that 

perform at a 59% recognition rate. Such a result provides a baseline for any 

future work in gait signature prediction and its use in gait recognition. Further 

studies and alternative approaches to the database, feature selection, 

prediction and correlation tools, and classifier choices can provide further 

insight and potentially better results.  

The benefits of understanding the nature of this relationship is not limited to 

biometric and forensic based applications, but can also contribute to 

biomechanics, clinical gait analysis, and 3d animation. In biometrics and 

security applications, this would imply that latent (partial) information will be 

acceptable to create a signature of a suspect or a criminal. The relationship 

between static and dynamic measurements from a computer vision point view, 

can provide an alternative insight into biomechanical human motion modeling. 

Being able to predict the dynamics of a gait from static measurements can 
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potentially reduce the cost of gait analysis by taking away the need of using 

expensive gait motion capturing systems. Finally, predicting the motion 

component of gait through static measurement can provide an automatic 

method of creating walk cycles for 3d animations and games. 
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Appendices 
 

Appendix 3.1: Example of the Consent Form  

 

University of Bradford 
School of Computing, Informatics and Media 

Multi-Modal Gait Database 

 

 

Hamad Alawar, Prof. Hassan Ugail, Dr Mumtaz Kamala and Dr David Connah.  

 

This consent form outlines my rights as a participant in the multi-modal gait database 

conducted by Hamad Alawar ,Prof. Hassan Ugail, Dr Mumtaz Kamala, and Dr David 

Connah,  School of Computing, Informatics and Media, University of Bradford. 

  

The database you are contributing to will be a recording of your gait cycle (the manner 

in which you move, walk, or run). The database will be used to test gait recognition 

algorithm conducted by this research, as well as future research in the University of 

Bradford only. It will be recorded through several mediums and recording methods: 

1- Regular video: 

There will be one camera recording your walk from a horizontal point of view 

2- Multiple view cameras: 

There will be another set of cameras that will record your gait from several 

angles (front, back, corner) 

3- Thermal camera 

This device will be thermally recording your gait, through the camera’s ability to 

sense heat radiating from the human body.  
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4- Motion capture: 

 This will capture the 3D motion data of your gait. 

5- 3D Laser scanner: 

 This will be used to capture an accurate measurement of your total height, leg 

length, and arm length, as well as the dimensions of the room. 

During the course of this sample you will be asked to do the following in this order: 

1- Conduct a walk 

2- Conduct a run 

3- Conduct a walk 

4- Conduct a walk carrying a heavy bag 

5- Conduct a walk 

6- Conduct a run 

7- Conduct a walk to run transition 

8- Conduct a run 

All the information will be kept confidential. There will be no record in the final 

database of names. The data will be stored in a secure location.  Only the parties 

conducting the research will be allowed access to this information.  

Participant's Agreement: 

I am aware that my participation in this data sample is voluntary.  I understand the 

intent and purpose of this research.  If, for any reason, at any time, I wish to stop the 

data capture, I may do so without having to give an explanation.  

The project team has reviewed the individual and social benefits and risks of this project 

with me.  I am aware that the data will be used for testing pattern and gait recognition 

and those results will be published.  I understand the risks of laser usage, and will be 

following the guidelines through the use of safety goggles that will be provided in this 

session. The data gathered in this study is confidential with respect to my personal 
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identity, but will be used solely by the researchers mentioned above. In case images 

from the video will be published, the face part of the image will be blurred and 

pixelated to prevent any identification of the participant.  I understand if I say anything 

that I believe may incriminate myself, the relevant potentially incriminating information 

will be destroyed at my wish.  The engineer will then ask me if I would like to continue 

the data sample. 

In the case of my intention to remove my data from the database, I will submit a written 

request to remove all the data related to myself. The researchers will delete my data 

within 2 weeks from receiving the written request.  

If I have any questions about this study, I am free to contact the project team (contact 

information given above).   

I have read the above form and, with the understanding that I can withdraw at any time 

and for whatever reason, I consent to participate in today's gait recording session. 

      I am happy for my images and videos to be used according to what I have agreed 

upon  

 

_______________________                                                    ______________
_____ 
Participant's signature                                                                          Date 
Printed name: ___________________ 
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Appendix 3.2: Example of the information 
sheet. 

Multi-Modal Gait Database - Information sheet 

Biometrics: 

There are certain sources of information that can help identify people. These identifiers 
can be classified into three types: 

1- objects 

2- knowledge 

3- biometrics 

Object based identifiers allow access to other objects, computer-based systems, or 
physical areas.  Examples include, Keys, ID cards, credit cards etc. .  

Knowledge based identifiers are what we know as passwords or pin numbers. In some 
cases only one identifier type is used, while presently a lot of systems use two 
identifiers, like the systems used with cash machines, in which a bank card and pin 
number are used. 

The third type of identifier, are biometrics. Biometrics are considered to be unique to 
one person only. Examples of biometrics are fingerprints or DNA. Biometrics have 
been heavily researched in the last 20 years, and new biometrics have started to 
surface, such as facial, iris, hand, and gait recognition. 

Gait is defined as the manner in which one walks or moves. In regards to Gait as a 
biometric, a subject’s walk is analysed and certain key elements of the walk are 
regarded as discriminatory information that differentiate one person to another. Gait is 
a very promising biometric because it can be recorded and detected from distance 
using standard CCTV cameras. It also does not require the voluntary cooperation of a 
subject, therefore it is viewed as a possible solution for security surveillance for 
recognising wanted criminals or offenders.  

Gait as a biometric is still evolving, and a critical requirement for testing this technique 
is to have a database of gaits. The database recorded here will be used as a test bed 
for new Gait-based techniques. In this multi-modal database, gait will be captured 
using several mediums listed below: 

1- Motion Capture: White markers will be placed on the subject to help capture the 
exact movement of the subject. 

2- Infrared camera: A camera that can detect infra-red (in the thermal range) 
emissions from objects will be used to detect temperature changes in a person’s walk. 
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3- Multiple camera setup: The subject’s Gait will be captured using more than one 
camera placed at different angles to the subject (e.g. side-view and front-view). 

4- 3D Laser scanning: The 3d laser scanner will be used to capture measurements 
related to gait analysis such as the subject’s thigh, shin, height, width, arm length, torso 
length. The laser used in this device if classified as a 3R Laser class which is regarded 
as a non-visible laser of low risk. Although there is a very minimal risk of using laser, 
precautions will be taken by using a safety goggle worn by the participant. 

  

All of these mediums will then be integrated together within an automatic computer-
based analysis program which will attempt to recognise the subject based on their 
recorded Gait signatures. 

The database will be solely used in research conducted in the University of 

Bradford, for continuous gait recognition algorithm testing and analysis. The 

regular 2d video will only be used in published research with written consent 

from the participant. 
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Appendix 5.1 
Table 54: Appendix 5.1: A list of the statistically significant correlations between 3d static and 
dynamic features. 

 Dynamic Feature Static Feature Correlation 
Coefficient 

P-value 

1 'L_leg_vol' 'Root_Zposition1' ' 0.53102' '   0.015989' 

2 'R_leg_vol' 'Root_Zposition1' ' 0.46975' '   0.036634' 

3 'L_thigh_vol' 'Root_Zposition1' '  0.7219' ' 0.00032615' 

4 'R_thigh_vol' 'Root_Zposition1' ' 0.56926' '  0.0088004' 

5 'lower_vol' 'Root_Zposition1' '  0.4912' '   0.027851' 

6 'L_shin_vol' 'Root_Zrotation1' '-0.44528' '   0.049129' 

7 'L_forearm_sur' 'L_thigh_Xrotation1' '-0.45788' '   0.042343' 

8 'L_arm_vol' 'L_thigh_Yrotation1' '-0.53389' '   0.015325' 

9 'L_arm_sur' 'L_thigh_Yrotation1' '-0.63148' '  0.0028238' 

10 'L_shoulder_sur' 'L_thigh_Yrotation1' '-0.61853' '  0.0036472' 

11 'L_forearm_vol' 'L_thigh_Yrotation1' '-0.48672' '   0.029531' 

12 'L_forearm_sur' 'L_thigh_Yrotation1' '-0.56044' '   0.010162' 

13 'L_leg_vol' 'L_thigh_Zrotation1' ' 0.65158' '  0.0018554' 

14 'L_leg_sur' 'L_thigh_Zrotation1' ' 0.53255' '   0.015632' 

15 'R_leg_vol' 'L_thigh_Zrotation1' ' 0.62524' '  0.0031988' 

16 'R_leg_sur' 'L_thigh_Zrotation1' ' 0.47872' '   0.032733' 

17 'L_thigh_vol' 'L_thigh_Zrotation1' ' 0.64315' '  0.0022207' 

18 'L_thigh_sur' 'L_thigh_Zrotation1' ' 0.54915' '   0.012149' 

19 'R_thigh_vol' 'L_thigh_Zrotation1' '  0.6004' '  0.0051255' 

20 'R_thigh_sur' 'L_thigh_Zrotation1' ' 0.48822' '   0.028961' 

21 'R_shin_vol' 'L_thigh_Zrotation1' ' 0.52853' '   0.016586' 

22 'R_arm_vol' 'L_thigh_Zrotation1' ' 0.54276' '   0.013407' 

23 'R_arm_sur' 'L_thigh_Zrotation1' '  0.5066' '   0.022641' 

24 'R_shoulder_vol' 'L_thigh_Zrotation1' ' 0.62092' '  0.0034815' 

25 'R_shoulder_sur' 'L_thigh_Zrotation1' ' 0.57975' '  0.0073783' 

26 'L_forearm_sur' 'L_thigh_Zrotation1' ' 0.47919' '   0.032535' 

27 'lower_vol' 'L_thigh_Zrotation1' ' 0.70624' ' 0.00050104' 
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28 'lower_sur' 'L_thigh_Zrotation1' ' 0.56183' '  0.0099362' 

29 'L_arm_vol' 'L_foot_Yrotation1' ' 0.49477' '   0.026568' 

30 'L_shin_vol' 'L_foot_Zrotation1' '-0.46406' '    0.03929' 

31 'torso_vol' 'R_thigh_Zrotation1' ' 0.49076' '   0.028012' 

32 'torso_sur' 'R_thigh_Zrotation1' ' 0.51109' '   0.021277' 

33 'upper_vol' 'R_thigh_Zrotation1' ' 0.47283' '   0.035254' 

34 'hip_vol' 'R_thigh_Zrotation1' ' 0.55885' '   0.010425' 

35 'hip_sur' 'R_thigh_Zrotation1' ' 0.52299' '   0.017976' 

36 'noArms_vol' 'R_thigh_Zrotation1' ' 0.45903' '   0.041763' 

37 'R_forearm_sur' 'R_foot_Xrotation1' ' 0.53883' '   0.014232' 

38 'R_forearm_sur' 'R_foot_Yrotation1' ' 0.47581' '   0.033962' 

39 'L_thigh_vol' 'R_foot_Zrotation1' '-0.45046' '   0.046244' 

40 'L_shin_sur' 'R_foot_Zrotation1' ' 0.46914' '   0.036911' 

41 'R_forearm_sur' 'R_foot_Zrotation1' ' 0.49431' '   0.026729' 

42 'L_thigh_vol' 'R_toe_Xrotation1' '-0.57457' '   0.008054' 

43 'L_shin_vol' 'R_toe_Xrotation1' ' 0.44404' '   0.049841' 

44 'R_forearm_sur' 'R_toe_Xrotation1' ' 0.47186' '   0.035683' 

45 'L_leg_vol' 'Spine_0_Yrotation1' ' 0.46936' '    0.03681' 

46 'R_leg_vol' 'Spine_0_Yrotation1' ' 0.65433' '  0.0017476' 

47 'R_leg_sur' 'Spine_0_Yrotation1' ' 0.55092' '   0.011819' 

48 'L_thigh_sur' 'Spine_0_Yrotation1' ' 0.44455' '   0.049547' 

49 'R_thigh_vol' 'Spine_0_Yrotation1' ' 0.62736' '   0.003067' 

50 'R_thigh_sur' 'Spine_0_Yrotation1' ' 0.57988' '  0.0073616' 

51 'R_shin_vol' 'Spine_0_Yrotation1' '  0.6274' '  0.0030647' 

52 'torso_sur' 'Spine_0_Yrotation1' ' 0.49876' '   0.025186' 

53 'body_vol' 'Spine_0_Yrotation1' ' 0.45348' '   0.044626' 

54 'body_sur' 'Spine_0_Yrotation1' ' 0.53289' '   0.015554' 

55 'upper_sur' 'Spine_0_Yrotation1' '  0.4712' '   0.035978' 

56 'lower_vol' 'Spine_0_Yrotation1' ' 0.56368' '  0.0096426' 

57 'lower_sur' 'Spine_0_Yrotation1' ' 0.49842' '   0.025303' 

58 'left_vol' 'Spine_0_Yrotation1' ' 0.46856' '   0.037178' 

59 'left_sur' 'Spine_0_Yrotation1' ' 0.54039' '     0.0139' 

60 'right_vol' 'Spine_0_Yrotation1' ' 0.50832' '   0.022111' 

61 'right_sur' 'Spine_0_Yrotation1' ' 0.58921' '  0.0062629' 
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62 'hip_vol' 'Spine_0_Yrotation1' ' 0.48821' '   0.028963' 

63 'hip_sur' 'Spine_0_Yrotation1' ' 0.51411' '   0.020398' 

64 'noArms_vol' 'Spine_0_Yrotation1' ' 0.45953' '    0.04151' 

65 'noArms_sur' 'Spine_0_Yrotation1' ' 0.55952' '   0.010314' 

66 'L_shin_vol' 'Spine_0_Zrotation1' ' 0.59718' '  0.0054336' 

67 'torso_vol' 'Spine_0_Zrotation1' ' 0.46282' '   0.039887' 

68 'L_arm_vol' 'Spine_0_Zrotation1' ' 0.57329' '   0.008229' 

69 'L_shoulder_vol' 'Spine_0_Zrotation1' ' 0.50098' '   0.024444' 

70 'upper_vol' 'Spine_0_Zrotation1' ' 0.44738' '   0.047947' 

71 'chest_vol' 'Spine_0_Zrotation1' ' 0.53607' '   0.014835' 

72 'L_arm_vol' 'Spine_1_Yrotation1' '-0.56134' '   0.010015' 

73 'L_arm_sur' 'Spine_1_Yrotation1' '-0.61231' '  0.0041078' 

74 'L_shoulder_sur' 'Spine_1_Yrotation1' '-0.63062' '  0.0028731' 

75 'L_forearm_vol' 'Spine_1_Yrotation1' '-0.46987' '   0.036579' 

76 'L_forearm_sur' 'Spine_1_Yrotation1' '-0.51878' '   0.019094' 

77 'L_shin_vol' 'neck_Xrotation1' ' 0.54518' '   0.012918' 

78 'L_shin_sur' 'neck_Xrotation1' ' 0.55829' '   0.010519' 

79 'R_forearm_sur' 'neck_Xrotation1' ' 0.45017' '   0.046401' 

80 'torso_vol' 'neck_Yrotation1' '-0.48398' '   0.030598' 

81 'torso_sur' 'neck_Yrotation1' '-0.52364' '   0.017808' 

82 'L_arm_vol' 'neck_Yrotation1' '-0.65155' '  0.0018564' 

83 'L_arm_sur' 'neck_Yrotation1' '-0.78978' '3.4495e-005' 

84 'R_arm_vol' 'neck_Yrotation1' '-0.51748' '   0.019448' 

85 'R_arm_sur' 'neck_Yrotation1' '-0.62283' '  0.0033542' 

86 'L_shoulder_vol' 'neck_Yrotation1' '-0.50698' '   0.022522' 

87 'L_shoulder_sur' 'neck_Yrotation1' '-0.74073' ' 0.00018729' 

88 'R_shoulder_vol' 'neck_Yrotation1' ' -0.4776' '   0.033202' 

89 'R_shoulder_sur' 'neck_Yrotation1' '-0.54842' '   0.012289' 

90 'L_forearm_vol' 'neck_Yrotation1' '-0.67669' '  0.0010509' 

91 'L_forearm_sur' 'neck_Yrotation1' '-0.73454' ' 0.00022592' 

92 'R_forearm_vol' 'neck_Yrotation1' '-0.54387' '   0.013181' 

93 'R_forearm_sur' 'neck_Yrotation1' '-0.55313' '   0.011415' 

94 'body_vol' 'neck_Yrotation1' '-0.53173' '   0.015822' 

95 'body_sur' 'neck_Yrotation1' '-0.61522' '   0.003887' 
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96 'upper_vol' 'neck_Yrotation1' '-0.54991' '   0.012007' 

97 'upper_sur' 'neck_Yrotation1' '-0.68351' ' 0.00089226' 

98 'left_vol' 'neck_Yrotation1' '-0.52111' '   0.018469' 

99 'left_sur' 'neck_Yrotation1' '-0.46756' '   0.037638' 

100 'right_vol' 'neck_Yrotation1' '-0.44982' '   0.046593' 

101 'hip_vol' 'neck_Yrotation1' '-0.50289' '   0.023818' 

102 'hip_sur' 'neck_Yrotation1' '-0.58094' '  0.0072291' 

103 'chest_vol' 'neck_Yrotation1' '-0.45698' '   0.042801' 

104 'noArms_vol' 'neck_Yrotation1' '-0.49649' '   0.025964' 

105 'noArms_sur' 'neck_Yrotation1' '-0.52714' '   0.016926' 

106 'L_leg_vol' 'neck_Zrotation1' ' 0.47933' '    0.03248' 

107 'L_leg_sur' 'neck_Zrotation1' ' 0.52004' '   0.018752' 

108 'R_leg_vol' 'neck_Zrotation1' ' 0.57378' '  0.0081616' 

109 'R_thigh_vol' 'neck_Zrotation1' '  0.4747' '   0.034436' 

110 'L_shin_vol' 'neck_Zrotation1' ' 0.57154' '  0.0084739' 

111 'L_shin_sur' 'neck_Zrotation1' ' 0.66815' '  0.0012826' 

112 'R_shin_vol' 'neck_Zrotation1' ' 0.59487' '  0.0056637' 

113 'R_shin_sur' 'neck_Zrotation1' ' 0.50967' '   0.021699' 

114 'R_arm_sur' 'neck_Zrotation1' ' 0.53411' '   0.015274' 

115 'R_shoulder_sur' 'neck_Zrotation1' ' 0.45921' '   0.041671' 

116 'R_forearm_vol' 'neck_Zrotation1' ' 0.57101' '  0.0085482' 

117 'lower_vol' 'neck_Zrotation1' ' 0.53603' '   0.014843' 

118 'lower_sur' 'neck_Zrotation1' ' 0.49735' '   0.025667' 

119 'right_sur' 'neck_Zrotation1' ' 0.44823' '   0.047472' 

120 'L_leg_sur' 'head_Xrotation1' '-0.47811' '   0.032986' 

121 'L_shin_sur' 'head_Xrotation1' '-0.50351' '   0.023618' 

122 'R_arm_vol' 'head_Xrotation1' '-0.52961' '   0.016326' 

123 'R_arm_sur' 'head_Xrotation1' '-0.53375' '   0.015355' 

124 'L_forearm_sur' 'head_Xrotation1' '-0.47566' '   0.034025' 

125 'R_forearm_vol' 'head_Xrotation1' '-0.65873' '  0.0015863' 

126 'R_forearm_sur' 'head_Xrotation1' ' -0.6592' '  0.0015698' 

127 'lower_sur' 'head_Xrotation1' '-0.45301' '   0.044872' 

128 'R_arm_sur' 'head_Yrotation1' ' 0.46453' '   0.039064' 

129 'R_shoulder_vol' 'head_Yrotation1' ' 0.47007' '   0.036487' 
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130 'R_shoulder_sur' 'head_Yrotation1' ' 0.46826' '   0.037317' 

131 'L_shoulder_vol' 'L_shoulder_Xrotation1' ' 0.46912' '   0.036922' 

132 'L_arm_vol' 'L_shoulder_Zrotation1' '-0.49827' '   0.025353' 

133 'L_arm_sur' 'L_shoulder_Zrotation1' '-0.68308' ' 0.00090177' 

134 'R_arm_sur' 'L_shoulder_Zrotation1' '-0.45604' '   0.043287' 

135 'L_shoulder_sur' 'L_shoulder_Zrotation1' '-0.65423' '  0.0017514' 

136 'L_forearm_vol' 'L_shoulder_Zrotation1' ' -0.4855' '   0.030006' 

137 'L_forearm_sur' 'L_shoulder_Zrotation1' ' -0.6171' '  0.0037492' 

138 'body_sur' 'L_shoulder_Zrotation1' '-0.45467' '   0.043999' 

139 'L_arm_sur' 'L_elbow_Zrotation1' ' 0.59661' '  0.0054898' 

140 'L_shoulder_sur' 'L_elbow_Zrotation1' ' 0.60773' '  0.0044773' 

141 'L_forearm_sur' 'L_elbow_Zrotation1' ' 0.47596' '   0.033897' 

142 'L_shin_vol' 'L_hand_Yrotation1' ' 0.44666' '   0.048347' 

143 'R_forearm_sur' 'L_hand_Yrotation1' '  0.4438' '   0.049977' 

144 'L_shoulder_vol' 'L_hand_Zrotation1' ' 0.47144' '   0.035874' 

145 'L_shoulder_sur' 'L_hand_Zrotation1' ' 0.48183' '   0.031456' 

146 'L_arm_vol' 'R_shoulder_Yrotation1' '-0.46106' '   0.040748' 

147 'L_shoulder_vol' 'R_shoulder_Yrotation1' '-0.46132' '    0.04062' 

148 'L_shoulder_sur' 'R_shoulder_Yrotation1' '-0.47345' '   0.034984' 

149 'R_forearm_vol' 'R_shoulder_Zrotation1' ' 0.47723' '   0.033357' 

150 'R_forearm_sur' 'R_shoulder_Zrotation1' ' 0.45748' '   0.042547' 

151 'R_leg_vol' 'R_elbow_Xrotation1' ' 0.44536' '   0.049083' 

152 'lower_vol' 'R_elbow_Xrotation1' '  0.4534' '   0.044666' 

153 'torso_vol' 'R_forearm_Xrotation1' ' 0.49898' '   0.025113' 

154 'torso_sur' 'R_forearm_Xrotation1' ' 0.48792' '   0.029075' 

155 'upper_vol' 'R_forearm_Xrotation1' ' 0.47489' '   0.034358' 

156 'chest_vol' 'R_forearm_Xrotation1' ' 0.53943' '   0.014102' 

157 'L_leg_sur' 'R_hand_Xrotation1' '-0.47022' '   0.036422' 

158 'R_leg_vol' 'R_hand_Xrotation1' '-0.46898' '   0.036986' 

159 'R_leg_sur' 'R_hand_Xrotation1' '-0.55013' '   0.011965' 

160 'L_thigh_sur' 'R_hand_Xrotation1' '-0.51818' '   0.019257' 

161 'R_thigh_vol' 'R_hand_Xrotation1' ' -0.4726' '   0.035358' 

162 'R_thigh_sur' 'R_hand_Xrotation1' '-0.52584' '    0.01725' 

163 'R_shin_vol' 'R_hand_Xrotation1' '-0.51348' '   0.020578' 
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164 'R_shin_sur' 'R_hand_Xrotation1' '-0.45931' '   0.041623' 

165 'torso_vol' 'R_hand_Xrotation1' '-0.48635' '   0.029676' 

166 'torso_sur' 'R_hand_Xrotation1' ' -0.5085' '   0.022053' 

167 'L_arm_vol' 'R_hand_Xrotation1' '-0.52501' '   0.017459' 

168 'L_arm_sur' 'R_hand_Xrotation1' '-0.65364' '  0.0017744' 

169 'R_arm_sur' 'R_hand_Xrotation1' '-0.45625' '   0.043175' 

170 'L_shoulder_vol' 'R_hand_Xrotation1' '-0.46916' '   0.036903' 

171 'L_shoulder_sur' 'R_hand_Xrotation1' '-0.70005' ' 0.00058931' 

172 'R_shoulder_sur' 'R_hand_Xrotation1' '-0.44612' '   0.048651' 

173 'L_forearm_sur' 'R_hand_Xrotation1' '-0.51241' '   0.020887' 

174 'body_vol' 'R_hand_Xrotation1' '-0.53414' '   0.015268' 

175 'body_sur' 'R_hand_Xrotation1' '-0.63333' '  0.0027203' 

176 'upper_vol' 'R_hand_Xrotation1' '-0.49563' '   0.026265' 

177 'upper_sur' 'R_hand_Xrotation1' '-0.46218' '     0.0402' 

178 'lower_vol' 'R_hand_Xrotation1' '-0.45948' '   0.041535' 

179 'lower_sur' 'R_hand_Xrotation1' '-0.50907' '   0.021882' 

180 'left_vol' 'R_hand_Xrotation1' '-0.52586' '   0.017245' 

181 'left_sur' 'R_hand_Xrotation1' '-0.50037' '   0.024646' 

182 'right_vol' 'R_hand_Xrotation1' '-0.44985' '   0.046579' 

183 'hip_vol' 'R_hand_Xrotation1' ' -0.4739' '   0.034784' 

184 'hip_sur' 'R_hand_Xrotation1' '-0.47461' '   0.034475' 

185 'chest_vol' 'R_hand_Xrotation1' '-0.52392' '   0.017737' 

186 'noArms_vol' 'R_hand_Xrotation1' '-0.51211' '   0.020975' 

187 'noArms_sur' 'R_hand_Xrotation1' '-0.59613' '  0.0055374' 

188 'L_leg_vol' 'R_hand_Yrotation1' '  0.5278' '   0.016765' 

189 'L_thigh_vol' 'R_hand_Yrotation1' ' 0.48814' '   0.028991' 

190 'R_arm_vol' 'R_hand_Yrotation1' ' 0.51618' '    0.01981' 

191 'R_arm_sur' 'R_hand_Yrotation1' ' 0.45697' '   0.042809' 

192 'hip_vol' 'R_hand_Yrotation1' ' 0.49289' '   0.027236' 

193 'upper_sur' 'Root_Xposition2' ' 0.46077' '   0.040893' 

194 'left_sur' 'Root_Yposition2' '-0.45514' '   0.043751' 

195 'L_thigh_vol' 'Root_Zposition2' ' 0.48708' '   0.029393' 

196 'L_shin_vol' 'Root_Zposition2' '-0.52016' '   0.018721' 

197 'L_shin_vol' 'Root_Xrotation2' ' 0.54247' '   0.013468' 
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198 'L_shin_vol' 'Root_Zrotation2' '-0.44587' '   0.048794' 

199 'L_shin_sur' 'Root_Zrotation2' '-0.48111' '    0.03175' 

200 'chest_sur' 'Root_Zrotation2' '-0.45824' '   0.042157' 

201 'L_forearm_sur' 'L_thigh_Xrotation2' '  0.4451' '   0.049234' 

202 'L_arm_vol' 'L_thigh_Yrotation2' ' -0.5015' '   0.024274' 

203 'L_arm_sur' 'L_thigh_Yrotation2' '-0.64451' '  0.0021582' 

204 'R_arm_sur' 'L_thigh_Yrotation2' '-0.53616' '   0.014814' 

205 'L_shoulder_sur' 'L_thigh_Yrotation2' '-0.59856' '  0.0052995' 

206 'R_shoulder_sur' 'L_thigh_Yrotation2' '-0.47574' '   0.033989' 

207 'L_forearm_vol' 'L_thigh_Yrotation2' '-0.48198' '   0.031395' 

208 'L_forearm_sur' 'L_thigh_Yrotation2' '-0.63246' '  0.0027684' 

209 'R_forearm_vol' 'L_thigh_Yrotation2' '-0.53121' '   0.015946' 

210 'R_forearm_sur' 'L_thigh_Yrotation2' '-0.56442' '  0.0095272' 

211 'L_leg_vol' 'L_thigh_Zrotation2' ' 0.55196' '   0.011627' 

212 'L_leg_sur' 'L_thigh_Zrotation2' '  0.5028' '   0.023849' 

213 'R_leg_vol' 'L_thigh_Zrotation2' ' 0.54059' '   0.013856' 

214 'R_leg_sur' 'L_thigh_Zrotation2' '  0.4466' '   0.048383' 

215 'L_thigh_vol' 'L_thigh_Zrotation2' ' 0.54202' '   0.013559' 

216 'L_thigh_sur' 'L_thigh_Zrotation2' '  0.5004' '   0.024637' 

217 'R_thigh_vol' 'L_thigh_Zrotation2' ' 0.51927' '   0.018959' 

218 'R_thigh_sur' 'L_thigh_Zrotation2' ' 0.45262' '   0.045084' 

219 'R_shin_vol' 'L_thigh_Zrotation2' ' 0.45227' '   0.045268' 

220 'R_arm_vol' 'L_thigh_Zrotation2' ' 0.49056' '   0.028088' 

221 'R_shoulder_vol' 'L_thigh_Zrotation2' ' 0.54595' '   0.012768' 

222 'R_shoulder_sur' 'L_thigh_Zrotation2' ' 0.49813' '   0.025402' 

223 'L_forearm_sur' 'L_thigh_Zrotation2' ' 0.47847' '   0.032837' 

224 'lower_vol' 'L_thigh_Zrotation2' ' 0.61834' '  0.0036603' 

225 'lower_sur' 'L_thigh_Zrotation2' ' 0.52742' '   0.016858' 

226 'R_leg_vol' 'L_knee_Xrotation2' '-0.47385' '   0.034807' 

227 'R_thigh_vol' 'L_knee_Xrotation2' '-0.49787' '   0.025489' 

228 'L_arm_sur' 'L_knee_Xrotation2' '-0.50054' '    0.02459' 

229 'L_forearm_sur' 'L_knee_Xrotation2' '-0.44447' '   0.049591' 

230 'left_vol' 'L_knee_Xrotation2' ' -0.5005' '   0.024602' 

231 'left_sur' 'L_knee_Xrotation2' '-0.61527' '   0.003883' 
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232 'right_vol' 'L_knee_Xrotation2' ' -0.4781' '    0.03299' 

233 'right_sur' 'L_knee_Xrotation2' '-0.61833' '  0.0036615' 

234 'L_leg_vol' 'L_foot_Yrotation2' '-0.53557' '   0.014945' 

235 'L_leg_sur' 'L_foot_Yrotation2' '-0.55444' '   0.011183' 

236 'R_leg_vol' 'L_foot_Yrotation2' ' -0.4482' '   0.047485' 

237 'R_leg_sur' 'L_foot_Yrotation2' '-0.52939' '   0.016378' 

238 'L_thigh_vol' 'L_foot_Yrotation2' '-0.57112' '  0.0085321' 

239 'L_thigh_sur' 'L_foot_Yrotation2' '-0.59803' '  0.0053508' 

240 'R_thigh_vol' 'L_foot_Yrotation2' '-0.48757' '   0.029208' 

241 'R_thigh_sur' 'L_foot_Yrotation2' ' -0.5265' '   0.017086' 

242 'R_shin_vol' 'L_foot_Yrotation2' '-0.46046' '   0.041048' 

243 'lower_vol' 'L_foot_Yrotation2' '-0.53507' '   0.015057' 

244 'lower_sur' 'L_foot_Yrotation2' ' -0.5547' '   0.011137' 

245 'L_arm_sur' 'R_thigh_Yrotation2' '-0.59755' '  0.0053975' 

246 'L_shoulder_sur' 'R_thigh_Yrotation2' ' -0.5659' '  0.0092997' 

247 'L_forearm_vol' 'R_thigh_Yrotation2' '-0.46407' '   0.039286' 

248 'L_forearm_sur' 'R_thigh_Yrotation2' '-0.55843' '   0.010495' 

249 'L_leg_vol' 'R_thigh_Zrotation2' '  0.4949' '    0.02652' 

250 'R_leg_vol' 'R_thigh_Zrotation2' ' 0.46699' '   0.037902' 

251 'R_thigh_vol' 'R_thigh_Zrotation2' ' 0.48856' '   0.028833' 

252 'R_shin_vol' 'R_thigh_Zrotation2' ' 0.46066' '   0.040949' 

253 'torso_vol' 'R_thigh_Zrotation2' ' 0.49773' '   0.025538' 

254 'torso_sur' 'R_thigh_Zrotation2' ' 0.45648' '   0.043059' 

255 'L_arm_vol' 'R_thigh_Zrotation2' ' 0.46719' '   0.037811' 

256 'body_vol' 'R_thigh_Zrotation2' ' 0.51113' '   0.021264' 

257 'body_sur' 'R_thigh_Zrotation2' ' 0.46956' '   0.036719' 

258 'upper_vol' 'R_thigh_Zrotation2' ' 0.51944' '   0.018914' 

259 'upper_sur' 'R_thigh_Zrotation2' ' 0.52785' '   0.016752' 

260 'left_vol' 'R_thigh_Zrotation2' ' 0.45515' '   0.043749' 

261 'right_vol' 'R_thigh_Zrotation2' ' 0.48691' '    0.02946' 

262 'hip_vol' 'R_thigh_Zrotation2' ' 0.62932' '  0.0029495' 

263 'hip_sur' 'R_thigh_Zrotation2' ' 0.52948' '   0.016355' 

264 'chest_vol' 'R_thigh_Zrotation2' ' 0.46601' '   0.038365' 

265 'noArms_vol' 'R_thigh_Zrotation2' '  0.5062' '   0.022764' 
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266 'noArms_sur' 'R_thigh_Zrotation2' ' 0.45967' '   0.041443' 

267 'chest_vol' 'R_knee_Xrotation2' '-0.49802' '   0.025439' 

268 'chest_sur' 'R_knee_Xrotation2' '-0.52692' '   0.016981' 

269 'L_arm_vol' 'Spine_0_Xrotation2' '-0.59384' '  0.0057688' 

270 'L_arm_sur' 'Spine_0_Xrotation2' '-0.74211' ' 0.00017949' 

271 'R_arm_sur' 'Spine_0_Xrotation2' '-0.50152' '   0.024266' 

272 'L_shoulder_vol' 'Spine_0_Xrotation2' '-0.45261' '   0.045088' 

273 'L_shoulder_sur' 'Spine_0_Xrotation2' '-0.70683' ' 0.00049321' 

274 'L_forearm_vol' 'Spine_0_Xrotation2' ' -0.5766' '  0.0077831' 

275 'L_forearm_sur' 'Spine_0_Xrotation2' ' -0.6697' '  0.0012377' 

276 'R_forearm_vol' 'Spine_0_Xrotation2' '-0.47602' '    0.03387' 

277 'R_forearm_sur' 'Spine_0_Xrotation2' '-0.47129' '   0.035941' 

278 'body_vol' 'Spine_0_Xrotation2' '-0.47116' '   0.035997' 

279 'body_sur' 'Spine_0_Xrotation2' '-0.55313' '   0.011417' 

280 'upper_vol' 'Spine_0_Xrotation2' '-0.44389' '   0.049925' 

281 'left_vol' 'Spine_0_Xrotation2' '-0.50685' '   0.022562' 

282 'left_sur' 'Spine_0_Xrotation2' '-0.51256' '   0.020845' 

283 'hip_sur' 'Spine_0_Xrotation2' '-0.44888' '   0.047111' 

284 'noArms_sur' 'Spine_0_Xrotation2' '-0.47987' '   0.032256' 

285 'L_arm_sur' 'Spine_1_Yrotation2' '-0.60978' '  0.0043088' 

286 'L_shoulder_sur' 'Spine_1_Yrotation2' '-0.56693' '  0.0091441' 

287 'L_forearm_vol' 'Spine_1_Yrotation2' '-0.49914' '   0.025057' 

288 'L_forearm_sur' 'Spine_1_Yrotation2' '-0.57097' '  0.0085543' 

289 'L_arm_vol' 'Spine_1_Zrotation2' '-0.46505' '   0.038817' 

290 'L_forearm_sur' 'Spine_1_Zrotation2' '-0.48221' '   0.031306' 

291 'R_forearm_vol' 'Spine_1_Zrotation2' '-0.47326' '   0.035067' 

292 'R_forearm_sur' 'Spine_1_Zrotation2' '-0.47553' '   0.034078' 

293 'left_sur' 'Spine_1_Zrotation2' '-0.50197' '   0.024117' 

294 'L_arm_vol' 'neck_Xrotation2' ' 0.56978' '   0.008725' 

295 'L_arm_sur' 'neck_Xrotation2' ' 0.69406' ' 0.00068692' 

296 'R_arm_sur' 'neck_Xrotation2' ' 0.46118' '    0.04069' 

297 'L_shoulder_sur' 'neck_Xrotation2' ' 0.67219' '  0.0011682' 

298 'L_forearm_vol' 'neck_Xrotation2' ' 0.50725' '   0.022439' 

299 'L_forearm_sur' 'neck_Xrotation2' '  0.6207' '  0.0034964' 
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300 'R_forearm_vol' 'neck_Xrotation2' ' 0.44811' '   0.047539' 

301 'R_forearm_sur' 'neck_Xrotation2' ' 0.44549' '   0.049012' 

302 'body_sur' 'neck_Xrotation2' ' 0.49778' '   0.025519' 

303 'torso_sur' 'neck_Zrotation2' ' 0.44401' '   0.049855' 

304 'L_arm_vol' 'neck_Zrotation2' ' 0.55847' '   0.010488' 

305 'L_arm_sur' 'neck_Zrotation2' ' 0.70713' ' 0.00048927' 

306 'R_arm_sur' 'neck_Zrotation2' ' 0.52131' '   0.018416' 

307 'L_shoulder_sur' 'neck_Zrotation2' ' 0.66693' '   0.001319' 

308 'L_forearm_vol' 'neck_Zrotation2' ' 0.50564' '   0.022939' 

309 'L_forearm_sur' 'neck_Zrotation2' '  0.6572' '  0.0016411' 

310 'R_forearm_vol' 'neck_Zrotation2' ' 0.49685' '   0.025841' 

311 'R_forearm_sur' 'neck_Zrotation2' ' 0.47335' '   0.035025' 

312 'body_vol' 'neck_Zrotation2' ' 0.45515' '    0.04375' 

313 'body_sur' 'neck_Zrotation2' ' 0.55188' '   0.011641' 

314 'upper_sur' 'neck_Zrotation2' '  0.4454' '   0.049062' 

315 'left_vol' 'neck_Zrotation2' ' 0.47321' '   0.035086' 

316 'left_sur' 'neck_Zrotation2' ' 0.46639' '   0.038186' 

317 'hip_sur' 'neck_Zrotation2' ' 0.44822' '   0.047476' 

318 'noArms_sur' 'neck_Zrotation2' ' 0.47899' '   0.032619' 

319 'L_arm_vol' 'head_Xrotation2' '-0.55371' '   0.011312' 

320 'L_arm_sur' 'head_Xrotation2' '-0.68064' ' 0.00095656' 

321 'R_arm_sur' 'head_Xrotation2' '-0.44792' '   0.047641' 

322 'L_shoulder_sur' 'head_Xrotation2' '-0.64983' '  0.0019267' 

323 'L_forearm_vol' 'head_Xrotation2' '-0.51976' '   0.018828' 

324 'L_forearm_sur' 'head_Xrotation2' '-0.62199' '    0.00341' 

325 'body_sur' 'head_Xrotation2' '-0.48262' '   0.031139' 

326 'L_arm_vol' 'head_Yrotation2' ' 0.60152' '   0.005022' 

327 'L_arm_sur' 'head_Yrotation2' ' 0.69427' ' 0.00068336' 

328 'R_arm_sur' 'head_Yrotation2' ' 0.48823' '   0.028959' 

329 'L_shoulder_vol' 'head_Yrotation2' ' 0.46962' '   0.036692' 

330 'L_shoulder_sur' 'head_Yrotation2' ' 0.67947' ' 0.00098357' 

331 'L_forearm_vol' 'head_Yrotation2' ' 0.50081' '     0.0245' 

332 'L_forearm_sur' 'head_Yrotation2' ' 0.61132' '  0.0041854' 

333 'R_forearm_vol' 'head_Yrotation2' ' 0.47147' '   0.035859' 
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334 'R_forearm_sur' 'head_Yrotation2' ' 0.44449' '   0.049583' 

335 'body_sur' 'head_Yrotation2' ' 0.51151' '   0.021151' 

336 'L_arm_vol' 'head_Zrotation2' ' 0.59038' '  0.0061344' 

337 'L_arm_sur' 'head_Zrotation2' ' 0.71179' ' 0.00043172' 

338 'L_shoulder_vol' 'head_Zrotation2' ' 0.47343' '    0.03499' 

339 'L_shoulder_sur' 'head_Zrotation2' ' 0.69897' ' 0.00060598' 

340 'L_forearm_vol' 'head_Zrotation2' ' 0.51492' '   0.020166' 

341 'L_forearm_sur' 'head_Zrotation2' ' 0.61412' '  0.0039694' 

342 'body_sur' 'head_Zrotation2' ' 0.48375' '   0.030689' 

343 'L_thigh_vol' 'L_shoulder_Xrotation2' ' -0.5086' '   0.022023' 

344 'L_shoulder_vol' 'L_shoulder_Xrotation2' ' 0.47933' '   0.032479' 

345 'chest_vol' 'L_shoulder_Xrotation2' '   0.503' '   0.023783' 

346 'L_arm_vol' 'L_shoulder_Zrotation2' '-0.48214' '   0.031334' 

347 'L_arm_sur' 'L_shoulder_Zrotation2' '-0.64097' '  0.0023242' 

348 'L_shoulder_sur' 'L_shoulder_Zrotation2' '-0.64536' '  0.0021198' 

349 'L_forearm_vol' 'L_shoulder_Zrotation2' '-0.48563' '   0.029954' 

350 'L_forearm_sur' 'L_shoulder_Zrotation2' '-0.54963' '   0.012059' 

351 'body_sur' 'L_shoulder_Zrotation2' '-0.46692' '   0.037937' 

352 'torso_vol' 'L_elbow_Xrotation2' '-0.49846' '   0.025287' 

353 'torso_sur' 'L_elbow_Xrotation2' '-0.58482' '   0.006761' 

354 'upper_vol' 'L_elbow_Xrotation2' '-0.45209' '   0.045367' 

355 'right_vol' 'L_elbow_Xrotation2' '-0.47307' '    0.03515' 

356 'hip_vol' 'L_elbow_Xrotation2' '-0.44966' '   0.046682' 

357 'hip_sur' 'L_elbow_Xrotation2' '-0.51987' '   0.018798' 

358 'chest_sur' 'L_elbow_Xrotation2' '-0.47114' '   0.036009' 

359 'noArms_vol' 'L_elbow_Xrotation2' ' -0.4886' '   0.028818' 

360 'noArms_sur' 'L_elbow_Xrotation2' ' -0.5106' '   0.021423' 

361 'L_leg_vol' 'L_elbow_Zrotation2' '-0.64486' '  0.0021422' 

362 'L_leg_sur' 'L_elbow_Zrotation2' '-0.50309' '   0.023755' 

363 'R_leg_vol' 'L_elbow_Zrotation2' '-0.45979' '   0.041382' 

364 'L_thigh_vol' 'L_elbow_Zrotation2' '-0.54074' '   0.013825' 

365 'L_thigh_sur' 'L_elbow_Zrotation2' '-0.55109' '   0.011787' 

366 'R_thigh_vol' 'L_elbow_Zrotation2' '-0.47495' '   0.034329' 

367 'R_shin_vol' 'L_elbow_Zrotation2' '-0.44507' '   0.049248' 
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368 'torso_vol' 'L_elbow_Zrotation2' '-0.45827' '   0.042147' 

369 'body_vol' 'L_elbow_Zrotation2' '-0.50047' '   0.024612' 

370 'lower_vol' 'L_elbow_Zrotation2' '-0.56775' '  0.0090227' 

371 'lower_sur' 'L_elbow_Zrotation2' '-0.45955' '     0.0415' 

372 'left_vol' 'L_elbow_Zrotation2' ' -0.4726' '   0.035357' 

373 'hip_vol' 'L_elbow_Zrotation2' '-0.46822' '   0.037335' 

374 'chest_vol' 'L_elbow_Zrotation2' '-0.45938' '   0.041583' 

375 'noArms_vol' 'L_elbow_Zrotation2' '-0.49712' '   0.025748' 

376 'noArms_sur' 'L_elbow_Zrotation2' '-0.45058' '   0.046178' 

377 'R_arm_vol' 'L_hand_Xrotation2' '-0.45093' '   0.045992' 

378 'R_arm_sur' 'L_hand_Xrotation2' '-0.53308' '   0.015509' 

379 'R_shoulder_sur' 'L_hand_Xrotation2' '-0.49947' '   0.024947' 

380 'L_shoulder_sur' 'L_hand_Zrotation2' ' 0.46503' '   0.038828' 

381 'torso_vol' 'R_shoulder_Yrotation2' '-0.55358' '   0.011336' 

382 'torso_sur' 'R_shoulder_Yrotation2' '-0.67658' '  0.0010537' 

383 'L_arm_vol' 'R_shoulder_Yrotation2' '-0.55058' '   0.011882' 

384 'L_arm_sur' 'R_shoulder_Yrotation2' '-0.51973' '   0.018837' 

385 'L_shoulder_vol' 'R_shoulder_Yrotation2' '-0.59282' '  0.0058746' 

386 'L_shoulder_sur' 'R_shoulder_Yrotation2' '-0.50988' '   0.021639' 

387 'body_vol' 'R_shoulder_Yrotation2' '-0.54509' '   0.012938' 

388 'body_sur' 'R_shoulder_Yrotation2' '-0.59055' '  0.0061159' 

389 'upper_vol' 'R_shoulder_Yrotation2' ' -0.5641' '  0.0095777' 

390 'upper_sur' 'R_shoulder_Yrotation2' '-0.57937' '  0.0074257' 

391 'left_vol' 'R_shoulder_Yrotation2' '-0.54107' '   0.013757' 

392 'left_sur' 'R_shoulder_Yrotation2' '-0.56063' '    0.01013' 

393 'right_vol' 'R_shoulder_Yrotation2' '-0.57365' '  0.0081797' 

394 'right_sur' 'R_shoulder_Yrotation2' '-0.54451' '   0.013053' 

395 'hip_vol' 'R_shoulder_Yrotation2' '-0.52045' '   0.018642' 

396 'hip_sur' 'R_shoulder_Yrotation2' '-0.65026' '  0.0019091' 

397 'chest_vol' 'R_shoulder_Yrotation2' '-0.54701' '    0.01256' 

398 'noArms_vol' 'R_shoulder_Yrotation2' '-0.53797' '   0.014418' 

399 'noArms_sur' 'R_shoulder_Yrotation2' ' -0.5526' '   0.011512' 

400 'L_shoulder_vol' 'R_shoulder_Zrotation2' ' 0.53511' '   0.015048' 

401 'L_leg_vol' 'R_elbow_Xrotation2' ' 0.47303' '   0.035169' 
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402 'R_leg_sur' 'R_elbow_Xrotation2' '  0.4506' '   0.046171' 

403 'L_thigh_vol' 'R_elbow_Xrotation2' ' 0.54213' '   0.013537' 

404 'L_thigh_sur' 'R_elbow_Xrotation2' '  0.4715' '   0.035845' 

405 'R_thigh_vol' 'R_elbow_Xrotation2' ' 0.48358' '   0.030757' 

406 'R_thigh_sur' 'R_elbow_Xrotation2' '  0.4967' '   0.025892' 

407 'lower_vol' 'R_elbow_Xrotation2' ' 0.49251' '   0.027375' 

408 'lower_sur' 'R_elbow_Xrotation2' '  0.4678' '   0.037526' 

409 'right_sur' 'R_elbow_Yrotation2' '-0.44901' '   0.047037' 

410 'R_leg_vol' 'R_forearm_Xrotation2' ' 0.45359' '   0.044564' 

411 'R_thigh_vol' 'R_forearm_Xrotation2' ' 0.47304' '   0.035161' 

412 'R_thigh_sur' 'R_forearm_Xrotation2' ' 0.45717' '   0.042707' 

413 'torso_sur' 'R_forearm_Xrotation2' ' 0.47285' '   0.035246' 

414 'noArms_sur' 'R_forearm_Xrotation2' ' 0.45608' '   0.043267' 

415 'R_thigh_sur' 'R_forearm_Yrotation2' ' 0.45974' '   0.041404' 

416 'torso_vol' 'R_hand_Xrotation2' '-0.49048' '   0.028118' 

417 'torso_sur' 'R_hand_Xrotation2' '-0.46001' '   0.041268' 

418 'L_arm_vol' 'R_hand_Xrotation2' '-0.53705' '   0.014618' 

419 'L_arm_sur' 'R_hand_Xrotation2' '-0.60186' '  0.0049905' 

420 'L_shoulder_vol' 'R_hand_Xrotation2' '-0.48557' '   0.029976' 

421 'L_shoulder_sur' 'R_hand_Xrotation2' '-0.60981' '  0.0043061' 

422 'L_forearm_sur' 'R_hand_Xrotation2' '-0.54555' '   0.012845' 

423 'body_vol' 'R_hand_Xrotation2' '-0.51667' '   0.019674' 

424 'body_sur' 'R_hand_Xrotation2' '-0.54753' '    0.01246' 

425 'upper_vol' 'R_hand_Xrotation2' '-0.48936' '   0.028533' 

426 'left_vol' 'R_hand_Xrotation2' '-0.54317' '   0.013323' 

427 'left_sur' 'R_hand_Xrotation2' '-0.46556' '   0.038576' 

428 'hip_vol' 'R_hand_Xrotation2' '-0.44934' '   0.046856' 

429 'chest_vol' 'R_hand_Xrotation2' '-0.53975' '   0.014035' 

430 'noArms_vol' 'R_hand_Xrotation2' '-0.50022' '   0.024695' 

431 'noArms_sur' 'R_hand_Xrotation2' '-0.50607' '   0.022807' 

432 'chest_sur' 'R_hand_Yrotation2' ' 0.50953' '   0.021744' 

433 'torso_sur' 'Root_Xposition3' ' 0.53804' '   0.014401' 

434 'upper_vol' 'Root_Xposition3' ' 0.45971' '   0.041423' 

435 'upper_sur' 'Root_Xposition3' ' 0.54693' '   0.012576' 
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436 'hip_sur' 'Root_Xposition3' ' 0.45973' '   0.041411' 

437 'chest_vol' 'Root_Xposition3' ' 0.49663' '   0.025915' 

438 'R_shin_vol' 'Root_Yrotation3' '-0.45159' '   0.045631' 

439 'chest_sur' 'Root_Zrotation3' '-0.74868' ' 0.00014612' 

440 'L_arm_sur' 'L_thigh_Xrotation3' ' 0.56158' '  0.0099767' 

441 'L_shoulder_sur' 'L_thigh_Xrotation3' ' 0.58555' '  0.0066761' 

442 'L_arm_vol' 'L_thigh_Yrotation3' '-0.58989' '  0.0061882' 

443 'L_arm_sur' 'L_thigh_Yrotation3' '-0.61659' '  0.0037863' 

444 'R_arm_sur' 'L_thigh_Yrotation3' '-0.44847' '   0.047338' 

445 'L_shoulder_vol' 'L_thigh_Yrotation3' '-0.54906' '   0.012167' 

446 'L_shoulder_sur' 'L_thigh_Yrotation3' ' -0.6331' '  0.0027326' 

447 'L_forearm_sur' 'L_thigh_Yrotation3' ' -0.5454' '   0.012876' 

448 'R_forearm_vol' 'L_thigh_Yrotation3' '-0.49194' '   0.027582' 

449 'R_forearm_sur' 'L_thigh_Yrotation3' '-0.52296' '   0.017983' 

450 'L_leg_sur' 'L_thigh_Zrotation3' ' 0.50967' '     0.0217' 

451 'R_leg_vol' 'L_thigh_Zrotation3' ' 0.44522' '   0.049164' 

452 'L_shin_sur' 'L_thigh_Zrotation3' ' 0.53287' '   0.015559' 

453 'R_arm_vol' 'L_thigh_Zrotation3' ' 0.44598' '   0.048734' 

454 'R_arm_sur' 'L_thigh_Zrotation3' ' 0.48669' '   0.029545' 

455 'R_shoulder_vol' 'L_thigh_Zrotation3' ' 0.51067' '     0.0214' 

456 'R_shoulder_sur' 'L_thigh_Zrotation3' ' 0.50617' '   0.022774' 

457 'lower_vol' 'L_thigh_Zrotation3' ' 0.48539' '   0.030048' 

458 'lower_sur' 'L_thigh_Zrotation3' ' 0.50934' '     0.0218' 

459 'torso_vol' 'L_knee_Xrotation3' '-0.59884' '   0.005273' 

460 'torso_sur' 'L_knee_Xrotation3' ' -0.5369' '   0.014651' 

461 'L_forearm_vol' 'L_knee_Xrotation3' '-0.45564' '   0.043493' 

462 'body_vol' 'L_knee_Xrotation3' '-0.54426' '   0.013102' 

463 'upper_vol' 'L_knee_Xrotation3' '-0.59852' '  0.0053038' 

464 'upper_sur' 'L_knee_Xrotation3' '-0.49779' '   0.025517' 

465 'left_vol' 'L_knee_Xrotation3' '-0.48721' '   0.029345' 

466 'right_vol' 'L_knee_Xrotation3' '-0.52524' '   0.017399' 

467 'hip_vol' 'L_knee_Xrotation3' '-0.66562' '   0.001359' 

468 'hip_sur' 'L_knee_Xrotation3' '-0.60338' '  0.0048531' 

469 'chest_vol' 'L_knee_Xrotation3' '-0.53543' '   0.014976' 



214 

 

470 'noArms_vol' 'L_knee_Xrotation3' '-0.54731' '   0.012501' 

471 'torso_vol' 'L_foot_Yrotation3' ' 0.46287' '   0.039866' 

472 'torso_sur' 'L_foot_Yrotation3' ' 0.45951' '   0.041519' 

473 'L_arm_sur' 'L_foot_Yrotation3' ' 0.45891' '   0.041823' 

474 'body_vol' 'L_foot_Yrotation3' ' 0.46351' '   0.039557' 

475 'upper_vol' 'L_foot_Yrotation3' ' 0.47963' '   0.032355' 

476 'right_vol' 'L_foot_Yrotation3' ' 0.45478' '    0.04394' 

477 'hip_vol' 'L_foot_Yrotation3' ' 0.48812' '   0.029001' 

478 'hip_sur' 'L_foot_Yrotation3' ' 0.45726' '    0.04266' 

479 'noArms_vol' 'L_foot_Yrotation3' ' 0.45752' '   0.042525' 

480 'R_leg_sur' 'R_thigh_Yrotation3' ' 0.44819' '   0.047494' 

481 'torso_vol' 'R_thigh_Zrotation3' ' 0.47278' '   0.035278' 

482 'torso_sur' 'R_thigh_Zrotation3' ' 0.44602' '   0.048709' 

483 'L_arm_vol' 'R_thigh_Zrotation3' ' 0.56531' '    0.00939' 

484 'L_arm_sur' 'R_thigh_Zrotation3' ' 0.65414' '  0.0017551' 

485 'L_shoulder_vol' 'R_thigh_Zrotation3' ' 0.57073' '  0.0085883' 

486 'L_shoulder_sur' 'R_thigh_Zrotation3' ' 0.58948' '  0.0062323' 

487 'L_forearm_vol' 'R_thigh_Zrotation3' ' 0.59065' '  0.0061049' 

488 'L_forearm_sur' 'R_thigh_Zrotation3' ' 0.62621' '  0.0031377' 

489 'body_vol' 'R_thigh_Zrotation3' ' 0.49566' '   0.026255' 

490 'body_sur' 'R_thigh_Zrotation3' ' 0.48156' '   0.031566' 

491 'upper_vol' 'R_thigh_Zrotation3' ' 0.49362' '   0.026977' 

492 'upper_sur' 'R_thigh_Zrotation3' ' 0.45753' '   0.042521' 

493 'left_vol' 'R_thigh_Zrotation3' ' 0.48407' '   0.030566' 

494 'left_sur' 'R_thigh_Zrotation3' ' 0.44511' '   0.049226' 

495 'right_vol' 'R_thigh_Zrotation3' ' 0.46646' '   0.038153' 

496 'hip_vol' 'R_thigh_Zrotation3' '  0.5143' '   0.020341' 

497 'hip_sur' 'R_thigh_Zrotation3' ' 0.46585' '   0.038438' 

498 'chest_vol' 'R_thigh_Zrotation3' '  0.4551' '   0.043772' 

499 'noArms_vol' 'R_thigh_Zrotation3' '  0.4719' '   0.035667' 

500 'L_leg_vol' 'R_foot_Xrotation3' '-0.47799' '   0.033036' 

501 'lower_vol' 'R_foot_Xrotation3' '-0.46198' '     0.0403' 

502 'L_shin_sur' 'R_foot_Zrotation3' '  0.4507' '   0.046117' 

503 'L_leg_vol' 'R_toe_Xrotation3' ' 0.46217' '   0.040205' 
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504 'R_leg_vol' 'R_toe_Xrotation3' ' 0.46583' '   0.038448' 

505 'L_thigh_vol' 'R_toe_Xrotation3' ' 0.54438' '   0.013078' 

506 'R_thigh_vol' 'R_toe_Xrotation3' '  0.4645' '   0.039082' 

507 'R_arm_vol' 'R_toe_Xrotation3' ' 0.56116' '   0.010044' 

508 'R_arm_sur' 'R_toe_Xrotation3' ' 0.57717' '  0.0077094' 

509 'R_shoulder_vol' 'R_toe_Xrotation3' '  0.4846' '   0.030357' 

510 'R_shoulder_sur' 'R_toe_Xrotation3' ' 0.55814' '   0.010544' 

511 'lower_vol' 'R_toe_Xrotation3' ' 0.46152' '   0.040526' 

512 'L_thigh_vol' 'Spine_0_Zrotation3' '-0.44594' '   0.048752' 

513 'R_thigh_vol' 'Spine_0_Zrotation3' '-0.50159' '   0.024243' 

514 'L_arm_sur' 'Spine_0_Zrotation3' '-0.51779' '   0.019363' 

515 'L_shoulder_sur' 'Spine_0_Zrotation3' '-0.44658' '   0.048394' 

516 'L_forearm_sur' 'Spine_0_Zrotation3' '-0.51855' '   0.019156' 

517 'L_arm_vol' 'Spine_1_Xrotation3' ' 0.46663' '   0.038071' 

518 'upper_sur' 'Spine_1_Xrotation3' ' 0.45189' '   0.045474' 

519 'L_arm_sur' 'Spine_1_Yrotation3' '-0.53399' '   0.015301' 

520 'L_shoulder_sur' 'Spine_1_Yrotation3' '-0.50989' '   0.021633' 

521 'L_forearm_sur' 'Spine_1_Yrotation3' '-0.46523' '   0.038733' 

522 'L_arm_vol' 'Spine_1_Zrotation3' '-0.45341' '   0.044664' 

523 'R_forearm_vol' 'Spine_1_Zrotation3' '  -0.511' '   0.021304' 

524 'R_forearm_sur' 'Spine_1_Zrotation3' '-0.46529' '   0.038705' 

525 'left_sur' 'Spine_1_Zrotation3' '-0.46119' '   0.040683' 

526 'L_arm_vol' 'neck_Xrotation3' ' 0.56723' '  0.0090999' 

527 'L_arm_sur' 'neck_Xrotation3' ' 0.69835' ' 0.00061577' 

528 'R_arm_sur' 'neck_Xrotation3' '  0.4757' '   0.034009' 

529 'L_shoulder_sur' 'neck_Xrotation3' ' 0.67288' '  0.0011495' 

530 'L_forearm_vol' 'neck_Xrotation3' '  0.5106' '   0.021421' 

531 'L_forearm_sur' 'neck_Xrotation3' ' 0.63113' '  0.0028441' 

532 'R_forearm_vol' 'neck_Xrotation3' '  0.4525' '   0.045145' 

533 'R_forearm_sur' 'neck_Xrotation3' ' 0.44597' '   0.048736' 

534 'body_sur' 'neck_Xrotation3' ' 0.50055' '   0.024587' 

535 'L_arm_sur' 'neck_Yrotation3' ' 0.58554' '  0.0066778' 

536 'L_shoulder_sur' 'neck_Yrotation3' ' 0.57251' '  0.0083377' 

537 'L_forearm_sur' 'neck_Yrotation3' ' 0.53147' '   0.015885' 
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538 'L_arm_vol' 'neck_Zrotation3' ' 0.56254' '  0.0098225' 

539 'L_arm_sur' 'neck_Zrotation3' ' 0.69601' ' 0.00065371' 

540 'R_arm_sur' 'neck_Zrotation3' ' 0.49287' '   0.027244' 

541 'L_shoulder_sur' 'neck_Zrotation3' ' 0.65824' '  0.0016037' 

542 'L_forearm_vol' 'neck_Zrotation3' ' 0.51065' '   0.021408' 

543 'L_forearm_sur' 'neck_Zrotation3' ' 0.64386' '   0.002188' 

544 'R_forearm_vol' 'neck_Zrotation3' ' 0.46753' '   0.037655' 

545 'R_forearm_sur' 'neck_Zrotation3' ' 0.44989' '   0.046556' 

546 'body_sur' 'neck_Zrotation3' ' 0.50837' '   0.022096' 

547 'L_arm_vol' 'head_Xrotation3' '-0.45779' '    0.04239' 

548 'L_arm_sur' 'head_Xrotation3' '-0.59907' '   0.005251' 

549 'R_arm_sur' 'head_Xrotation3' '-0.49833' '   0.025332' 

550 'L_shoulder_sur' 'head_Xrotation3' '-0.54533' '    0.01289' 

551 'L_forearm_vol' 'head_Xrotation3' '-0.50633' '   0.022724' 

552 'L_forearm_sur' 'head_Xrotation3' '-0.58726' '    0.00648' 

553 'R_forearm_vol' 'head_Xrotation3' '-0.52623' '   0.017152' 

554 'R_forearm_sur' 'head_Xrotation3' ' -0.5175' '   0.019443' 

555 'body_sur' 'head_Xrotation3' '-0.46513' '   0.038781' 

556 'L_arm_vol' 'head_Yrotation3' ' 0.57168' '  0.0084538' 

557 'L_arm_sur' 'head_Yrotation3' ' 0.69702' ' 0.00063708' 

558 'R_arm_sur' 'head_Yrotation3' ' 0.48163' '   0.031537' 

559 'L_shoulder_sur' 'head_Yrotation3' ' 0.66854' '  0.0012711' 

560 'L_forearm_vol' 'head_Yrotation3' ' 0.51348' '   0.020578' 

561 'L_forearm_sur' 'head_Yrotation3' ' 0.63116' '  0.0028423' 

562 'R_forearm_vol' 'head_Yrotation3' ' 0.46294' '   0.039832' 

563 'R_forearm_sur' 'head_Yrotation3' ' 0.45785' '   0.042356' 

564 'body_sur' 'head_Yrotation3' ' 0.49753' '   0.025606' 

565 'L_arm_vol' 'head_Zrotation3' '  0.5735' '  0.0082009' 

566 'L_arm_sur' 'head_Zrotation3' ' 0.70313' ' 0.00054387' 

567 'R_arm_sur' 'head_Zrotation3' ' 0.47778' '   0.033126' 

568 'L_shoulder_sur' 'head_Zrotation3' ' 0.67815' '  0.0010151' 

569 'L_forearm_vol' 'head_Zrotation3' ' 0.50765' '   0.022315' 

570 'L_forearm_sur' 'head_Zrotation3' ' 0.63354' '  0.0027086' 

571 'R_forearm_vol' 'head_Zrotation3' ' 0.45141' '    0.04573' 
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572 'body_sur' 'head_Zrotation3' ' 0.50036' '    0.02465' 

573 'torso_vol' 'L_shoulder_Xrotation3' ' 0.46803' '   0.037421' 

574 'torso_sur' 'L_shoulder_Xrotation3' ' 0.49754' '   0.025604' 

575 'hip_vol' 'L_shoulder_Xrotation3' '  0.4738' '   0.034831' 

576 'hip_sur' 'L_shoulder_Xrotation3' ' 0.47325' '   0.035069' 

577 'noArms_vol' 'L_shoulder_Xrotation3' ' 0.45411' '   0.044294' 

578 'L_arm_sur' 'L_shoulder_Zrotation3' '-0.61172' '  0.0041538' 

579 'L_shoulder_sur' 'L_shoulder_Zrotation3' '-0.60299' '  0.0048878' 

580 'L_forearm_vol' 'L_shoulder_Zrotation3' '-0.52872' '    0.01654' 

581 'L_forearm_sur' 'L_shoulder_Zrotation3' ' -0.5148' '     0.0202' 

582 'R_thigh_sur' 'L_elbow_Xrotation3' '-0.45488' '   0.043891' 

583 'torso_sur' 'L_elbow_Xrotation3' ' -0.5029' '   0.023816' 

584 'L_forearm_vol' 'L_elbow_Xrotation3' '-0.53658' '   0.014722' 

585 'R_forearm_sur' 'L_elbow_Xrotation3' '-0.45198' '   0.045422' 

586 'body_sur' 'L_elbow_Xrotation3' '-0.48566' '   0.029944' 

587 'hip_vol' 'L_elbow_Xrotation3' '-0.44935' '   0.046853' 

588 'hip_sur' 'L_elbow_Xrotation3' '-0.51061' '   0.021418' 

589 'noArms_sur' 'L_elbow_Xrotation3' '-0.48728' '   0.029319' 

590 'L_shoulder_sur' 'L_elbow_Yrotation3' '-0.53744' '   0.014532' 

591 'R_shoulder_vol' 'L_forearm_Yrotation3' '  0.4773' '   0.033328' 

592 'L_arm_sur' 'L_hand_Yrotation3' '-0.55594' '   0.010919' 

593 'L_shoulder_sur' 'L_hand_Yrotation3' '-0.51687' '   0.019617' 

594 'L_forearm_sur' 'L_hand_Yrotation3' '-0.54767' '   0.012432' 

595 'body_sur' 'L_hand_Yrotation3' '-0.46387' '   0.039384' 

596 'L_arm_vol' 'L_hand_Zrotation3' ' 0.51386' '   0.020468' 

597 'L_shoulder_vol' 'L_hand_Zrotation3' ' 0.48381' '   0.030667' 

598 'left_sur' 'L_hand_Zrotation3' '  0.4828' '   0.031069' 

599 'right_sur' 'L_hand_Zrotation3' ' 0.49404' '   0.026825' 

600 'torso_vol' 'R_shoulder_Xrotation3' '-0.50319' '   0.023721' 

601 'torso_sur' 'R_shoulder_Xrotation3' '-0.53616' '   0.014814' 

602 'body_vol' 'R_shoulder_Xrotation3' ' -0.5001' '   0.024737' 

603 'body_sur' 'R_shoulder_Xrotation3' '-0.47596' '   0.033896' 

604 'upper_vol' 'R_shoulder_Xrotation3' '-0.47836' '   0.032881' 

605 'left_vol' 'R_shoulder_Xrotation3' '-0.49638' '   0.026005' 
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606 'right_vol' 'R_shoulder_Xrotation3' '-0.46413' '   0.039256' 

607 'hip_vol' 'R_shoulder_Xrotation3' '-0.53335' '   0.015447' 

608 'hip_sur' 'R_shoulder_Xrotation3' '-0.51738' '   0.019477' 

609 'noArms_vol' 'R_shoulder_Xrotation3' '-0.53311' '   0.015504' 

610 'noArms_sur' 'R_shoulder_Xrotation3' '-0.54387' '   0.013181' 

611 'torso_sur' 'R_shoulder_Yrotation3' ' -0.4795' '   0.032409' 

612 'L_arm_vol' 'R_shoulder_Yrotation3' '-0.51338' '   0.020606' 

613 'L_shoulder_vol' 'R_shoulder_Yrotation3' '-0.60155' '  0.0050192' 

614 'left_sur' 'R_shoulder_Yrotation3' '-0.47233' '   0.035475' 

615 'right_vol' 'R_shoulder_Yrotation3' '-0.46351' '   0.039555' 

616 'right_sur' 'R_shoulder_Yrotation3' '-0.47997' '   0.032213' 

617 'hip_sur' 'R_shoulder_Yrotation3' '-0.46918' '   0.036893' 

618 'chest_vol' 'R_shoulder_Yrotation3' '-0.46211' '   0.040233' 

619 'chest_sur' 'R_shoulder_Zrotation3' ' 0.54199' '   0.013565' 

620 'L_leg_sur' 'R_elbow_Xrotation3' ' 0.59176' '  0.0059865' 

621 'R_leg_vol' 'R_elbow_Xrotation3' ' 0.52798' '   0.016719' 

622 'R_leg_sur' 'R_elbow_Xrotation3' ' 0.56892' '   0.008849' 

623 'L_thigh_sur' 'R_elbow_Xrotation3' ' 0.54788' '   0.012391' 

624 'R_thigh_vol' 'R_elbow_Xrotation3' ' 0.55354' '   0.011343' 

625 'R_thigh_sur' 'R_elbow_Xrotation3' ' 0.55512' '   0.011063' 

626 'L_shin_sur' 'R_elbow_Xrotation3' ' 0.57309' '  0.0082567' 

627 'R_shin_vol' 'R_elbow_Xrotation3' ' 0.51952' '   0.018893' 

628 'R_shin_sur' 'R_elbow_Xrotation3' ' 0.48145' '    0.03161' 

629 'L_arm_sur' 'R_elbow_Xrotation3' ' 0.49375' '   0.026928' 

630 'R_arm_vol' 'R_elbow_Xrotation3' ' 0.46385' '   0.039391' 

631 'R_arm_sur' 'R_elbow_Xrotation3' ' 0.53623' '   0.014797' 

632 'L_shoulder_sur' 'R_elbow_Xrotation3' ' 0.44533' '   0.049101' 

633 'R_shoulder_vol' 'R_elbow_Xrotation3' ' 0.48386' '   0.030647' 

634 'R_shoulder_sur' 'R_elbow_Xrotation3' ' 0.50923' '   0.021834' 

635 'L_forearm_sur' 'R_elbow_Xrotation3' ' 0.53876' '   0.014246' 

636 'R_forearm_sur' 'R_elbow_Xrotation3' '  0.4643' '   0.039174' 

637 'body_sur' 'R_elbow_Xrotation3' ' 0.45264' '   0.045069' 

638 'lower_vol' 'R_elbow_Xrotation3' ' 0.55146' '    0.01172' 

639 'lower_sur' 'R_elbow_Xrotation3' ' 0.60351' '  0.0048415' 
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640 'L_thigh_sur' 'R_elbow_Zrotation3' ' 0.44487' '   0.049364' 

641 'L_arm_vol' 'R_forearm_Xrotation3' ' 0.51272' '   0.020799' 

642 'L_shoulder_vol' 'R_forearm_Xrotation3' ' 0.53196' '    0.01577' 

643 'right_vol' 'R_forearm_Xrotation3' ' 0.53921' '    0.01415' 

644 'right_sur' 'R_forearm_Xrotation3' ' 0.45675' '   0.042921' 

645 'chest_vol' 'R_forearm_Xrotation3' ' 0.45182' '    0.04551' 

646 'L_forearm_vol' 'R_forearm_Zrotation3' ' 0.50202' '   0.024102' 

647 'torso_vol' 'R_hand_Xrotation3' '-0.47216' '   0.035552' 

648 'torso_sur' 'R_hand_Xrotation3' ' -0.5044' '   0.023332' 

649 'L_arm_vol' 'R_hand_Xrotation3' '-0.53649' '   0.014741' 

650 'L_arm_sur' 'R_hand_Xrotation3' '-0.69504' ' 0.00067011' 

651 'R_arm_sur' 'R_hand_Xrotation3' '-0.44879' '   0.047158' 

652 'L_shoulder_vol' 'R_hand_Xrotation3' '-0.45014' '   0.046417' 

653 'L_shoulder_sur' 'R_hand_Xrotation3' '-0.68142' ' 0.00093865' 

654 'L_forearm_vol' 'R_hand_Xrotation3' '-0.48298' '   0.030995' 

655 'L_forearm_sur' 'R_hand_Xrotation3' ' -0.6405' '  0.0023472' 

656 'body_vol' 'R_hand_Xrotation3' '-0.50106' '   0.024417' 

657 'body_sur' 'R_hand_Xrotation3' '-0.58238' '  0.0070526' 

658 'upper_vol' 'R_hand_Xrotation3' '-0.48275' '    0.03109' 

659 'upper_sur' 'R_hand_Xrotation3' '-0.48105' '   0.031773' 

660 'left_vol' 'R_hand_Xrotation3' '-0.51321' '   0.020657' 

661 'left_sur' 'R_hand_Xrotation3' '-0.49202' '   0.027552' 

662 'hip_vol' 'R_hand_Xrotation3' '-0.46077' '   0.040895' 

663 'hip_sur' 'R_hand_Xrotation3' '-0.48523' '   0.030107' 

664 'chest_vol' 'R_hand_Xrotation3' '-0.50003' '    0.02476' 

665 'noArms_vol' 'R_hand_Xrotation3' '-0.47987' '   0.032258' 

666 'noArms_sur' 'R_hand_Xrotation3' ' -0.5287' '   0.016544' 

667 'L_leg_sur' 'R_hand_Yrotation3' ' 0.46866' '   0.037132' 

668 'R_leg_sur' 'R_hand_Yrotation3' ' 0.46781' '   0.037522' 

669 'L_thigh_sur' 'R_hand_Yrotation3' '  0.5717' '  0.0084502' 

670 'R_thigh_sur' 'R_hand_Yrotation3' ' 0.49088' '   0.027969' 

671 'L_shin_vol' 'R_hand_Yrotation3' ' 0.51315' '   0.020672' 

672 'R_shin_vol' 'R_hand_Yrotation3' ' 0.45087' '    0.04602' 

673 'R_shin_sur' 'R_hand_Yrotation3' '  0.4943' '   0.026733' 
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674 'torso_vol' 'R_hand_Yrotation3' ' 0.75562' ' 0.00011678' 

675 'torso_sur' 'R_hand_Yrotation3' ' 0.67909' ' 0.00099263' 

676 'L_arm_vol' 'R_hand_Yrotation3' ' 0.66688' '  0.0013205' 

677 'L_shoulder_vol' 'R_hand_Yrotation3' ' 0.71575' ' 0.00038732' 

678 'body_vol' 'R_hand_Yrotation3' ' 0.74251' '  0.0001773' 

679 'body_sur' 'R_hand_Yrotation3' ' 0.65942' '  0.0015624' 

680 'upper_vol' 'R_hand_Yrotation3' ' 0.73475' ' 0.00022445' 

681 'upper_sur' 'R_hand_Yrotation3' '    0.56' '   0.010234' 

682 'lower_sur' 'R_hand_Yrotation3' '  0.4586' '   0.041979' 

683 'left_vol' 'R_hand_Yrotation3' ' 0.69436' ' 0.00068182' 

684 'left_sur' 'R_hand_Yrotation3' ' 0.56137' '   0.010011' 

685 'right_vol' 'R_hand_Yrotation3' ' 0.72702' ' 0.00028177' 

686 'right_sur' 'R_hand_Yrotation3' ' 0.53427' '   0.015239' 

687 'hip_vol' 'R_hand_Yrotation3' ' 0.73281' '  0.0002378' 

688 'hip_sur' 'R_hand_Yrotation3' ' 0.61594' '  0.0038336' 

689 'chest_vol' 'R_hand_Yrotation3' ' 0.76969' '7.2442e-005' 

690 'chest_sur' 'R_hand_Yrotation3' ' 0.46613' '   0.038309' 

691 'noArms_vol' 'R_hand_Yrotation3' ' 0.74917' ' 0.00014384' 

692 'noArms_sur' 'R_hand_Yrotation3' ' 0.68518' ' 0.00085681' 

693 'L_shin_vol' 'R_hand_Zrotation3' '-0.58251' '  0.0070371' 

694 'L_shin_sur' 'R_hand_Zrotation3' '-0.46601' '   0.038361' 

695 'R_shin_sur' 'R_hand_Zrotation3' '-0.45072' '   0.046103' 

696 'torso_sur' 'Root_Xposition4' ' 0.45385' '   0.044432' 

697 'upper_sur' 'Root_Xposition4' ' 0.47987' '   0.032254' 

698 'L_thigh_vol' 'Root_Zposition4' ' 0.51963' '   0.018863' 

699 'L_shin_vol' 'Root_Zposition4' '-0.54659' '   0.012642' 

700 'L_arm_vol' 'Root_Yrotation4' '-0.45013' '   0.046425' 

701 'L_arm_sur' 'Root_Yrotation4' '-0.48252' '    0.03118' 

702 'R_arm_vol' 'Root_Yrotation4' '-0.44931' '   0.046875' 

703 'R_arm_sur' 'Root_Yrotation4' '-0.52239' '   0.018132' 

704 'R_shoulder_vol' 'Root_Yrotation4' '-0.46981' '   0.036608' 

705 'R_shoulder_sur' 'Root_Yrotation4' '-0.46929' '   0.036845' 

706 'L_forearm_sur' 'Root_Yrotation4' '-0.53246' '   0.015653' 

707 'R_forearm_vol' 'Root_Yrotation4' '-0.45132' '   0.045777' 
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708 'chest_sur' 'Root_Zrotation4' '-0.71245' ' 0.00042403' 

709 'L_arm_sur' 'L_thigh_Xrotation4' ' 0.49525' '   0.026398' 

710 'L_forearm_sur' 'L_thigh_Xrotation4' ' 0.50054' '   0.024588' 

711 'L_arm_vol' 'L_thigh_Yrotation4' '-0.60377' '  0.0048184' 

712 'L_arm_sur' 'L_thigh_Yrotation4' '-0.67719' '  0.0010386' 

713 'R_arm_sur' 'L_thigh_Yrotation4' '-0.46367' '   0.039477' 

714 'L_shoulder_vol' 'L_thigh_Yrotation4' '-0.51918' '   0.018985' 

715 'L_shoulder_sur' 'L_thigh_Yrotation4' '-0.64965' '  0.0019343' 

716 'L_forearm_vol' 'L_thigh_Yrotation4' '-0.46149' '   0.040539' 

717 'L_forearm_sur' 'L_thigh_Yrotation4' '-0.61848' '  0.0036509' 

718 'R_forearm_vol' 'L_thigh_Yrotation4' ' -0.4736' '   0.034918' 

719 'R_forearm_sur' 'L_thigh_Yrotation4' '-0.45094' '   0.045986' 

720 'body_sur' 'L_thigh_Yrotation4' '-0.48449' '   0.030399' 

721 'L_leg_sur' 'L_thigh_Zrotation4' ' 0.46103' '   0.040764' 

722 'R_leg_vol' 'L_thigh_Zrotation4' ' 0.55601' '   0.010907' 

723 'R_leg_sur' 'L_thigh_Zrotation4' ' 0.52335' '   0.017882' 

724 'L_thigh_vol' 'L_thigh_Zrotation4' ' 0.47998' '   0.032209' 

725 'L_thigh_sur' 'L_thigh_Zrotation4' ' 0.54583' '    0.01279' 

726 'R_thigh_vol' 'L_thigh_Zrotation4' ' 0.57762' '    0.00765' 

727 'R_thigh_sur' 'L_thigh_Zrotation4' ' 0.55938' '   0.010336' 

728 'R_shin_vol' 'L_thigh_Zrotation4' ' 0.53154' '   0.015868' 

729 'L_arm_sur' 'L_thigh_Zrotation4' ' 0.67409' '  0.0011174' 

730 'R_arm_vol' 'L_thigh_Zrotation4' ' 0.54109' '   0.013752' 

731 'R_arm_sur' 'L_thigh_Zrotation4' ' 0.56362' '  0.0096518' 

732 'L_shoulder_sur' 'L_thigh_Zrotation4' ' 0.60225' '  0.0049547' 

733 'R_shoulder_vol' 'L_thigh_Zrotation4' ' 0.52081' '   0.018548' 

734 'R_shoulder_sur' 'L_thigh_Zrotation4' ' 0.50856' '   0.022036' 

735 'L_forearm_vol' 'L_thigh_Zrotation4' ' 0.54105' '   0.013762' 

736 'L_forearm_sur' 'L_thigh_Zrotation4' '  0.6946' ' 0.00067759' 

737 'body_vol' 'L_thigh_Zrotation4' ' 0.44425' '   0.049717' 

738 'body_sur' 'L_thigh_Zrotation4' ' 0.54975' '   0.012037' 

739 'lower_vol' 'L_thigh_Zrotation4' ' 0.51999' '   0.018767' 

740 'lower_sur' 'L_thigh_Zrotation4' ' 0.52076' '   0.018561' 

741 'left_vol' 'L_thigh_Zrotation4' ' 0.44858' '   0.047279' 
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742 'noArms_sur' 'L_thigh_Zrotation4' ' 0.47611' '    0.03383' 

743 'torso_vol' 'L_knee_Xrotation4' '-0.50599' '    0.02283' 

744 'torso_sur' 'L_knee_Xrotation4' '-0.44701' '    0.04815' 

745 'L_arm_vol' 'L_knee_Xrotation4' '-0.49674' '   0.025877' 

746 'L_shoulder_vol' 'L_knee_Xrotation4' '-0.45865' '   0.041951' 

747 'body_vol' 'L_knee_Xrotation4' '-0.47719' '   0.033373' 

748 'upper_vol' 'L_knee_Xrotation4' '-0.53565' '   0.014928' 

749 'upper_sur' 'L_knee_Xrotation4' '-0.56485' '  0.0094606' 

750 'left_vol' 'L_knee_Xrotation4' '-0.50591' '   0.022856' 

751 'left_sur' 'L_knee_Xrotation4' '-0.44768' '   0.047774' 

752 'right_vol' 'L_knee_Xrotation4' '-0.57969' '  0.0073853' 

753 'right_sur' 'L_knee_Xrotation4' '-0.50586' '   0.022871' 

754 'hip_vol' 'L_knee_Xrotation4' '-0.46362' '   0.039504' 

755 'hip_sur' 'L_knee_Xrotation4' '-0.47244' '   0.035425' 

756 'chest_vol' 'L_knee_Xrotation4' '-0.49354' '   0.027003' 

757 'noArms_vol' 'L_knee_Xrotation4' '-0.47656' '   0.033642' 

758 'torso_sur' 'L_foot_Yrotation4' ' 0.49676' '   0.025871' 

759 'body_vol' 'L_foot_Yrotation4' ' 0.44607' '   0.048681' 

760 'body_sur' 'L_foot_Yrotation4' ' 0.46927' '   0.036854' 

761 'hip_vol' 'L_foot_Yrotation4' ' 0.44941' '   0.046817' 

762 'hip_sur' 'L_foot_Yrotation4' ' 0.47798' '    0.03304' 

763 'noArms_vol' 'L_foot_Yrotation4' ' 0.45206' '   0.045384' 

764 'noArms_sur' 'L_foot_Yrotation4' ' 0.44794' '   0.047631' 

765 'L_shin_vol' 'L_foot_Zrotation4' '-0.51547' '    0.02001' 

766 'L_shin_sur' 'L_foot_Zrotation4' '-0.49654' '   0.025946' 

767 'R_forearm_vol' 'L_foot_Zrotation4' '-0.55374' '   0.011307' 

768 'R_forearm_sur' 'L_foot_Zrotation4' '-0.49291' '   0.027229' 

769 'L_leg_sur' 'R_thigh_Zrotation4' ' 0.44694' '   0.048192' 

770 'R_leg_vol' 'R_thigh_Zrotation4' ' 0.50446' '   0.023315' 

771 'L_thigh_sur' 'R_thigh_Zrotation4' ' 0.50249' '   0.023947' 

772 'R_thigh_vol' 'R_thigh_Zrotation4' ' 0.50794' '   0.022227' 

773 'R_shin_vol' 'R_thigh_Zrotation4' ' 0.50913' '   0.021864' 

774 'torso_vol' 'R_thigh_Zrotation4' ' 0.58522' '   0.006715' 

775 'torso_sur' 'R_thigh_Zrotation4' ' 0.55331' '   0.011384' 
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776 'L_arm_vol' 'R_thigh_Zrotation4' ' 0.65765' '  0.0016246' 

777 'L_arm_sur' 'R_thigh_Zrotation4' ' 0.62634' '  0.0031296' 

778 'R_arm_sur' 'R_thigh_Zrotation4' ' 0.50436' '   0.023346' 

779 'L_shoulder_vol' 'R_thigh_Zrotation4' ' 0.55035' '   0.011924' 

780 'L_shoulder_sur' 'R_thigh_Zrotation4' ' 0.52969' '   0.016305' 

781 'L_forearm_vol' 'R_thigh_Zrotation4' '  0.6182' '  0.0036703' 

782 'L_forearm_sur' 'R_thigh_Zrotation4' ' 0.68081' ' 0.00095264' 

783 'R_forearm_vol' 'R_thigh_Zrotation4' ' 0.50135' '   0.024323' 

784 'body_vol' 'R_thigh_Zrotation4' ' 0.63293' '  0.0027421' 

785 'body_sur' 'R_thigh_Zrotation4' ' 0.62486' '  0.0032228' 

786 'upper_vol' 'R_thigh_Zrotation4' ' 0.61064' '  0.0042398' 

787 'upper_sur' 'R_thigh_Zrotation4' ' 0.60421' '  0.0047797' 

788 'lower_vol' 'R_thigh_Zrotation4' ' 0.45536' '    0.04364' 

789 'left_vol' 'R_thigh_Zrotation4' ' 0.59732' '  0.0054194' 

790 'left_sur' 'R_thigh_Zrotation4' '   0.508' '   0.022208' 

791 'right_vol' 'R_thigh_Zrotation4' ' 0.59694' '  0.0054574' 

792 'right_sur' 'R_thigh_Zrotation4' ' 0.46905' '   0.036954' 

793 'hip_vol' 'R_thigh_Zrotation4' '  0.6468' '  0.0020559' 

794 'hip_sur' 'R_thigh_Zrotation4' ' 0.59095' '  0.0060735' 

795 'chest_vol' 'R_thigh_Zrotation4' '  0.5433' '   0.013296' 

796 'noArms_vol' 'R_thigh_Zrotation4' ' 0.60977' '  0.0043094' 

797 'noArms_sur' 'R_thigh_Zrotation4' ' 0.57603' '  0.0078596' 

798 'L_leg_vol' 'R_foot_Xrotation4' '-0.49612' '   0.026094' 

799 'lower_vol' 'R_foot_Xrotation4' '-0.46885' '   0.037042' 

800 'L_thigh_vol' 'R_toe_Xrotation4' ' 0.51786' '   0.019344' 

801 'L_shoulder_vol' 'Spine_0_Xrotation4' ' 0.45379' '   0.044461' 

802 'L_arm_vol' 'Spine_0_Zrotation4' '-0.54266' '   0.013427' 

803 'L_arm_sur' 'Spine_0_Zrotation4' '-0.67638' '  0.0010588' 

804 'R_arm_vol' 'Spine_0_Zrotation4' '-0.46346' '   0.039581' 

805 'R_arm_sur' 'Spine_0_Zrotation4' '-0.54825' '    0.01232' 

806 'L_shoulder_sur' 'Spine_0_Zrotation4' '-0.59343' '  0.0058118' 

807 'L_forearm_vol' 'Spine_0_Zrotation4' '-0.54371' '   0.013214' 

808 'L_forearm_sur' 'Spine_0_Zrotation4' '-0.70183' ' 0.00056266' 

809 'R_forearm_vol' 'Spine_0_Zrotation4' '-0.59068' '  0.0061019' 
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810 'R_forearm_sur' 'Spine_0_Zrotation4' '-0.54929' '   0.012123' 

811 'body_sur' 'Spine_0_Zrotation4' '-0.52121' '   0.018442' 

812 'left_vol' 'Spine_0_Zrotation4' '-0.47434' '   0.034593' 

813 'left_sur' 'Spine_0_Zrotation4' '  -0.538' '   0.014411' 

814 'right_sur' 'Spine_0_Zrotation4' '-0.46027' '   0.041142' 

815 'hip_sur' 'Spine_0_Zrotation4' '-0.48008' '   0.032171' 

816 'L_arm_vol' 'Spine_1_Xrotation4' ' 0.64773' '  0.0020155' 

817 'L_arm_sur' 'Spine_1_Xrotation4' ' 0.46465' '    0.03901' 

818 'L_shoulder_vol' 'Spine_1_Xrotation4' ' 0.48231' '   0.031266' 

819 'L_forearm_vol' 'Spine_1_Xrotation4' ' 0.45591' '   0.043351' 

820 'L_forearm_sur' 'Spine_1_Xrotation4' ' 0.45996' '   0.041297' 

821 'upper_sur' 'Spine_1_Xrotation4' ' 0.44682' '   0.048257' 

822 'chest_vol' 'Spine_1_Xrotation4' ' 0.44388' '   0.049934' 

823 'L_arm_sur' 'Spine_1_Yrotation4' ' -0.6158' '  0.0038442' 

824 'L_shoulder_sur' 'Spine_1_Yrotation4' '-0.58919' '  0.0062642' 

825 'L_forearm_vol' 'Spine_1_Yrotation4' '-0.47798' '   0.033041' 

826 'L_forearm_sur' 'Spine_1_Yrotation4' '-0.56015' '   0.010209' 

827 'L_arm_vol' 'neck_Xrotation4' ' 0.56429' '  0.0095483' 

828 'L_arm_sur' 'neck_Xrotation4' ' 0.69614' ' 0.00065162' 

829 'R_arm_sur' 'neck_Xrotation4' '  0.4732' '   0.035092' 

830 'L_shoulder_sur' 'neck_Xrotation4' '  0.6696' '  0.0012405' 

831 'L_forearm_vol' 'neck_Xrotation4' ' 0.50557' '   0.022962' 

832 'L_forearm_sur' 'neck_Xrotation4' ' 0.62989' '  0.0029155' 

833 'R_forearm_vol' 'neck_Xrotation4' ' 0.45015' '   0.046415' 

834 'body_sur' 'neck_Xrotation4' ' 0.49938' '   0.024976' 

835 'L_arm_vol' 'neck_Yrotation4' ' 0.46707' '   0.037869' 

836 'L_arm_sur' 'neck_Yrotation4' ' 0.61396' '  0.0039811' 

837 'L_shoulder_sur' 'neck_Yrotation4' ' 0.58333' '  0.0069384' 

838 'L_forearm_vol' 'neck_Yrotation4' ' 0.44525' '   0.049147' 

839 'L_forearm_sur' 'neck_Yrotation4' '  0.5746' '  0.0080503' 

840 'L_arm_sur' 'neck_Zrotation4' '  0.4655' '   0.038604' 

841 'L_forearm_sur' 'neck_Zrotation4' ' 0.58724' '   0.006482' 

842 'R_forearm_vol' 'neck_Zrotation4' ' 0.44564' '   0.048923' 

843 'left_sur' 'neck_Zrotation4' ' 0.46107' '   0.040746' 
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844 'L_arm_sur' 'head_Xrotation4' '-0.53703' '   0.014623' 

845 'R_arm_sur' 'head_Xrotation4' '-0.46461' '   0.039028' 

846 'L_shoulder_sur' 'head_Xrotation4' '-0.48037' '   0.032052' 

847 'L_forearm_vol' 'head_Xrotation4' '-0.46226' '   0.040162' 

848 'L_forearm_sur' 'head_Xrotation4' '-0.56295' '  0.0097574' 

849 'R_forearm_vol' 'head_Xrotation4' '-0.46602' '   0.038357' 

850 'R_forearm_sur' 'head_Xrotation4' '-0.46998' '   0.036529' 

851 'L_arm_vol' 'head_Yrotation4' '  0.5941' '  0.0057423' 

852 'L_arm_sur' 'head_Yrotation4' ' 0.68819' ' 0.00079563' 

853 'R_arm_sur' 'head_Yrotation4' ' 0.48622' '   0.029724' 

854 'L_shoulder_sur' 'head_Yrotation4' ' 0.66815' '  0.0012825' 

855 'L_forearm_vol' 'head_Yrotation4' ' 0.48679' '   0.029506' 

856 'L_forearm_sur' 'head_Yrotation4' ' 0.61088' '  0.0042202' 

857 'R_forearm_vol' 'head_Yrotation4' ' 0.46808' '   0.037398' 

858 'R_forearm_sur' 'head_Yrotation4' ' 0.45326' '   0.044743' 

859 'body_sur' 'head_Yrotation4' ' 0.49394' '   0.026861' 

860 'L_arm_vol' 'head_Zrotation4' ' 0.57027' '   0.008654' 

861 'L_arm_sur' 'head_Zrotation4' '  0.6992' ' 0.00060245' 

862 'R_arm_sur' 'head_Zrotation4' ' 0.47341' '   0.035002' 

863 'L_shoulder_sur' 'head_Zrotation4' ' 0.67215' '  0.0011691' 

864 'L_forearm_vol' 'head_Zrotation4' ' 0.50966' '   0.021705' 

865 'L_forearm_sur' 'head_Zrotation4' ' 0.63251' '  0.0027655' 

866 'R_forearm_vol' 'head_Zrotation4' ' 0.44417' '   0.049765' 

867 'body_sur' 'head_Zrotation4' ' 0.49348' '   0.027024' 

868 'R_shoulder_vol' 'L_shoulder_Xrotation4' '-0.44578' '   0.048847' 

869 'R_shoulder_sur' 'L_shoulder_Xrotation4' ' -0.4531' '   0.044828' 

870 'R_leg_sur' 'L_elbow_Xrotation4' ' -0.4929' '   0.027235' 

871 'R_thigh_vol' 'L_elbow_Xrotation4' '-0.45497' '   0.043841' 

872 'R_thigh_sur' 'L_elbow_Xrotation4' '-0.50091' '   0.024469' 

873 'torso_vol' 'L_elbow_Xrotation4' '-0.47541' '    0.03413' 

874 'torso_sur' 'L_elbow_Xrotation4' '-0.50342' '   0.023648' 

875 'L_forearm_vol' 'L_elbow_Xrotation4' '-0.64244' '  0.0022541' 

876 'L_forearm_sur' 'L_elbow_Xrotation4' '  -0.506' '   0.022828' 

877 'body_vol' 'L_elbow_Xrotation4' '-0.50199' '   0.024111' 
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878 'body_sur' 'L_elbow_Xrotation4' '-0.52198' '    0.01824' 

879 'upper_vol' 'L_elbow_Xrotation4' '-0.47655' '   0.033643' 

880 'left_vol' 'L_elbow_Xrotation4' ' -0.5335' '   0.015413' 

881 'left_sur' 'L_elbow_Xrotation4' '-0.59844' '  0.0053111' 

882 'right_vol' 'L_elbow_Xrotation4' '-0.60166' '  0.0050086' 

883 'right_sur' 'L_elbow_Xrotation4' '-0.61824' '  0.0036679' 

884 'hip_vol' 'L_elbow_Xrotation4' '-0.48278' '   0.031076' 

885 'hip_sur' 'L_elbow_Xrotation4' '-0.52516' '   0.017422' 

886 'noArms_vol' 'L_elbow_Xrotation4' '-0.49228' '   0.027456' 

887 'noArms_sur' 'L_elbow_Xrotation4' '-0.51604' '   0.019849' 

888 'L_shoulder_sur' 'L_elbow_Yrotation4' '-0.48266' '   0.031124' 

889 'torso_vol' 'R_shoulder_Xrotation4' '-0.50823' '   0.022137' 

890 'torso_sur' 'R_shoulder_Xrotation4' '-0.53807' '   0.014396' 

891 'body_vol' 'R_shoulder_Xrotation4' '-0.50392' '   0.023486' 

892 'body_sur' 'R_shoulder_Xrotation4' '-0.47579' '    0.03397' 

893 'upper_vol' 'R_shoulder_Xrotation4' '-0.48339' '   0.030834' 

894 'left_vol' 'R_shoulder_Xrotation4' '-0.50037' '   0.024646' 

895 'right_vol' 'R_shoulder_Xrotation4' '-0.46716' '   0.037826' 

896 'hip_vol' 'R_shoulder_Xrotation4' '-0.53953' '   0.014082' 

897 'hip_sur' 'R_shoulder_Xrotation4' '-0.52242' '   0.018124' 

898 'noArms_vol' 'R_shoulder_Xrotation4' ' -0.5365' '   0.014738' 

899 'noArms_sur' 'R_shoulder_Xrotation4' '-0.54253' '   0.013454' 

900 'R_shin_sur' 'R_shoulder_Yrotation4' '-0.47516' '   0.034238' 

901 'L_leg_vol' 'R_elbow_Xrotation4' ' 0.57636' '  0.0078148' 

902 'L_leg_sur' 'R_elbow_Xrotation4' ' 0.52313' '   0.017939' 

903 'R_leg_vol' 'R_elbow_Xrotation4' ' 0.45335' '   0.044695' 

904 'L_thigh_vol' 'R_elbow_Xrotation4' ' 0.52127' '   0.018427' 

905 'L_thigh_sur' 'R_elbow_Xrotation4' ' 0.50405' '   0.023445' 

906 'L_shin_sur' 'R_elbow_Xrotation4' ' 0.49824' '   0.025363' 

907 'R_shin_vol' 'R_elbow_Xrotation4' ' 0.49351' '   0.027015' 

908 'R_arm_vol' 'R_elbow_Xrotation4' ' 0.51609' '   0.019837' 

909 'R_arm_sur' 'R_elbow_Xrotation4' ' 0.48702' '   0.029419' 

910 'R_shoulder_vol' 'R_elbow_Xrotation4' '  0.4957' '   0.026239' 

911 'R_shoulder_sur' 'R_elbow_Xrotation4' ' 0.48653' '   0.029606' 
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912 'lower_vol' 'R_elbow_Xrotation4' ' 0.57057' '  0.0086105' 

913 'lower_sur' 'R_elbow_Xrotation4' ' 0.49246' '   0.027392' 

914 'L_thigh_sur' 'R_elbow_Zrotation4' ' 0.45941' '    0.04157' 

915 'L_forearm_vol' 'R_forearm_Zrotation4' ' 0.44968' '   0.046671' 

916 'torso_vol' 'R_hand_Xrotation4' '-0.44628' '   0.048565' 

917 'torso_sur' 'R_hand_Xrotation4' '-0.49576' '   0.026218' 

918 'L_arm_vol' 'R_hand_Xrotation4' '-0.55731' '   0.010684' 

919 'L_arm_sur' 'R_hand_Xrotation4' '-0.73723' ' 0.00020833' 

920 'R_arm_sur' 'R_hand_Xrotation4' '-0.47235' '   0.035466' 

921 'L_shoulder_vol' 'R_hand_Xrotation4' '-0.45933' '   0.041612' 

922 'L_shoulder_sur' 'R_hand_Xrotation4' '-0.72705' ' 0.00028147' 

923 'L_forearm_vol' 'R_hand_Xrotation4' '-0.50273' '    0.02387' 

924 'L_forearm_sur' 'R_hand_Xrotation4' '  -0.653' '  0.0017993' 

925 'body_vol' 'R_hand_Xrotation4' '-0.48726' '   0.029328' 

926 'body_sur' 'R_hand_Xrotation4' '-0.59413' '  0.0057395' 

927 'upper_vol' 'R_hand_Xrotation4' '-0.46347' '   0.039575' 

928 'upper_sur' 'R_hand_Xrotation4' '-0.47903' '   0.032604' 

929 'left_vol' 'R_hand_Xrotation4' '-0.50272' '   0.023872' 

930 'left_sur' 'R_hand_Xrotation4' '-0.50969' '   0.021695' 

931 'hip_sur' 'R_hand_Xrotation4' '-0.47645' '   0.033687' 

932 'chest_vol' 'R_hand_Xrotation4' '-0.47324' '   0.035075' 

933 'noArms_vol' 'R_hand_Xrotation4' ' -0.4612' '   0.040679' 

934 'noArms_sur' 'R_hand_Xrotation4' '-0.53437' '   0.015215' 

935 'torso_vol' 'R_hand_Yrotation4' '  0.6701' '  0.0012263' 

936 'torso_sur' 'R_hand_Yrotation4' ' 0.55991' '   0.010249' 

937 'L_arm_vol' 'R_hand_Yrotation4' '  0.5765' '  0.0077971' 

938 'L_shoulder_vol' 'R_hand_Yrotation4' ' 0.65014' '  0.0019141' 

939 'body_vol' 'R_hand_Yrotation4' ' 0.64503' '  0.0021345' 

940 'body_sur' 'R_hand_Yrotation4' ' 0.52268' '   0.018057' 

941 'upper_vol' 'R_hand_Yrotation4' ' 0.65787' '   0.001617' 

942 'upper_sur' 'R_hand_Yrotation4' ' 0.47478' '   0.034402' 

943 'left_vol' 'R_hand_Yrotation4' ' 0.59668' '   0.005483' 

944 'left_sur' 'R_hand_Yrotation4' ' 0.46124' '   0.040662' 

945 'right_vol' 'R_hand_Yrotation4' ' 0.65442' '  0.0017442' 
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946 'hip_vol' 'R_hand_Yrotation4' ' 0.68417' ' 0.00087805' 

947 'hip_sur' 'R_hand_Yrotation4' ' 0.56326' '  0.0097092' 

948 'chest_vol' 'R_hand_Yrotation4' ' 0.65327' '  0.0017886' 

949 'noArms_vol' 'R_hand_Yrotation4' ' 0.64366' '  0.0021968' 

950 'noArms_sur' 'R_hand_Yrotation4' '  0.5257' '   0.017285' 

951 'L_shin_vol' 'R_hand_Zrotation4' '-0.49858' '   0.025249' 

952 'L_shin_sur' 'R_hand_Zrotation4' ' -0.4616' '   0.040485' 

953 'torso_sur' 'Root_Xposition5' ' 0.47494' '   0.034333' 

954 'upper_sur' 'Root_Xposition5' ' 0.49971' '   0.024866' 

955 'L_arm_sur' 'Root_Yrotation5' '  -0.447' '   0.048156' 

956 'R_arm_sur' 'Root_Yrotation5' '  -0.546' '   0.012757' 

957 'R_shoulder_vol' 'Root_Yrotation5' '-0.46297' '   0.039818' 

958 'R_shoulder_sur' 'Root_Yrotation5' '-0.45592' '    0.04335' 

959 'L_forearm_sur' 'Root_Yrotation5' ' -0.5049' '   0.023175' 

960 'R_forearm_vol' 'Root_Yrotation5' '-0.51093' '   0.021324' 

961 'R_forearm_sur' 'Root_Yrotation5' '-0.47479' '     0.0344' 

962 'chest_sur' 'Root_Zrotation5' '-0.75999' ' 0.00010102' 

963 'L_arm_sur' 'L_thigh_Xrotation5' ' 0.53675' '   0.014684' 

964 'L_shoulder_sur' 'L_thigh_Xrotation5' ' 0.48353' '   0.030777' 

965 'L_forearm_sur' 'L_thigh_Xrotation5' ' 0.52058' '   0.018609' 

966 'L_leg_sur' 'L_thigh_Yrotation5' '-0.44993' '   0.046535' 

967 'L_shin_sur' 'L_thigh_Yrotation5' '-0.45525' '   0.043698' 

968 'L_arm_vol' 'L_thigh_Yrotation5' '-0.60076' '  0.0050921' 

969 'L_arm_sur' 'L_thigh_Yrotation5' '-0.72168' '  0.0003282' 

970 'R_arm_vol' 'L_thigh_Yrotation5' '-0.55864' '   0.010459' 

971 'R_arm_sur' 'L_thigh_Yrotation5' '-0.64222' '  0.0022644' 

972 'L_shoulder_vol' 'L_thigh_Yrotation5' ' -0.4811' '   0.031751' 

973 'L_shoulder_sur' 'L_thigh_Yrotation5' '-0.68707' ' 0.00081788' 

974 'R_shoulder_vol' 'L_thigh_Yrotation5' '-0.56345' '  0.0096797' 

975 'R_shoulder_sur' 'L_thigh_Yrotation5' '-0.61019' '  0.0042755' 

976 'L_forearm_vol' 'L_thigh_Yrotation5' '-0.52904' '   0.016463' 

977 'L_forearm_sur' 'L_thigh_Yrotation5' '-0.70516' ' 0.00051557' 

978 'R_forearm_vol' 'L_thigh_Yrotation5' '-0.57211' '  0.0083936' 

979 'R_forearm_sur' 'L_thigh_Yrotation5' '-0.57969' '  0.0073851' 
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980 'body_sur' 'L_thigh_Yrotation5' '-0.53959' '   0.014068' 

981 'lower_sur' 'L_thigh_Yrotation5' '-0.45275' '   0.045014' 

982 'left_vol' 'L_thigh_Yrotation5' '-0.45329' '   0.044728' 

983 'left_sur' 'L_thigh_Yrotation5' '-0.49219' '   0.027491' 

984 'L_leg_sur' 'L_thigh_Zrotation5' ' 0.46645' '   0.038157' 

985 'R_leg_sur' 'L_thigh_Zrotation5' ' 0.48373' '   0.030699' 

986 'L_shin_sur' 'L_thigh_Zrotation5' ' 0.61806' '  0.0036804' 

987 'R_shin_vol' 'L_thigh_Zrotation5' ' 0.54721' '   0.012521' 

988 'R_shin_sur' 'L_thigh_Zrotation5' ' 0.56603' '    0.00928' 

989 'lower_sur' 'L_thigh_Zrotation5' ' 0.51483' '    0.02019' 

990 'R_arm_vol' 'L_foot_Zrotation5' '-0.48734' '   0.029296' 

991 'R_forearm_vol' 'L_foot_Zrotation5' '-0.60701' '  0.0045378' 

992 'R_forearm_sur' 'L_foot_Zrotation5' '-0.56994' '   0.008702' 

993 'upper_sur' 'R_thigh_Xrotation5' ' -0.5611' '   0.010055' 

994 'torso_vol' 'R_thigh_Zrotation5' '  0.4719' '   0.035668' 

995 'L_arm_vol' 'R_thigh_Zrotation5' ' 0.46775' '   0.037553' 

996 'L_shoulder_vol' 'R_thigh_Zrotation5' ' 0.55134' '   0.011742' 

997 'body_vol' 'R_thigh_Zrotation5' ' 0.45002' '   0.046484' 

998 'upper_vol' 'R_thigh_Zrotation5' ' 0.45836' '   0.042098' 

999 'right_vol' 'R_thigh_Zrotation5' ' 0.47544' '   0.034119' 

1000 'hip_vol' 'R_thigh_Zrotation5' '  0.4493' '   0.046882' 

1001 'chest_vol' 'R_thigh_Zrotation5' ' 0.52061' '   0.018602' 

1002 'chest_sur' 'R_thigh_Zrotation5' '  0.4451' '   0.049234' 

1003 'noArms_vol' 'R_thigh_Zrotation5' ' 0.46496' '   0.038859' 

1004 'L_leg_vol' 'R_knee_Xrotation5' '-0.47855' '   0.032804' 

1005 'L_leg_sur' 'R_knee_Xrotation5' '-0.44907' '   0.047006' 

1006 'chest_sur' 'R_foot_Yrotation5' '-0.60936' '  0.0043433' 

1007 'chest_sur' 'R_toe_Xrotation5' '-0.47754' '   0.033226' 

1008 'chest_sur' 'Spine_0_Xrotation5' ' 0.46924' '   0.036868' 

1009 'L_arm_vol' 'Spine_0_Yrotation5' ' 0.47607' '    0.03385' 

1010 'L_arm_sur' 'Spine_0_Yrotation5' ' 0.44929' '   0.046888' 

1011 'L_shoulder_vol' 'Spine_0_Yrotation5' ' 0.52264' '   0.018067' 

1012 'L_arm_vol' 'Spine_0_Zrotation5' '-0.50435' '   0.023349' 

1013 'L_arm_sur' 'Spine_0_Zrotation5' '-0.64774' '  0.0020149' 
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1014 'R_arm_sur' 'Spine_0_Zrotation5' '-0.51088' '   0.021339' 

1015 'L_shoulder_sur' 'Spine_0_Zrotation5' ' -0.6091' '  0.0043641' 

1016 'L_forearm_vol' 'Spine_0_Zrotation5' ' -0.4568' '   0.042895' 

1017 'L_forearm_sur' 'Spine_0_Zrotation5' '-0.61901' '  0.0036137' 

1018 'R_forearm_vol' 'Spine_0_Zrotation5' '-0.53812' '   0.014383' 

1019 'R_forearm_sur' 'Spine_0_Zrotation5' '-0.51901' '   0.019031' 

1020 'body_sur' 'Spine_0_Zrotation5' '-0.48053' '   0.031986' 

1021 'L_arm_vol' 'Spine_1_Xrotation5' ' 0.53254' '   0.015636' 

1022 'L_shoulder_vol' 'Spine_1_Xrotation5' ' 0.45658' '   0.043009' 

1023 'L_arm_sur' 'Spine_1_Yrotation5' '-0.53218' '   0.015717' 

1024 'L_shoulder_sur' 'Spine_1_Yrotation5' '-0.50246' '   0.023957' 

1025 'L_forearm_sur' 'Spine_1_Yrotation5' '-0.47501' '   0.034304' 

1026 'R_forearm_vol' 'Spine_1_Zrotation5' '-0.57166' '  0.0084571' 

1027 'R_forearm_sur' 'Spine_1_Zrotation5' '-0.44516' '   0.049199' 

1028 'left_sur' 'Spine_1_Zrotation5' '-0.48934' '    0.02854' 

1029 'right_sur' 'Spine_1_Zrotation5' '-0.53323' '   0.015475' 

1030 'L_arm_vol' 'neck_Xrotation5' '  0.5643' '  0.0095462' 

1031 'L_arm_sur' 'neck_Xrotation5' ' 0.69544' ' 0.00066328' 

1032 'R_arm_sur' 'neck_Xrotation5' ' 0.47218' '   0.035544' 

1033 'L_shoulder_sur' 'neck_Xrotation5' ' 0.66991' '  0.0012315' 

1034 'L_forearm_vol' 'neck_Xrotation5' ' 0.50356' '   0.023602' 

1035 'L_forearm_sur' 'neck_Xrotation5' ' 0.62867' '  0.0029882' 

1036 'R_forearm_vol' 'neck_Xrotation5' ' 0.45004' '   0.046474' 

1037 'body_sur' 'neck_Xrotation5' ' 0.50291' '   0.023811' 

1038 'L_arm_vol' 'neck_Yrotation5' ' 0.50582' '   0.022884' 

1039 'L_arm_sur' 'neck_Yrotation5' ' 0.65565' '   0.001698' 

1040 'R_arm_sur' 'neck_Yrotation5' ' 0.46384' '   0.039398' 

1041 'L_shoulder_sur' 'neck_Yrotation5' ' 0.62772' '  0.0030449' 

1042 'L_forearm_vol' 'neck_Yrotation5' ' 0.51481' '   0.020197' 

1043 'L_forearm_sur' 'neck_Yrotation5' ' 0.62707' '   0.003085' 

1044 'body_sur' 'neck_Yrotation5' ' 0.48103' '   0.031782' 

1045 'L_arm_vol' 'neck_Zrotation5' ' 0.58675' '  0.0065387' 

1046 'L_arm_sur' 'neck_Zrotation5' ' 0.72593' ' 0.00029077' 

1047 'R_arm_sur' 'neck_Zrotation5' ' 0.48967' '   0.028418' 
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1048 'L_shoulder_vol' 'neck_Zrotation5' ' 0.44514' '   0.049209' 

1049 'L_shoulder_sur' 'neck_Zrotation5' ' 0.68711' ' 0.00081701' 

1050 'L_forearm_vol' 'neck_Zrotation5' ' 0.54097' '   0.013777' 

1051 'L_forearm_sur' 'neck_Zrotation5' '  0.6608' '  0.0015149' 

1052 'R_forearm_vol' 'neck_Zrotation5' ' 0.44601' '   0.048716' 

1053 'body_sur' 'neck_Zrotation5' ' 0.51841' '   0.019194' 

1054 'upper_sur' 'neck_Zrotation5' ' 0.44715' '   0.048073' 

1055 'left_sur' 'neck_Zrotation5' '  0.4484' '   0.047378' 

1056 'L_leg_sur' 'head_Xrotation5' '-0.49599' '   0.026139' 

1057 'L_thigh_sur' 'head_Xrotation5' '-0.49394' '   0.026861' 

1058 'L_arm_vol' 'head_Xrotation5' '-0.48651' '   0.029615' 

1059 'L_arm_sur' 'head_Xrotation5' '-0.56359' '  0.0096565' 

1060 'L_shoulder_sur' 'head_Xrotation5' ' -0.5693' '  0.0087946' 

1061 'L_forearm_sur' 'head_Xrotation5' '-0.48118' '   0.031721' 

1062 'L_arm_vol' 'head_Yrotation5' ' 0.59186' '  0.0059759' 

1063 'L_arm_sur' 'head_Yrotation5' ' 0.68619' ' 0.00083585' 

1064 'R_arm_sur' 'head_Yrotation5' '  0.5029' '   0.023815' 

1065 'L_shoulder_sur' 'head_Yrotation5' ' 0.67017' '  0.0012243' 

1066 'L_forearm_vol' 'head_Yrotation5' ' 0.46693' '   0.037932' 

1067 'L_forearm_sur' 'head_Yrotation5' ' 0.59409' '   0.005743' 

1068 'R_forearm_vol' 'head_Yrotation5' ' 0.47268' '   0.035321' 

1069 'R_forearm_sur' 'head_Yrotation5' ' 0.46062' '   0.040965' 

1070 'body_sur' 'head_Yrotation5' ' 0.50502' '   0.023135' 

1071 'L_arm_vol' 'head_Zrotation5' ' 0.56866' '   0.008888' 

1072 'L_arm_sur' 'head_Zrotation5' ' 0.70284' ' 0.00054804' 

1073 'R_arm_sur' 'head_Zrotation5' ' 0.47672' '   0.033573' 

1074 'L_shoulder_sur' 'head_Zrotation5' '  0.6761' '  0.0010657' 

1075 'L_forearm_vol' 'head_Zrotation5' '  0.5133' '   0.020629' 

1076 'L_forearm_sur' 'head_Zrotation5' ' 0.63613' '  0.0025688' 

1077 'R_forearm_vol' 'head_Zrotation5' ' 0.44583' '   0.048815' 

1078 'body_sur' 'head_Zrotation5' ' 0.49872' '   0.025199' 

1079 'right_sur' 'L_shoulder_Yrotation5' '-0.45729' '   0.042641' 

1080 'L_leg_sur' 'L_shoulder_Zrotation5' ' -0.4699' '   0.036565' 

1081 'R_forearm_sur' 'L_shoulder_Zrotation5' '-0.51703' '   0.019573' 



232 

 

1082 'chest_sur' 'L_shoulder_Zrotation5' '-0.49757' '   0.025591' 

1083 'R_leg_sur' 'L_elbow_Xrotation5' '-0.49563' '   0.026266' 

1084 'R_thigh_sur' 'L_elbow_Xrotation5' '-0.49714' '   0.025739' 

1085 'R_shin_vol' 'L_elbow_Xrotation5' '-0.46305' '   0.039779' 

1086 'torso_vol' 'L_elbow_Xrotation5' '-0.54405' '   0.013144' 

1087 'torso_sur' 'L_elbow_Xrotation5' '-0.56618' '  0.0092572' 

1088 'L_forearm_vol' 'L_elbow_Xrotation5' '-0.47664' '   0.033607' 

1089 'R_forearm_vol' 'L_elbow_Xrotation5' '-0.44424' '   0.049723' 

1090 'R_forearm_sur' 'L_elbow_Xrotation5' '-0.47951' '   0.032404' 

1091 'body_vol' 'L_elbow_Xrotation5' '-0.56076' '   0.010109' 

1092 'body_sur' 'L_elbow_Xrotation5' '-0.56022' '   0.010198' 

1093 'upper_vol' 'L_elbow_Xrotation5' '-0.53833' '   0.014338' 

1094 'upper_sur' 'L_elbow_Xrotation5' '-0.47498' '   0.034318' 

1095 'left_vol' 'L_elbow_Xrotation5' '-0.59901' '  0.0052569' 

1096 'left_sur' 'L_elbow_Xrotation5' '-0.61551' '  0.0038652' 

1097 'right_vol' 'L_elbow_Xrotation5' '-0.64065' '  0.0023398' 

1098 'right_sur' 'L_elbow_Xrotation5' '-0.64883' '  0.0019684' 

1099 'hip_vol' 'L_elbow_Xrotation5' ' -0.5763' '  0.0078229' 

1100 'hip_sur' 'L_elbow_Xrotation5' '-0.62172' '   0.003428' 

1101 'noArms_vol' 'L_elbow_Xrotation5' '-0.56146' '  0.0099961' 

1102 'noArms_sur' 'L_elbow_Xrotation5' '-0.57308' '  0.0082583' 

1103 'L_shoulder_sur' 'L_elbow_Yrotation5' '-0.50414' '   0.023415' 

1104 'L_forearm_sur' 'L_forearm_Yrotation5' ' 0.46188' '   0.040347' 

1105 'R_forearm_vol' 'L_forearm_Yrotation5' '   0.472' '   0.035621' 

1106 'hip_vol' 'L_forearm_Yrotation5' ' 0.49227' '   0.027461' 

1107 'hip_sur' 'L_forearm_Yrotation5' ' 0.52623' '   0.017153' 

1108 'R_shoulder_sur' 'L_hand_Xrotation5' '-0.45255' '   0.045118' 

1109 'L_forearm_sur' 'L_hand_Xrotation5' '-0.49471' '   0.026589' 

1110 'L_arm_sur' 'L_hand_Yrotation5' '-0.55734' '   0.010679' 

1111 'L_shoulder_sur' 'L_hand_Yrotation5' ' -0.4943' '   0.026733' 

1112 'L_forearm_vol' 'L_hand_Yrotation5' '-0.50471' '   0.023236' 

1113 'L_forearm_sur' 'L_hand_Yrotation5' ' -0.5854' '   0.006694' 

1114 'left_sur' 'L_hand_Yrotation5' '-0.46872' '   0.037102' 

1115 'L_arm_vol' 'L_hand_Zrotation5' ' 0.55277' '   0.011481' 
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1116 'L_shoulder_vol' 'L_hand_Zrotation5' ' 0.48592' '   0.029839' 

1117 'torso_vol' 'R_shoulder_Xrotation5' '-0.50913' '   0.021865' 

1118 'torso_sur' 'R_shoulder_Xrotation5' ' -0.5391' '   0.014173' 

1119 'body_vol' 'R_shoulder_Xrotation5' '-0.50457' '   0.023277' 

1120 'body_sur' 'R_shoulder_Xrotation5' '  -0.476' '   0.033877' 

1121 'upper_vol' 'R_shoulder_Xrotation5' '-0.48439' '   0.030436' 

1122 'left_vol' 'R_shoulder_Xrotation5' '-0.50081' '     0.0245' 

1123 'right_vol' 'R_shoulder_Xrotation5' '-0.46795' '    0.03746' 

1124 'hip_vol' 'R_shoulder_Xrotation5' '-0.54122' '   0.013725' 

1125 'hip_sur' 'R_shoulder_Xrotation5' '-0.52457' '   0.017571' 

1126 'noArms_vol' 'R_shoulder_Xrotation5' '-0.53704' '    0.01462' 

1127 'noArms_sur' 'R_shoulder_Xrotation5' '-0.54252' '   0.013456' 

1128 'L_leg_vol' 'R_elbow_Xrotation5' ' 0.65106' '  0.0018763' 

1129 'L_leg_sur' 'R_elbow_Xrotation5' '  0.6256' '  0.0031762' 

1130 'R_leg_vol' 'R_elbow_Xrotation5' ' 0.54773' '    0.01242' 

1131 'R_leg_sur' 'R_elbow_Xrotation5' ' 0.53814' '   0.014381' 

1132 'L_thigh_vol' 'R_elbow_Xrotation5' ' 0.59754' '  0.0053989' 

1133 'L_thigh_sur' 'R_elbow_Xrotation5' ' 0.62099' '  0.0034772' 

1134 'R_thigh_vol' 'R_elbow_Xrotation5' ' 0.51277' '   0.020784' 

1135 'R_thigh_sur' 'R_elbow_Xrotation5' ' 0.53446' '   0.015196' 

1136 'L_shin_sur' 'R_elbow_Xrotation5' ' 0.53483' '   0.015111' 

1137 'R_shin_vol' 'R_elbow_Xrotation5' ' 0.53344' '   0.015426' 

1138 'R_shin_sur' 'R_elbow_Xrotation5' '   0.459' '   0.041775' 

1139 'R_arm_vol' 'R_elbow_Xrotation5' '  0.4922' '   0.027488' 

1140 'R_arm_sur' 'R_elbow_Xrotation5' ' 0.44629' '   0.048558' 

1141 'R_shoulder_vol' 'R_elbow_Xrotation5' ' 0.54492' '    0.01297' 

1142 'R_shoulder_sur' 'R_elbow_Xrotation5' ' 0.50888' '   0.021938' 

1143 'lower_vol' 'R_elbow_Xrotation5' ' 0.67193' '  0.0011752' 

1144 'lower_sur' 'R_elbow_Xrotation5' ' 0.62644' '  0.0031238' 

1145 'L_forearm_vol' 'R_elbow_Yrotation5' ' 0.54082' '   0.013808' 

1146 'L_leg_vol' 'R_elbow_Zrotation5' ' 0.53423' '   0.015248' 

1147 'L_leg_sur' 'R_elbow_Zrotation5' ' 0.51221' '   0.020946' 

1148 'R_leg_vol' 'R_elbow_Zrotation5' ' 0.47791' '    0.03307' 

1149 'L_thigh_vol' 'R_elbow_Zrotation5' ' 0.46607' '   0.038335' 
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1150 'L_thigh_sur' 'R_elbow_Zrotation5' ' 0.57086' '  0.0085692' 

1151 'R_thigh_sur' 'R_elbow_Zrotation5' ' 0.45711' '   0.042733' 

1152 'R_shin_vol' 'R_elbow_Zrotation5' ' 0.46205' '   0.040262' 

1153 'lower_vol' 'R_elbow_Zrotation5' ' 0.55287' '   0.011462' 

1154 'lower_sur' 'R_elbow_Zrotation5' ' 0.51882' '   0.019081' 

1155 'R_leg_vol' 'R_forearm_Xrotation5' ' 0.54233' '   0.013495' 

1156 'R_leg_sur' 'R_forearm_Xrotation5' ' 0.55297' '   0.011445' 

1157 'R_thigh_vol' 'R_forearm_Xrotation5' ' 0.54762' '   0.012441' 

1158 'R_thigh_sur' 'R_forearm_Xrotation5' ' 0.60931' '  0.0043471' 

1159 'R_shin_vol' 'R_forearm_Xrotation5' ' 0.56637' '  0.0092288' 

1160 'R_shin_sur' 'R_forearm_Xrotation5' ' 0.51151' '   0.021153' 

1161 'torso_vol' 'R_forearm_Xrotation5' '  0.4888' '   0.028742' 

1162 'torso_sur' 'R_forearm_Xrotation5' '  0.6058' '  0.0046414' 

1163 'L_arm_vol' 'R_forearm_Xrotation5' ' 0.45906' '   0.041746' 

1164 'body_vol' 'R_forearm_Xrotation5' ' 0.50526' '    0.02306' 

1165 'body_sur' 'R_forearm_Xrotation5' ' 0.57366' '  0.0081789' 

1166 'upper_vol' 'R_forearm_Xrotation5' ' 0.47924' '   0.032518' 

1167 'upper_sur' 'R_forearm_Xrotation5' ' 0.48546' '    0.03002' 

1168 'lower_sur' 'R_forearm_Xrotation5' ' 0.44729' '   0.047996' 

1169 'left_sur' 'R_forearm_Xrotation5' '   0.456' '   0.043308' 

1170 'right_vol' 'R_forearm_Xrotation5' ' 0.53718' '    0.01459' 

1171 'right_sur' 'R_forearm_Xrotation5' '  0.4843' '   0.030474' 

1172 'hip_vol' 'R_forearm_Xrotation5' ' 0.46647' '   0.038148' 

1173 'hip_sur' 'R_forearm_Xrotation5' ' 0.49899' '    0.02511' 

1174 'chest_vol' 'R_forearm_Xrotation5' ' 0.53927' '   0.014137' 

1175 'noArms_vol' 'R_forearm_Xrotation5' '  0.5128' '   0.020776' 

1176 'noArms_sur' 'R_forearm_Xrotation5' ' 0.58265' '  0.0070197' 

1177 'L_shin_vol' 'R_forearm_Yrotation5' '-0.48634' '   0.029678' 

1178 'L_arm_sur' 'R_hand_Xrotation5' '-0.56712' '  0.0091165' 

1179 'L_shoulder_sur' 'R_hand_Xrotation5' '-0.53464' '   0.015155' 

1180 'L_forearm_sur' 'R_hand_Xrotation5' '-0.49188' '   0.027605' 

1181 'L_thigh_sur' 'R_hand_Yrotation5' ' 0.47094' '   0.036097' 

1182 'L_shin_vol' 'R_hand_Yrotation5' ' 0.53161' '   0.015851' 

1183 'torso_vol' 'R_hand_Yrotation5' '  0.6014' '  0.0050324' 
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1184 'torso_sur' 'R_hand_Yrotation5' ' 0.51417' '    0.02038' 

1185 'L_arm_vol' 'R_hand_Yrotation5' ' 0.63564' '  0.0025948' 

1186 'L_shoulder_vol' 'R_hand_Yrotation5' ' 0.64907' '  0.0019583' 

1187 'body_vol' 'R_hand_Yrotation5' ' 0.59765' '  0.0053876' 

1188 'body_sur' 'R_hand_Yrotation5' ' 0.51438' '    0.02032' 

1189 'upper_vol' 'R_hand_Yrotation5' ' 0.58483' '  0.0067601' 

1190 'left_vol' 'R_hand_Yrotation5' ' 0.54793' '   0.012382' 

1191 'right_vol' 'R_hand_Yrotation5' ' 0.59987' '  0.0051756' 

1192 'hip_vol' 'R_hand_Yrotation5' ' 0.58814' '  0.0063813' 

1193 'hip_sur' 'R_hand_Yrotation5' ' 0.46352' '   0.039552' 

1194 'chest_vol' 'R_hand_Yrotation5' ' 0.61728' '  0.0037363' 

1195 'noArms_vol' 'R_hand_Yrotation5' ' 0.59337' '  0.0058175' 

1196 'noArms_sur' 'R_hand_Yrotation5' ' 0.51214' '   0.020968' 
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Appendix 5.2 
Table 55: A list of all significantly correlated 3D lower limb static and lower limb dynamic features. 

 Dynamic feature Static feature Correlation 
coefficient 

P-value 

 'R_thigh_Zrotation2' 'L_leg_vol' '  0.4949' '   0.02652' 

 'R_foot_Xrotation3' 'L_leg_vol' '-0.47799' '  0.033036' 

 'R_toe_Xrotation3' 'L_leg_vol' ' 0.46217' '  0.040205' 

 'R_foot_Xrotation4' 'L_leg_vol' '-0.49612' '  0.026094' 

 'R_knee_Xrotation5' 'L_leg_vol' '-0.47855' '  0.032804' 

 'L_thigh_Zrotation1' 'L_leg_sur' ' 0.53255' '  0.015632' 

 'L_thigh_Zrotation2' 'L_leg_sur' '  0.5028' '  0.023849' 

 'L_foot_Yrotation2' 'L_leg_sur' '-0.55444' '  0.011183' 

 'L_thigh_Zrotation3' 'L_leg_sur' ' 0.50967' '    0.0217' 

 'L_thigh_Zrotation4' 'L_leg_sur' ' 0.46103' '  0.040764' 

 'R_thigh_Zrotation4' 'L_leg_sur' ' 0.44694' '  0.048192' 

 'L_thigh_Yrotation5' 'L_leg_sur' '-0.44993' '  0.046535' 

 'L_thigh_Zrotation5' 'L_leg_sur' ' 0.46645' '  0.038157' 

 'R_knee_Xrotation5' 'L_leg_sur' '-0.44907' '  0.047006' 

 'Root_Zposition1' 'R_leg_vol' ' 0.46975' '  0.036634' 

 'L_thigh_Zrotation1' 'R_leg_vol' ' 0.62524' ' 0.0031988' 

 'L_thigh_Zrotation2' 'R_leg_vol' ' 0.54059' '  0.013856' 

 'L_knee_Xrotation2' 'R_leg_vol' '-0.47385' '  0.034807' 

 'L_foot_Yrotation2' 'R_leg_vol' ' -0.4482' '  0.047485' 

 'R_thigh_Zrotation2' 'R_leg_vol' ' 0.46699' '  0.037902' 

 'L_thigh_Zrotation3' 'R_leg_vol' ' 0.44522' '  0.049164' 

 'R_toe_Xrotation3' 'R_leg_vol' ' 0.46583' '  0.038448' 

 'L_thigh_Zrotation4' 'R_leg_vol' ' 0.55601' '  0.010907' 

 'R_thigh_Zrotation4' 'R_leg_vol' ' 0.50446' '  0.023315' 

 'L_thigh_Zrotation1' 'R_leg_sur' ' 0.47872' '  0.032733' 

 'L_thigh_Zrotation2' 'R_leg_sur' '  0.4466' '  0.048383' 

 'L_foot_Yrotation2' 'R_leg_sur' '-0.52939' '  0.016378' 

 'R_thigh_Yrotation3' 'R_leg_sur' ' 0.44819' '  0.047494' 

 'L_thigh_Zrotation4' 'R_leg_sur' ' 0.52335' '  0.017882' 
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 'L_thigh_Zrotation5' 'R_leg_sur' ' 0.48373' '  0.030699' 

 'Root_Zposition1' 'L_thigh_vol' '  0.7219' '0.00032615' 

 'L_thigh_Zrotation1' 'L_thigh_vol' ' 0.64315' ' 0.0022207' 

 'R_foot_Zrotation1' 'L_thigh_vol' '-0.45046' '  0.046244' 

 'R_toe_Xrotation1' 'L_thigh_vol' '-0.57457' '  0.008054' 

 'Root_Zposition2' 'L_thigh_vol' ' 0.48708' '  0.029393' 

 'L_thigh_Zrotation2' 'L_thigh_vol' ' 0.54202' '  0.013559' 

 'L_foot_Yrotation2' 'L_thigh_vol' '-0.57112' ' 0.0085321' 

 'R_toe_Xrotation3' 'L_thigh_vol' ' 0.54438' '  0.013078' 

 'Root_Zposition4' 'L_thigh_vol' ' 0.51963' '  0.018863' 

 'L_thigh_Zrotation4' 'L_thigh_vol' ' 0.47998' '  0.032209' 

 'R_toe_Xrotation4' 'L_thigh_vol' ' 0.51786' '  0.019344' 

 'L_thigh_Zrotation1' 'L_thigh_sur' ' 0.54915' '  0.012149' 

 'L_thigh_Zrotation2' 'L_thigh_sur' '  0.5004' '  0.024637' 

 'L_foot_Yrotation2' 'L_thigh_sur' '-0.59803' ' 0.0053508' 

 'L_thigh_Zrotation4' 'L_thigh_sur' ' 0.54583' '   0.01279' 

 'R_thigh_Zrotation4' 'L_thigh_sur' ' 0.50249' '  0.023947' 

 'Root_Zposition1' 'R_thigh_vol' ' 0.56926' ' 0.0088004' 

 'L_thigh_Zrotation1' 'R_thigh_vol' '  0.6004' ' 0.0051255' 

 'L_thigh_Zrotation2' 'R_thigh_vol' ' 0.51927' '  0.018959' 

 'L_knee_Xrotation2' 'R_thigh_vol' '-0.49787' '  0.025489' 

 'L_foot_Yrotation2' 'R_thigh_vol' '-0.48757' '  0.029208' 

 'R_thigh_Zrotation2' 'R_thigh_vol' ' 0.48856' '  0.028833' 

 'R_toe_Xrotation3' 'R_thigh_vol' '  0.4645' '  0.039082' 

 'L_thigh_Zrotation4' 'R_thigh_vol' ' 0.57762' '   0.00765' 

 'R_thigh_Zrotation4' 'R_thigh_vol' ' 0.50794' '  0.022227' 

 'L_thigh_Zrotation1' 'R_thigh_sur' ' 0.48822' '  0.028961' 

 'L_thigh_Zrotation2' 'R_thigh_sur' ' 0.45262' '  0.045084' 

 'L_foot_Yrotation2' 'R_thigh_sur' ' -0.5265' '  0.017086' 

 'L_thigh_Zrotation4' 'R_thigh_sur' ' 0.55938' '  0.010336' 

 'Root_Zrotation1' 'L_shin_vol' '-0.44528' '  0.049129' 

 'L_foot_Zrotation1' 'L_shin_vol' '-0.46406' '   0.03929' 

 'R_toe_Xrotation1' 'L_shin_vol' ' 0.44404' '  0.049841' 

 'Root_Zposition2' 'L_shin_vol' '-0.52016' '  0.018721' 
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 'Root_Xrotation2' 'L_shin_vol' ' 0.54247' '  0.013468' 

 'Root_Zrotation2' 'L_shin_vol' '-0.44587' '  0.048794' 

 'Root_Zposition4' 'L_shin_vol' '-0.54659' '  0.012642' 

 'L_foot_Zrotation4' 'L_shin_vol' '-0.51547' '   0.02001' 

 'R_foot_Zrotation1' 'L_shin_sur' ' 0.46914' '  0.036911' 

 'Root_Zrotation2' 'L_shin_sur' '-0.48111' '   0.03175' 

 'L_thigh_Zrotation3' 'L_shin_sur' ' 0.53287' '  0.015559' 

 'R_foot_Zrotation3' 'L_shin_sur' '  0.4507' '  0.046117' 

 'L_foot_Zrotation4' 'L_shin_sur' '-0.49654' '  0.025946' 

 'L_thigh_Yrotation5' 'L_shin_sur' '-0.45525' '  0.043698' 

 'L_thigh_Zrotation5' 'L_shin_sur' ' 0.61806' ' 0.0036804' 

 'L_thigh_Zrotation1' 'R_shin_vol' ' 0.52853' '  0.016586' 

 'L_thigh_Zrotation2' 'R_shin_vol' ' 0.45227' '  0.045268' 

 'L_foot_Yrotation2' 'R_shin_vol' '-0.46046' '  0.041048' 

 'R_thigh_Zrotation2' 'R_shin_vol' ' 0.46066' '  0.040949' 

 'Root_Yrotation3' 'R_shin_vol' '-0.45159' '  0.045631' 

 'L_thigh_Zrotation4' 'R_shin_vol' ' 0.53154' '  0.015868' 

 'R_thigh_Zrotation4' 'R_shin_vol' ' 0.50913' '  0.021864' 

 'L_thigh_Zrotation5' 'R_shin_vol' ' 0.54721' '  0.012521' 

 'L_thigh_Zrotation5' 'R_shin_sur' ' 0.56603' '   0.00928' 

 'R_thigh_Zrotation2' 'L_leg_vol' '  0.4949' '   0.02652' 

 'R_foot_Xrotation3' 'L_leg_vol' '-0.47799' '  0.033036' 

 'R_toe_Xrotation3' 'L_leg_vol' ' 0.46217' '  0.040205' 

 'R_foot_Xrotation4' 'L_leg_vol' '-0.49612' '  0.026094' 
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Appendix 5.3 
Table 56: A list of all significantly correlated 3D upper body static and lower limb dynamic features. 

 Dynamic feature Static feature Correlation coefficient P-value 

 'L_thigh_Yrotation1' 'L_arm_vol' '-0.53389' '  0.015325' 

 'L_foot_Yrotation1' 'L_arm_vol' ' 0.49477' '  0.026568' 

 'L_thigh_Yrotation2' 'L_arm_vol' ' -0.5015' '  0.024274' 

 'R_thigh_Zrotation2' 'L_arm_vol' ' 0.46719' '  0.037811' 

 'L_thigh_Yrotation3' 'L_arm_vol' '-0.58989' ' 0.0061882' 

 'R_thigh_Zrotation3' 'L_arm_vol' ' 0.56531' '   0.00939' 

 'Root_Yrotation4' 'L_arm_vol' '-0.45013' '  0.046425' 

 'L_thigh_Yrotation4' 'L_arm_vol' '-0.60377' ' 0.0048184' 

 'L_knee_Xrotation4' 'L_arm_vol' '-0.49674' '  0.025877' 

 'R_thigh_Zrotation4' 'L_arm_vol' ' 0.65765' ' 0.0016246' 

 'L_thigh_Yrotation5' 'L_arm_vol' '-0.60076' ' 0.0050921' 

 'R_thigh_Zrotation5' 'L_arm_vol' ' 0.46775' '  0.037553' 

 'L_thigh_Yrotation1' 'L_arm_sur' '-0.63148' ' 0.0028238' 

 'L_thigh_Yrotation2' 'L_arm_sur' '-0.64451' ' 0.0021582' 

 'L_knee_Xrotation2' 'L_arm_sur' '-0.50054' '   0.02459' 

 'R_thigh_Yrotation2' 'L_arm_sur' '-0.59755' ' 0.0053975' 

 'L_thigh_Xrotation3' 'L_arm_sur' ' 0.56158' ' 0.0099767' 

 'L_thigh_Yrotation3' 'L_arm_sur' '-0.61659' ' 0.0037863' 

 'L_foot_Yrotation3' 'L_arm_sur' ' 0.45891' '  0.041823' 

 'R_thigh_Zrotation3' 'L_arm_sur' ' 0.65414' ' 0.0017551' 

 'Root_Yrotation4' 'L_arm_sur' '-0.48252' '   0.03118' 

 'L_thigh_Xrotation4' 'L_arm_sur' ' 0.49525' '  0.026398' 

 'L_thigh_Yrotation4' 'L_arm_sur' '-0.67719' ' 0.0010386' 

 'L_thigh_Zrotation4' 'L_arm_sur' ' 0.67409' ' 0.0011174' 

 'R_thigh_Zrotation4' 'L_arm_sur' ' 0.62634' ' 0.0031296' 

 'Root_Yrotation5' 'L_arm_sur' '  -0.447' '  0.048156' 

 'L_thigh_Xrotation5' 'L_arm_sur' ' 0.53675' '  0.014684' 
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 'L_thigh_Yrotation5' 'L_arm_sur' '-0.72168' ' 0.0003282' 

 'L_thigh_Zrotation1' 'R_arm_vol' ' 0.54276' '  0.013407' 

 'L_thigh_Zrotation2' 'R_arm_vol' ' 0.49056' '  0.028088' 

 'L_thigh_Zrotation3' 'R_arm_vol' ' 0.44598' '  0.048734' 

 'R_toe_Xrotation3' 'R_arm_vol' ' 0.56116' '  0.010044' 

 'Root_Yrotation4' 'R_arm_vol' '-0.44931' '  0.046875' 

 'L_thigh_Zrotation4' 'R_arm_vol' ' 0.54109' '  0.013752' 

 'L_thigh_Yrotation5' 'R_arm_vol' '-0.55864' '  0.010459' 

 'L_foot_Zrotation5' 'R_arm_vol' '-0.48734' '  0.029296' 

 'L_thigh_Zrotation1' 'R_arm_sur' '  0.5066' '  0.022641' 

 'L_thigh_Yrotation2' 'R_arm_sur' '-0.53616' '  0.014814' 

 'L_thigh_Yrotation3' 'R_arm_sur' '-0.44847' '  0.047338' 

 'L_thigh_Zrotation3' 'R_arm_sur' ' 0.48669' '  0.029545' 

 'R_toe_Xrotation3' 'R_arm_sur' ' 0.57717' ' 0.0077094' 

 'Root_Yrotation4' 'R_arm_sur' '-0.52239' '  0.018132' 

 'L_thigh_Yrotation4' 'R_arm_sur' '-0.46367' '  0.039477' 

 'L_thigh_Zrotation4' 'R_arm_sur' ' 0.56362' ' 0.0096518' 

 'R_thigh_Zrotation4' 'R_arm_sur' ' 0.50436' '  0.023346' 

 'Root_Yrotation5' 'R_arm_sur' '  -0.546' '  0.012757' 

 'L_thigh_Yrotation5' 'R_arm_sur' '-0.64222' ' 0.0022644' 

 'L_thigh_Yrotation3' 'L_shoulder_vol' '-0.54906' '  0.012167' 

 'R_thigh_Zrotation3' 'L_shoulder_vol' ' 0.57073' ' 0.0085883' 

 'L_thigh_Yrotation4' 'L_shoulder_vol' '-0.51918' '  0.018985' 

 'L_knee_Xrotation4' 'L_shoulder_vol' '-0.45865' '  0.041951' 

 'R_thigh_Zrotation4' 'L_shoulder_vol' ' 0.55035' '  0.011924' 

 'L_thigh_Yrotation5' 'L_shoulder_vol' ' -0.4811' '  0.031751' 

 'R_thigh_Zrotation5' 'L_shoulder_vol' ' 0.55134' '  0.011742' 

 'L_thigh_Yrotation1' 'L_shoulder_sur' '-0.61853' ' 0.0036472' 

 'L_thigh_Yrotation2' 'L_shoulder_sur' '-0.59856' ' 0.0052995' 

 'R_thigh_Yrotation2' 'L_shoulder_sur' ' -0.5659' ' 0.0092997' 

 'L_thigh_Xrotation3' 'L_shoulder_sur' ' 0.58555' ' 0.0066761' 
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 'L_thigh_Yrotation3' 'L_shoulder_sur' ' -0.6331' ' 0.0027326' 

 'R_thigh_Zrotation3' 'L_shoulder_sur' ' 0.58948' ' 0.0062323' 

 'L_thigh_Yrotation4' 'L_shoulder_sur' '-0.64965' ' 0.0019343' 

 'L_thigh_Zrotation4' 'L_shoulder_sur' ' 0.60225' ' 0.0049547' 

 'R_thigh_Zrotation4' 'L_shoulder_sur' ' 0.52969' '  0.016305' 

 'L_thigh_Xrotation5' 'L_shoulder_sur' ' 0.48353' '  0.030777' 

 'L_thigh_Yrotation5' 'L_shoulder_sur' '-0.68707' '0.00081788' 

 'L_thigh_Zrotation1' 'R_shoulder_vol' ' 0.62092' ' 0.0034815' 

 'L_thigh_Zrotation2' 'R_shoulder_vol' ' 0.54595' '  0.012768' 

 'L_thigh_Zrotation3' 'R_shoulder_vol' ' 0.51067' '    0.0214' 

 'R_toe_Xrotation3' 'R_shoulder_vol' '  0.4846' '  0.030357' 

 'Root_Yrotation4' 'R_shoulder_vol' '-0.46981' '  0.036608' 

 'L_thigh_Zrotation4' 'R_shoulder_vol' ' 0.52081' '  0.018548' 

 'Root_Yrotation5' 'R_shoulder_vol' '-0.46297' '  0.039818' 

 'L_thigh_Yrotation5' 'R_shoulder_vol' '-0.56345' ' 0.0096797' 

 'L_thigh_Zrotation1' 'R_shoulder_sur' ' 0.57975' ' 0.0073783' 

 'L_thigh_Yrotation2' 'R_shoulder_sur' '-0.47574' '  0.033989' 

 'L_thigh_Zrotation2' 'R_shoulder_sur' ' 0.49813' '  0.025402' 

 'L_thigh_Zrotation3' 'R_shoulder_sur' ' 0.50617' '  0.022774' 

 'R_toe_Xrotation3' 'R_shoulder_sur' ' 0.55814' '  0.010544' 

 'Root_Yrotation4' 'R_shoulder_sur' '-0.46929' '  0.036845' 

 'L_thigh_Zrotation4' 'R_shoulder_sur' ' 0.50856' '  0.022036' 

 'Root_Yrotation5' 'R_shoulder_sur' '-0.45592' '   0.04335' 

 'L_thigh_Yrotation5' 'R_shoulder_sur' '-0.61019' ' 0.0042755' 

 'L_thigh_Yrotation1' 'L_forearm_vol' '-0.48672' '  0.029531' 

 'L_thigh_Yrotation2' 'L_forearm_vol' '-0.48198' '  0.031395' 

 'R_thigh_Yrotation2' 'L_forearm_vol' '-0.46407' '  0.039286' 

 'L_knee_Xrotation3' 'L_forearm_vol' '-0.45564' '  0.043493' 

 'R_thigh_Zrotation3' 'L_forearm_vol' ' 0.59065' ' 0.0061049' 

 'L_thigh_Yrotation4' 'L_forearm_vol' '-0.46149' '  0.040539' 

 'L_thigh_Zrotation4' 'L_forearm_vol' ' 0.54105' '  0.013762' 
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 'R_thigh_Zrotation4' 'L_forearm_vol' '  0.6182' ' 0.0036703' 

 'L_thigh_Yrotation5' 'L_forearm_vol' '-0.52904' '  0.016463' 

 'L_thigh_Xrotation1' 'L_forearm_sur' '-0.45788' '  0.042343' 

 'L_thigh_Yrotation1' 'L_forearm_sur' '-0.56044' '  0.010162' 

 'L_thigh_Zrotation1' 'L_forearm_sur' ' 0.47919' '  0.032535' 

 'L_thigh_Xrotation2' 'L_forearm_sur' '  0.4451' '  0.049234' 

 'L_thigh_Yrotation2' 'L_forearm_sur' '-0.63246' ' 0.0027684' 

 'L_thigh_Zrotation2' 'L_forearm_sur' ' 0.47847' '  0.032837' 

 'L_knee_Xrotation2' 'L_forearm_sur' '-0.44447' '  0.049591' 

 'R_thigh_Yrotation2' 'L_forearm_sur' '-0.55843' '  0.010495' 

 'L_thigh_Yrotation3' 'L_forearm_sur' ' -0.5454' '  0.012876' 

 'R_thigh_Zrotation3' 'L_forearm_sur' ' 0.62621' ' 0.0031377' 

 'Root_Yrotation4' 'L_forearm_sur' '-0.53246' '  0.015653' 

 'L_thigh_Xrotation4' 'L_forearm_sur' ' 0.50054' '  0.024588' 

 'L_thigh_Yrotation4' 'L_forearm_sur' '-0.61848' ' 0.0036509' 

 'L_thigh_Zrotation4' 'L_forearm_sur' '  0.6946' '0.00067759' 

 'R_thigh_Zrotation4' 'L_forearm_sur' ' 0.68081' '0.00095264' 

 'Root_Yrotation5' 'L_forearm_sur' ' -0.5049' '  0.023175' 

 'L_thigh_Xrotation5' 'L_forearm_sur' ' 0.52058' '  0.018609' 

 'L_thigh_Yrotation5' 'L_forearm_sur' '-0.70516' '0.00051557' 

 'L_thigh_Yrotation2' 'R_forearm_vol' '-0.53121' '  0.015946' 

 'L_thigh_Yrotation3' 'R_forearm_vol' '-0.49194' '  0.027582' 

 'Root_Yrotation4' 'R_forearm_vol' '-0.45132' '  0.045777' 

 'L_thigh_Yrotation4' 'R_forearm_vol' ' -0.4736' '  0.034918' 

 'L_foot_Zrotation4' 'R_forearm_vol' '-0.55374' '  0.011307' 

 'R_thigh_Zrotation4' 'R_forearm_vol' ' 0.50135' '  0.024323' 

 'Root_Yrotation5' 'R_forearm_vol' '-0.51093' '  0.021324' 

 'L_thigh_Yrotation5' 'R_forearm_vol' '-0.57211' ' 0.0083936' 

 'L_foot_Zrotation5' 'R_forearm_vol' '-0.60701' ' 0.0045378' 

 'R_foot_Xrotation1' 'R_forearm_sur' ' 0.53883' '  0.014232' 

 'R_foot_Yrotation1' 'R_forearm_sur' ' 0.47581' '  0.033962' 
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 'R_foot_Zrotation1' 'R_forearm_sur' ' 0.49431' '  0.026729' 

 'R_toe_Xrotation1' 'R_forearm_sur' ' 0.47186' '  0.035683' 

 'L_thigh_Yrotation2' 'R_forearm_sur' '-0.56442' ' 0.0095272' 

 'L_thigh_Yrotation3' 'R_forearm_sur' '-0.52296' '  0.017983' 

 'L_thigh_Yrotation4' 'R_forearm_sur' '-0.45094' '  0.045986' 

 'L_foot_Zrotation4' 'R_forearm_sur' '-0.49291' '  0.027229' 

 'Root_Yrotation5' 'R_forearm_sur' '-0.47479' '    0.0344' 

 'L_thigh_Yrotation5' 'R_forearm_sur' '-0.57969' ' 0.0073851' 

 'L_foot_Zrotation5' 'R_forearm_sur' '-0.56994' '  0.008702' 
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Appendix 6: Publications 
 

 “The relationship between 2D static features and 2D dynamic features 

used in gait recognition” 

Authors: Hamad M Alawar, Hassan Ugail, Mumtaz Kamala, David Connah 

Publication Date: 31st May, 2013 

Proceedings from the Biometric and Surveillance: Technology for Human and 

Activity Identification Conference (SPIE 8712)  

Abstract 

In most gait recognition techniques, both static and dynamic features are used 

to define a subject’s gait signature. In this study, the existence of a relationship 

between static and dynamic features was investigated. The correlation 

coefficient was used to analyse the relationship between the features extracted 

from the “University of Bradford Multi-Modal Gait Database”. This study includes 

two dimensional dynamic and static features from 19 subjects. The dynamic 

features were compromised of Phase-Weighted Magnitudes driven by a Fourier 

Transform of the temporal rotational data of a subject’s joints (knee, thigh, 

shoulder, and elbow). The results concluded that there are eleven pairs of 

features that are considered significantly correlated with (p<0.05). This result 

indicates the existence of a statistical relationship between static and dynamics 

features, which challenges the results of several similar studies. These results 

bare great potential for further research into the area, and would potentially 

contribute to the creation of a gait signature using latent data.  

_______________________________________________________________ 

 

“THE BRADFORD MULTI-MODAL GAIT DATA-BASE: Gateway to using 

static measurements to create a dynamic gait signature” 

Authors: Hamad M Alawar, Hassan Ugail, Mumtaz Kamala, David Connah 

Publication status: Accepted, pending revision. 

Journal name: British Journal of Applied Science & Technology 

Manuscript Number:  2014_BJAST_13426 
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