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Abstract 

Carpet waste fibres have a higher volume to weight ratios and once discarded into landfills, these fibres occupy a 1 

larger volume than other materials of similar weight. This research evaluates the efficiency of two types of carpet 2 

waste fibre as sustainable soil reinforcing materials to improve the shear strength of clay. A series of consolidated 3 

undrained (CU) triaxial compression tests were carried out to study the shear strength of reinforced clays with 1%, 4 

to 5% carpet waste fibres. The results indicated that carpet waste fibres improve the effective shear stress ratio and 5 

deviator stress of the host soil significantly.  Addition of 1%, 3% and 5% carpet fibres could improve the effective 6 

stress ratio of the unreinforced soil by 17.6%, 53.5% and 70.6%, respectively at an initial effective consolidation 7 

stress of 200 kPa. In this study, a nonlinear regression model was developed based on a modified form of the 8 

hyperbolic model to predict the relationship between effective shear stress ratio, deviator stress and axial strain of 9 

fibre-reinforced soil samples with various fibre contents when subjected to various initial effective consolidation 10 

stresses. The proposed model was validated using the published experimental data, with predictions using this model 11 

found to be in excellent agreement. 12 

 13 

Key words: Geosynthetics, Shear strength, Carpet waste fibre, Reinforced soil, Clays, Modified hyperbolic model 14 

Notations: 

 

Basic SI units are shown in parentheses. 

 

𝑞𝑟𝑎𝑡𝑖𝑜    deviator stress ratio (dimensionless) 15 
𝑝′𝑟𝑎𝑡𝑖𝑜     average mean effective stress ratio  (dimensionless) 16 
q    deviator stress (Pa) 17 
p’    mean effective stress (Pa) 18 
𝑞𝑟𝑒    deviator stress of fibre-reinforced soil (Pa) 19 
𝑞𝑢𝑛    deviator stress of unreinforced soil (Pa) 20 
(

𝑞

𝑝′
)𝑟𝑒    effective stress ratio of fibre-reinforced soil (dimensionless) 21 

(
𝑞

𝑝′
)𝑢𝑛    effective stress ratio of unreinforced soil (dimensionless) 22 

𝑝′𝑟𝑒     mean effective stress of fibre-reinforced soil (Pa) 23 
𝑝′𝑢𝑛    mean effective stress of unreinforced soil (Pa) 24 
𝜎′1    major principal effective stress (Pa) 25 
𝜎′3    minor principal effective stress (Pa) 26 
z, w    coefficients of the linear relationship between 𝑞𝑟𝑎𝑡𝑖𝑜 and  𝑝′𝑟𝑎𝑡𝑖𝑜 (dimensionless) 27 
𝜀    axial strain in triaxial shear test (dimensionless) 28 
a,b,n, g, h, t   modified hyperbolic model parameters  (dimensionless) 29 
a*,b*,n*, g*, h*, t*  normalised modified hyperbolic model parameters  (dimensionless) 30 
𝜎𝑐

′      initial effective consolidation stress (Pa) 31 
𝑓     fibre content  (dimensionless) 32 

𝑘1𝑎,𝑔, 𝑘2𝑎,𝑔, 𝑘1𝑏,ℎ, 𝑘2𝑏,ℎ, 𝑘1𝑛,𝑡 , 𝑘2𝑛,𝑡   coefficients of the linear equations for normalised model parameters  33 
(dimensionlesss)  34 
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1. Introduction 

The carpet manufacturing industry produces a large quantity of fibre wastes due to aspects such as the end of line 35 

leftovers, stop-start wastage, yarn breakages, faults and quality control. In addition, as the demand for new carpets 36 

increases, substantial amounts of old and post-consumer carpet wastes have to be disposed to landfills. Synthetic 37 

fibres used in carpet manufacturing are particularly problematic as they do not degrade with time and once dumped 38 

into landfills, may release colour pigments in the surrounding soil. This may pollute the underground water 39 

reservoirs, which are potential sources for domestic use. Local communities, businesses and governmental agencies 40 

are increasingly encouraged to re-use and recycle carpet waste fibres, so as to minimise the need for landfilling. 41 

Virgin discrete synthetic/natural fibres have been used in geotechnical engineering practice to improve the stress-42 

strain response of fine and coarse-grained soils. Upon mixing with soil particles, short discrete fibres behave like 43 

tension resisting elements interlocking soil particles to partially withstand shear stresses within the soil. This results 44 

in the formation of a composite coherent soil matrix that possesses superior strength properties with reduced and/or 45 

eliminated continuous planes of weakness at failure (Ahmad et al., 2010). The reinforcing role of short virgin 46 

synthetic fibres in coarse-grained soils with loose to dense states has been studied previously (Maher and Gray 1990; 47 

Nataraj 1997; Consoli et al. 2007; Diambra et al. 2007, 2010; Chen and Loehr 2009; Hamidi and Hooresfand 2013; 48 

Miranda Pino et al. 2015; and Jamsawang et al. 2015). The behaviour of fibre-reinforced fine-grained soils has also 49 

been studied previously (Falorca et al. 2006; Casagrande et al. 2006; Özkul and Baykal 2007; Al-Akhras et al. 2010; 50 

Babu and Chouksey 2010; Ekinci and Ferreira 2012; Maliakal and Thiyyakkandi  2013; Sadeghi and Beigi 2014 and 51 

Botero et al. 2015; Khatri et al. 2015; and Anggraini et al. 2016). The reported research findings are in agreement in 52 

that fibre reinforcement improves the stress-strain behaviour, unconfined compression strength, shear strength and 53 

ductility of the soil and reduces the consolidation settlement of clay. Currently, the research theme within the area of 54 

soil fibre reinforcement is strongly favoured towards the use of virgin short fibres, mostly with granular soils. There 55 

is presently a research gap on the utilisation of recycled carpet waste fibres for the reinforcement of clays, with only 56 

limited current publications on this aspect (Murray et al. 2000, Ghiassian et al. 2004, Fatahi et al. 2012, 2013 a & b 57 

and Mirzababaei et al. 2013 a & b, 2017 b). 58 

Murray et al. (2000) conducted a consolidated undrained compression triaxial testing program to investigate the 59 

shear strength of a reinforced sandy silt soil with nylon waste fibres and virgin fibrillated polypropylene fibres. The 60 

results indicated that adding up to 3% waste nylon fibre or a maximum of 1% polypropylene virgin fibre can 61 

significantly increase the peak shear strength of the soil and can reduce its post-peak reduction in a ductile manner. 62 

Based on a series of drained compression triaxial tests on sand samples reinforced with carpet waste strips, 63 

Ghiassian et al. (2004) reported a satisfactory degree of improvement in the peak shear strength of sand that could 64 

be achieved by either increasing the strip content at a constant aspect ratio or by increasing the aspect ratio at a 65 

constant strip content.  66 

Recently, Fatahi et al. (2012, 2013 b) reported the improving effect of carpet waste fibre addition to cement 67 

stabilised soft kaolin and stated that the fibre type and content could significantly influence the peak shear strength, 68 
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stiffness and brittleness of the soft clays. The initial Young’s modulus of the cement-stabilised clay increased with 69 

the addition of polypropylene fibres, but reduced with the addition of carpet and steel fibres.  70 

Mirzababaei et al. (2013 a and b) carried out an extensive testing programme to investigate the unconfined 71 

compression strength and swelling pressure of expansive clays reinforced with carpet waste fibres and concluded 72 

that inclusion of up to 5% carpet waste fibres could result in reduction of the swelling pressure and increasing the 73 

unconfined compression strength of the clay. However, the relative gain in unconfined compression strength and 74 

reduction in swelling pressure is highly dependent on the initial dry unit weight and the moisture content of the clay. 75 

Mirzababaei et al. (2017 b) also reported significant enhancement in the bearing capacity of a model footing on a 76 

clay slope reinforced with carpet waste fibre. In this study, the stress-strain behaviour of a clay reinforced with two 77 

types of carpet waste fibre was analysed by conducting a number of consolidated undrained triaxial compression 78 

tests. Thus the experimental programme in this research seeks to evaluate the feasibility to sustainably reuse carpet 79 

waste fibres with non-uniform lengths and thicknesses to enhance the shear strength of clay. 80 

Several analytical models are available to estimate the stress-strain behaviour of fibre-reinforced granular soils 81 

based on the force-equilibrium approach (Waldron 1977; Gray and Ohashi 1983; Maher and Gray 1990; Ranjan et 82 

al. 1996; Michalowski 2008; Shukla et al. 2010), energy-based model (Michalowski and Zhao 1996) and discrete 83 

framework model (Zornberg 2002). There are also several statistical models to predict the shear strength of fibre-84 

reinforced granular soils (Ranjan et al 1996; Babu and Vasudevan 2008) with input parameters including some or 85 

any of the following: fibre content, fibre aspect ratio, fibre surface friction, confining pressure, fibre length, cohesion 86 

and internal friction angle of the fibre-reinforced soil. Cam Clay constitutive model has also been reformulated to 87 

account for the estimation of the deviator stress of fibre-reinforced clays (Chen 2007; Babu and Chouksey 2010; 88 

Diambra and Ibraim 2014 and Nguyen and Fatahi 2016).  89 

Although all proposed analytical and constitutive models agree well with the experimental data, the parameters 90 

required to execute these models are complex and require a number of triaxial, direct shear and consolidation tests. 91 

Therefore, due to the variability of soil types, fibre types and the complex interfacial behaviour of the soil at the 92 

interface with fibres, it is required to estimate the shear strength properties of the fibre-reinforced soil with less 93 

effort, so as to obtain the soil/fibre input parameters to ease its application in practice. In this study, a simple 94 

regression model is developed to predict the relationship between the effective shear strength ratio (q/p’), deviator 95 

stress (q) and the axial strain of a fibre-reinforced clay subjected to axial deviator stress at any fibre content and 96 

confining pressure regardless the fibre type and clay type. 97 

2. Materials 

The soil sample used in this study was collected from a site in the Northwest region of the United Kingdom. The soil 98 

was classified as low plastic clay according to the Unified Soil Classification System (USCS) with a plasticity index 99 

of 17% and specific gravity of 2.68. The grain size analysis of the soil indicated that it contained 55.78% fine grains 100 

and 44.22% coarse grains. Table 1 shows the properties of the soil. Two different types of carpet waste fibre (i.e., 101 

herein called GBF and ABF) were utilised in this investigation and supplied by Carpet Recycling UK and Milliken 102 

Carpet Europe as waste by-products from the production line (i.e. from shearing and/or edge trimming of the 103 



GI1035R2 revised tracked 

5 

 

carpet). The GBF consisted predominantly of propylene fibres whereas the ABF included short nylon fibres. Table 104 

2 presents typical specifications of the carpet waste fibres used in this study. Due to the waste origin of the fibres 105 

used in this study, the length of the fibres ranged from 2 to 20 mm with diverse thicknesses from 80 μm to 1,500 106 

μm. 107 

3. Experimental Programme 

In this study, because carpet fibre is classified as waste material, it was decided to investigate the addition of a high 108 

proportion of waste fibres on the shear strength of the clay. Therefore, fibre contents of 1%, 3%, and 5% of the dry 109 

mass of soil were selected to reinforce the clay. Because of reduced workability and practical difficulties to mix 110 

higher fibre contents evenly with the soil, the maximum fibre content used in this study was limited to 5%. Standard 111 

Proctor compaction tests were carried out on the unreinforced and fibre-reinforced clay. The compaction test results 112 

revealed that the maximum dry unit weight of the soil decreases with fibre inclusion. Figure 1 presents the 113 

compaction curves of the unreinforced and carpet waste fibre-reinforced soil with both fibre types. To achieve a 114 

uniform distribution of fibres in the clay sample, various approaches were undertaken including mixing water 115 

soaked fibres with dry clay, addition of dry fibres to the wet clay followed by mixing and mixing dry clay and fibres 116 

followed by spraying water on the mixture. It was concluded that spraying water on a dry mixture of fibre and clay 117 

to achieve the desired moisture content results in producing relatively uniform samples with less fibre tangling. 118 

However, other examined methods led to the formation of fibre lumps or balling during preparation that could affect 119 

the homogeneity of the sample. Therefore, the dry soil and fibres were mixed thoroughly in a sealed container by 120 

shaking. Subsequently, the calculated amount of water to reach the target moisture content was sprayed over the dry 121 

mixture of soil and fibre in several stages, followed by hand mixing to prepare a uniform mixture. The prepared 122 

mixture was kept in a sealed container for 3 to 4 days before the test day. This procedure, could possibly increase the 123 

mixing efficiency and therefore, ensure a relative uniformity of fibre distribution in the fibre-reinforced soil sample. 124 

A series of consolidated undrained triaxial tests were carried out on unreinforced and fibre-reinforced clay samples 125 

following BS 1377-8:1990 standard. Unreinforced and fibre-reinforced cylindrical clay samples with a diameter of 126 

38 mm and height of 76 mm were prepared at the same dry unit weight of 17.8 kN/m
3
 and their equivalent moisture 127 

content on the dry side of the compaction curve (refer to Figure 1; see solid points). Soil samples were saturated 128 

with a B Skempton ratio of at least 0.97 using steps of back pressure and cell pressure and subsequently 129 

consolidated at initial effective consolidation stresses of 50 kPa, 100 kPa and 200 kPa, respectively to simulate the 130 

medium to relatively high in-situ effective stress ranges and consequently sheared at axial strain rate of 0.13%/min. 131 

There are a few studies investigating the effect of sample size on the unconfined compression strength (UCS) and 132 

shear strength of fibre-reinforced clays. Xiao et al., (2014) experienced a significant increase in the UCS of 7-day 133 

cured fibre-reinforced clay when the sample size increased from 50 mm to 100 mm. However, the change was minor 134 

when the sample size was changed from 100 mm to 150 mm. They also reported insignificant size effect on UCS of 135 

14-day and 28-day cured fibre-reinforced samples. They also investigated the consolidated undrained and 136 

consolidated drained shear strength of fibre-reinforced clay and found that up to the consolidation stress of 110 kPa, 137 

the sample size does not affect the deviator stress of the fibre-reinforced clay significantly. 138 
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Nataraj and McManis (1997) also investigated the mechanical behaviour of fibre-reinforced clay using UCS test, 139 

direct shear test and CBR test. They reported an increase in UCS with the increase in sample size from 33 to 70 mm. 140 

However, they found the strength of 100 mm fibre-reinforced sample was slightly lower than that for 70 mm 141 

sample. Ang and Loehr (2003) also investigated the effect of sample size on the UCS of clays with diameter from 38 142 

mm to 152 mm. They observed the highest UCS for 70 mm samples. They also concluded that sample size 143 

influences the UCS of the clay compacted at dry side of the optimum value significantly. Therefore, although there 144 

are no definite published results confirming the effect of sample size on the shear strength of clays in consolidated 145 

triaxial tests, a sample diameter to fibre length ratio of 8 is desirable as recommended by Xiao et al. (2014). In this 146 

study, due to the waste origin of the carpet fibres and their random size including fibre lengths from 2 mm to 20 mm 147 

and fibre diameters from 80 μm to 1,500 μm, the above criteria may have been met partially as there was no control 148 

on picking appropriate fibre lengths for sample preparation. On the other hand, smaller samples may not allow full 149 

mobilisation of the reinforcing role of fibres in fibre-reinforced soil resulting in underestimating the shear strength 150 

of fibre-reinforced clay (Ang and Loehr 2003). 151 

4. Results and Discussions 

The contributing effect of fibre reinforcement on the shear strength behaviour of clay samples in terms of deviator 152 

stress ratio-mean effective stress ratio (𝑞𝑟𝑎𝑡𝑖𝑜/𝑝′𝑟𝑎𝑡𝑖𝑜), effective stress ratio (𝑞 𝑝′⁄ ) and deviator stress (q) versus 153 

axial strain was analysed and discussed in the following sections. 154 

4.1. Effective stress ratio and deviator stress of fibre-reinforced clay 

The stress-strain relationships during the consolidated undrained triaxial test were normalised and plotted for 155 

effective stress ratio (q/p’) and deviator stress versus axial strain for both unreinforced and fibre-reinforced soil 156 

samples at different initial effective consolidation stresses of 50 kPa, 100 kPa and 200 kPa as shown in Figures 2 157 

and 3. Figure 2 shows that inclusion of GBF fibre enhanced the effective stress ratio and deviator stress of the host 158 

soil significantly. Based on the graphs shown in Figure 2a, fibre-reinforced soil with 1%, 3% and 5% GBF fibre 159 

content improved the effective stress ratio of the unreinforced soil at initial effective consolidation stress of 200 kPa 160 

by 17.6%, 53.5% and 70.6%, respectively (i.e., measured at an axial strain of 20%). Although the effective stress 161 

ratios of the fibre-reinforced soil with 3% and 5% GBF fibre contents were almost similar at all effective 162 

consolidation stresses, their deviator stress behaviour was markedly different. This is mainly due to a simultaneous 163 

increase in both deviator stress and mean effective stress with the increase in fibre content resulting in less growth in 164 

effective stress ratio with the increase in fibre content. The ratio of deviator stress of 5% fibre-reinforced soil to that 165 

of 3% fibre-reinforced soil at an axial strain of 20% measured for initial effective consolidation stress of 200 kPa 166 

was determined to be 2.43 for GBF fibre-reinforced soil. The inclusion of 1%, 3% and 5% GBF fibre improved the 167 

deviator stress of the soil by 4.0%, 35.3% and 229.4% for the test with initial effective consolidation stress of 200 168 

kPa (i.e., measured at an axial strain of 20%).  169 

ABF fibre-reinforced soils also demonstrated significant improvement in effective stress ratio and deviator stress 170 

over those of unreinforced soil. At an axial strain of 20%, ABF fibre-reinforced soil samples subjected to initial 171 

effective consolidation stress of 200 kPa, produced 20.0%, 32.4% and 37.5% effective stress ratio improvement with 172 
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inclusion of 1%, 3% and 5% fibre, respectively (see Figure 3a). The inclusion of 1%, 3% and 5% ABF fibre, also 173 

improved the deviator stress of the soil by 16.7%, 38.4% and 129.3% at initial effective consolidation stress of 200 174 

kPa (i.e., measured at an axial strain of 20%, Figure 3b). Fibre-reinforced soil samples with 3% fibre showed 175 

slightly higher effective stress ratio at initial effective consolidation stress of 50 kPa than that of 5% fibre-reinforced 176 

soil samples (See Figures 2a and 3a). However, with an increase in initial effective consolidation stress to 100 kPa 177 

and 200 kPa, the observed order was reversed. This observation for the behaviour of fibre-reinforced soil is 178 

consistent with results previously reported by Freilich and Zornberg (2010) as they observed an increase in 179 

effectiveness of fibres on the shear strength of the soil with the increase in the effective confining pressure. At 180 

higher initial effective consolidation stresses prior to the shearing stage, due to increase in confining pressure and 181 

hence improved interaction between soil particles and fibres, the fibres were increasingly stretched. Therefore, upon 182 

initiating the shear stage, the fibres contribute better to distributing the applied shear stresses into a wider area. 183 

However, at lower initial effective consolidation stresses, the fibres may not interact effectively with soil grains and 184 

hence may slip in shear. Hence at relatively low confining stresses, the fibres may not effectively confine soil grains 185 

nor add surplus strength to the reinforced soil. Therefore, an increase in the fibre content at a low initial effective 186 

consolidation stress may have an adverse effect on the strength of the reinforced soil without necessary soil grain 187 

harnessing effect.  188 

Figures 2 and 3 also demonstrate that inclusion of fibres resulted in turning the plastic stress-strain behaviour of the 189 

unreinforced soil to a strain hardening behaviour. The shear strength behaviour of a soil is partly dependent on its 190 

initial moisture content and dry unit weight (Lamb and Whitman 1979). Reduction in the dry unit weight and 191 

increase in the moisture content of a soil mass subjected to shear stresses results in a rapid shear failure (Newcomb 192 

and Birgisson 1999). Although the moisture contents of the prepared soil samples were different and increased with 193 

fibre content, the shear strength ratio of the fibre-reinforced soil was superior to that of the unreinforced soil. The 194 

observed stress-strain response indicated that the contribution of the fibres to improve the shear strength of the soil 195 

samples prepared at an identical dry unit weight and different moisture contents, compensated for the loss of shear 196 

strength due to an increase in moisture content of the fibre-reinforced soil samples. 197 

Repeatability and reliability of the shear strength test results of the fibre-reinforced soil are paramount for acquiring 198 

an accurate mechanical behaviour, deeper understanding and successful modelling of the fibre-reinforced clay 199 

behaviour. Although, a consistent and careful control was undertaken during the sample preparation phase to ensure 200 

uniform distribution of fibres within the clay sample, to confirm the reliability of results three tests repeated on the 201 

fibre-reinforced clay samples with 5% ABF fibre content at initial consolidation stresses of 50, 100 and 200 kPa, 202 

respectively. Figure 4 compares the original and the repeat test results and shows a good repeatability of the results. 203 

In this study, the deviator stress ratio and mean effective stress ratio are defined as the ratio of the deviator and mean 204 

effective stress of the fibre-reinforced soil to that of the unreinforced soil, respectively: 205 

Deviator stress ratio (𝑞𝑟𝑎𝑡𝑖𝑜) =
𝑞𝑟𝑒

𝑞𝑢𝑛
        (Eq.1) 206 

Mean effective stress ratio (𝑝′𝑟𝑎𝑡𝑖𝑜) =
𝑝′𝑟𝑒

𝑝′𝑢𝑛
       (Eq.2) 207 

where; 𝑞 is the deviator stress (𝜎1
′ − 𝜎3

′), 𝑝′ is themean effective stress ((1/3)(𝜎1
′ + 2𝜎3

′)) and 𝜎1,3
′  are themajor and 208 
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minor principal effective stresses 209 

Note: re: reinforced, un: unreinforced 210 

Figure 5 presents the relationships between 𝑞𝑟𝑎𝑡𝑖𝑜 and 𝑝′𝑟𝑎𝑡𝑖𝑜  of the fibre-reinforced soil samples. Illustrated data in 211 

this figure are related to the data of 𝑞𝑟𝑎𝑡𝑖𝑜, and 𝑝′𝑟𝑎𝑡𝑖𝑜  of the fibre-reinforced soil samples subjected to initial 212 

effective consolidation stresses of 50 kPa, 100 kPa and 200 kPa and calculated at axial strains of 5%, 10%, 15% and 213 

20%, respectively. Figure 5 also shows that 𝑞𝑟𝑎𝑡𝑖𝑜 changed rather linearly with 𝑝′𝑟𝑎𝑡𝑖𝑜  at all fibre contents for both 214 

fibre types and the deviator stress ratio and mean effective stress ratio of the fibre-reinforced soil increased with 215 

fibre content. Assuming 𝑞𝑟𝑎𝑡𝑖𝑜 a linear function of  𝑝′𝑟𝑎𝑡𝑖𝑜 , we can write: 216 

𝑞𝑟𝑎𝑡𝑖𝑜 = 𝑧 × 𝑝′𝑟𝑎𝑡𝑖𝑜 + 𝑤         (Eq.3) 217 

Equation 3 shows that a linear relationship existed between the deviator stress ratio and mean effective stress ratio 218 

of the fibre-reinforced soil. However, this equation did not specifically elaborate on the above relationship as a 219 

function of axial strain during triaxial compression test, fibre content and initial consolidation stress of the soil 220 

sample. Therefore, it is required to develop models to correlate the effective stress ratio and deviator stress of the 221 

fibre-reinforced soil to the axial strain, fibre content and initial consolidation stress of the clay sample during the 222 

triaxial compression test. 223 

4.2. Predicting the effective stress ratio and deviator stress of fibre-reinforced soil 

Duncan-Chang model (i.e., hyperbolic stress-strain theory, 1970) is an incremental nonlinear stress-dependent 224 

model that explains the nonlinearity, stress-dependent and inelastic behavioural feature of cohesive and cohesionless 225 

soils with a simple form. Horpibulsuk and Miura (2001) and Horpibulsuk and Rachan (2004) used a modified form 226 

of the Duncan-Chang hyperbolic model to capture the undrained and drained behaviour of uncemented and cement 227 

stabilised clays. The modified hyperbolic model can exhibit strain softening behaviour following the destruction of 228 

the sample at peak and also the strain hardening behaviour. Therefore, in this study, the modified hyperbolic model 229 

proposed by Horpibulsuk and Miura (2001) was used to characterise the nonlinear stress-strain behaviour of the 230 

fibre-reinforced clay.  231 

In order to consider the nonlinear behaviour (i.e., strain hardening/softening) of the effective stress ratio and deviator 232 

stress of the fibre-reinforced clay, the variation of the effective stress ratio and deviator stress of the fibre-reinforced 233 

soil with the axial strain in terms of modified hyperbolic relation takes the following forms: 234 

𝑞

𝑝′ =
𝜀

𝑎+𝑏𝜀𝑛 a, b and n are the modified hyperbolic model parameters for effective stress ratio (Eq.4) 235 

𝑞 =
𝜀

𝑔+ℎ𝜀𝑡 g, h and t are the modified hyperbolic model parameters for deviator stress  (Eq.5) 236 

The parametric study of the influence of model parameters on the evolution of effective stress ratio (
𝑞

𝑝′) and deviator 237 

stress (q) are shown in Figures 6 and 7, respectively. Figure 6 shows that a controlled the value of the initial 238 

tangent to the 𝑞 𝑝′⁄ − 𝜀 behaviour while b accounted for the residual value and n was responsible for the slope of the 239 

post peak drop of the 𝑞 𝑝′⁄ − 𝜀 curve. 240 
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The effective stress ratio and deviator stress data of the consolidated undrained triaxial tests on both unreinforced 241 

and fibre-reinforced soil samples were used to determine the coefficients of the modified hyperbolic model using a 242 

nonlinear regression analysis. Figures 8 and 9 show the calculated coefficients for both unreinforced and fibre-243 

reinforced soil samples tested at different initial effective consolidation stresses. The calculated hyperbolic model 244 

parameters for the stress-strain behaviour of the fibre-reinforced samples with different fibre contents and subjected 245 

to different initial effective consolidation stresses showed a nonlinear trend for both ABF and GBF fibres.  246 

Therefore, to develop a set of meaningful correlations between calculated coefficients and the fibre content, the 247 

parameters were further normalised to the values of initial effective consolidation stress and fibre content. The 248 

following equations show the relationships between the normalised coefficients and the initially non-normalised 249 

coefficients used in the modified hyperbolic model. Figures 10 and 11 depict the relationships between the 250 

normalised parameters and the fibre content.  251 

𝑎∗ = log (
𝑎

100𝜎𝑐
′)(1 + 100𝑓)= 𝑘1𝑎 × 𝑓 + 𝑘2𝑎      (Eq.6) 252 

𝑏∗ = log (
𝑏

100
) (1 + 100𝑓) = 𝑘1𝑏 × 𝑓 + 𝑘2𝑏       (Eq.7) 253 

𝑛∗ = 𝐸𝑥𝑝(−𝑛)(1 + 100𝑓) = 𝑘1𝑛 × 𝑓 + 𝑘2𝑛      (Eq.8) 254 

𝑔∗ = log (
𝜎𝑐

′𝑔2

100
)(1 + 100𝑓)= 𝑘1𝑔 × 𝑓 + 𝑘2𝑔       (Eq.9) 255 

ℎ∗ = log (
𝜎𝑐

′ℎ2

100
) (1 + 100𝑓) = 𝑘1ℎ × 𝑓 + 𝑘2ℎ      (Eq.10) 256 

𝑡∗ = 𝐿𝑜𝑔(100𝑡)(1 + 100𝑓) = 𝑘1𝑡 × 𝑓 + 𝑘2𝑡      (Eq.11) 257 

where; 𝜎𝑐
′ stands for the initial effective consolidation stress, 𝑓 stands for the fibre content and 258 

𝑘1𝑎,𝑔, 𝑘2𝑎,𝑔, 𝑘1𝑏,ℎ, 𝑘2𝑏,ℎ, 𝑘1𝑛,𝑡 , 𝑘2𝑛,𝑡  are the coefficients of the linear equations (see Figures 10 and 11).  259 

Therefore, the original coefficients of the modified hyperbolic model can be expressed based on the fibre content, 260 

initial effective consolidation stress and the linear equations presented in Figures 10 and 11 using equations 12 to 261 

17. 262 

𝑎 = 𝜎𝐶
′ 10

(2+
𝑘1𝑎×𝑓+𝑘2𝑎

1+100𝑓
)
           (Eq.12) 263 

𝑏 = 10
(2+

𝑘1𝑏×𝑓+𝑘2𝑏
1+100𝑓

)
         (Eq.13) 264 

𝑛 = −ln (
𝑘1𝑛×𝑓+𝑘2𝑛

1+100𝑓
)         (Eq.14) 265 

𝑔 = √ 1

𝜎𝐶
′ 10

(2+
𝑘1𝑔×𝑓+𝑘2𝑔

1+100𝑓
)
           (Eq.15) 266 

ℎ = √ 1

𝜎𝐶
′ 10

(2+
𝑘1ℎ×𝑓+𝑘2ℎ

1+100𝑓
)
         (Eq.16) 267 

𝑡 = 10
(−2+

𝑘1𝑡×𝑓+𝑘2𝑡
1+100𝑓

)
         (Eq.17) 268 

Combining equations 4 and 5 with equations 12 to 17 results in the following equations for predicting the effective 269 

shear stress ratio and deviator stress of the fibre-reinforced clay: 270 
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(
𝑞

𝑝′)𝑟𝑒 =
0.01×𝜀

𝜎𝐶
′ ×10

𝑘1𝑎×𝑓+𝑘2𝑎
1+100𝑓 +10

(
𝑘1𝑏×𝑓+𝑘2𝑏

1+100𝑓
)
𝜀

−ln (
𝑘1𝑛×𝑓+𝑘2𝑛

1+100𝑓
)
      (Eq.18) 271 

𝑞𝑟𝑒 =
0.01×𝜀

√ 1

𝜎𝐶
′ 10

𝑘1𝑔×𝑓+𝑘2𝑔
1+100𝑓 +𝜀10

(−2+
𝑘1𝑡×𝑓+𝑘2𝑡

1+100𝑓
)
√ 1

𝜎𝐶
′ 10

𝑘1ℎ×𝑓+𝑘2ℎ
1+100𝑓

      (Eq.19) 272 

Equations 18 and 19 can also be rewritten for unreinforced soil (i.e., 𝑓 = 0): 273 

(
𝑞

𝑝′)
𝑢𝑛

=
0.01×𝜀

𝜎𝐶
′ ×10𝑘2𝑎+10𝑘2𝑏×𝜀−ln (𝑘2𝑛)                                                                (Eq.20) 274 

𝑞𝑟𝑒 =
0.01×𝜀

√
1

𝜎𝐶
′ 10

𝑘2𝑔+𝜀10(𝑘2𝑡−2)
√

1

𝜎𝐶
′ 10𝑘2ℎ

         (Eq.21) 275 

Figure  12  compares the predicted data using the developed regression model for the relationships between effective 276 

stress ratio and axial strain of the unreinforced and fibre-reinforced soil samples studied in this research. 277 

4.3. Proposed method to predict the stress ratio of fibre-reinforced clays 

In this study, the modified hyperbolic model was used to predict the effective stress ratio and deviator stress of the 278 

fibre-reinforced clay for practical application. The model parameters can be calculated using the following steps: 279 

1) Use equations 4 and 5 to fit the test data of unreinforced and fibre-reinforced soil samples using nonlinear 280 

regression analysis and determine a, b and n or g, h and t. 281 

2) Use equations 6 to 11 to calculate the normalised parameters a*, b* and n* or g*, h* and t*.  282 

3) Draw the best fit line through the graphs of normalised parameters (calculated in step 2) versus fibre 283 

content to calculate k1a,g, k2a,g, k1b,h, k2b,h, k1n,t and k2n,t.  284 

4) Use equations 18 and 19 to predict the effective stress ratio and deviator stress of the fibre-reinforced clay, 285 

respectively.  286 

The model calibration phase as explained above aims to capture the inherent properties of the soil and fibres into the 287 

equation in form of model parameters. Therefore, once the model is calibrated based on a particular clay type and a 288 

particular fibre type, it can predict the effective shear stress ratio and deviator stress of the clay at different axial 289 

strains during the triaxial compression test. The model parameters can be adequately estimated using a minimum of 290 

2 tests on an unreinforced soil (at two different initial effective consolidation stresses) and two tests on fibre-291 

reinforced clay (with a fibre content at two different initial effective consolidation stresses). A medium range fibre 292 

content is recommended for calibration stage. To increase the accuracy of the model it is recommended to use the 293 

triaxial test data of three unreinforced soil samples tested at different effective consolidation stresses. 294 

4.4. Validation of the model 

The proposed model was validated by comparing its predictions with some of the published experimental data 295 

available in the literature. The stress-strain data of the chosen research works were extracted by digitising the 296 

reported graphs.  297 
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Wu et al. (2014) carried out a series of undrained triaxial tests on fibre-reinforced silty clay samples with 0.5%, 1% 298 

and 1.5% sisal fibres. They reported a gradual increase in deviator stress of fibre-reinforced soil with an increase in 299 

fibre content. However, the rate of deviator stress improvement was declined beyond 1% fibre content. Figure 13 300 

shows the predicted data using the model introduced in this study. The model parameters were calculated using 301 

experimental data of the unreinforced and 1% fibre-reinforced samples tested at consolidation stresses of 100 kPa 302 

and 400 kPa, respectively. The developed model in this study could predict the experimental results at 200 kPa 303 

consolidation stress for 0.5%, 1% and 1.5% fibre-reinforced clay with 0.5% to 5% underestimation.  304 

Babu and Chouksey (2010) also carried out a series of undrained tests on randomly distributed fibre-reinforced clay 305 

samples with 0.5%, 1% and 2% coir fibres. The results indicated that the fibre-reinforced soil gained a higher 306 

strength than unreinforced soil with the increase in fibre content to the studied limit of 2% fibre content. They also 307 

developed an analytical model based on Cam Clay model to predict the shear strength of fibre-reinforced soil. 308 

Although their model fitted well with the experimental results, they did not validate their model with published data. 309 

Figure 14 shows the experimental results reported in their article and the predicted data using the proposed model in 310 

this study. The model parameters were acquired from triaxial test data carried out on unreinforced and 1% fibre-311 

reinforced soil at consolidation stresses of 50 and 150 kPa, respectively. According to Figure 14, the ratios of the 312 

effective stress ratio of 0.5%, 1% and 2% coir fibre-reinforced clay predicted by the developed model in this study 313 

to that of the experimental results at consolidations stress of 100 kPa at 12% axial strain were 1.03, 0.99 and 0.95, 314 

respectively. 315 

Ozkul and Baykal (2007) reported an increase in drained and undrained deviator stress of saturated silty clay 316 

reinforced with 10% short tyre buffing fibres. They also determined a limiting confining pressure of 200-300 kPa 317 

beyond which the presence of rubber fibres reduced the shear strength of the soil.  The undrained experimental data 318 

reported by Ozkul and Baykal (2007) was used to validate the model developed in this study. Therefore, the model 319 

parameters were calculated using the test data of unreinforced soil at consolidation stresses of 100 kPa and 300 kPa 320 

in addition to the single test data of fibre-reinforced soil at consolidation stress of 300 kPa. Figure 15 shows the 321 

experimental data and predicted deviator stress curves. The ratios of the deviator stresses of 10% rubber fibre-322 

reinforced clay predicted by the developed model in this study to that of the experimental results at consolidation 323 

stresses of 100 kPa, 200 kPa and 300 kPa at 12% axial strain were 1.04, 0.97 and 0.99, respectively. 324 

In another study, Nguyen and Fatahi (2016) reported the mechanical behaviour of fibre-reinforced cemented clay 325 

with polypropylene fibres using a series of consolidated undrained triaxial tests. They also developed a constitutive 326 

model called C3F based on Modified Cam Clay (MCC) model to predict the shear strength of fibre-reinforced clays 327 

with and without cementation. Their model could predict the shear strength of the fibre-reinforced cemented clay in 328 

a good agreement with the experimental results. Figure 16 shows the undrained experimental results on fibre-329 

reinforced clay samples stabilised with 15% cemented, predicted results using C3F model and also the predicted test 330 

data using the method introduced in this study. The model parameters were acquired using data of unreinforced and 331 

0.5% fibre-reinforced soil tested at effective consolidation stresses of 400 kPa and 800 kPa, respectively. According 332 

to Figure 16, at consolidation stress of 200 kPa and 12% axial strain the developed model in this study 333 
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overestimated the deviator stress of 0.3% and 0.5% fibre-reinforced soil by 4% and 15% respectively and the C3F 334 

model underestimated both by 4%. However, at 800 kPa consolidation stress and 12% axial strain, the developed 335 

model in this study and C3F model overestimated the deviator stress of 0.3% and 0.5% fibre-reinforced soil both by 336 

the same values of 16% and 10%, respectively. 337 

Khatri et al. (2016) also carried out a series of undrained triaxial tests on fibre-reinforced clay with 0.4% to 1.6% 338 

coir fibre. They reported that the shear strength of fibre-reinforced clay was improved with the increase in fibre 339 

content and developed a successful hyperbolic model to predict their own data. However, they did not correlate the 340 

model parameters with fibre content or consolidation stress and their model was not validated against available data 341 

in the literature. Figure 17 compares the experimental data and those predicted by the developed model in this 342 

study. The model parameters were calculated using experimental data of unreinforced and 0.8% fibre-reinforced soil 343 

at consolidation stresses of 77.48 kPa and 313.92 kPa, respectively. The developed model in this study 344 

underestimated the effective stress ratio of the 0.4%, 0.8% and 1.6% fibre-reinforced soil at consolidation stress of 345 

77.48 kPa and 12% axial strain by 10%, 10% and 3%, respectively. However, at consolidation stress of 313.92 kPa 346 

and 12% axial strain, the effective stress ratio of 0.4%, 0.8% and 1.6% fibre-reinforced soil was overestimated by 347 

18%, 1% and 5%, respectively. 348 

Table 3 demonstrates a comparison of experimental and predicted results of above-studied research works. The 349 

developed nonlinear regression model based on the modified hyperbolic model and the proposed technique to 350 

acquire the model parameters in this study could capture the experimental stress-strain results reasonably well 351 

considering the less effort to calculate the model parameters compared to using constitutive models.  352 

The Supplemental Material for this article explains the technique to calculate the model parameters for the 353 

modified hyperbolic model based on the triaxial test results reported by Wu et al. (2014). 354 

5. Conclusions 

In this research, the shear strength behaviour of a clay reinforced with two types of carpet waste fibre was 355 

investigated by conducting a set of consolidated undrained triaxial shear tests on fibre-reinforced samples with 1%, 356 

3% and 5% fibre contents. The fibre-reinforced soils exhibited significant variation in the Proctor compaction curve 357 

to that of the unreinforced soil. Therefore, to eliminate the effect of initial unit weight on the stress-strain results, all 358 

samples were prepared at an identical dry unit weight (i.e., 17.8 kN/m
3
) and their respective moisture contents based 359 

on the standard Proctor compaction curves for the unreinforced and fibre-reinforced soils.  360 

Fibre reinforcement using waste carpet fibres improved the stress-strain behaviour of the clay significantly and the 361 

contribution of the fibres to increase the effective stress ratio and deviator stress of the soil increased with fibre 362 

content. At higher initial effective consolidation stresses prior to the shearing stage, fibres stretch increasingly and 363 

therefore, contribute better to distribute the disturbing shear stresses into a wider area upon initiating the shear stage. 364 

However, at lower initial effective consolidation stresses, fibres cannot stretch effectively and may slip during the 365 

shear. Hence, fibres may not confine soil grains and add surplus strength to the reinforced soil. Therefore, increase 366 

in fibre content at a low initial effective consolidation stress may have an insignificant effect on the shear strength of 367 
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the fibre-reinforced soil without necessary soil grain harnessing effect. Increase in fibre content results in changing 368 

the stress-strain behaviour of the unreinforced soil sample to a strain hardening behaviour. This research indicated 369 

that up to 5% carpet waste fibre could be optimally used for improving the shear strength behaviour of clay and 370 

hence introduces carpet waste fibres as sustainable soil reinforcing materials to improve the shear strength of weak 371 

soils. 372 

Two nonlinear regression models were developed based on the modified hyperbolic model to predict the effective 373 

stress ratio and deviator stress of the fibre-reinforced clay. The model parameters can be determined from the 374 

triaxial test results on unreinforced and a fibre-reinforced soil sample at two different consolidation stresses. The 375 

model can predict the stress-strain curve of the fibre-reinforced clay with knowing the initial effective consolidation 376 

stress and the fibre content. The model was verified with the available data in the literature and predictions by the 377 

model agreed reasonably well with the published experimental data. The proposed model is relatively simple 378 

compared to other developed regression models and constitutive models reported in the literature in that it eliminates 379 

the requirement for advanced soil testing and knowledge of fibre properties. This model can be used as a tool to 380 

predict the shear strength of fibre-reinforced clay in geotechnical engineering practice with limited knowledge of the 381 

soil properties and less number of testing. 382 
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a)  GBF fibre reinforced clay 

 
b)  ABF fibre-reinforced clay 

Figure 1. Standard Procotor compaction curves of fibre-reinforced clays  530 
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a) b) 

Figure 2. Effective stress ratio a) and deviatoric stress b) behaviours of GBF fibre-reinforced clay  531 
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a) b) 

Figure 3. Effective stress ratio a) and deviatoric stress b) behaviours of ABF fibre-reinforced clay  532 
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a) Eff. Cons. Stress: 50 kPa 

 
b) )   Eff. Cons. Stress: 100 kPa 

 
c)  Eff. Cons. Stress: 200 kPa 

Figure 4. Results of repeated tests on 5% ABF fibre-reinforced clay  533 
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a) GBF fibre reinforced clay 

 
b) ABF fibre-reinforced clay 

Figure 5. The relationship between deviator stress change ratio and mean effective stress change ratio of fibre- 534 

reinforced clays 535 

 
a) 

 
b) 

 
c) 

Figure 6. Parametric study of the modified hyperbolic model parameters on the effective stress ratio of the soil: the 536 

effect of a) parameter ‘a’ b) parameter ‘b’ c) parameter ‘n’ on the modified hyperbolic function  537 
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a) 

 
b) 

 
c) 

Figure 7. Parametric study of the modified hyperbolic model parameters on the deviatoric stress of the soil: the 538 

effect of a) parameter ‘g’ b) parameter ‘h’ c) parameter ‘t’ on the modified hyperbolic function  539 
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Figure 8. Modified hyperbolic model parameters for 𝑞 𝑝′⁄ − 𝜀 behaviour of the fibre-reinforced soil samples  540 
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Figure 9. Modified hyperbolic model parameters for 𝑞 − 𝜀 behaviour of the fibre-reinforced soil sample  541 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 10. Normalised modified hyperbolic model parameters for 𝑞 𝑝′⁄ − 𝜀 behaviour of the fibre-reinforced soil 542 

samples: a,b,c) ABF fibre-reinforced soils d,e,f) GBF fibre-reinforced soils  543 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 11. Normalised modified hyperbolic model parameters for 𝑞 − 𝜀 behaviour of the fibre-reinforced soil 544 

samples: a,b,c) ABF fibre-reinforced soils d,e,f) GBF fibre-reinforced soils  545 
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a) b) 

Figure 12. Experimental and predicted data for effective stress ratio-axial strain response of:  546 

a) GBF fibre-reinforced soil b) ABF fibre-reinforced soil 547 
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a) Effective consolidation stress: 100 kPa 

 
b) Effective consolidation stress: 200 kPa 

 
c) Effective consolidation stress: 300 kPa 

 
d) Effective consolidation stress: 400 kPa 

Figure 13. Experimental and predicted data for shear strength response of fibre-reinforced soil (Wu et al. 2014)  548 
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a) Effective consolidation stress: 50 kPa 

 
b) Effective consolidation stress: 100 kPa 

 
c) Effective consolidation stress: 150 kPa 

 

Figure 14. Experimental and predicted data for shear strength response of fibre-reinforced soil  549 
(Babu and Chouksey 2010)550 
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Figure 15. Experimental and predicted data for shear strength response of fibre-reinforced soil  551 
(Ozkul and Baykal 2007)  552 
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a) Effective consolidation stress of 200 kPa 

 
b) Effective consolidation stress of 400 kPa 

 

c) Effective consolidation stress of 600 kPa 

 

d) Effective consolidation stress of 800 kPa 

Figure 16. Experimental and predicted data for shear strength response of fibre-reinforced soil  553 
(Nguyen and Fatahi 2016) 554 

 
Figure 17. Experimental and predicted data for shear strength response of fibre-reinforced soil (Khatri et al. 2016) 555 
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Table 1. Soil Properties 556 
Unified soil classification CL 

Specific gravity 2.68 

Gravel (%) 1.42 

Sand (%) 42.80 

Fine content (%) 55.78 

Liquid limit (%) 29.00 

Plastic Limit (%) 12.00 

Plasticity index (%) 17.00 

Maximum dry unit weight (kN/m
3
) 20.10 

Optimum moisture content (%) 11.00 

Swelling pressure (kPa) 76.20 

Table 2. Properties of carpet waste fibres 557 
 

 

Composition Specific  

 

Gravity*
 

Water 

Absorption* 

(%) 

Composition  

(%) 

Specific Tensile 

Modulus* 

(GPa/gram/cm
3
) 

GBF fibre Polypropylene 0.90 0.0 60 0.27~0.44 

Styrene-Butadiene 

Rubber (SBR)  

0.99 - 20 - 

Nylon 1.14 4.1-4.5 15 0.40~0.70 

Wool 1.32 13-15 5 0.27~0.40 

ABF fibre Nylon 1.14 4.1-4.5 100 0.40~0.70 

*Recommended by the manufacturer 558 

  559 
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Table 3. Comparison of experimental and predicted shear strength results 560 
Test data (

𝑞

𝑝′
)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

(
𝑞

𝑝′
)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

 

𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑞𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

  

𝜀 = 14.5%, 𝑓 = 0.5%, 𝜎′
𝑐 = 50 𝑘𝑃𝑎  1.12 1.02 Babu and Chouksey 

(2010) 

 

𝜀 = 14.3%, 𝑓 = 1%, 𝜎′
𝑐 = 50 𝑘𝑃𝑎 1.08 0.87 

𝜀 = 14.3%, 𝑓 = 2%, 𝜎′
𝑐 = 50 𝑘𝑃𝑎 1.06 0.81 

𝜀 = 14.4%, 𝑓 = 0.5%, 𝜎′𝑐 = 100 𝑘𝑃𝑎 1.03 1.16 

𝜀 = 14.4%, 𝑓 = 1%, 𝜎′𝑐 = 100 𝑘𝑃𝑎 0.99 1.12 

𝜀 = 14.4%, 𝑓 = 2%, 𝜎′𝑐 = 100 𝑘𝑃𝑎 0.94 1.08 

𝜀 = 14.5%, 𝑓 = 0.5%, 𝜎′𝑐 = 150 𝑘𝑃𝑎 0.96 1.15 

𝜀 = 14.5%, 𝑓 = 1%, 𝜎′𝑐 = 150 𝑘𝑃𝑎 0.90 1.14 

𝜀 = 14.4%, 𝑓 = 2%, 𝜎′𝑐 = 150 𝑘𝑃𝑎 0.85 1.05 

𝜀 = 13.6%, 𝑓 = 0.5%, 𝜎′
𝑐 = 100 𝑘𝑃𝑎 - 1.06 Wu et al. (2014) 

 

 

 

 

 

𝜀 = 14.4%, 𝑓 = 1%, 𝜎′
𝑐 = 100 𝑘𝑃𝑎 - 0.94 

𝜀 = 14.4%, 𝑓 = 1.5%, 𝜎′
𝑐 = 100 𝑘𝑃𝑎  0.96 

𝜀 = 14.1%, 𝑓 = 0.5%, 𝜎′
𝑐 = 200 𝑘𝑃𝑎 - 0.98 

𝜀 = 14.1%, 𝑓 = 1%, 𝜎′
𝑐 = 200 𝑘𝑃𝑎 - 1.03 

𝜀 = 14.3%, 𝑓 = 1.5%, 𝜎′
𝑐 = 200 𝑘𝑃𝑎 - 0.93 

𝜀 = 14.1%, 𝑓 = 1.5%, 𝜎′
𝑐 = 300 𝑘𝑃𝑎 - 0.98 

𝜀 = 14.1%, 𝑓 = 1.5%, 𝜎′
𝑐 = 400 𝑘𝑃𝑎 - 1.01 

𝜀 = 14.7%, 𝑓 = 10%, 𝜎′
𝑐 = 100 𝑘𝑃𝑎 - 1.08 Ozkul and Bykal (2007) 

𝜀 = 13.6%, 𝑓 = 10%, 𝜎′
𝑐 = 200 𝑘𝑃𝑎 - 1.01 

𝜀 = 14.2%, 𝑓 = 10%, 𝜎′
𝑐 = 300 𝑘𝑃𝑎 - 0.99 

𝜀 = 10.5%, 𝑓 = 0.3%, 𝜎′
𝑐 = 600 𝑘𝑃𝑎 - 0.94 Nguyen and Fatahi (2016) 

𝜀 = 10.5%, 𝑓 = 0.5%, 𝜎′
𝑐 = 600 𝑘𝑃𝑎 - 0.95 

𝜀 = 10.5%, 𝑓 = 0.3%, 𝜎′
𝑐 = 800 𝑘𝑃𝑎 - 0.88 

𝜀 = 10.5%, 𝑓 = 0.5%, 𝜎′
𝑐 = 800 𝑘𝑃𝑎 - 0.90 

𝜀 = 14.2%, 𝑓 = 0.4%, 𝜎′
𝑐 = 78.48 𝑘𝑃𝑎 0.88 - Khatri et al. (2016) 

𝜀 = 14.1%, 𝑓 = 1.6%, 𝜎′
𝑐 = 78.48 𝑘𝑃𝑎 0.97 -  

𝜀 = 14.1%, 𝑓 = 0.4%, 𝜎′
𝑐 = 156.96 𝑘𝑃𝑎 1.04 -  

𝜀 = 14.2%, 𝑓 = 1.6%, 𝜎′
𝑐 = 156.96 𝑘𝑃𝑎 1.06 -  

𝜀 = 14.1%, 𝑓 = 0.4%, 𝜎′
𝑐 = 313.92 𝑘𝑃𝑎 1.22 -  

𝜀 = 14.5%, 𝑓 = 1.6%, 𝜎′
𝑐 = 313.92 𝑘𝑃𝑎 1.12 -  

 561 
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SUPPLEMENTAL MATERIAL 562 
 563 

In this example, the model parameters of the introduced modified hyperbolic model are calculated for experimental 564 

data reported by Wu et al. (2014). A nonlinear regression analysis using the modified hyperbolic function (Eq. 5) 565 

was carried out on the stress-strain data of the unreinforced and 1% fibre-reinforced soil tested at effective 566 

consolidation stresses of 100 kPa and 400 kPa, respectively. Figure S1 shows the yielded modified hyperbolic and 567 

normalised modified hyperbolic regression model parameters (Equations 9 to 11) for calibrating the model. In order 568 

to determine the linear coefficients (𝑘1𝑎,𝑔, 𝑘2𝑎,𝑔, 𝑘1𝑏,ℎ, 𝑘2𝑏,ℎ, 𝑘1𝑛,𝑡  and 𝑘2𝑛,𝑡), draw a graph of normalised modified 569 

hyperbolic model parameters versus fibre content and find the best fit line (See Figure S2). Then use equations 15 570 

to 17 to calculate the modified hyperbolic model parameters (g, h and t). Finally, use equation 5 or 19 to predict the 571 

deviator stress of the fibre-reinforced clay. 572 

 573 

 

Unreinforced soil, 𝜎𝑐
′:100 kPa 

 

 

 

g= 5.0290 E-5 

h= 0.004708 

t= 1.3340 

g*= -8.59704 

h*= -4.65433 

t*=   2.12516 

Unreinforced soil , 𝜎𝑐
′: 400 kPa 

 

 

 

g= 3.3990 E-5 

h= 0.001590 

t= 1.1630 

g*= -8.58112 

h*= -5.19170 

t*=   1.99848 

1% fibre-reinforced soil, 𝜎𝑐
′: 100 kPa 

 

 

 

g= 3.9140 E-5 

h= 0.002800 

t= 1.1800 

g*= -17.62952 

h*= -10.21137 

t*=   4.14376 

1% fibre-reinforced soil, 𝜎𝑐
′: 400 kPa 

 

 

 

g= 3.0290 E-5 

h= 0.000923 

t= 0.9562 

g*= -16.77040 

h*= -10.93601 

t*=   3.96110 

Figure S1. Experimental data and modified hyperbolic nonlinear regression analysis of deviator stress of 574 
unreinforced and fibre-reinforced soil (Wu et al., 2014) 575 
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K1g = -861.0880, K2g = -8.5891 

K1h = -565.0677, K2h = -4.9230 

K1t = 199.0614, K2t = 2.0618 

Figure S2. Relationship between normalised modified hyperbolic parameters and fibre content 577 
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