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Abstract 

Expert knowledge elicitation lies at the core of judgmental forecasting – a domain that fully 

relies on the power of such knowledge and its integration into forecasting. Using experts in 

a demand forecasting framework, this work aims to compare accuracy improvement and 

forecasting performance for three judgmental integration methods. To do so, a field study 

was conducted with 31 experts in four companies. The methods compared were the 

Judgmental Adjustment, the 50-50 Combination, and the Divide-and-Conquer. Forecaster 

expertise, credibility of system forecasts and the need to rectify system forecasts were also 

assessed and mechanisms to perform this assessment were considered. When a) a 

forecaster’s relative expertise was high, b) relative credibility of system forecasts was low, 

and c) system forecasts had a strong need for correction, Judgmental Adjustment improved 
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accuracy over the other integration methods as well as over the system forecasts. Experts 

with higher expertise showed a higher adjustment frequency. Our results suggest that 

Judgmental Adjustment promises to be valuable in the long term if adequate conditions of 

forecaster expertise and credibility of system forecasts are met. 

 

Keywords 

 Judgmental forecasting, expert selection, expert elicitation methods, credibility of system 

forecasts 

1. Introduction  

Forecasts present critical inputs into decision-making processes with experts playing vital 

roles in bringing specialized knowledge not captured by statistical models. The issue of 

effectively integrating computer capabilities to model historical patterns with human 

expertise to monitor and assess contextual information has been attracting vast attention, 

primarily within the judgmental forecasting domain (Lawrence, Goodwin, Oconnor, & 

Onkal, 2006). Volatile business dynamics and barriers to accessing reliable domain 

information make it extremely difficult to rely solely on statistical forecasting methods, 

particularly in situations such as product demand forecasting, when decision impact is large 

and uncertainty is high (Sanders & Manrodt, 2003). As a result, expert knowledge needs to 

be systematically incorporated into the process of demand forecast improvement – a 

process where expertise plays a key part in today’s competitive business settings.   
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Expert knowledge elicitation poses a number of challenging questions to researchers and 

practitioners in judgmental demand forecasting as well as across a host of other decision-

making domains. These include questions on how the elicited responses may be affected by 

(i) the choice between different elicitation methods within a specific context  (Bolger & 

Rowe, 2014,2015; Cooke, 1991); (ii) the selection and number of experts (Aspinall, 2010); 

(iii) experts’ personal attributes (Budnitz et al., 1997; Morgan, 2014); as well as (iv) the 

presentation of relevant information to overcome biases (Martin et al., 2012; Morgan, 

2014).  Judgmental forecasting context offers a good platform to study such issues with 

apparently conflicting research findings on the contribution of expertise (Lawrence et al., 

2006).  

In particular, a comparison of various techniques (i.e., judgmental integration methods) for 

integrating systems advice and human judgment is an important step in assessing how to 

improve demand forecasting processes and how to make better use of the elicited expert 

knowledge.  Comparisons among such methods are quite uncommon as extant research 

usually focuses on each technique separately (Webby & O'Connor, 1996), leading Goodwin 

(2002) to call for more direct comparisons.  Exploring the performance of judgmental 

integration methods is important for both the efficient design of Forecast Support Systems 

(FSS) as well as for understanding the conditions for effective elicitation and use of the 

expert knowledge necessary to improve the functioning of these systems.  For instance, the 

credibility of FSS-generated forecasts might affect expert forecaster’s behavior, while 

frequent disuse of system advice may lead to poor performance in judgmental forecasting 

(Alvarado-Valencia & Barrero, 2014; Goodwin & Fildes, 1999).  Also, the timing of expert 

intervention may be critically important since not all judgmental adjustments contribute 
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equally to accuracy (Trapero, Pedregal, Fildes, & Kourentzes, 2013). That is, expert 

adjustments over FSS forecasts may not always be advantageous and the particular benefits 

may be a function of when and how the expert judgment is integrated into the forecasting 

process.  

Focusing on the above issues, this paper reports a field experiment that systematically 

compares three methods for integrating expert judgment with system-generated forecasts. 

In addition, formal mechanisms to assess the relative expertise of forecasters and the 

relative credibility of system forecasts are evaluated in companies under real settings. 

Finally, instances when corrections are needed (i.e., when system forecasts have low 

accuracy and there is room for improvement) are compared with instances when corrections 

are not needed (i.e., when adjustments have greater potential to deteriorate accuracy of 

system-generated predictions because there is small room for accuracy improvement).  

2. Literature review and research hypotheses 

2.1. Comparison of integration methods  

Judgmental integration methods are pervasive, particularly in supply chains where a large 

number of demand forecasts must be performed to reduce inventory costs and achieve 

better service levels (Syntetos, Boylan, & Disney, 2009). Companies’ operations can 

benefit from the integration of computer-based forecasting methods with the wider 

organizational context, where judgment plays an important role (Fildes, Nikolopoulos, 

Crone, & Syntetos, 2008).  

A typical approach to judgmental integration is first to set an automatic baseline (produced 

by a system using statistical forecast procedures based on historic data) and then to 
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judgmentally modify these initial forecasts to incorporate contextual knowledge, a process 

referred to as Judgmental Adjustment (Fildes, Goodwin, Lawrence, & Nikolopoulos, 2009). 

In Judgmental Adjustment, the forecaster is usually given the historical time series (in a 

table, a graph or both formats) and the system forecast and is asked to produce a final 

forecast.   

Judgmental Adjustment may improve accuracy particularly when expert judgments 

incorporate special events and contextual knowledge into unstable series (Fildes et al., 

2009; Goodwin, 2002; Webby & O'Connor, 1996). However, such adjustments might be 

influenced by several biases, including overconfidence in own judgment (Friedman et al., 

2001; Lawrence et al., 2006; Lim & O'Connor, 1996; Sanders, 1997); anchoring and 

adjustment (i.e., anchoring the forecast in a single cue like the last point or the system 

forecast, and then making insufficient adjustments to this cue) (Epley & Gilovich, 2006; 

Fildes et al., 2009; Goodwin, 2005; Lawrence & O'Connor, 1995); and predisposition to 

adjust (forecasters making too many small harming adjustments to system forecasts without 

specific reason, leading to deteriorated accuracy) (Fildes et al., 2009; Lawrence et al., 2006; 

Sanders & Manrodt, 1994; Önkal, Gönül, & Lawrence, 2008). Usually, large and negative 

adjustments tend to perform better because they show less bias than positive adjustments 

(Fildes et al., 2009).  

In addition to Judgmental Adjustment, several integration methods have been proposed as 

alternatives in the literature. The combination method consists of a simple mathematical 

aggregation of human and system forecasts. Typically, this combination is a simple average 

(hereafter called 50-50 Combination) that has been shown to be robust in several contexts 

(Blattberg & Hoch, 1990; Franses & Legerstee, 2011). In this method, the forecaster is 
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usually given the historical time series of the product (in a table, a graph or both formats) 

and is asked to produce a final forecast. Typically, the forecaster does not know that his/her 

forecast is going to be combined with a system forecast. Combination has been shown to 

perform well when inputs are based on independent information sets (Goodwin, 2000; 

2002), but the same cognitive biases present in Judgmental Adjustment may always appear. 

Finally, the Divide-and-Conquer method is based on the notion that the system forecast is 

already based on historical information. Therefore, forecasters should avoid re-assessing 

historical information because that would lead to inefficient overweighting of past data. 

The Divide-and-Conquer method restricts/prevents human access to this previously 

computer-modeled information (i.e., the forecaster is not given the time series and the 

system forecast, but is told how this system forecast is generated), and asks the forecaster 

whether s/he would like to modify the system forecast (in light of additional information 

possessed by the forecaster) and, if so, by which amount. 

In Divide-and-Conquer, decision makers delegate to the system the modeling process of 

available structured information while focusing their efforts on unmodeled important 

information that can lead to changing the system advice (Jones & Brown, 2002). 

Consequently, biases such as anchoring and adjustment might be reduced. However, the 

lack of information availability might override this advantage. Although this method has 

been suggested for forecasting tasks (Jones, Wheeler, Appan, & Saleem, 2006; Wright, 

Saunders, & Ayton, 1988), its applicability has not been tested for the specific case of 

demand forecasting. 
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Comparisons of expert elicitation methods have found that advantages of specific methods 

may be task-dependent; i.e., a direct comparison of elicitation methods on different 

problems showed that no single approach performed consistently better across all tasks 

(Flandoli, Giorgi, Aspinall, & Neri, 2011). For instance, conjoint analysis might be 

preferred when the task is framed as comparisons, while probability elicitation may 

perform better when a different task structure is used (Dalton, Brothers, Walsh, White, & 

Whitney, 2013).  To the best of our knowledge, very few studies have attempted direct 

comparisons among judgmental integration methods using real experts in a demand 

forecasting task. In particular, a formal comparison of Judgmental Adjustment and Divide-

and-Conquer showed that (a) providing the statistical baseline for a judgmental adjustment 

can lead to more weight given to statistical information as the forecaster tries to incorporate 

contextual and historical information simultaneously, while (b) encouraging the divide-and-

conquer strategy leads to better performance (Jones et al., 2006). Along similar lines, 

Franses and Legerstee (2013) have demonstrated that formally incorporating judgment may 

prove helpful when model performance is poor. In an extensive demand forecasting study, 

Fildes et al (2009) have shown that 50-50 Combination (also known as the Blattberg-Hoch 

method) improves accuracy by decreasing the harmful impact of unjustified large (and 

usually positive) adjustments.  Similar results are echoed using non-expert participants 

(e.g., in extrapolation tasks without contextual information (Webby & O'Connor, 1996)).  

The current study aims to fill this research gap by focusing on a formal comparison of these 

three integration methods via a demand forecasting task with real experts in their 

naturalistic settings. It should be noted that, although group integration methods such as 

Delphi have been shown to improve forecast accuracy (Armstrong, 2006; Rowe & Wright, 

2001), our focus is on individual judgmental integration methods that allow us to isolate the 
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effects of individual expertise and credibility of system forecasts within an expert 

knowledge elicitation framework. 

The three aforementioned methods exemplify a trade-off between information availability 

and well-known cognitive biases at an individual level. It may be argued that Judgmental 

Adjustment provides the most information of the three approaches, but may be more subject 

to the anchor and adjustment bias, precisely due to the amount of information available. 50-

50 Combination withholds a piece of information from the forecaster (i.e., the system 

forecast), and the forecaster is not allowed to perform the final integration so as to reduce 

biases. Finally, Divide-and-Conquer tries to prevent the forecaster from having two biases: 

anchoring in past demand/system forecasts and making unjustified adjustments to the 

system forecast; but carries the associated cost of significantly less available information.   

Previous work has shown that debiasing via restricting information access is a hard task 

(Goodwin, Fildes, Lawrence, & Stephens, 2011). On the other hand, access to relevant 

information, particularly when it comes from different/independent sources, can improve 

accuracy if it is well integrated by the methods or by the judges (Bolger & Wright, 2011; 

Goodwin, 2002; Van Bruggen, Spann, Lilien, & Skiera, 2010). Therefore, we hypothesize: 

H1: Judgmental adjustment will yield the highest accuracy improvement in demand 

forecasts among the evaluated methods. 

 

However, our expectation is that there might be some measurable effect on debiasing from 

the Divide-and-Conquer method. In particular, we expect that there would be less 

anchoring over the system forecast when correction is needed (because the anchor value is 

not provided) and a lower number of adjustments made when a correction over the system 

forecast is not needed (by focusing the forecasters initially on having or not a rationale for 
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the adjustment). Note that this comparison needs to be made against the Judgmental 

Adjustment method because the 50-50 combination method does not provide system 

forecasts to the experts (thus banning any corrections to such forecasts).  

Accordingly, our hypotheses are as follows: 

H2: The “Divide-and-Conquer” method will lead to less frequent adjustments than the 

“Judgmental Adjustment” method when correction over the system forecast is not needed. 

  

H3: The “Divide-and-Conquer” method will lead to larger adjustments than the 

“Judgmental Adjustment” method when correction over the system forecast is needed.  

 

2.2. Expertise and credibility of system forecasts  

When integration methods are used in demand forecasting, the resulting forecasts might be 

affected by the individual’s expertise as well as by the perceived credibility of system 

forecast suggestions (Alvarado-Valencia & Barrero, 2014; Lawrence et al., 2006).  

The importance of expertise demands an adequate definition and a measurement of this 

critical construct. Definitions found in the literature usually refer to at least three 

components of expertise: first, a field of specialized knowledge where expertise is 

observable (domain knowledge); second, an outstanding expert’s performance in this field; 

and third, the consistency (i.e., time-lasting and reproducibility) of such performance. 

Measurement of expertise is usually conducted through comparisons (novice vs expert), 

peer recognition or objective measures of efficiency, and effectiveness in domain 

knowledge (Charness & Tuffiash, 2008; Germain & Tejeda, 2012). In expert elicitation, a 

priori selection (based on publication record, group membership or résumé), co-nomination 

and peer suggestions are frequent (Butler, Thomas, & Pintar, 2015; EPA, 2011; Meyer & 
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Booker, 2001; Nedeva, Georghiou, Loveridge, & Cameron, 1996) because it is quite 

difficult to develop tailored tests for knowledge domain effectiveness.  

Expertise in the demand-forecasting domain knowledge has been related primarily to 

intimate product knowledge (Lawrence et al., 2006). This intimate product knowledge 

allows the expert to be in contact with environmental information that is not captured by 

statistical models, such as special promotions (Trapero et al., 2013), sudden and unexpected 

changes in the market, competitors’ behavior, and supply-related constraints (Lee, 

Goodwin, Fildes, Nikolopoulos, & Lawrence, 2007; Webby, O'Connor, & Edmundson, 

2005). Therefore, experts in demand forecasting might be found in job positions that are in 

permanent contact with such unmodeled environmental information.  

However, information access is not enough. In addition, it is necessary to have (i) the 

ability to integrate this information into the final forecast, and (ii) the motivation to do such 

integration (Gavrilova & Andreeva, 2012). The review of Webby & O’Connor (1996) 

showed that experiential knowledge of cause-effect relationships encountered in the 

industry may not be a good predictor of superior accuracy. Another study (Edmundson, 

Lawrence, & O'Connor, 1988) showed that intimate domain knowledge elicited from 

experts was useful only for the most important products, but not for the others. 

In sales and operations areas, there are several positions where an important part of work 

performance is to assess or forecast demand formally or informally based on contextual 

information. For instance, supply chain managers make decisions about when and how 

much to order for different products. Thus, success in these positions likely depends on the 

correct assessment of future demand based on information about product rotation and the 
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possible size of the order of key clients. Marketing and sales managers are expected to take 

actions to modify the demand and counteract competitors, which requires the ability to 

correctly foresee the effects of their actions.  

If sales and operations experts have different relative expertise contingent on their job 

positions, and their job performance is related to adequate forecasting, it follows that their 

job expertise is partially related to an ability to integrate information into forecasts. This 

ability would be particularly useful when system forecast lacks this information and, as a 

consequence, a correction over the system forecast is needed.  As a result, our fourth 

hypothesis is: 

H4: Higher employee expertise will improve accuracy when correction over the system 

forecast is needed.  

 

Notice that we expect to verify H4 only if job expertise directly or indirectly requires an 

assessment of future demand, as explained before, and only where a correction over the 

system forecast is really needed. 

In Judgmental Adjustment and Divide-and-Conquer, experts relate their expertise to system 

forecasts’ advice. Although it is expected that experts exhibit overconfidence in their own 

judgment and, as a result, discount the advice (Bonaccio & Dalal, 2006), it can also be 

expected that individuals show different levels of advice discounting due to different levels 

of source credibility.   

Source credibility is related to a general valuation of the trustworthiness of the trustee 

outside of the context of specific advice or suggestion (Mayer, Davis, & Schoorman, 1995), 

and results from a combination of prior information that might be grounded on source 

reputation, second-hand information on past performance, current experience with the 
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source, as well as organizational and contextual factors (Alvarado-Valencia & Barrero, 

2014).  Extant work suggests that credibility of human sources may be assessed differently 

than credibility of expert systems. Expert systems are believed to be more consistent and 

less prone to biases than humans. However, expert systems are expected to be less 

adaptable than human sources, and thus are perceived as being unable to capture all aspects 

of reality. Expert systems also raise higher performance expectations than humans; as a 

consequence, expert system errors affect their credibility more severely than human errors 

(Madhavan & Wiegmann, 2007; Sundar & Nass, 2000). In expert systems literature, the 

same advice is discounted less when is believed to come from a human expert rather than 

from an expert system (Lerch, Prietula, & Kulik, 1997; Waern & Ramberg, 1996). Similar 

results have been found in the judgmental forecasting literature (Onkal, Goodwin, 

Thomson, Gonul, & Pollock, 2009; Önkal et al., 2008). 

 At least three mechanisms of the influence of source credibility on discounting system 

forecast advice are plausible. First at all, research has shown that source credibility is an 

important factor for persuasion power (Pornpitakpan, 2004), and higher persuasion power 

may lead to less advice discounting. Second, source credibility is one of the constituents of 

trust, and higher levels of trust in systems’ advice have been found to reduce advice 

discounting (Goodwin, Gonul, & Onkal, 2013). Finally, if advisors feel that they are 

relatively less task-expert than the expert system, then less advice discounting could be 

expected (Rieh & Danielson, 2007).  

Therefore, we constructed the following hypothesis:  

H5: In Divide-and-Conquer” and “Judgmental Adjustment” methods, there will be an 

interaction between credibility of system forecasts and forecaster expertise such that: 
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H5a: larger adjustments will be made when higher forecaster expertise is accompanied 

by low credibility of system forecasts. 

 

H5b:  more frequent adjustments will be made when higher forecaster expertise is 

accompanied by low credibility of system forecasts.  

 

 

3. Methods 

We conducted a longitudinal field study designed to assess differences in accuracy 

improvement among three human-computer integration methods: Judgmental Adjustment, 

50-50 Combination and Divide-and-Conquer. The study assessed the relative expertise and 

credibility of system forecasts of participants and compared instances where correction of 

the system forecast was needed to instances when correction was not needed.    

3.1. Sample Selection and Characteristics 

Companies: Four companies provided access and consent for this field study. We required 

that the companies were large enough to have at least three different products and were 

willing to participate in the study. In each company, a key contact person provided 

assistance with logistics, the selection of products, and the identification of potential 

participants to be included in the study. This contact person was not included as a 

participant in the study. The participating companies belonged to different industrial sectors 

(Table 1). Companies A & C were branches of large multinationals; Companies B & D 

were local companies, with sales of around US$ 100 million and US$2 million 

respectively.    

Table 1- Participants, products and data-point distribution among companies 

 

Company 
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A B C D 

Sector Chemical Technology 

Food & 

beverages 

Office products 

retailer 

Aggregation level 

Product 

reference  

Product family 

& client type 

Product & 

client type Product family 

Participants 6 10 9 6 

Products 4 5 4 4 

Collected 

forecasts 104 248 91 95 

Missed forecasts 

(drop-outs) 4 10 8 7 

 

Products: To be considered in the study, products needed to comply with the following 

characteristics: a) The product needed to be important for forecasters in terms of volume or 

value; b) no new products or products close to being discontinued were considered; c) a 

historical track availability (of at least two years) with non-zero demand was required); d) 

each product was forecasted on a monthly basis; and e) for each product, at least three 

participants with extensive product knowledge were available. Meaningful units and 

aggregation levels were selected for the products based on consultations with the key 

contacts in each company (Table 1), as each company might have needed different 

aggregation levels for decision making (Alvarado Valencia & García Buitrago, 2013). The 

final numbers of selected products per company were quite similar (Table 1). Final selected 

products had a historical training track ranging from two to eight years, with coefficients of 

variation in a broad range from 0.32 to 1.31 (Table 2). 

 

Table 2- Product features and data collection 
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Company Series  

Training 
length 
(months) CV Fitted method 

Residuals 
CV Participants Months 

Collected 
forecasts 

A 1 29 0.64 Seasonal ES 0.74 3 6 18 

A 2 29 0.91 Seasonal ES 1.11 3 6 18 

A 3 29 0.81 
Winters 
additive 0.55 3 6 18 

A 4 44 0.93 
Winters 
additive 0.82 6 9 50 

B 5 44 0.73 Seasonal ES 0.94 6 8 48 

B 6 44 0.32 
Winters 
additive 0.90 6 8 48 

B 7 44 1.11 Seasonal ES 1.11 6 9 51 

B 8 44 1.27 
Winters 
additive 1.02 6 9 51 

B 9 44 0.72 Seasonal ES 0.75 6 9 50 

C 10 41 1.28 Seasonal ES 0.93 3 5 13 

C 11 44 0.81 Simple ES 1.00 6 9 49 

C 12 41 0.35 Seasonal ES 0.83 3 5 15 

C 13 41 0.42 Seasonal ES 0.99 3 5 14 

D 14 82 0.42 Seasonal ES 1.03 4 6 23 

D 15 82 1.31 Seasonal ES 0.83 4 6 23 

D 16 82 0.46 
Winters 
multiplicative 1.11 5 6 27 

D 17 82 0.57 
Winters 
additive 1.15 4 6 22 

 

Participants: Selected participants typically worked within the broad sales & operations 

area (S&OP). All participants were required to have hands-on experience in their assigned 

products and to have information on these products that could help evaluate and forecast 

demand based on contextual information, whether formally or informally (although they 

may not necessarily have experience in the forecasting function within the company). 

Potential participants were then contacted by email, and an initial interview was set to 

explain the purpose, scope and research methods, including their right to drop out of the 

study at any time. All potential participants accepted our invitation and provided informed 
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consent prior to starting the data collection. All procedures were approved by the Research 

and Ethics Committee of the School of Engineering at Pontificia Universidad Javeriana. 

Participants then completed a survey that contained instruments to measure expertise 

(Germain & Tejeda, 2012) and credibility of system forecasts (Meyer, 1988). Details of 

instruments are explained in Section 3.5. Finally, demographic information was collected 

and a pilot test with each final participant was performed prior to starting the field study to 

clarify the procedures of the data-collection session. The number of participants per 

company ranged from six to ten (Table 1). Participants from Company A exhibited higher 

average age and experience while participants in Company C showed the least variability in 

age and experience (Table 3). 

Table 3- Participant demographics 

 

Company 

 

A(N=6) B(N=10) C(N=9) D(N=6) 

Sector Chemical Technology 

Food & 

beverages 

Office products 

retailer 

Age (years) 

 

M=46.16 

SD=7.08  

M=36.80 

SD=7.99 

M=29.44 

SD=3.33 

M=33 

SD=6.72 

Experience in the 

company (years) 

M=9.58 

SD=7.18 

M=2.88 

SD=1.92 

M=3.14 

SD=1.75 

M=3.25 

SD=3.06 

Experience with 

the product(years) 

M=20.33 

SD=7.66 

M=8.48 

SD=6.86 

M=1.57 

SD=0.93 

M=5.25 

SD=5.60 

Gender  (M-F) 5-1 5-5 5-4 5-1 

M=mean; SD=standard deviation 

3.2 Data collection procedures 

Each month, an automatic exponential smoothing model was fitted to each product based 

on the complete historical track available to generate forecasts and their 95% confidence 
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intervals for the following month. The model, the forecast and the confidence intervals 

were produced using the automatic features of the SPSS 20 software, including only 

exponential smoothing methods. Information about the system forecast fit is presented in 

table 2, including the automatic fitting method selected by the software and the variation 

coefficient of the residuals after fitting the selected method, which gives an idea of the 

residual volatility of the series. With a single exception, all demands were seasonal in 

nature. 

Participants were randomly assigned to one of the three methods following Latin Squares 

randomization in blocks of three months for each group of three forecasters assigned to 

each product. Information from at least one time block of three months with a minimum of 

three forecasters was collected for each product. A single participant might be selected for 

more than one product in the same company.  

Company B accounted for roughly 45% of the collected forecasts, and the remaining 

forecasts were evenly distributed among companies. Due to vacations, meetings, or 

participants’ lack of time, some forecasts were missing (Table 1). Details of collected 

forecasts by product are given in Table 2, including number of forecasters, number of 

months collected, and total forecasts collected by product.   

Forecasting collection was performed in the first ten days of the month within another 

administration office in each company. For each month of the study, the researcher 

provided instructions from a script (Appendix A) to each participant according to the 

treatment assigned randomly for the given month. None of the forecasts produced was used 

for decision making or any other purpose within the company. In all treatments, 
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participants were encouraged to bring their knowledge about the product into their forecast 

and to give reasons for their final forecasts after delivering it.  

In the Judgmental Adjustment and 50-50 Combination treatments, graphs and tables of 

historical information were produced using default spreadsheet (Excel) settings to improve 

external validity, and their layout was kept as similar as possible across treatments and 

periods to avoid format effects. In Judgmental Adjustment, a system forecast was included 

in graphs and tables. Divide-and-Conquer participants did not receive any of these 

graphs/tables. All graphs and tables were presented on a computer screen. The interviewer 

registered the final demand forecasts produced and recorded the session audio.  

3.3 Independent variables 

The main independent variable was the human-computer integration method: Judgmental 

adjustment, 50-50 Combination and Divide-and-Conquer. This variable was collected from 

the treatment assigned each month to each forecaster for each product.  

Credibility of system forecasts was measured with Meyer’s scale (Meyer, 1988). Among 

the indexes that have been developed to assess source credibility, Meyer’s scale is one of 

the most validated and used in newspaper credibility research (Roberts, 2010). Although 

developed in the context of newspapers, it has been successfully applied to other fields, 

such as advertising and online information (Choi & Lee, 2007; Greer, 2003; Oyedeji, 

2007), showing that the questions of the scale are of a general purpose in source credibility. 

The scale adapted to the purpose of the present study is presented in Appendix B. The 

results of Meyer’s scale were converted into a binary variable. Participants with scale 

values from zero to two were classified into low credibility of system forecasts (SF 
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credibility); participants with scale values from three to five were classified into high SF 

credibility. 

Expertise scores were provided by the key contact person in each company using the 

Germain and Tejeda scale (Germain & Tejeda, 2012). Because expertise was used in this 

study as a possible independent variable affecting accuracy, using the accuracy results to 

determine expertise was not considered appropriate. It appears that there are no scales that 

are capable of measuring intimate product knowledge expertise in the scientific literature, 

and there are only a few expertise-measuring methods that can be applied or adapted to 

different contexts (Kuchinke, 1997). The knowledge subscale of the Germain and Tejeda 

(2012) general scale of expertise recognition was deemed suitable for this research. This 

subscale intends to measure an employee’s expertise in his job. As explained in Section 2.2, 

employee expertise in jobs where information integration and foresight are constituents of 

job performance can serve as a proxy of the ability to improve forecasts. The knowledge 

expertise subscale has general purpose questions related to an expert’s field knowledge in 

her job from the point of view of a colleague (Appendix C). Therefore, it is an expertise 

measure based on peer recognition.   Reliability for the knowledge subscale was high 

(=0.92), and factor structure validity was good (Comparative Fit Index=0.93).  It should 

be noted that due to the recent development of this measure, more general reliability and 

validity tests in different contexts are still needed. 

  After collection, expertise scores were normalized within each company to avoid potential 

key contact biases. Participants with standard values over zero were classified as high-

expertise participants, whereas those with standard values below or equal to zero were 

classified as low-expertise participants. 
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The need for correction of system forecasts was also an independent variable of interest. If 

the realized demand value for a product was outside the prediction intervals previously 

calculated using system forecasts (see Section 3.2.), that particular period was labeled as 

“correction needed”. In contrast, if the actual value was located within the 95% prediction 

interval, that period was marked as “correction not needed”. 

Lastly, audiotapes of forecast reasons were categorized independently by two researchers 

and differences were posteriorly reconciled.    

3.5 Dependent variables 

Improvement in average percentage error (APE) was used as the dependent variable, 

defined as follows: 

𝐴𝑃𝐸𝑡 = 100 ∗
|  𝑌𝑡 − 𝐹𝑡|

𝑌𝑡
 

As a consequence, 

𝐴𝑃𝐸𝐼𝑀𝑃 = 𝐴𝑃𝐸𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐴𝑃𝐸𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

where Yt is the actual observed demand outcome at time t and Ft is the final forecast for the 

product demand produced previously for time t. 

APE is a widespread measure of accuracy used in industry (Mentzer & Kahn, 1995), 

although it has several weaknesses. We did not use scaled error measures such as average 

scaled errors (ASE) because all data in this study were positive and greater than zero. 

Consequently, the advantages of scaled measures were reduced, and APE could be selected 

based on its simplicity and widespread use (Hyndman, 2006).  
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Additionally, adjustment response measures were estimated to obtain in-depth information 

about forecasters’ behavior when performing Judgmental Adjustment or Divide-and-

Conquer. The calculated measures were adjustment size in absolute value (scaled by the 

actual demand) and adjustment direction (positive/negative or none). 

3.6 Statistical analyses 

A four-way ANOVA was conducted to estimate differences in accuracy improvement in 

APE. Expertise and SF credibility were between-participant variables, whereas the need for 

correction and the integration methods were within-participant variables. Bonferroni 

corrected pairwise comparisons were used for post-hoc comparisons. 

For the methods of Divide-and-Conquer and Judgmental Adjustment, Chi square 

contingency tables were performed to assess the effects of independent variables in 

adjustment frequency, and a two-way ANOVA was performed to assess the effect of SF 

credibility and expertise in the absolute adjustment size (scaled by the actual demand). 

Also, Chi Square contingency tables were performed to find relationships between rationale 

types, forecaster behavior and integration methods. 

 

4. Results 

4.1. Descriptive results 

The expertise and SF credibility levels were evenly distributed across our 31 participants 

(Table 4). In addition, the distribution of integration methods was even, but there were four 

times more points in the “correction not needed” treatment due to the nature of the study, in 
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which the need for correction was only known one month after the data were collected 

(Table 5). 

 

 

Table 4 - Expertise and SF credibility of participants 

 
 SF Credibility 

Low High 

EXPERTISE Low 7 7 

High 8 9 

 

Table 5 - Data-point distribution among treatments 

 

Integration method 

 Judgmental 

Adjustment 

50-50 

Combination 

Divide-and-

Conquer Total 

Correction 

needed 

No 140 137 137 414 

Yes 42 40 42 124 

 

Total 182 177 179 

  

4.2. Accuracy improvement results 

Judgmental Adjustment was the method with highest accuracy improvement, supporting H1 

(p <.05, Table 6). Bonferroni-corrected pairwise comparisons show that Judgmental 

Adjustment was significantly better than the 50-50 Combination (p =.045) and Divide-and-

Conquer (p < .01) for APE improvement (Table 7). However, significantly higher-level 

interactions suggest that the accuracy of Judgmental Adjustment should be qualified based 

on different levels of expertise, SF credibility and the need for correction (Table 6). 
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Table 6 - APE improvement related to treatments * 

 

APE improvement 

Source F p-value 

Main effects   

Need for correction 26.778 < .001 

Expertise 5.381 .021 

SF Credibility 2.584 .109 

Integration method 6.187 .002 

2-way Interaction terms   

Need for correction * expertise 
5.603 .018 

Need for correction * SF 

credibility 
1.428 .233 

Need for correction * integration 

method 
3.723 .025 

Expertise * SF credibility 
5.483 .020 

Expertise * integration method 
2.450 .087 

SF Credibility * integration 

method 
1.467 .232 

3-way Interaction terms   

Need for correction * expertise * 

SF credibility 
3.283 .071 

Need for correction * expertise * 

integration method 
3.911 .021 

Need for correction * SF 

credibility * integration method 
1.854 .158 

Expertise * SF credibility * 

integration method 
7.429 < .001 

4-way interaction term   

Need for correction * expertise * 

SF credibility * integration 

method 

9.269 

< .001 

*Grey values are significant at the 5% level. 
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Table 7 - Differences in APE improvement by method 

(I) Method (J) Method 

Estimated mean 

difference (I-J) 

Standard 

Error p-value 

95% confidence interval 

Lower 

Bound Upper bound 

Judgmental 

Adjustment 

50-50 

Combination 
.11 .045 .045 .002 .218 

Judgmental 

Adjustment 

Divide-and-

Conquer 
.149 .043 .002 .045 .253 

50-50 

Combination 

Divide-and-

Conquer 
.039 .043 N.S. -.065 .143 

 

Expertise interaction with the need for correction was significant for APE improvement (p 

=0.018), supporting H4 (Table 6). Higher-level interactions also suggest that this 

interaction should be qualified on different levels of SF credibility and integration methods. 

The fourth-level interaction indicated that the Judgmental Adjustment method was superior 

when high expertise and low SF credibility were present, and correction was needed (Table 

8). Its effect size was large enough to mark a difference for expertise and methods in the 

main effects, and it was the only treatment whose confidence interval for APE 

improvement was clearly above zero. Therefore, it was the only combination of factors that 

clearly overcame the system forecast, adding value to the final forecast (Figure 1). The 

effect was smaller for improvement in the median of the APEs but still held (Table 8), 

indicating that the results were robust, although their effect size was reduced when the 

effect of extreme improvements (or deteriorations) was removed. When separate ANOVAs 

were run on the no-need-for-correction and need-for-correction data, the former did not 

generate any significant effect on the rest of the independent variables, whereas the latter 

showed a significant effect in the three-way interaction (p <.01).  
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Regarding the three-way interaction when correction is needed, it is important to highlight 

that expertise and SF credibility did not generate significant differences in accuracy 

improvement for the 50-50 Combination and Divide-and-Conquer methods. However, in 

the Judgmental Adjustment method, a specific combination of low SF credibility and high 

expertise generated improvements in APE that surpassed by more than 80% all other 

treatment combinations that estimated APE improvement (Figure 1). 

Given that the use of APE in averages (as done in ANOVA) might raise concerns about the 

known biases of this measure and due to the presence of high positive skewness and high 

kurtosis in our APE improvement results, we repeated the analysis using the median of 

APEs as the estimator (MedAPE) and using average scaled errors (ASE) as the accuracy 

measure. Findings on significance remained the same, although the size effects changed.  

To reduce the chance of spurious p-values and concerns about sample size, we conducted 

two additional analyses. First, a four-fold random cross-validation showed that results were 

robust; a time-based analysis of the data showed that relevant p-values appeared when 

approximately half the sample was collected and did not oscillate between significance and 

non-significance after two thirds of the sample was collected, supporting convergence over 

the current sample size.    
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Table 8 - Estimated means and medians of errors for field study treatments 

Need for        

Estimated 

MAPEimp 

Estimated 

MdAPEimp 

Standard 

error 

99,9% confidence 

interval 

Correction Expertise 

SF 

Credibility Method 

Lower 

bound 

Upper 

bound 

No Low Low Judgmental  ,029 ,000 ,055 -,152 ,210 

Combination -,045 ,004 ,060 -,245 ,156 

Divide  -,004 ,000 ,051 -,173 ,164 

High Judgmental  ,029 ,000 ,056 -,158 ,215 

Combination ,019 -,005 ,055 -,162 ,200 

Divide  -,054 ,000 ,062 -,258 ,149 

High Low Judgmental  -,005 ,011 ,074 -,250 ,240 

Combination ,009 ,041 ,069 -,217 ,236 

Divide  ,028 ,001 ,072 -,211 ,266 

High Judgmental  ,005 ,000 ,042 -,133 ,142 

Combination -,030 -,012 ,042 -,171 ,110 

Divide  -,043 ,000 ,043 -,186 ,100 

Yes Low Low Judgmental  -,016 ,000 ,119 -,409 ,377 

Combination ,105 ,027 ,095 -,208 ,419 

Divide   ,127 ,000 ,105 -,219 ,474 

High Judgmental  ,272 ,211 ,128 -,152 ,696 

Combination ,063 ,000 ,105 -,283 ,410 

Divide  ,026 ,000 ,087 -,262 ,315 

High Low Judgmental  ,962 ,338 ,128 ,537 1,386 

Combination ,154 ,095 ,157 -,366 ,674 

Divide  ,052 ,086 ,128 -,373 ,476 

High Judgmental  ,116 ,070 ,067 -,106 ,337 

Combination ,237 ,143 ,081 -,032 ,505 

Divide  ,067 ,000 ,087 -,222 ,355 

Table conventions: 

Judgmental= Judgmental Adjustment 

Combination= 50-50 Combination 

Divide= Divide-and-Conquer 
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Figure 1 - Estimated means and 95% confidence intervals for SF credibility, expertise, need for correction and integration method 

The circle shows the only treatment with a significant APE improvement over zero. 
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4.3. Adjustment behavior results 

The method was not related to the adjustment frequency when a correction was not needed 

(p =0.433) or to the adjustment size when a correction was needed (p =0.567); therefore, 

there is no support for H3 or H2.  

The interaction between expertise and SF credibility for absolute size (p =0.016) and 

adjustment frequency direction relations were found to be significant (p < 0.001 for 

expertise in low SF credibility, but p >0.005 for expertise in high SF credibility). As shown 

in Figure 2, participants in the high-expertise/low-SF credibility condition tended to make 

more positive adjustments (standardized residual=2.5), whereas participants in the low 

expertise condition with low SF credibility conditions avoided making changes to 

suggestions (standardized residual=2.4), supporting H5b. Although they made less frequent 

adjustments than expected, participants with low expertise and low SF credibility tended to 

perform adjustments of a larger size, as shown in Figure 3, yielding the result contrary to 

the one expected for H5a.    

The best adjustments were negative ones when they were really needed, 95% CI [0.30, 

0.49] as shown in Figure 4. However, when correction was not needed, negative 

adjustments also significantly improved accuracy over positive adjustments, 95% CI [0.04, 

0.13].   
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Figure 2 - Percentage of adjustment type occurrence by groups of expertise and SF 

credibility 
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Figure 3 - Adjustment size by SF credibility and expertise (Divide-and-Conquer and 

Judgmental Adjustment treatments only)  

 

 

 
 

Figure 4 - MAPE improvement by adjustment direction vs. need for correction 
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4.4. Expert rationales 

 

Experts did not give reasons for their final forecasts in 28.6% of the collected forecasts. A 

single causal force to justify the final forecast was elicited in 62.4% of the occasions, and 

multiple causal forces were elicited in only 9% of the cases. When rationales where 

provided, its average length was 29 words with a high variability (ranging from 1 to 260 

words).   

Five main types of reasons were elicited from experts when asked for rationales to produce 

their final forecasts in all companies.  First, historical reasons were quoted (40.4%). These 

reasons included seasonality on an annual basis and long-term trends of ascent or descent. 

In the 50-50 Combination method, these reasons were usually further elaborated comparing 

specific figures, whereas in the other methods, historical reasons were shorter and more 

direct.   

Second, marketing actions were mentioned (25.5%). Beyond specific promotions, there 

were also advertising plans, brand awareness strategies, new strategic deals close to being 

sealed, and new distribution strategies that made experts believe that the forecast should be 

changed.   

Third, supply chain reasons were given specific importance in judgmental forecasting 

(17.7%). Reasons included both sides of the supply chain. The main reasons were current 

inventory levels, whether in the distributor or in the company, but previously settled pre-

orders and lead times were also cited. 
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Fourth, reasons related to organizational goals and job performance were cited (9.4%). 

These reasons to settle a forecast included quarter or end-of-year deadlines and job 

responsibilities to comply with target sales, linked to perceived control.   

Finally, business environment reasons out of the company control were mentioned, 

including economy and market trends, legal decisions, and competition actions (7%).   

There were also reasons related to the specific industry and sector. In the technology 

company, product life-cycle reasons were also frequently cited, whereas in the chemical 

company, the weather was mentioned as an important causal force.  These were included in 

the previous analysis under appropriate labels. 

Rationales were found to be significantly related to the integration method used (p <.01). In 

50-50 Combination, historical reasons were quoted more than expected, whereas in Divide-

and-Conquer historical reasons were quoted less than expected.  There was also a 

relationship between type of rationales and adjustment direction (p < .01). Negative 

adjustments were more frequent on supply and business environment reasons, whereas 

positive adjustments were more frequent when marketing and organizational goal rationales 

were quoted.    

 

5. Discussion  

This study aimed to compare the accuracy improvement and adjustment behavior of three 

human-computer integration methods used to generate demand forecasts with real products 

and practitioners. The study considered the potential effects of three important variables on 
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the resulting accuracy of the forecasts and the behavior of forecasters, i.e., the need for the 

correction of the system forecast, the relative expertise of the forecaster and the relative 

credibility of the forecaster in the system forecast. We observed improvement in the 

accuracy for forecasters with higher relative expertise and low credibility of system 

forecasts when correction over the system forecast was needed and the Judgmental 

Adjustment method was applied. We also observed different adjustment behavior patterns 

related to different levels of expertise and credibility of system forecasts.   

Our study proposed and tested the use of a general scale of employee job expertise as a 

proxy to discriminate between levels of demand forecasting domain knowledge. Although 

we strongly encourage further studies to test the validity and reliability of this scale, the 

preliminary results are promising. This scale is based on peer ratings and therefore is 

subject to power biases in organizations, but it is clearly an improvement over widely used 

low structured methods to select experts from public recognition or co-nomination. It can 

be combined with the development of short questionnaires tailored to the specific domain 

knowledge and with measures of personal characteristics recently found to improve 

forecasting in other fields (Mellers et al., 2015). However, our results show that the 

development of a more structured mechanism to discriminate expertise in demand 

forecasting judgmental adjustments is a task worth attempting.   

Although it is reasonable to expect higher accuracy among employees who had more 

expertise, it is also true that research so far has found mixed evidence (Lawrence et al., 

2006). These mixed results might be due to the hidden interaction effects of other variables 

not considered simultaneously in previous studies. In this research, we studied three 

variables (i.e., credibility of system forecasts, integration method and need for correction) 
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that may explain why experts sometimes do perform better and sometimes do not. We 

found that experts perform well particularly when perceived credibility of system forecasts 

is low. A possible explanation is that low levels of confidence in system suggestions allow 

experts to detach themselves enough from the system forecast when really needed, avoiding 

the anchor and adjustment heuristic. This explanation suggests that healthy skepticism 

about system forecasts may reduce the possible anchoring effects of such forecasts, and 

such bias reduction becomes particularly useful when experts believe that they need to 

modify the system forecast by a substantial amount.  A possible subsequent laboratory 

experiment could evaluate the strength of the anchor and adjustment heuristic with different 

levels of credibility of system forecasts, presenting simultaneously the system forecast with 

rationales to substantially modify it.  

 A second explanation is that low credibility reduced complacency with support systems 

suggestions (Goddard, Roudsari, & Wyatt, 2012) and therefore motivated forecasters to add 

their knowledge and feel accountable for the results (Fildes, Goodwin, & Lawrence, 2006; 

Wright, Lawrence, & Collopy, 1996). In support of that, forecasters with relatively high 

expertise tended to make adjustments in almost all the cases. This tendency may occur 

because they think they need to contribute somehow to the forecast (Gonul, Onkal, & 

Goodwin, 2009). In our study, this pattern of highly frequent adjustment increased if 

perceived credibility of system forecasts was low. 

Additionally, the benefit in accuracy of having an expert was observed only when the 

Judgmental Adjustment method of integration was used. A possible explanation is that 

Judgmental Adjustment was the only method in this study that allowed the forecaster to 

access all relevant information, and none of the other methods reduced biases significantly 
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to overcome this information loss. The 50-50 combination method made the forecasters 

focus on detecting historical trends (as revealed in their forecast rationales), thus effectively 

underweighting the additional contextual knowledge they may have.  In this way, system 

and forecaster inputs were not independent; consequently, 50-50 Combination 

underperformed against Judgmental Adjustment.  In contrast, in the Divide-and-Conquer 

method, a lack of access to system forecasts made it difficult for experts to assess the 

quality of system advice as well as the amount of correction needed.  The Divide-and-

Conquer method did not show that it reduced the frequency of adjustment when correction 

was not needed, and it did not increase the adjustment size when correction was needed. 

The overall implication of our results is that trying to debias forecasters through 

information restrictions did not work, whereas providing access to all relevant information 

to experts was helpful to assess the need for change. Additionally, information access may 

offer more control to the forecaster, which may result in a sense of satisfaction or comfort 

while doing the task. A follow-up study can test if providing only the system forecast 

would be enough to give access to all relevant information, because the system forecast can 

be regarded as a summary of the historical track.  

The judgmental integration task can be regarded as a joint effort between support systems 

and experts to develop a better forecast. In this regard, an analysis of process gains versus 

losses of expert knowledge elicitation can be conducted (Bedard, Biggs, Maroney, & 

Johnson, 1998; Rowe, Wright, & Bolger, 1991). Divide-and-Conquer was unable to deliver 

process gains through bias reduction, and possibly generated process losses by forbidding 

access to relevant information to participants. 50-50 combination generated expertise 

overlap by focusing the expert on the same information that the support system is already 
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assessing and reducing the chances of the inclusion of diverse inputs and knowledge into 

the task. As a consequence, this procedure did not generate process gains through an 

integration that surpasses the sum of the parts. Meanwhile, Judgmental Adjustment was 

closer to a group process where an expert is faced with another suggestion (the system 

advice) and can potentially generate a process gain through knowledge pooling and sharing. 

However, the presence of possible biases such as anchor and adjustment require the 

presence of healthy skepticism from experts in order to avoid process losses.    

Finally, our results indicate that when corrections were not needed, negative adjustments 

improved accuracy whereas positive adjustments deteriorated it, leading to a net sum of no 

improvement.  Therefore, expertise still contributed in occasions when small adjustments 

(i.e., adjustments when the realized value falls inside the 95% interval of the system 

forecast) were required, but its effects were obscured by overoptimism and predisposition 

to adjust.  When corrections were needed, the overall result of adjustments was an 

improvement of accuracy, due to the benefits of well-sized adjustments that were usually 

negative.     

We observed associations between negative adjustments and business environment and 

supply chain reasons in the studied companies. Supply chain and business environment 

reasons can reflect a current state of affairs outside company control (while clearly 

affecting possible demand outcomes ), whereas market actions and goal-oriented reasons 

may be related more to a bet into the future, partially depending on business actions and 

being mediated by illusion of control) . These results led us to suggest emphasizing 

elicitation of knowledge on situations outside company control over the elicitation of 
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knowledge related to plans or promotions under the company control that can be modeled 

through statistical analysis (Trapero et al., 2013).        

At least three limitations of the study should be discussed. First, participants changed 

methods randomly every month and were not given feedback on their performance; 

therefore, there is no way of evaluating possible learning effects. However, a previous 

study found small or no learning effects with outcome feedback (Lim & O'Connor, 1995). 

Second, the elicited forecasts had no consequences for the company decision making or the 

performance evaluation of participants in companies; therefore, we do not expect any major 

effects on their responses related to the political pressures or organizational cultures. 

Although the nature of our task did not allow the complete appearance of such effects, the 

presence of adjustment reasons related to goals and perceived control is an indication that 

such pressures played at least a partial role in our task.  We believe that the implication of 

our results will be valid in real settings.  

Finally, the study included a set of specific companies and selected products. Differences 

among industries, although not evaluated in this study, can be an avenue for future 

research. In addition, participants in the study were asked to focus on a few products, 

whereas in real settings, forecasters typically are required to forecast a huge number of 

products in specific locations. The consequences are twofold. First, our belief is that 

intimate product knowledge—and therefore judgmental adjustment expertise—is 

practically impossible for every disaggregation level in such a large task with the usual time 

restrictions. We selected experts and aggregation levels for each product where 

environmental and product knowledge can be elicited, and the same needs to be done to 

apply our results in real settings. A possible future research direction could entail best 
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practices in selecting those products and aggregation levels where expertise can clearly 

make a difference. Second, given the aggregation level, intermittent demand was not 

considered. The next step would be to evaluate the possible extensions of the present study 

to explore this important forecasting problem.        

Although it is true that generalizations should not be made outside this context, we believe 

our efforts to work with companies in different sectors, with participants having a wide 

range of demographic characteristics and experience, in physical settings that resemble the 

day-to-day conditions of forecasters in their workplace, and with products that are 

important to their positions within their companies provide a desirable backdrop in 

forecasting expertise and related processes. Therefore, our results may be viewed as 

providing a robust starting point to exploring expertise and credibility of system forecasts 

issues for forecasters in similar industrial sectors.  

 

6. Implications for forecasting practice 

Using experts in a demand forecasting field study, current work addresses important issues 

of expert knowledge elicitation in a real (and ecologically valid) forecasting framework.  

Our findings contribute to the discussion of four important questions widely discussed in 

forecasting practice.  

The first question relates to the conditions for forecaster selection when adjusting system 

forecasts. Our results show that expertise in key job positions is a necessary but not 

sufficient condition for good forecasting performance. In order to be able to modify the 
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system forecast in the right amount when it is really needed, such expertise needs to be 

combined with healthy skepticism about credibility of system forecasts.  

Second, should companies invest to improve adjustment processes or is it better (for 

accuracy) to rely on system projections?  Our results suggest that, in the long run and with 

proficient selection of experts, accuracy is improved with Judgmental Adjustment when 

useful information is incorporated into the adjustment process. If a greater gain is sought, 

group processes effectively managed to elude political and organizational pressures and 

integrate individual adjustments (such as Delphi) will definitely prove valuable.  Proposed 

categorization of adjustment rationales developed in this study might be a good starting 

point for scenario construction to aid with such processes, encouraging particularly the 

analysis of causal forces outside business control. 

Another possible mechanism for greater gain relates to bias-reduction techniques for expert 

forecasters. Restricting information to experts does not appear to be a desirable method to 

avoid biases.  Training to foster a healthy skepticism towards system forecasts can be 

reinforced by highlighting the limitations of system forecasts in situations like inventory 

shortages or environmental/ structural changes, emphasizing potential negative effects.  

Overoptimism could be reduced by challenging attempted positive adjustments (e.g., based 

on company plans and promotions), while letting negative adjustments go unchallenged. 

Periodic training and feedback mechanisms to track and combat well-known cognitive 

biases (e.g., overconfidence, desirability bias) may also prove effective (Benson & Önkal, 

1992). 
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A third question relates to whether system forecasts should be given to forecasters. Despite 

the possible biases generated by the presence of a system forecast, such as anchoring and 

excessive weighing of past data, it appears that on average the availability of the system 

forecast improves the accuracy of the integrated forecasts. Additionally we have observed 

that the practitioners were quite uneasy when this information was lacking, a phenomenon 

that may be related to a perceived loss of control and/or reduced confidence emanating 

from lack of a starting benchmark. Further work comparing presence/absence of system 

forecasts and/or historical information might help elucidate whether the system forecast can 

replace the historical information.  Along similar lines, research that incorporates 

qualitative methodologies to study expert knowledge elicitation will prove extremely useful 

to better understand the reasons behind forecasters’ use/misuse of system forecasts.  

Lastly, although it is not possible to know in advance if a modification will be needed to 

improve forecasting performance, there are occasions when such tweaks are clearly  

warranted: for instance, when there are supply chain restrictions, structural changes in time 

series, inflection points in product life cycle, sudden environmental changes, and/ or 

anticipated competitor moves. In these occasions, our findings suggest encouraging 

systematic use of Judgmental Adjustment with forecasters who possess (i) high expertise in 

the judgmental forecasting domain knowledge, along with (ii) healthy skepticism about 

support system advice that encourages a realistic/unbiased assessment of system forecasts. 
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Appendix A 

50-50 Combination: 

This month, we are going to generate a demand forecast for product (name of the product) in 

(units: dollars, number of items…). If you don’t understand the product definition, please ask for 

clarification. The screen is showing the historical demand for this product during the last (number 

of periods) periods in the graph and in the table. You are free to consult any additional (non-

historical) information you already have that might be related to the product and their business 

development. Please indicate what you think the demand will be for this product (name of the 

product) in (units: dollars, number of items…) for next month, taking into account your judgment 

and knowledge of the product and the business.  

(After the forecast is produced)  Please explain your motivations and reasons for this result.   

Judgmental Adjustment: 

This month, we are going to generate a demand forecast for product (name of the product) in 

(units: dollars, number of items…). If you don’t understand the product definition, please ask for 

clarification. The screen is showing the historical demand for this product during the last (number 

of periods) periods in the graph and in the table and a system forecast for the following month in 

the graph and in the table. This forecast has taken in account three elements: historical trend of 

data, seasonal effects, and increasing/decreasing effects. You are free to consult any additional 

(non-historical) information you already have that might be related to the product and their 

business development. Please indicate what you think the demand will be for this product (name 

of the product) in (units: dollars, number of items…) for next month, taking into account your 

judgment and knowledge of the product and the business.  

 (After the forecast is produced) Please explain your motivations and reasons for this result.   

Divide-and-Conquer: 

This month, we are going to generate a demand forecast for product (name of the product) in 

(units: dollars, number of items…). If you don’t understand the product definition, please ask for 

clarification. You are free to consult any additional (non-historical) information you already have 



47 
 

that might be related to the product and their business development. A system forecast for next 

month has been produced. This forecast has taken in account three elements: historical trend of 

data, seasonal effects, and increasing/decreasing effects. Please tell us if you would keep or 

modify this system forecast for next month, taking into account your judgment and knowledge of 

the product and the business.  

 (If the subject wants to modify the forecast) Please indicate how large the modification will be 

and in what direction. You are free to specify a percentage or a value in units of modification.  

(After the forecast is produced) Please explain your motivations and reasons for this result.  
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Appendix B 

Credibility of system forecasts scale: 

In your opinion, a system forecast is (mark just one option for each question): 

Fair/unfair 

Biased/unbiased 

Tells the whole story/does not tell the whole story 

Accurate/inaccurate 

Can be trusted/cannot be trusted. 
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Appendix C 

Expertise knowledge subscale 

 

  Completely 
agree 

Partly 
agree 

Neutral Partly 
disagree 

Completely 
disagree 

This person has knowledge that is 
specific to his or her field of work. 

          

This person shows that they have 
the education necessary to be an 
expert in their field 

          

This person has knowledge about 
their field 

          

 This person conducts research 
related to their field 

          

 This person has the qualifications 
required to be an expert in their 
field. 

          

This person has been trained in 
his or her area of expertise 
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