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Stochastic Equipment Capital Budgeting  

with Technological Progress  

 

Abstract 

We provide multi-factor real option models (and quasi-analytical solutions) for equipment 

capital budgeting under uncertainty, when there is either unexpected, or anticipated, or uncertain 

(volatile) technological progress.  We calculate the threshold level of revenues and operating 

costs using the incumbent equipment that would justify replacement.  Replacement is deferred 

for lower revenue thresholds.  If progress is anticipated or highly uncertain, alert financial 

managers should wait longer before replacing equipment.  Replacement deferral increases with 

decreases in the expected correlation between revenue and operating costs, and with increases in 

the revenue and/or operating cost volatility. Uncertain technological progress increases the real 

option value of waiting.  The best approach for equipment suppliers is to reduce the expected 

revenue and/or cost volatility, and/or reduce the expected uncertainty of technological 

innovations, since then an incentive exists for the early replacement of old equipment when a 

technologically advanced version is launched.   
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   EXECUTIVE SUMMARY 

 

When should equipment be replaced, if both the incumbent’s revenue and operating cost  

deteriorate over time (and usage) and are uncertain, and if there is technological progress in 

replacement equipment quality and efficiency?  Is the best time for replacing the incumbent 

equipment altered if technological progress is highly uncertain?  What is the value of the 

incumbent equipment including its replacement option? 

 

We provide analytical solutions to these problems, which are easily executed in a spreadsheet 

format.  The observable model values required for the solution are the current revenue and 

operating costs, their deterioration rates (and uncertainty), the expected new higher revenue 

and/or lower operating costs if equipment is replaced, including efficiencies due to any 

technological progress, and the investment cost (net of any salvage value).  Many of these inputs 

are standard observables, while others, like expected revenue and cost volatility, technological 

progress uncertainty, correlation of revenue and costs, and technological advances, may require 

an element of managerial judgment. Given these prerequisites, equipment managers can 

determine, in a real time context, the current revenue and cost levels justifying equipment 

replacement. Further, the real value of existing equipment with a replacement option and the 

appropriate real depreciation rate can be evaluated as well. 

 

In the presence of uncertainty and anticipated technological progress, we find that suppliers 

purely motivated by immediate sales may tend to seek out myopic financial managers using 

NPV, or at least those skeptical of technological progress or revenue or cost variability. The best 

approach for suppliers facing astute buyers with long horizons is to reduce the expected revenue 

and/or cost volatility, and/or reduce the expected uncertainty of technological innovations, since 

then an incentive exists for the early replacement of old equipment when a technologically 

advanced version is launched.   
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Stochastic Equipment Capital Budgeting 

with Technological Progress 

1 Introduction 

When a replaceable asset is installed, financial managers could assess its anticipated lifetime 

from a standard net present value (NPV) analysis for an infinite replacement chain, as in Lutz 

and Lutz (1951). This solution, though, is only strictly applicable for like-for-like replacements, 

but there are many assets with embedded technological progress that violate this assumption, 

including vehicles and aircraft with higher future fuel efficiency, robotic machine tools with 

greater functionality, mobile phones and computer-based products with faster and novel 

facilities. The presence of technological progress means that the evaluated ex-ante lifetime may 

not coincide with its ex-post value.  

 

Thus, the real economic lifetime for capital equipment depends not only on its physical 

deterioration rate, but also on the technological progress embedded in the succeeding equipment 

as the incumbent suffers implied obsolescence. Since the ex-post lifetime is likely to be variable 

in the presence of technological progress, an evaluation using the traditional NPV method for 

multiple (infinite) replacements may be misleading due to its in-built assumption of an equal 

cycle time. Consequently, in this paper, we adopt a dynamic programming formulation for 

determining the optimal conditions signaling equipment replacement because that avoids a cycle 

time framework. This approach is applied to replaceable equipment that is subject to both 

revenue and operating cost deterioration and uncertainty, with technological progress that is 

unexpected, or anticipated or uncertain. 
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In the absence of uncertainty, the effect of unforeseen technological progress on the replacement 

policy is originally analyzed by Caplan (1940), who focuses on “premature abandonment” of old 

machines that “become old-fashioned” due to obsolescence, rather than just physical decline.   

Building on the economic lifetime models of Hotelling (1925) and Preinreich (1939), Caplan 

shows analytically that the consequence of unanticipated technological progress is to shorten the 

active life of the incumbent. When there is an unforeseen performance improvement in the 

succeeding asset or a more technologically advanced asset becomes available sooner than 

expected, the incumbent becomes prematurely obsolete. If the increase in profit potential from 

replacing the incumbent more than compensates the loss in recovering the original investment, 

then the incumbent is replaced before its ex-ante lifetime has expired. Caplan (1940) notes that 

real depreciation should be the first derivative of the equipment real value with respect to time as 

in Hotelling (1925), but that uncertainty and the degree of competition should also be considered.   

 

Eilon, King and Hutchinson (1966) is an early example of capital equipment replacement in 

continuous time, with a closed-form solution for an optimal policy.   Stapleton, Hemmings and 

Scholefield (1972) apply numerical simulation to show that if technological progress is foreseen, 

the optimal time between successive replacements is lengthened. Although these authors adopt a 

dynamic programming formulation to avoid the equal life assumption, Elton and Gruber (1976) 

show that an equal life policy is optimum for assets with technological improvements. However, 

these analyses focus on either anticipated or unanticipated technological progress, and do not 

provide simple operational rules for deciding the optimal conditions for replacing the incumbent.   
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Several authors have studied the adoption of technological innovations in a real options context, 

sometimes in a duopoly.  Huisman and Kort (2003) assume that a new technology has a greater 

“efficiency” than the existing technology, and firms determine outcomes in a strategic context. 

Huisman and Kort (2004) use a similar approach, except that the new technology becomes 

available for adoption at some unknown time in the future.  Tsekrekos, Shackleton and 

Wojakowski (2010) provide capital budgeting rules for multi-factor models of commodity prices.  

Armada, Kryzanowski and Pereira (2011) show the implications for investment when there may 

be hidden rivals.  Adkins and Paxson (2011) formulate a two-factor, real-option replacement 

model for an asset that is subject to uncertainty in the magnitude of the input and output decay 

but do not allow for technological progress.  Adkins and Paxson (2012) allow for technological 

progress, but not for revenue, cost or technological progress uncertainty.  

 

We provide a format for some of these types of technological innovation, considering stochastic 

technological progress and also the real replacement value implied by various models, in contrast 

to Adkins and Paxson (2011, 2012).  We allow technological advances to involve different 

successor initial operating cost levels compared to like-for-like equipment replacements; 

consider the possible volatility and time drifts of technological progress; and consider the 

correlation of technological progress with both the evolution of revenues produced by the 

incumbent technology, and the current operating costs of the existing technology.  

 

We compare four equipment replacement models: deterministic NPV without technological 

progress, and then unexpected, or (alternatively) anticipated, or uncertain technological progress. 

For each case we adopt or derive an operational rule for replacement, and for the last three 
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models examine analytically the differential impact of technological progress on the replacement 

policy. The resulting solutions provide the basis for the real replacement option value, whether 

the technological progress is unexpected, or anticipated, or uncertain. 

 

In Section 2, we develop quasi-analytical solutions to the timing boundary for replacement with 

unexpected, anticipated and uncertain technological progress under revenue and operating cost 

uncertainty. These solutions are based on the premise that an optimal replacement occurs when 

the incremental value rendered by the replacement exceeds the re-investment cost. Numerical 

analysis is used to illustrate model behavior in Section 3. We show that while an anticipated 

technological progress prolongs the active life of the incumbent, expected revenue and cost 

uncertainty, and uncertainty regarding that progress, may result in an even longer life. The final 

section is a conclusion. 

 

2 Equipment Replacement Models 

We consider durable productive capital equipment, where both revenues attributable to the 

equipment and operating costs decay, and efficiency diminishes over time.  The revenue 

produced by the equipment, denoted by P , changes at a risk-adjusted (see Dixit and Pindyck, 

1994) continuous rate P , assumed to be negative, while its operating cost, denoted by C , 

changes at the risk-adjusted continuous rate C ,  assumed to be positive. When the incumbent 

attains a to be determined threshold, it is replaced by new equipment at a constant re-investment 

cost of K . 
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Technological progress is interpreted as an improvement in the initial attribute levels for the 

succeeding equipment relative to the incumbent. Unexpected technological progress is 

represented as a jump
1
 in a favorable direction of one or more of the initial attribute levels for the 

succeeding equipment relative to the incumbent. An unexpected fall in the initial operating cost 

level for the succeeding equipment relative to the incumbent is indicative of an unforeseen 

technological improvement in the equipment performance. In contrast, a deterministic decline in 

the initial operating cost level for the succeeding asset is predictable, and because the 

improvement is foreseen, it is interpreted as anticipated technological progress. 

 

2.1 Model I: No Technological Progress 

As a benchmark, we propose a deterministic NPV model, where no technological process is 

anticipated.  The revenue and operating cost levels for the incumbent at installation and 

replacement are denoted by IP  and IC , respectively, and r is the discount rate. Following Lutz 

and Lutz (1951), and as derived in Adkins and Paxson (2011), the optimal cycle time T̂  is the 

solution for: 

 
   

   

 ˆˆ ˆ
ˆˆ1 e1 e 1 eee

CP
CP

TT rT
TT

II
C IP I

P C P C

CP CP
K

r r r r r


 

   

  
    

     

. (1) 

This states that the optimal cycle time occurs when the net incremental value rendered by the 

replacement, represented by the left hand side of (1), exactly balances the re-investment cost plus 

a positive amount. This positive amount is the weighted sum of the values for the revenue and 

operating cost for an incumbent at the optimal lifetime, adjusted by an annuity factor with an 

optimal lifetime horizon. For a replacement to be optimal, the rendered net incremental value has 

                                                 
1
 Indeed, somewhat more complex models might incorporate a jump process. 



9 
 

to exceed the re-investment cost. Given the initial revenue and operating cost levels for the 

incumbent, finding the optimal replacement time involves equating the LHS and RHS 

numerically by varying the cycle time. For the deterministic case without technological progress, 

Model I, the optimal thresholds for revenue ˆ
DP  and operating cost ˆ

DC  are given by 
ˆˆ e PT

D IP P 
  

and 
ˆˆ e CT

D IC C


 , respectively. 

   

Our primary contribution is developing three new stochastic models, II, III and IV, to illustrate 

the distinctions among unexpected, anticipated and uncertain technological progress, 

respectively. For each model, we derive an operational rule for deciding whether the incumbent 

should or should not be replaced. Replacement is characterized by a timing boundary, which is 

created from a quasi-analytical solution to the corresponding real replacement option problem.   

 

2.2 Model II: Unexpected Technological Progress 

We seek to find the threshold signaling the optimal replacement of the incumbent when 

technological progress is feasible, but not expected. This threshold is represented by a function 

of the trigger levels for the revenue and operating cost, denoted by ˆ
UP  and ˆ

UC , respectively, 

which divides the decision space into two mutually exclusive exhaustive regions of continuance 

and replacement. When plotted on this decision space, if the prevailing levels of the revenue and 

operating cost lie within the continuance region, then the optimum strategy is to continue with 

the incumbent, or if the prevailing levels belong to the replacement region, then replacing the 

incumbent is the optimal decision. 
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We assume that the two variables follow distinct geometric Brownian motion processes with 

drift. For  ,X P C :   

 d d dX X XX X t X z   ,          (2)  

where X  is the instantaneous drift rate, X  is the instantaneous volatility rate, and d Xz  is the 

increment of a standard Wiener process. Dependence between the two uncertain variables is 

described by the instantaneous covariance term ,P C P C   .  The function F  is defined as the 

value of the incumbent equipment including its embedded replacement option. All replacement 

decisions are treated as being made in isolation to any other enacted policies, so there are no 

scale or other flexibilities and no competition. The value of F  depends on the prevailing 

revenue and operating cost levels so  ,F F P C , assuming risk neutrality, which is expressed 

as a two-dimensional partial differential equation (“PDE”). This valuation relationship is 

described by: 

 

 

2 2 2
2 2 2 21 1

,2 22 2

0.

P C P C P C

P C

F F F
P C PC

P C P C

F F
P C P C rF

P C

    

 

  
 

   

 
     

 

         (3) 

where r  is the discount rate, and P  and C  are the risk-adjusted drift rates respectively for 

revenues and operating costs.  We assume a world without taxes, and 0 Xr   for  ,X P C .  

The value of the existing equipment and its replacement option is: 

  , II II

II II

P C

P C
F P C A P C

r r

 

 
  

 
, (4) 

with coefficient IIA  and parameters II  and II . The function IIF  is composed of two elements. 

The term II II

IIA P C
   is interpreted as the replacement option value, which being positive means 
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that 0IIA  . Since the incentive to replace the incumbent grows as the revenue decreases, but as 

the operating cost increases, we conjecture 0II   and 0II  . The second element:  

 
P C

P C

r r 


 
 

denotes the equipment value to the owner in the absence of any optionality and at any P and C 

levels.  

 

Originally, when the incumbent is installed, its initial revenue and operating cost levels are 

specified by IP  and IC , respectively, but when the incumbent is replaced, the initial revenue and 

operating cost levels for its successor are specified by SP  and SC , respectively.  This 

specification implies that the attribute levels of the succeeding equipment may be allowed to 

differ from those of the incumbent that it replaces, so there is no underlying presumption that the 

incumbent is replaced by a replica with identical attribute levels. Consequently, we can model 

the presence of an unexpected technological progress as the unexpected move in the initial 

attributes from IC  to SC  where I SC C , or from IP  to SP  where I SP P . In our formulation, 

technological progress is characterized as an improvement in the equipment initial operating cost 

level, so  I SC C  while I SP P . Even though a technological advance leads to improved initial 

levels for the succeeding asset, we assume that the respective drift rates remain unchanged.  

 

Value conservation at replacement requires that the incumbent value has to be exactly balanced 

by the net value for the succeeding equipment. The incumbent value at replacement  ˆˆ ,II U UF P C  

is determined from the valuation function (4), defined at the respective threshold levels, ˆ
UP  and 
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ˆ
UC . These thresholds represent the values for the respective attributes that economically justify 

replacing the incumbent equipment. As the value for the succeeding asset at installation is 

 ,II S SF P C , its net value is  ,II S SF P C K , so the value-matching relationship can be expressed 

as: 

 
ˆˆ

ˆˆ II II II IIU U S S
II U U II S S

P C P C

P C P C
A P C A P C K

r r r r

   

   
     

   
. (5) 

Although value conservation is enforced by the value-matching relationship, the requirement 

governing optimal replacement is specified by the two smooth pasting conditions, one for each 

of the two factors. These can be expressed as: 

 

1 1ˆˆ 0II II

II II U U

P

A P C
r

 



 


, (6) 

 1 1ˆˆ 0II II

II II U U

C

A P C
r

 



 


, (7) 

which affirms our conjecture that 0II   and 0II  .  The characteristic root equation (8), 

which defines the requisite relationship amongst the parameters for (4) to be a viable solution to 

(3), is: 

2 2

,

1 1
( 1) ( 1) 0

2 2
P II II C II II P C P C II II P II C II r                      .                  (8) 

The four equations, (5), (6), (7) and (8), constitute the model solution from which the optimal 

timing boundary can be found. The real replacement option value at the current output price P 

and input cost C,  ROVU, is obtained by solving (6) for AII, and substituting in (4): 

ˆ

ˆ ˆ( )

II II

II II

U
U

II P U U

P P C
ROV

r P C

 

  

 
  

   
            (9)  
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Under similar conditions with CS=CI and PS=PI, and assuming nil revenue and cost volatility, the 

solutions to Model I and Model II are identical.  

 

2.3   Model III: Anticipated Technological Progress 

The threat of new technology is likely to motivate equipment suppliers to continuously improve 

product performance. If these improvements are realized through continuous changes in the 

initial attributes, then over a period of time, we would observe falls in either the initial operating 

cost level or re-investment cost for the succeeding equipment, or increases in its initial revenue 

level. The dynamic programming framework allows the initial attribute to change with time, so 

Model III treats anticipated technological progress as being expressed through a time dependent 

successor operating cost level.  

 

We start by assuming that for the succeeding equipment, the new initial operating cost level, 

which is denoted by NC , can be adequately expressed by a growth function with a continuous 

constant rate N , that is d dN N NC C t .  This growth parameter is expected to be negative, 

since performance improvements are presumed to be embedded in the succeeding equipment 

with NC  declining over time. The presence of a new initial operating cost level in the model 

means that the value function, which is denoted by IIIF , depends on three factors, the new initial 

operating cost level as well as the prevailing levels for the revenues and operating cost. In the 

two-factor model (4), the replacement option value is expressed as a product power function of 

the two factors, revenues and operating costs. For the three-factor model under consideration, we 

similarly adopt a product power function but now of three factors, revenues, operating costs and 
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new successor initial operating cost level, to represent the replacement option value. So, the 

valuation function becomes: 

  , , III III III

III N III N

P C

P C
F P C C A P C C

r r

  

 
  

 
, (10) 

where III III III

III NA P C C   , with 0IIIA  , represents the option value with power parameters III , 

III  and III . Again, the term    / /P CP r C r     denotes the value of the equipment to the 

owner in the absence of any optionality. As before, we conjecture that III  is negative, and III  

positive. We now consider the sign of III . Since a stronger economic incentive exists for 

replacing the incumbent when the successor initial operating cost level is low rather than high, 

we would expect the replacement option to increase in value as NC  decreases, so we conjecture 

that the value of III  should be negative.  The replacement event is signaled when the three 

factor levels, P , C  and NC , simultaneously attain their respective optimal threshold levels, ˆ
AP , 

ˆ
AC  and ˆ

NAC . Collectively, these three optimal thresholds form the timing boundary, which is 

determined from the model solution, made up of the economic conditions signaling an optimal 

replacement, that is the value-matching relationship and the smooth pasting conditions, plus the 

characteristic root equation.   

 

Because value is conserved at replacement, the incumbent value  ˆ ˆˆ , ,III A A NAF P C C  has to exactly 

balance the succeeding asset value  ˆ ˆ, ,III S NS NSF P C C , less the re-investment cost K . By using 

(10), the value-matching relationship can be expressed as: 

 
ˆˆˆ

ˆ ˆ ˆˆ III III III III III III S NSA A
III A A NA III S NS

P C P C

P CP C
A P C C A P C K

r r r r

     

   


     

   
. (11) 
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Replacement is optimal whenever the smooth pasting conditions are obtained. Associated with 

(11), there are three smooth pasting conditions, for P , C  and NC , respectively, which can be 

expressed as: 

 1 1ˆ ˆˆ 0III III III

III III A A NA

P

A P C C
r

  



 


, (12) 

 1 1ˆ ˆˆ 0III III III

III III A A NA

C

A P C C
r

  



 


, (13) 

  1 1 1ˆ ˆ ˆˆ 0III III III III III III

III III A A NA III III III S NS

C

A P C C A P C
r

       


  
   


. (14) 

We observe from (12) and (13) that 0III   and 0III  . Also, since ˆ ˆˆIII III III III

S NS A AP C P C
   

  

because ˆ
A SP P  and ˆ ˆ

A NAC C , then from (14) 0III  . The three smooth pasting conditions 

affirm our conjecture on the signs of the power parameters. 

 

The final component of the model is the characteristic root equation:

2 2

,

1 1
( 1) ( 1) 0

2 2
P III III C III III P C P C III III P III C III N III r                         .      (15)  

 

There are five equations for Model III. These are (i) the value-matching equation, (11), (ii) three 

smooth pasting equations (12), (13) and (14) and (iii) the characteristic root equation, (15).  

Eliminating III , III , III  and IIIA  enables the timing boundary to be derived as a single 

relationship linking ˆ
AP , ˆ

AC  and ˆ
NAC  . 

  

The real replacement option value at current P, C and CN, ROVA, is obtained by solving (12) for 

AIII, and substituting in (10): 
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ˆ

ˆ ˆ ˆ( )

IIIIII III

III III III

NA
A

III P A NA A

CP P C
ROV

r P C C

 

   

 
  

   
         (16) 

2.5  Model IV: Uncertain Technological Progress 

 

Finally, we consider the case where technological progress follows a geometric Brownian 

motion process with drift (2), where  N  is the risk-adjusted drift rate for technology specific to 

the particular type of equipment, N  is the instantaneous volatility rate for CN. There may be 

dependence among three uncertain (volatile) variables, where N denotes CN,  described by the 

instantaneous covariance terms ,P C P C    , ,P N P N    ,  and , .C N C N  
 

    
 

Now the value of F depends on the prevailing revenue and operating costs and the technological 

progress, expressed as the following PDE: 

 

2 2 2
2 2 2 2 2 21 1 1

2 2 22 2 2

2 2 2

0

IV IV IV
P C N N

N

IV IV IV
P,C P C P,N P N N C ,N C N N

N N

IV IV IV
P C N N IV

N

F F F
P C C

P C C

F F F
PC PC CC

P C P C C C

F F F
P C C ( P C ) rF .

P C C

  

        

  

  
 

  

  
  

     

  
      

  

 (17) 

Since the solution to the homogenous element is a product power function, the valuation function 

satisfying (17) is: 

 IV IV IV

IV IV N

P C

P C
F A P C C

r r

  

 
  

 
. (18) 

The associated characteristic root equation is: 
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     2 2 21 1 1
2 2 2

1 1 1

0

P IV IV C IV IV N IV IV

P,C P C IV IV P,N P N IV IV C ,N C N IV IV

P IV C IV N IV r .

        

              

     

    

  

    

 (19) 

In (18), the equipment value is composed of the replacement option value IV IV IV

IV NA P C C
    and 

the equipment value to the owner in absence of any optionality    P CP r C r    . Since 

the option value increases as the incumbent factors, P  and C , deteriorate, then IV  must be 

negative and IV  positive. Further, there is a greater likelihood of replacing the incumbent for 

low values of NC , so IV  is negative. 

 

We now consider the boundary conditions that hold along the timing boundary V
ˆP P , V

ˆC C  

and N NV
ˆC C . The value-matching relationship ensures value conservation by requiring the net 

values instantaneously before and after replacement to be equal, so 

   IV V V NV IV S NS NS
ˆ ˆ ˆ ˆˆF P ,C ,C F P ,C ,C K  , or: 

 

ˆ ˆˆ
ˆ ˆ ˆˆ IV IV IV IV IV IVV V S NS

IV V V NV IV S NS

P C P C

P C P C
A P C C A P C K

r r r r

     

   


     

   
. (20) 

Replacement is optimal whenever the smooth pasting conditions are obtained. Associated with 

(20), there are three smooth pasting conditions, for P , C  and NC , respectively, which can be 

expressed as: 

 
1 1ˆ ˆˆ 0IV IV IV

IV IV V V NS

P

A P C C
r

  



 


, (21) 

 
1 1ˆ ˆˆ 0IV IV IV

IV IV V V NS

C

A P C C
r

  



 


, (22) 
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  1 1 1ˆ ˆ ˆˆ 0IV IV IV IV IV IV

IV IV V V NS IV IV IV S NS

C

A P C C A P C
r

       


  
   


. (23) 

The optimal timing boundary for the stochastic version of the replacement model is obtained as a 

relationship linking VP̂ , VĈ  and NSĈ , by using the five equations (19) –(23).  Eliminating IV , 

IV , IV  and IVA  enables the timing boundary to be derived as a single relationship linking ˆ
VP , 

ˆ
VC  and ˆ

NSC . 

 

The real replacement option value at current P, C and CN, ROVV, is obtained by solving (21) for 

AIV, and substituting in (18): 

ˆ

ˆ ˆ ˆ( )

IVIV IV

IV IV IV

V N
V

IV P V NS V

P CP C
ROV

r P C C

 

   

 
  

       (24)

 

3 Numerical Illustrations 

 

Since the solutions for Models II, III and IV involve solving sets of simultaneous equations, their 

behavior is investigated through numerical illustrations. Table 1 exhibits the base case data we 

use to illustrate the solution.  For comparison, we also show Model IIa and Model IIIa in Table 2 

assuming no technological progress, that is CS=CI, and also Model IIb and IIIb where CS<CI. The 

differences between their solutions (a and b) reflect the impact of technological progress on the 

replacement policy. Also, the successive initial operating cost level for Model IIIb is set to 

decline at a known rate. This suggests that the initial operating cost implied by technological 

progress inherent in the succeeding asset can be anticipated.  

INSERT TABLE 1  
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The optimal timing boundary discriminates between the regions of continuance and replacement 

and is represented by the feasible set of threshold levels. Whenever the prevailing levels pertain 

to the continuance region, the optimal decision is to continue with the incumbent, while if they 

do not, then replacement becomes the optimal decision. In the case for the deterministic model, 

the set of threshold levels is defined by a single point, but if the number of factors in a stochastic 

model is two or more, the set of threshold levels maps out a locus. The timing boundary for 

Model II is represented by a locus defined in a two-dimensional plane and is calculated from 

equations 5-6-7-8 to solve for the revenue threshold for a pre-specified operating cost threshold, 

and then repeatedly by allowing the revenue threshold to vary. The optimal timing boundaries 

for Models III and IV involve three distinct thresholds AP̂ , AĈ  and NAĈ , and VP̂ , VĈ  and NVĈ , 

respectively.  For comparison, we assume DĈ  = UĈ  = AĈ = VĈ =31.039 and NAĈ = NVĈ =15, and 

then show the corresponding DP̂ , UP̂ , AP̂ and
 VP̂ .  When illustrated in a two-dimensional plane 

the timing boundary can be represented by a nested set of boundaries each for a pre-specified 

value of NAĈ
 

or NVĈ  For any given NAĈ
 

or NVĈ , the timing boundary for Model III is 

determined from equations 11-12-13-14-15 and for Model IV from equations 19-20-21-22-23.   

3.1 Replacement Policy Solutions 

Using the base case data
2
, the optimal cycle time for the deterministic Model I is calculated to be 

10.99, and its derived revenue and operating cost threshold levels are presented in Table 2. This 

table also includes a single point solution on the timing boundaries for Models IIa, IIb, IIIa, IIIb 

                                                 
2
 While these parameter values are hypothetical, Knittel (2011) states that technological progress (measured as miles 

per gallon adjusted for the effects of changes in weight, horsepower, torque and acceleration) in light truck fuel 

efficiency is not deterministic.  For instance, the average annual increase in fuel efficiency for US light trucks from 

1981-2006 was  8.0%, N = 9.3%, and a correlation with gasoline prices=.36.  He also reports some discrete engine 

design movements such as new fuel injection systems. Knittel shows it is hard (but not impossible) to isolate one 

type of technological progress under ceteris paribus assumptions.    
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and IV. For that point, we select the thresholds DĈ  = UĈ  = AĈ = VĈ , in order for the various 

solutions to be comparable.  

 

INSERT TABLE 2 

The distance of the trajectory for the incumbent attributes from initial to threshold levels is a 

measure of its lifetime. We observe from Table 2 that the deterministic replacement policy 

without technological progress has the highest revenue threshold and so is the least deferred. 

Even without technological progress, the effect of introducing uncertainty, assuming all other 

parameters levels remain unchanged, is to make waiting valuable in case more favourable 

revenue and cost values are realised. A revenue threshold decrease indicates deferred  

replacement.  

 

However, this deferral effect is partially mitigated when the attributes of the successor are 

improved. Table 2 reveals that the Model IIb revenue threshold increases from 54.850 to 57.771 

when the initial operating cost level is improved upon replacement from 20 to 15. But, if the 

equipment owner is aware that this jump in the initial operating cost level is to be followed by a 

continuous improvement in the initial operating cost level at the rate of 5% (Model IIIb), then 

this awareness produces a slight revenue threshold decrease to 56.925 due to the advantages in 

waiting for an improved version. These findings extend the results produced by Caplan (1940) to 

the world of uncertainty. An announced jump in the attribute levels for the successor that is 

unexpected will hasten replacement, even to the extent of motivating an immediate replacement, 

while an anticipated change leads to a deferral.  A long deferral is justified when technological 

progress is highly uncertain, but here the specific assumed parameter values of CN volatility and 
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correlation with P and C are critical.  Note the significant increase in the ROV as technological 

progress and additional uncertainty in the variables are considered.  

 

The stochastic equipment replacement models are naturally sensitive to changes in expected 

volatilities and correlations.  We simulate  (i) the sensitivity of thresholds and the option to 

replace to changes in the volatility of the operating costs, (ii) the sensitivity of thresholds to 

changes in the correlation of revenue and operating costs, (iii) the sensitivity of thresholds and 

replacement option values to changes in technological progress CN, (iv) the sensitivity of 

thresholds and replacement option values to changes in the investment cost, and (v) for Model IV 

the sensitivity of thresholds and option values to changes in the expected volatility of 

technological progress.   

 

3.2 Variations in the Cost Volatility 

Increases in the underlying volatility are expected to defer the replacement decision.  This 

characteristic should be reflected in falls for the revenue threshold, all else kept constant. Figure 

1 illustrates this negative relationship between the revenue threshold and the operating cost 

volatility, holding the correlation constant at -0.5. The waiting time, as indicated by the revenue 

threshold, is least for the deterministic version of the models, having an operating cost volatility 

of zero (while there is a positive revenue volatility). Moreover, in line with the Caplan (1940) 

finding, the revenue threshold is higher for unexpected technological progress, even for 

stochastic revenue. The effect of anticipatory technological progress is to defer the replacement 

decision, since additional waiting is economically justified by the anticipated fall in the initial 

operating cost level for the successor.  



22 
 

 

Also, there is a shortening of the spread between the revenue thresholds for the unexpected and 

anticipated technological progress. This suggests that for higher operating cost volatility levels, 

the effect of anticipated technological progress on the solution becomes increasingly less 

important, so any gains from deferring replacement due to anticipated technological progress 

becomes increasingly less important relative to deferral arising from increases in volatility. 

Deferral is greatest for the volatile CN, especially if the assumed correlation of C and CN is -1.0. 

Similar results are obtained for revenue volatility. 

INSERT FIGURE 1  

The cited literature does not consider the sensitivity of the real replacement option at current 

revenues and costs to changes in volatility.   Figure 1 also shows that both real replacement 

option values (at current P and C) ROVU,  ROVA and ROVV, at the base parameter values, 

increase with increases in cost volatility, although at a decreasing rate.  Note that when there is 

no cost volatility (although there is a positive revenue volatility), ROVU <ROVA < ROVV, the 

opposite of the revenue threshold order. 

3.3 Variations in the P and C Correlation 

 

The threshold levels depend on the extent of the correlation between revenue and operating cost 

through the various Q functions. Figure 2 presents the revenue threshold levels for variations in 

the correlation when the operating cost threshold is set equal to 31.039, its deterministic value. 

This reveals that an increase in the correlation creates a revenue threshold increase for the 

stochastic Models II, III and IV, which implies a hastening of the replacement decision. Also, the 

threshold spreads between unexpected, anticipated and volatile models increase with correlation.  
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Standard real-option theory tells us that the extent of the deferral varies positively with the 

underlying volatility. Now, the critical element affecting the replacement policy is the net 

revenue, that is the difference between revenue and operating cost, and since the volatility of net 

revenue varies inversely with correlation, the extent of the deferral is attenuated for correlation 

increases.  

 

An alternative explanation is that revenue can be conceived as a partial hedge for movements in 

the operating cost whenever their correlation is positive, so an increase in correlation leads to a 

rise in the revenue threshold. Finally, we observe that the effect of changes in correlation affects 

the timing boundaries for Models II, III and IV in a very similar way. 

INSERT FIGURE 2  

The impact of correlation on the solution can also be viewed through the replacement option 

value. Figure 2 also illustrates the modifications in replacement option value due to correlation 

changes. It shows that the replacement option value declines for increases in the correlation and 

this feature is explained by exactly the same mechanism producing a threshold rise. This finding 

is consistent with other exchange-type real options. 

3.4 Variations in the Successor Cost Level at Replacement 

The value for the succeeding asset is expected to rise for decreases in its initial operating cost 

level upon replacement, and this desirable effect should be reflected in hastening the replacement 

of the incumbent. Figure 3 illustrates the variations in the revenue thresholds due to changes in 

the initial operating cost level for the successor. As expected, the revenue thresholds increase for 

decreases in the initial operating cost level, and consequently, the incumbent tends to be retired 
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earlier. The figure also shows that the spread among the thresholds for unexpected, anticipated 

and uncertain technological progress declines as the successor operating cost level falls. 

 INSERT FIGURE 3 

Figure 3 also illustrates the effect of variations in the successor operating cost level on the 

replacement option value. Both unexpected and anticipated real replacement option values 

decrease with increases in the successor cost level (and consistently with the lower revenue 

thresholds), indicating that it is the reversionary replacement operating cost levels that drive real 

replacement value.  But ROVV increases with increases in CN, whether the sign of the correlation 

of C and CN is negative or positive.  Possibly this indicates that although the revenue threshold at 

which it is optimal to initiate equipment replacement increases with decreases in the assumed 

successor initial operating cost, the opportunity value of being able to do this repeatedly, even at 

relatively high successor operating costs, increases if technological progress is uncertain.   

3.5 Variations in the Re-investment Cost 

The re-investment cost K  fundamentally affects the successor’s net value and for any 

investment cost increase, the successor becomes less valuable. This should be reflected in 

postponing the incumbent’s replacement and lowering the revenue threshold.  Figure 4 shows 

that a decrease in the re-investment cost leads to revenue threshold increases for all models 

including Model I (NPV), justifying earlier replacement of the incumbent. The figure shows that 

for unexpected technological progress, the incumbent is always replaced earlier than for 

anticipated technological progress, and in turn earlier than for volatile CN, but the spread 

between the four revenue thresholds widens for re-investment cost increases. This effect is 

explained by the benefits from waiting for the improvement becoming more attractive as the re-

investment cost rises. 



25 
 

 

It might be imagined that the replacement investment cost, K, would be a critical factor in the 

equipment replacement decision.  But Figure 4 shows that a 50% increase in K causes the 

revenue threshold to fall by 13-17%, and that at low K there is not much difference between the 

deterministic, unexpected, anticipated and volatile model revenue thresholds.   

INSERT FIGURE 4 and 5 

Figure 5 shows a real option value decline accompanies any increase in the re-investment cost 

for the successor, while ROVV>ROVA>ROVU. Note that an increase in K of +10 naturally 

decreases NPV-K by the same amount, but at lower K, ROVU and ROVA decrease by more than 

10, while at high K by less than 10. At very high K, the ROVs are hardly affected by changes in 

K. 

 A lesson for suppliers is that in designing new equipment, such as airplane engines or fuel 

efficient cars, to replace the existing stock, lower re-investment costs may not be as important as 

lower successor initial operating costs (such as fuel efficiency), for these parameter values. 

3.6  Variations in Technological Progress Uncertainty 

Increases in the expected uncertainty of technological progress (TP) are expected to lead to 

deferral of the replacement decision.  Figure 6 illustrates this negative relationship between the 

revenue threshold and TP uncertainty, holding the C,N correlation constant at -1. With nil 

volatility, the results are the same as for Model IIIb with the base parameter values.  However, 

the ROVV increases with increases in TP uncertainty, indicating more value for the purchaser of 

replacement equipment, waiting for large breakthroughs in operating cost improvements. 

INSERT FIGURE 6 
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3.7  Focus of Participants in the Equipment Replacement Process 

Suppose following Hotelling (1925) and Caplan (1940) that real depreciation should be the first 

derivative of equipment value with regards to time (or other factors), and this is the same for 

ROVU, ROVA and ROVV.  All ROVs decrease (and all revenue thresholds increase, indicating 

early replacement, shorter life) with increases in P and C correlation, and decreases in P and C 

volatility. A decrease in ROV and increase in revenue threshold should be accompanied by an 

increase in the real depreciation.  However, ROVU and ROVA decrease (but revenue thresholds 

also increase, indicating later replacement, longer life) with increases in CN, and increases in K.  

The net effect on real depreciation depends on the balance of the lower ROV to be depreciated 

over a longer life.  

 

Real accountants (and alert practical managers), and investors looking at capital equipment 

intensive activities, such as airlines and ground transportation, will want to transform historical-

data-based accounts into real-accounts to see if real profits are different from traditional 

accounting profits.     

 

In a world of uncertainty, an alert Chief Options Manager (“COM”) should adopt real-time 

decision making and attend to all the model parameters, especially PI, CI, CS, CN, the volatility of 

P, C and CN, and correlations as well as current P and C. Further, the COM should periodically 

assess replacement policy as parameter values may change over time and usage. If not, then there 

is a strong likelihood of the COM destroying value. Replacement decisions will generally be in 

error when based on net present values, or deterministic discounted cash flow methods, treating 

revenue and operating cost as certain, and ignoring technological progress. 
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Equipment suppliers adopt distinct marketing policies dependent on whether their view is short- 

or long-term. In seeking immediate replacement equipment sales justified by the largest 

threshold spread, short-term suppliers may advise their clients to follow traditional capital 

budgeting rules. Shrewd suppliers would tend to emphasize those elements resulting in high P 

thresholds, such as high correlation between revenue and costs, low or no revenue or cost 

volatility, and obviously, lower successor initial operating cost levels upon replacement.  

 

By adopting a longer-term view in the interests of their clients, reputable suppliers might focus 

on those elements increasing the real replacement option values, such as low or negative 

correlation between P and C, high P and C volatility, and obviously low successor initial 

operating costs upon replacement.  A lower re-investment cost would increase the real 

replacement option value and also result in an earlier replacement decision, but, of course, it may 

result in lower supplier profits in the absence of lower equipment manufacturing costs. Perhaps 

some long-term horizon suppliers will focus on the uncertainty of technological progress, since 

at these base parameter values, since with high TP uncertainty, ROVV>ROVA>ROVU. 

4 Conclusion   

When technological progress is interpreted as an improvement in one or more of the initial 

attribute levels for the succeeding asset, particularly in an uncertain initial operating cost level, 

we show that unexpected, anticipated and volatile technological progress can be considered in a 

dynamic programming formulation. The benefits of this approach are not only its avoidance of 

the shortcomings of a cycle time conceptualization, but its provision of the optimal replacement 

policy as a simple operational formula expressed in terms of thresholds. An unexpected 
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improvement in the successor operating level has the potential to hasten the act of replacement, 

while the act of replacement is deferred whenever the technological progress can be fully 

anticipated.  

 

The spreads between the unexpected case threshold ˆ
UP , the anticipated case threshold ˆ

AP  and the 

volatile case threshold ˆ
VP decrease somewhat as cost volatility increases. The effect of increased 

cost volatility on the real replacement option value is the opposite of that for the thresholds, 

consistent with real option theory that the lower the revenue justifying a replacement, the greater 

the real replacement value.  The spreads between the unexpected ROVU , the anticipated ROVA 

and ROVV decrease somewhat as cost volatility increases.  The effect of increased correlation is 

to increase the spreads among ˆ
UP , ˆ

AP , and ˆ
VP  and to increase the spreads among ROVU, ROVA 

and ROVV. 

 

The contrasting impact on the replacement policy of unexpected, anticipated and uncertain 

technological progress has distinct implications for owners and suppliers of replaceable 

equipment. Owners are predisposed to capturing as much of the full value embedded in the 

incumbent as is economically viable, so they are motivated to search the historical records for 

patterns of anticipated change because of its effect on deferring replacement. However, any 

indications that prolong the act of replacement are unlikely to be in the suppliers’ short-term 

interest. Although at the base parameter values, perhaps short-term horizon suppliers might focus 

on ˆ
DP > ˆ

UP > ˆ
AP > ˆ

VP  and so de-emphasize technological progress uncertainty, long-term horizon 

suppliers and COMs might focus on ROVV> ROVA > ROVU, and so act accordingly in a world 

of high uncertainty. 
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Extensions of this paper include more general models to allow for taxes and for uncertainty in 

salvage values and reinvestment costs for each succeeding asset, and, viewing these replacement 

models in a competitive environment as Caplan (1940) suggested more than a seven decades 

ago. 
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Table 1 

Base Case Data 

Description Parameter Value 

Re-investment Cost K  100 

Initial Revenue Level for Incumbent IP  80 

Initial Operating Cost Level for Incumbent IC  20 

Initial Revenue Level for Succeeding Asset SP  80 

Initial Operating Cost Level for Succeeding Asset SC  20 (IIa, IIIa)  15 (IIb, IIIb) 

Succeeding Operating Cost Tech Progress 

 

Revenue Growth Rate  

CN 

 

P  

15 

 

-2% 

Operating Cost Growth Rate C   4% 

Initial Operating Cost Growth Rate N  -5% 

Discount Rate r 12% 

           Revenue Volatility                                                    P                   20%                                                     

          Operating Cost Volatility                                           C                   20%                                                     

          Revenue and Cost Correlation                                    P,C             -.5                                                     

          Revenue and CN Correlation             P,N              -.1 

          OpCost and CN Correlation             C,N                -1.0 

          CN Volatility               N           50% 
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Table 2

COMPARING RESULTS
NO TECHNOLOGICAL  PROGRESS  TECHNOLOGICAL  PROGRESS

UNEXPECTED ANTICIPATED UNCERTAIN

MODEL I MODEL IIa MODEL IIIa MODEL IIb MODEL IIIb MODEL IV

P* 64.217 54.850 54.325 57.771 56.925 54.472

C* 31.039 31.039 31.039 31.039 31.039 31.039

ROV  275.419 299.575 297.317 310.306 352.411

This table depicts the set (P*,C*) that indicates when P=<P* and

C=>C*, equipment replacement is justified, equating the RHS and LHS of Eq 1 for Model I, 

setting Eqs 5,6,7,8=0 for Model II, setting Eqs 11,12,13, 14,15 =0 for Model III, and Eqs 19, 20, 21, 22, 23=0 for Model IV.  

Assumes Table 1 values and zero volatility for Model I.

No tech progress CS=20, tech progress CS=CN=15.

ROV is determined from Eqs 9 (M IIa,b), 16 (M IIIa,b) and 24 (M IV).
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FIGURE 1

  

P* U 60.114 59.425 58.800 58.248 57.771 57.367 57.031 56.756 56.535

P* A 58.827 58.260 57.751 57.306 56.925 56.606 56.345 56.135 55.971

P* V 56.346 55.728 55.220 54.806 54.472 54.208 54.002 53.846 53.732

ROV U 264.842 273.891 282.453 290.307 297.317 303.426 308.634 312.982 316.536

ROV A 282.069 290.129 297.616 304.371 310.306 315.390 319.640 323.104 325.848

ROV V 319.617 329.977 338.826 346.264 352.411 357.391 361.333 364.360 366.593

C 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

This figure depicts revenue thresholds given the set (P*, C*=31.039) that indicates when P=<P* 

and C=>C*, replacement is justified, setting Eqs 5, 6,7,8 =0 for Model II, Eqs 11,12,13, 14, 15=0 

for Model III, and setting Eqs 19, 20, 21, 22, 23=0 for Model IV.  Assumes C as shown, otherwise

Table 1 values PI=80, CS=CN=15, K=100, P=.20, =-.50, r=.12, P=-.02, C=.04, N=-.05.

This figure also depicts replacement option value from Eqs 9, 16 and 24 when P=75, C=30.
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FIGURE 2

P* U 56.090 56.883 57.771 58.777 59.938 61.312 62.994 65.175 68.339

P* A 55.447 56.147 56.925 57.798 58.794 59.954 61.342 63.079 65.428

P* V 53.588 54.016 54.472 54.962 55.490 56.061 56.685 57.371 58.134

ROV U 323.854 310.961 297.317 282.772 267.115 250.035 231.035 209.225 182.644

ROV A 334.835 322.906 310.306 296.905 282.528 266.916 249.674 230.123 206.891

ROV V 369.444 361.072 352.411 343.429 334.087 324.338 314.120 303.360 291.959

P,C -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

This figure depicts revenue thresholds given the set (P*, C*=31.039) that indicates when P=<P* and

C=>C*, replacement is justified, setting Eqs 5, 6,7,8 =0 for Model II, Eqs 11,12,13, 14, 15=0 

for Model III, setting Eqs 19, 20, 21, 22, 23=0 for Model IV.  Assumes P,C as shown, otherwise

Table 1 values PI=80, CS=CN=15, K=100, P=.20, C=.20, r=.12, P=-.02, C=.04, N=-.05.

This figure also depicts replacement option value from Eqs 9, 16 and 24 when P=75, C=30.
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FIGURE 3

P* U 59.933 59.561 59.159 58.727 58.264 57.771 57.247 56.693 56.108 55.494 54.850

P* A 59.434 58.994 58.523 58.021 57.488 56.925 56.331 55.708 55.056 54.375 53.668

P* V 57.880 57.254 56.600 55.917 55.207 54.472 53.714 52.934 52.134 51.317 50.485

ROV U 314.49 311.48 308.25 304.81 301.16 297.32 293.28 289.06 284.67 280.12 275.42

ROV A 319.56 317.75 315.90 314.03 312.16 310.31 308.50 306.77 305.15 303.66 302.35

ROV V 336.17 338.21 340.78 343.93 347.78 352.41 357.96 364.57 372.41 381.69 392.65

CN=CS 10 11 12 13 14 15 16 17 18 19 20

This figure depicts revenue thresholds given the set (P*, C*=31.039) that indicates when P=<P* and

C=>C*, replacement is justified, setting Eqs 5, 6,7,8 =0 for Model II, Eqs 11,12,13, 14, 15=0 

for Model III, setting Eqs 19, 20, 21, 22, 23=0 for Model IV.  Assumes CN and CS as shown, otherwise Table 1 

values PI=80, K=100, P=.20, C=.20, P,C=.50, P,CN=-.1, C,N=-1, r=.12, P=-.02, C=.04, N=-.05.

This figure also depicts replacement option value from Eqs 9, 16 and 24 when P=75, C=30.
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FIGURE 4

P* D 69.05 67.94 66.92 65.97 65.07 64.22 63.40 62.62 61.88 61.15 60.46

P* U 66.03 64.26 62.56 60.91 59.32 57.77 56.26 54.79 53.35 51.94 50.56

P* A 65.64 63.77 61.97 60.23 58.56 56.92 55.34 53.79 52.28 50.81 49.36

P* V 64.53 62.36 60.28 58.28 56.34 54.47 52.66 50.89 49.17 47.49 45.86

K 50 60 70 80 90 100 110 120 130 140 150

This figure depicts revenue thresholds given the set (P*, C*=31.039) that indicates when P=<P* and C=>C*

equipment replacement is justified, setting Eqs 5,6,7,8 =0 for Model II, Eqs 11,12,13,14,15=0 for Model III

and setting Eqs 19, 20, 21, 22, 23=0 for Model IV.  Assumes K as shown, otherwise Table 1 values.
PI=80, CI=20, CS=CN=15, P=.20, P=.20, =-.50, r=.12, P=-.02, C=.04, N=-.05.
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FIGURE 5

NPV-K 110.71 100.71 90.71 80.71 70.71 60.71 50.71 40.71 30.71 20.71 10.71

ROV U 367.44 351.38 336.47 322.55 309.54 297.32 285.82 274.98 264.74 255.06 245.88

ROV A 374.01 359.51 346.00 333.35 321.48 310.31 299.77 289.81 280.39 271.46 262.98

ROV V 393.59 384.23 375.50 367.32 359.64 352.41 345.60 339.17 333.10 327.36 321.94

D (NPV-K) -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00

D ROV U -16.06 -14.92 -13.91 -13.02 -12.22 -11.50 -10.84 -10.24 -9.69 -9.18

D ROV A -14.49 -13.51 -12.65 -11.87 -11.17 -10.54 -9.96 -9.42 -8.93 -8.47

D ROV V -9.35 -8.73 -8.18 -7.68 -7.23 -6.81 -6.43 -6.07 -5.74 -5.42

K 50 60 70 80 90 100 110 120 130 140 150

This figure depicts replacement option value from Eqs 9, 16 and 24 when P=75, C=30,

Assumes K as shown, otherwise Table 1 values.
PI=80, CI=20, CS=CN=15, P=.20, P=.20, =-.50, r=.12, P=-.02, C=.04, N=-.05.

NPV is based on the last two RHS terms of Equation 4. 
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FIGURE 6

P* V 56.925 56.590 56.135 55.603 55.038 54.472 53.930 53.424 52.963 52.548 52.179

ROV V 310.306 315.644 323.114 332.120 342.063 352.411 362.732 372.710 382.135 390.887 398.912

N 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

The LHS of this figure depicts the boundary set (P*,C*=31.039) that indicates when P=<P* and

C=>C*, equipment replacement is justified, setting Eqs 19, 20, 21, 22, 23=0 for Model IV. 

Assumes technological progress volatility as shown, otherwise Table 1 values.

PS=80, CS=15, K=100, P=.20, C=.5, P,C=-.50, P,N=-.1, C,N=-1, r=.12, P=-.02, C=.04, N=-.05.

The RHS of this figure shows the replacement option value from Eq 24 when P=75, C=30.
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