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Novel Approach for Modeling Wireless Fading Channels

Using a Finite State Markov Chain

Ahmed Abdul Salam, Ray Sheriff, Saleh Al-Araji, Kahtan Mezher, and Qassim Nasir

Empirical modeling of wireless fading channels using
common schemes such as autoregression and the finite
state Markov chain (FSMC) is investigated. The
conceptual background of both channel structures and
the establishment of their mutual dependence in a
confined manner are presented. The novel contribution
lies in the proposal of a new approach for deriving the
state transition probabilities borrowed from economic
disciplines, which has not been studied so far with
respect to the modeling of FSMC wireless fading
channels. The proposed approach is based on equal
portioning of the received signal-to-noise ratio, realized
by using an alternative probability construction that
was initially highlighted by Tauchen. The associated
statistical procedure shows that a first-order FSMC
with a limited number of channel states can
satisfactorily approximate fading. The computational
overheads of the proposed technique are analyzed and
proven to be less demanding compared to the
conventional FSMC approach based on the level
crossing rate. Simulations confirm the analytical results
and promising performance of the new channel model
based on the Tauchen approach without extra
complexity costs.

Keywords: Autoregressive (AR), Finite state
Markov chain (FSMC), Multipath fading, Tauchen
modeling, Wireless channels.

I. Introduction

Wireless communication systems suffer problems
originating from adverse multipath fading in transmission
channels that is more prone to dynamic variations. The
severity of such fading is highly dependent on terminal
mobility and tall obstacles on the ground. An appropriate
channel model and simulation approach need to be
investigated to account for these channel effects. The
recently envisioned software-defined radio (SDR) is
considered an enabling technology that can flexibly adapt
against stringent channel conditions to maintain an
adequate quality of service. Vital details of channel state
information can hence be utilized to allow SDR to
reconfigure its internal parameters to combat channel
variations. The SDR is commonly known to be essential
in cognitive radio (CR), and it can employ the adaptive
coded modulation (ACM) technique to cope with dynamic
channel changes. It is therefore imperative in the
assessment of any wireless communication system to
retain the design and analysis of channel fading as
accurately as possible.
Spurred by the aforementioned challenges, many recent

studies were devoted to the investigation of such channel
characterization and simulation in wireless communication
systems. A good survey on the finite state Markov chain
(FSMC) origin of developments can be found in [1] and
the references provided therein. It has been indicated that
such statistical modeling can be traced to the initial efforts
by Gilbert for a two-state channel crossover in wireline
telephone circuits with burst noise, which was then
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improved by Elliot, in the early 1960s. This model is
commonly known as the Gilbert-Elliot channel (GEC) in
the literature, and it is intended to approximate the
Rayleigh channel fading behavior by only two states of
channel quality. The basic idea behind such a conceptual
approximation is to find a tractable methodology for the
formulation and calculation of channel information
capacity and associated bit error rates (BER). Therefore,
the FSMC approach can be instead called an information-
theoretic channel approximation.
In the GEC model, each state represents a specific

channel quality, which is either noisy or noiseless.
Generally, a binary symmetric channel with a given
crossover probability can be associated with each state so
that the channel quality for each state can be identified.
The Rayleigh fading effect in this case is assumed to be
wide stationary, which means the crossover and
transition probabilities have fixed values not altered by
time, and the FSMC is of the first-order type. The GEC
model has been widely espoused for performance studies
in wireless fading channel environments. However, the
GEC has severe limitations, especially in cases where
channel characteristics are highly likely to change
dramatically [2].
Several studies on FSMC channel modeling can be

identified in the literature, but only a few are described here.
An attempt to establish a connection between Rayleigh
fading channels and their FSMC counterparts can be found
in [2]. In this study, the signal-to-noise ratio (SNR) was
partitioned into a finite number of intervals corresponding
to an FSMC model. The zone between any two levels
represents the fading channel state, and hence the transition
and crossover probabilities from one state to another can be
interrogated using such an analytical-approximation
approach. A methodology to partition the received SNR
into a finite number of states according to the time duration
of each state was developed and analyzed in [3].
Alternatively and instead of the SNR range, the dynamic

range of channel fade amplitude was considered for
partitioning in [4]. It expanded the FSMC by introducing
intermediate channel states between adjacent symbol
epochs of the actual de-interleaver output. Such an
expansion claims that the FSMC is usable in real
situations of non-interleaved channels with fast fading
(fast Doppler frequency to symbol-transmission-rate ratio)
or interleaved (correlated) channels such as in diversity
combining. The validity of adopting the first-order FSMC
was examined using an alternate approach of an
autocorrelation function over consecutive data samples
[5]. A different approach using adjacent transition (AT)

was proposed to construct an FSMC model to represent
the Rayleigh fading channel [6]. The AT method generally
differs from the equal probability (EP) in [2] and equal
duration (ED) in [3].
From a wider perspective and out of many recent

special-purpose applications, two particular examples are
brought forward in regard to FSMC viability. The first
involves FSMC modeling for wireless transmission losses
that can be implemented to discriminate between wireless
and congestion-related losses in data networks using real
channel traffic [7], while the second involves FSMC-based
spectrum sensing policies in a cognitive radio (CR)
system. This system leverages past sensing outcomes of
several cooperating secondary users (SUs) to decide which
channel of primary users (PUs) should be sensed by each
SU at a given time [8]. In recognition of the distinctive
features of FSMC practices, such cornerstone applications
represent new research trends in wireless communication
systems.
Recent studies claimed that FSMC channel

approximation can also be tangible in other dynamic
applications. For example, FSMC channel modeling
based on Nakagami statistics in massive multiple-input
multiple-output (MIMO) schemes was reported for
vehicle-to-infrastructure [9] and high-speed railways
[10]. The Gamma shadowing effect of the people
movement approach using FSMC modeling in the ultra-
wide band broadcast was attempted in [11].
Given the conceptual facts exposed above, the main

contributions of this paper can be summarized as follows:

• Establish the analytical tools to design and test
Rayleigh fading channels using autoregressive (AR)
models.

• Show that the first-order AR(1) model is sufficient to
achieve adequate results without extra overhead.

• Illustrate that the strategy of approximating fading
statistics by first-order FSMC performs broadly well.

• Debut the approximation notion settled by Tauchen
for FSMC modeling of wireless fading channels.

• Validate the supremacy of the new FSMC modeling
using the Tauchen method compared with classical
methods.

The rest of this paper is organized as follows. Section II
provides a brief background on channel fading. Section III
presents the AR channel, while the FSMC is given in
Section IV. The new approach of statistical modeling
based on the Tauchen procedure is outlined in Section V.
The simulation results are illustrated in Section VI and are
followed by concluding remarks.
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II. Fading Channel Background

Time-varying multipath channels can be either time or
frequency selective, or both together. As such, they are
labeled as doubly selective. The speed of time and
frequency variations determines whether a channel is of a
slow fading or fast fading nature. In general, commercial
land wireless communication systems are assigned
predefined channels with small frequency bandwidths.
Hence, our approach will consider a narrowband baseband
signal over a flat-fading Rayleigh channel only.
Consider the linear dynamic model for a received

baseband signal at the output of a matched filter given by

yðkÞ ¼ hðkÞxðkÞ þ nðkÞ; (1)

where h(k) is the fading channel envelope, which is a
recursive complex-valued random process, and n(k) is the
complex zero-mean additive white Gaussian noise
(AWGN) �CNð0; r2nÞ: The amplitude a and phase h
components of the fading channel are governed by h(k) =
a(k)ejh(k). The fading channel can be decomposed into its
real and quadrature components h(k) = hr(k) + jhq(k), and
each is given by �Nðl; r2hÞ. The mean value l represents
the line-of-sight propagation component (LOS). If it is
zero, the fading process is called Rayleigh fading;
otherwise, it is called Rician fading, as recommended by
the ITU [12]. In multipath channels, the fading amplitude
a has a Rayleigh probability distribution function (PDF)
[1], [13], [14]

fhðaÞ ¼ a
r2h

expð� a2

2r2h
Þ; a 2 ½0;1Þ: (2)

and the fading channel phase has a uniform PDF as below:

f hðhÞ ¼
1
2p

; h 2 ½0; 2pÞ: (3)

In the same manner, but with a slightly different
portrayal, such a Rayleigh PDF can also be implied for the
fading SNR random process [3], [6], [7]. Even though
multipath fading gains and their real and imaginary
components are driven by uncorrelated wide-sense
stationary (WSS) AWGN, it is known that the time
variations of such channels interact in a correlated manner.
Such intercorrelation will determine the channels’
statistical, time, and frequency characteristics. It is hence
essential to seek a tractable mathematical model to
accurately describe the dynamic time variations of fading
channels. The most widely accepted statistical model in
such cases was developed by Jake and Clark (JC) [1], [5],
[13], [14]. In the JC model, the autocorrelation function

(ACF) of the real and imaginary components of a fading
channel gain is given by

RhðTsÞ ¼EfhrðkÞh�r ðk � TsÞg
¼EfhqðkÞh�qðk � TsÞg
¼r2hJoð2pfDTsÞ

(4)

where Jo(.) is the zeroth-order Bessel function of the first
kind, fD = (v/c)fo is the Doppler spread frequency, v is the
terminal travelling speed, fo is the carrier frequency, c is
the speed of light, and Ts is the channel symbol duration.
The power spectral density (PSD) of the above ACF is
denoted by

Sðf Þ ¼
r2h

2pf D
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f =fDð Þ2
q ; for jf j\f D

0; otherwise:

8<
: (5)

The channel fading characteristics are determined by the
Doppler frequency owing to the motion of a mobile
terminal. In slow or flat-fading channels, the channel
coherence time Tc � 1/fD is larger than the symbol period
Ts, alternatively fDTs « 1. For extremely fast-fading
channels, fDTs » 1. However, such channels are not
commonly encountered in most real-world wireless
communication systems.

III. AR Channel Modeling

The AR filters are finite impulse response (FIR)
structures commonly utilized to approximate fading
channels of particular time and frequency responses. This
is a result of the traceable computation of their parameters
and correlation properties. Let us assume we have a
frequency-nonselective fading channel with L resolvable
paths. This channel is anticipated to be slowly varying and
constant during the observation interval. By using a
conventional tapped delay line model with tap spacing
equal to Ts, the fading formula for real and imaginary
components is given by [1], [14], [15]

hðkÞ ¼ �
XL
l¼1

alhðk � lÞ þ wðkÞ; (6)

where a1; a2; . . . ; aLf g are the AR filter coefficients of
order L and |al| < 1, denoted as AR(L), and w(.) is a
complex AWGN process with uncorrelated real and
imaginary components and is denoted by �CNð0; r2wÞ.
The ACF and PSD approximates generated by the above

AR model need to be evaluated. This can be done by
either comparing against empirical channel measurements
taken from the field, or from a specified analytical

720 ETRI Journal, Vol. 39, No. 5, October 2017

https://doi.org/10.4218/etrij.17.0117.0246



approach as defined in equations (4) and (5) above. Since
the plausibility of the first option is highly dubious owing
to practical and economical constraints, the second option
is employed herein instead.
There are few methods proposed in the literature to adjust

the AR model parameters per the desirable fading
covariance statistics. Chief among the various methods is
one that employs Yule–Walker (YW) equations [1], [14],
[15]. The YW approach is considered further here because
the viability of other methods is susceptible to terms of
extra complexity and computational demand. First, we need
to define the PSD of the AR(L) fading model [14], [15]:

Shhðf Þ ¼ r2w

j1þPL
l¼1 ale

�j2pflj2
: (7)

The AR(L) parameters are given in termsf the desired
model ACF. Rhh(l) is hence described recursively below:

RhhðlÞ ¼
� PL

m¼1
amRhhðl � mÞ; l� 1

� PL
m¼1

amRhhð�mÞ þ r2w; l ¼ 0

8>><
>>: (8)

and in matrix form given by

Rhha ¼ �v; (9)

where

Rhh ¼
Rhhð0Þ Rhhð�1Þ . . . Rhhð�Lþ 1Þ
Rhhð1Þ Rhhð0Þ . . . Rhhð�Lþ 2Þ

..

. ..
. . .

. ..
.

RhhðL� 1Þ RhhðL� 2Þ . . . Rhhð0Þ

2
6664

3
7775;

(10a)

a ¼ ½a1 a2 . . . aL�T; (10b)

v ¼ ½Rhhð1Þ Rhhð2Þ . . .RhhðLÞ�T; (10c)

r2w ¼ Rhhð0Þ þ
XL
l¼1

alRhhð�lÞ: (10d)

Solving the L set of YW equations for the desired ACF,
the generated AR(L) process yields the following ACF
estimate:

R̂hhðlÞ ¼
RhhðlÞ; 0� l� L

� PL
m¼1

amR̂hhðl � mÞ; l[ L.

8<
: (11)

It is important to note that Rhh is a positive definite
Toeplitz type to permit the application of the above
equations.

IV. FSMC Channel Modeling

A conventional first-order FSMC model is explored
here, relying on common aspects in [1]–[8] and [13].
Despite the fact that some of these references have
challenged such a scheme, many studies have shown that
the first-order system is sufficient for adequate and
tractable analysis and results. The methodology proposed
in [2], which constituted the basis of other studies [3]–[8]
and [13], will be adopted herein to form an FSMC channel
to reflect the Rayleigh fading statistics.
An FSMC channel model is a discrete stochastic process

in which the current state depends on the complete history
of past states through the most recent state only. Among
several different approaches, it can be built by partitioning
c (the received SNR) into a fixed number of states or
intervals. Let us consider an N channel state space
S = {s1, s2, . . . , sN} and the corresponding BER, or
crossover (also called transition) probability Pen where the
subscript “e” stands for the error, and n 2 {1, 2, . . . , N}.
If we are using M-ary constellation symbols, which is the
common case, then these crossover probabilities represent
the symbol error rate (SER). Let Pn,j be the state transition
probability and pn be the steady state probability such thatPN

n¼1 pn ¼ 1 for the simplest equiprobable SNR
quantization method. The PDF given in (2) is revised to
consider the AWGN and instantaneous c, recalling that the
fade amplitude is characterized by Rayleigh statistics,
while the power of which has an exponential probability
distribution given by

f ðcÞ ¼ 1
�c
e�

c=�c ; c 2 ½0;1Þ; (12)

where �c is the average SNR. The first-order FSMC
constitutes the transitions that occur between adjacent
states, and hence the probability Pn,j = P[sn|sj] = 0 if
|n � j| > 1. Let the boundary separation between different
channel states represented by Γ = {Γ1, Γ2, . . . , ΓN}, that
is, when the received SNR is in the interval [Γn, Γn+1) at
time k, the channel state is defined to be sn. Then, the
forward and backward transition probabilities and the
level crossing rate (LCR) are given by [1]–[4], [6], [13],
respectively:

Pn;nþ1 � UðCnþ1ÞTs
pn

; n ¼ 0; 1; . . . ;N � 1; (13)
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Pn;n�1 � UðCnÞTs
pn

; n ¼ 1; . . . ; N ; (14)

UðCnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2pCn

�c

s
fDe

�C
n=�c : (15)

These expressions assume the time axis is divided into
“slots” of identical size equivalent to the symbol period Ts.

V. FSMC Approximation Method

There are many varieties of statistical approximation
methods in the literature. The method that will be explored
herein has solid foundations in economic, finance, and
econometric modeling systems. Tauchen pioneered this
field, and his work is well known and adopted in many
studies. He contributed to solving functional equations
where the state variables have autoregressive patterns [16],
[17]. Computational simplicity and generating almost
accurate results under uncorrelated error terms are
recognized features attributed to this approximation
scheme. To the best knowledge of the authors, this
approach has never been addressed or attempted properly in
the signal processing field. Hence, this paper contributes the
first lead of deploying the Tauchen procedure in the FSMC
modeling of wireless fading channels.
To use the approach laid down by Tauchen, one must

assume the process values stay within bounded intervals to
solve the problem at hand. As stated earlier in this paper,
these intervals are curbed by N different channel states,
which are generated by the AR(1) channel model as given
in (6). These intervals and states are also assumed to be
equally spaced to make the Tauchen approach valid. Let
the probability of w(k) be such that P[w(k)] ≤ u =
F(u/rw), where u is any value and F is the cumulative
distribution function (CDF) with unit variance. The
following assumptions were made by Tauchen:

s1 ¼ �sN ;

f ¼ sn � sn�1;

sN ¼ mrh ¼ m
�
r2w=ð1� a2Þ�1=2;

sn ¼ s1þðn� 1ÞðsN � s1Þ
N � 1

;

(16)

where m is any multiplicity number. There is no particular
rule established to set the value for this multiplication
parameter; however, [16], [17] stated that 1:2	 ln Nð Þ and
3 could be proposed. From this, one can calculate the
transition probabilities for j 2 [2, N � 1] as below:

Pn;j ¼ F
sj � asn þ f=2

rw

� �
� F

sj � asn � f=2
rw

� �
: (17)

This expression can be thought of as the probability that
the event asn + w 2 [sj � f/2, sj + f/2] takes place. The
transition probability from state n to state 1 is given by

Pn;1 ¼ F
s1 � asn þ f=2

rw

� �
(18)

and the transition probability of leaving state n to state N
is

Pn;N ¼ 1� F
sN � asn � f=2

rw

� �
: (19)

The above discrete probabilities converge in a weak sense
to their continuous terms in the stochastic recursive model.

VI. Complexity Analysis

The computational complexity of the proposed Tauchen
approximation for FSMC channel modeling is assessed
with reference to the conventional LCR approach in this
section. The computational complexity usually includes
the overall operation of mathematical addition, subtraction,
multiplication, and division procedures. The complexity
analysis of FSMC channel models is a challenging
threefold task. While assuming the observed samples are
statistically independent, the complexity involves the
following three steps that need to be efficiently computed:
1) probability of the observation sequence for a given
model, 2) selection of the corresponding state sequence,
and 3) adjustment of the model parameters. These steps are
common in the general context of most hidden Markov
models encountered in various applications [18], [19].
As stated earlier, the widely adopted procedure for the

iterative estimation of LCR-FSMC parameters is the
forward–backward (FB) algorithm. When given a finite
data sequence of k 2 [1, K] samples for training, the FB
algorithm smoothly evaluates the likelihood of such data
and coordinates the sufficient statistics for the FSMC
updated parameters according to the Baum-Welch (BW)
algorithm [18], [19]. Some approximations need to be
considered in order to proceed with the computational
analysis. The linear expressions given in (13) and (14) can
be applied directly, while the Taylor series expansion is
the best candidate to approximate the exponential and
square root functions given in (15). The CDF of the
Tauchen-FSMC model expressed in (17) can be attended
by using the famous error function F(z) = erf(z). For the
purpose of presentation clarity and consistency, and by
referring to the relevant functions in [20], these
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approximations are provided as shown below:

e�z ¼
X1
i¼0

zi

i!
¼ 1� zþ z2

2!
� 
 
 
 ; (20)

ffiffi
z

p ¼ f ðzoÞ þ ðz� zoÞ _f ðzoÞ þ ðz� zoÞ2€f ðzoÞ þ 
 
 
 ; (21)

erf ðzÞ ¼ 2ffiffiffi
p

p z� z3

3	 1!
þ z5

5	 2!
þ 
 
 


� �
; (22)

where f(zo) is
ffiffi
:

p at arbitrary constant zo, _f ðzoÞ is the first
derivative of ffiffi

:
p at zo, and so on to the end of series.

The steady-state probabilities pn, where each denotes
that the FSMC attributes originate in state n, are assumed
to be fixed indicating that they remain in their initial
conditions. This is valid in the context of WSS processes
where the channel parameters are expected to have trivial
variations. Furthermore, we address the common regime
of weak channels by having the value of z. be small
enough to make such an assumption admissible. This also
is a common practice in most studies since previous
results showed that most partitioning occurs in regions of
low SNR levels where the error probability is significant
[3], [7]. Therefore, the first two terms of (20) and the
second term only of (21) are used to approximate function
(13) to (15), while the first term of (22) is accounted for by
the approximation of (17).
By successively performing the above procedures over

the entire K training population, the time operational
requirements Oð:Þ were developed for both the LCR-
FSMC and Tauchen-FSMC modeling schemes, as shown
in Table 1. The parameters that are calculated just once in
the Tauchen-FSMC model are discarded from the
operational complexity assessment.
Using the partition policy of 10 states, the above total

computation figures would be 26 9 106 and 10 9 106 for
the LCR and Tauchen FSMC models, respectively, for a
105-long training sequence. This is a modest example that
is applicable to Rayleigh faded channels; however, the
difference in computational figures gets exponentially
larger as the number of states increases. The situation of
extensively large number of states is expected in diverse
applications, such as speech recognition where the
acceptable minimum number of states lies between 32 and

256 for modest performance [18]. Irrespective of the
situation, the difference in the time computational loads,
and also with regard to memory, is undoubtedly apparent
in favor of the Tauchen-FSMC model compared with
LCR-FSMC.

VII. Simulation Results

Simulation results are provided to verify the
performance of the proposed Tauchen-FSMC model
approximation.
An AR(1) model generator based on the JC fading

channel is developed first. The simulation scenario
assumes a slowly fading channel with one resolvable path
and without an LOS component. The channel fading
parameters are governed by the values fDTs = 0.01 and
Ts = 0.1 ms. This is equivalent to a vehicular mobility of
60 km/h, which is typically expected as the average speed
in urban areas. The SNR is assumed to be 0 dB, and the
time stream of the generated Rayleigh channel envelope is
depicted in Fig. 1. An AR(1) model is simulated using
a = 0.8, as shown in Fig. 1, while the associated ACF and
the bell-shape-like PSD trends of which are shown in
Figs. 2 and 3, respectively.
The ACF figure is generated using the YW algorithm.

Applying the fast Fourier transform (FFT) yields the PSD.
The JC channel model is also depicted in Figs. 2 and 3 for
comparison with the AR(1) results. It is evident that the JC
model has a greater resemblance to the Bessel function in
the time domain, while it accurately identifies the Doppler
frequency fD in the frequency domain. On the other hand,
AR(1) is considered an approximation to such JC model
behavior. AR(1) follows the envelope of the Bessel-like

Table 1. FSMC complexity operations.

Model Mul/div Add/sub Total

LCR-FSMC O(2(N2+N)K) O(4NK) O(2(N2+3N)K)

Tauchen-FSMC O(2NK) O(8NK) O(10NK)

5
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Fig. 1. Envelope of AR(1) slow fading Rayleigh channel for
a = 0.8.
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function of the JC model in the time domain, while the
PSD of which starts to pick up almost nearby fD in the
frequency domain. To some extent, such a simple
approximation could be acceptable in general applications.
When more accurate channel results are required, the
order of the autoregressive model needs to be increased.
This agrees with suggestions in some studies to increase
the order and make it tens, or a few hundred, to fit
particular applications. However, this will be at the cost of
extra computational loads.
Next, the simulation of first-order FSMC channel

models is considered. The channel fading envelope, or its
associated SNR, is partitioned into 10 equal intervals.
First, the LCR method and the transition probabilities
are analyzed. Their cumulative trend and LCR curve are
calculated as given earlier, the results of which

are depicted in Figs. 4–6, respectively. As expected, the
transition probabilities and their cumulative trends show
sharp crossovers between adjacent states and with very
small probabilities to transit to other far states. The
footprint contours exhibit heavy concentrations of states
transiting to themselves or to their neighboring states. This
confirms the applicability of this statistical model as
claimed by most prior studies.
Figure 6 shows a persistence rate for a state to remain or

to cross to the next neighboring states only. This rapidly
declining exponential curve obviously depicts the state’s
trend for short-time traversing rather than long-time
traveling to distant states. The more state intervals that are
considered, the sharper this exponential behavior, and
hence shorter transition paths are consolidated. This
suggests having a larger pool of state partitions. However,
there is no feasible tool to examine the influence of the
envelope fading parameter a on the LCR-FSMC model.
Hence, this model can be identified as being insensitive to
fading strength variations, which is one of the main
findings of this paper.
Second, the Tauchen approximation method is

examined for the first-order FSMC channel model.
Figures 7 and 8 illustrate the results implemented for the
same envelope parameter a = 0.8 as before. Despite the
results showing statistical channel features almost
comparable to those of the LCR method, a more resilient
behavior can now be detected. This is mainly attributed
to the direct influence of the a parameter on the
autoregressive filter bandwidth. In other words, such an
effect is explicitly interpreted in terms of the channel
memory and its profound reliance on old or current states.
The smaller the bandwidth, the stronger the link to current
states. The opposite is also true, and hence there would be
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more correlation governing remote jumps into past or
future channel states.
Another envelope parameter value of a = 0.95 is

examined to consolidate the above important finding, and
the generated results are illustrated in Figs. 9 and 10. The
transition probabilities and their cumulative trends show
more resemblance to those obtained for the LCR method.
Such statistical behavior reflects on the flexibility of the
Tauchen model in determining the system autoregression
order on the expressed statistical approximations. This is
quite different than what was experienced [2], [3], [6] with
respect to the static behavior of the LCR method, which
hence can be considered as a merited feature counted for
the Tauchen method.
It is worth mentioning that the selected values of the

fading parameter a of 0.8 and 0.95 are in accordance with
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the ITU recommendations of expected channel coherence
between 50% and 90% in reality [12].

VIII. Conclusions

Insightful guidelines for the essential requirements to
build wireless fading channel simulators are provided.
Two conceptual fading structures are discussed and
investigated, namely, the AR and the FSMC models. The
AR(1) models are examined and compared against the
common simulation methods based on the JC channel
design. The AR(1) models lead to results that could be
acceptable to some extent, the decisive resolution of which
is highly determined by the sensitivity and accuracy levels
of the applications at hand. The higher the order of the AR
models, the better statistical characteristics and time and
frequency performances obtained for the channels being
examined.
On the other hand, FSMC channel modeling is also

investigated using the LCR and Tauchen approximation
schemes. The latter scheme is proposed in this paper for
the first time to deal with wireless fading channel
applications. The LCR provided reasonable results,
however, its static nature and insensitivity against the
underlying channel autoregression model presents a
limitation on the scheme that was assumed as prevailing in
the literature for a considerable time. The remedy for such
difficulty, and the retaining of the accessibility of the
autoregression’s direct influence on the statistical
probability analytics of the FSMC, can be readily
materialized, thanks to the flexibility gained by having the
Tauchen modeling rendering such tasks easier than before.
The given simulation exercises confirmed the instrumental

viability of the above claim, which could be considered as

a cornerstone for the Tauchen-FSMC fading channel
approximation paving the road for further future
exploration. Whatever the FSMC model, a larger number
of states produces better statistical performance at the
expense of extra computations. Such computational
demands were also quantified and assessed in this paper.
In addition to the competent accuracy achieved by
Tauchen-FSMC channel model, the complexity figures
showed that this approximation methodology has
favorably less computational overhead compared with the
conventional LCR-FSMC approach.
Further challenges foreseen for the Tauchen FSMC

approximation in future endeavors may constitute the
calculation of performance probabilities in wireless
communications, and channel state estimation involving
ACM systems. Moreover, exploiting such a novel FSMC
paradigm for spectrum access and management in CR
systems might also be appealing for future attempts.
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