
CloudIntell: An Intelligent Malware Detection System

Qublai K. Ali Mirza1, Irfan Awan

School of Electrical Engineering and
Computer Science

University of Bradford, UK

Muhammad Younas

Computing and Communication Technologies
Oxford Brookes University, UK

Abstract

Enterprises and individual users heavily rely on the abilities of antiviruses and

other security mechanisms. However, the methodologies used by such software

are not enough to detect and prevent most of the malicious activities and also

consume a huge amount of resources of the host machine for their regular oper-

ations. In this paper, we propose a combination of machine learning techniques

applied on a rich set of features extracted from a large dataset of benign and

malicious files through a bespoke feature extraction tool. We extracted a rich

set of features from each file and applied support vector machine, decision tree,

and boosting on decision tree to get the highest possible detection rate. We also

introduce a cloud-based scalable architecture hosted on Amazon web services to

cater the needs of detection methodology. We tested our methodology against

different scenarios and generated high achieving results with lowest energy con-

sumption of the host machine.

Keywords: Malware Analysis, Machine Learning, Cloud, Decision Tree,

Boosting, SVM, Security

1q.k.alimirza@bradford.ac.uk(Corresponding Author)

Preprint submitted to Future Generation Computer Systems July 14, 2017



1. Introduction

A recent report from Intel Security claims that they detect more than 7000

malware attacks every hour and this is only for mobile devices [1]. The number

is significantly bigger if the domain is broader, such as; individual computers,

enterprise networks, websites, and other web enabled devices and infrastruc-

tures. Figure 1 presents the statistics, published by AV-TEST, of malware

released every year, AV-TEST institute registers near to 400,000 new malware

every day [2]. Out of millions of malwares collected each year, majority of the

samples are the evolved version of their predecessor, which happens because of

an extremely intelligent yet malicious approach taken by the malware authors.

When a malware author decides to release the code in public, many of them

are released with a mutation engine for their [3]. This not only allows other

people with malicious intent to generate their version of that malware, it also

doesnt require a lot of programming knowledge for doing so. Even if only the

original code is released by the malware author, it becomes easy for anyone to

manipulate the code or add some more malicious features to use the malware

for their own gain. This gives an enormous edge to the black-hat community

over the white-hat community by saving time and recreating a sophisticated

and more lethal version of an old malware. Malware authors use obfuscation

and replication techniques to change the apparent features of malware dynam-

ically to avoid getting detected by antiviruses and even if a single instance of

a malware is detected, multiple, yet completely different, instances of the same

malware are generated making it nearly impossible for the security software to

detect it [4, 5].

The number of malware released every year is enormously more than previous

years [6] and it is practically impossible to separately analyze the features and

behavior of every malware released in the wild. Although, antiviruses claim

to protect the individual systems, enterprise networks, emails, and other types

of web-forgery, their progress is not as impressive as claimed by their vendors.

Antiviruses not only fail to protect against modern sophisticated attacks, as

2



Figure 1: Malware Release Stats per Year by AVTEST [2]

proved by many researchers, they also consume a lot of resources for trying to

do so. However, antiviruses and their detection strategy cannot be classified

as useless, the techniques and methodologies used by antiviruses to detect and

prevent malware from attacking and propagating are quite useful for malware

that are known and whose signature and heuristics are present in antivirus's

database [7]. Although, only relying on antiviruses is a huge mistake, as they

consume a lot of resources and cannot completely secure the targeted machine

or network. Therefore, many security companies and researchers have proposed

and implemented alternatives for malware detection that deliver promising re-

sults.

Detecting a malware and preventing its infection or further propagation in a

local network or in the wild requires an understanding of the techniques that

are used by its authors, which includes a comprehensive understanding of all

the apparent features of malicious files along with how they behave in a system

or in a networked environment. The static and dynamic analysis of malware

3



produce apparent and behavioral features of malicious files respectively, which

allows the malware analysts and security experts to understand the dynamics

of different types of vulnerabilities and the malware which exploit those vulner-

abilities. Both these analysis techniques are useful in different scenarios but if

the sole purpose is to reduce the time consumed during detection along with

the resources consumption for doing so, then static analysis is a better choice.

Analyzing a file statically doesnt guarantee that it is going to be perfectly iden-

tified as malicious or safe, it depends on the comprehensiveness of the analysis

along with the relevance of the parameters that are considered to classify the

file as safe or malicious. Moreover, for the system to understand whether the file

is safe or malicious, it has to first learn about the apparent features of both the

types. Therefore, it is important to apply existing and relevant machine learn-

ing algorithms to train the system. It will not only enhance systems awareness

about malicious and legitimate files, it will reduce the time and resources con-

sumed while detecting the malware.

This paper is an extension of an existing work published in [10], which mainly

focused on two very important objectives; a) higher detection rate, b) low re-

source consumption. Higher detection rate [10] was achieved by combining the

detection mechanism of ten antiviruses with a comprehensive open source static

analysis tool, which gave a thorough output quite rapidly. Resource consump-

tion was reduced by setting up the entire detection engine on a cloud-based

server. The results from the above-mentioned approach were promising and

achieved what was proposed initially.

The system developed and implemented in [10] was part of a pilot study,

which had a primary objective of proving the hypothesis that a system can

be developed that can consume very limited resources of the host machine to

detect around 98% of the malicious files. Figure 2 presents the comparison of

detection ratio between initial study [10] and major antiviruses. Although, the

result does support the initial hypothesis but system does need a more resilient

back end architecture supported and trained by some verified machine learning

algorithms.

4



Figure 2: Detection Ratio of Initial Study [10]

Understanding malware; their behavior, motives, and origins, is an infinite

paradigm and it is practically impossible to do that even by investing a massive

amount of resources in the field. The recent news about an old attack [11] is a

proof that the size of an organization is directly proportional to the level of de-

struction a cyberattack can cause. The attack on Yahoo, which they claim was

initiated in 2013 and still not completely rectified [11], shows the intensity of a

sophisticated attack on a large organization. Several security experts, using dif-

ferent manual detection techniques, to protect an organization, can be bypassed

by a sophisticated attack. Whereas, an automated system simultaneously using

multiple techniques, which includes; conventional detection, thorough analysis,

and machine learning, can surely enhance the level of security for that organi-

zation and at the same time enhance its own performance with every iteration.

However, such approach can only be successful if it is not burdening the enter-

prise infrastructure by consuming a lot of resources to make the system secure

and resilient against malware attacks [12].

Large enterprise networks and even individual computers generate a large amount

of network and process logs, which are analyzed by security analysts and ad-

ministrators to detect any malicious behavior. These logs and similar data if

5



analyzed properly can protect the system against many, if not every, type of

attacks. Many researchers and corporate sector entities are incorporating ma-

chine learning for malware detection and to predict any future attacks. Machine

learning can significantly enhance the detection mechanism by accurately de-

tecting known attacks along with predicting any previously unknown malicious

activity with very high true positive rate. CloudIntell, incorporates an opti-

mum combination of machine learning algorithms that can efficiently detect a

malicious activity without consuming a lot of resources of the client machine or

network it is suppose to monitor.

Several different domains are benefiting from the scalable features of cloud plat-

forms by utilizing services, infrastructures, platform applications, etc. offered

by the cloud service providers. Migrating to the cloud or using cloud services al-

low businesses or applications to scale their scope or simply reduce their overall

costs. CloudIntell uses several infrastructural services offered by AWS (Amazon

Web Services) to enhance the energy efficiency initially proposed in the pilot

study [10]. The pilot study [10] did utilize the cloud platform for energy ef-

ficiency but this extended version is designed to thoroughly utilize the cloud

infrastructure. This will not only enhance the persistence in energy efficiency

of the entire system, it will also help the analysis and detection mechanisms by

scaling the system to take many requests simultaneously.

CloudIntell is more appealing and close to industrial implementation as com-

pared to many similar approaches for the following reasons:

� Although, dynamic analysis has the ability to retrieve a huge amount of

behavioral characteristics from a malicious file but the implications of this

type of analysis include higher resource consumption along with analysts

involvement in the process. The comprehensiveness and automation in

static analysis techniques can generate a set of features that can be used

to identify a malware with much lesser resources.

� Enterprise environment requires a system that is proactive and can detect

6



any sophisticated attack before it can penetrate the network. Having

machine learning techniques that could learn from the analysis of a huge

number of malware can predict the behavior of a file without an in-depth

analysis, consuming time and other resources.

� The entire architecture of this system is based on the idea of scalability.

The utilization of the cloud platform not only serves as an idea of con-

suming less energy of the client machine it is monitoring, it also allows

the system to be extended and used by different enterprises. As the sys-

tem is based on a client server architecture, The client module works as

a lightweight agent on the host machine and it is powered by the server

module. This allows the client module to benefit from the rich server

without consuming host machines CPU or networks resources.

� The comprehensive mechanism of classifying a file as malicious or safe,

verifies the authenticity of the system along with the generation of detailed

analysis reports, which can be used for real-time detection and prevention

of known and unknown threats.

� Not many systems with such features generate output which can further be

used for the enhancement of other systems. The analysis report generation

in an appropriate and easy to understand manner could facilitate the

sharing of threat intelligence data on a larger scale.

The rest of the paper is structured as follows; section 2 presents the related work

done in the same area, section 3 presents the in-depth discussion of the archi-

tecture of the entire system and how it is implemented, section 4 presents the

details of data collection for the experiments, section 5 presents the methodology

used to enhance the detection of malware and reduce the resource consumption,

along with the machine learning algorithms used, section 6 presents the mal-

ware detection experiments and their results, section 7 presents the discussion

on the results achieved through experiments, and section 8 concludes the work

discusses the possible future directions.

7



2. Related Work

Using machine learning for the identification of malware has been proposed

using several different techniques by many researchers [13, 14, 15, 16, 17]. Each

of these studies have their own methodologies to approach the problem of mal-

ware identification, by increasing the true positive, and reducing the false pos-

itive rate. Majority of the research in malware detection is based on windows-

based malware and only focus on the detection of one type of malicious code.

However, more than 90% of the industrial environment is based on windows,

therefore, the threat of windows-based malware is significantly higher.

The conventional techniques of malware detection, also known as signature-

based detection used by antiviruses are still quite useful and it can flawlessly

detect a known malware. These techniques are not very helpful when there is

an attack from a new or unknown malware, which is why there is a huge gap in

the industry, despite several studies in this area.

One of the most relevant studies in this area were conducted by Kolter and

Maloof (hereon KM) [13]. They drew techniques from machine learning and

data mining and applied them on their collection. In their study [18], they

used a common text classification practice, n-grams, which tested the results

of various classifiers on malware detection. The techniques included in their

research were; SVM, decision trees, Nave Bayes, and then applying boosting on

each of the techniques. The KM approach used the AUC (Area under Curve)

of an ROC (Receiver Operating Characteristic) to evaluate the performance of

their classifier. They tested based on the highest information gains n-grams,

computed with the help of the following equation:

IG(j) =
∑

vj∈{0,1}

∑
Ci

P (vj , Ci)log
P (vj , Ci)

P (vj)P (Ci)
(1)

They treated the presence or absence of the specified n-gram as Boolean on

their classifier for boosted decision tree. As per their results, their model of

8



boosted decision tree was able accomplish the finest accuracy rate out of all,

achieving a 95% confidence interval AUC i.e. 0.9958± 0.0024. Boosting signif-

icantly enhances the performance of weak or unstable classifiers by decreasing

their variance and bias but it can affect inversely on the stable classifiers [24],

KM approach claims to improve the stable classifiers through boosting as well.

The samples both benign and malicious used by them comprised of 1971 be-

nign files and 1651 malicious files. The benign executables were retrieved from

Windows OS (XP, 2000), and other online resources. Whereas, the malicious

collection was obtained from MITRE Corporation and VX Heavens online repos-

itory. The KM research also used their approach of static heuristics technique

for identifying payload functionality of malware. It identifies the functionality

without dynamically analyzing malware, which is an efficient way because it

doesnt utilize resources required for sandboxing and eliminates the threats in-

volved in dynamic analysis. They were able to identify payload functionality

with the help of reverse engineering analysis reports of a subset of their complete

collection. The KM approach showed promising results in two different direc-

tions; malware detection and payload identification. However, there are some

weaknesses in this approach, considering the small sample size, missing 6 out of

291 malicious files is a real game changer in real life detection. This means if

the dataset is bigger, it can significantly increase the number of malicious files

missed in a scan, which should be the main concern while detecting malware.

Moreover, KM approach is not very effective for obfuscated malware and can

easily omit such malicious files during the detection process.

MaTR [14] approach is another noteworthy contribution in this domain in which

they recreated the experimental environment of KM using same dataset and the

same formula presented in equation 1 to highlight their weaknesses. MaTR ap-

proach used 31193 malicious and 25195 clean files in the initial experiment and

compared their results with KM approach, which showed improvements over

KM with the following mean and confidence intervals.

The MaTR approach outperforms the KM approach and prove it by recreating

9



Figure 3: ROC Curves for KM n-gram Retest and MaTR [14]

the KM experiments, as presented in figure 3. MaTR system design introduces

an interesting approach by adding a human component in its system as illus-

trated in figure 4. The reason behind introducing a human component is to

give the system a capability of real-time detection. This means that with the

help of a human operator continuously monitoring the system logs, decisions on

legitimacy of the files can be made by looking at live anomalies occurring in the

network. The human operator in this case provides appropriate responses for

the type of malware rather than an automated and fixed response for all type

of malware.

For the classification of malware, MaTR approach uses bagged decision tree

classifiers, which can enhance the performance of simple decision tree and make

the results more accurate. The MaTR approach heavily relies on the human

10



Method Mean 95%CI

MaTR 0.999914 0.999840-0.999987

KM Retest 0.999173 0.998926-0.999421

KM Original 0.9958 0.9934-0.9982

Table 1: Mean AUC and Confidence Interval [14]

Figure 4: MaTR System Flow Diagram [14]

operator to take decision based on the detection results, which can be its main

weakness. In the live environment, when a malware attacks a system or an

enterprise network an automated response is necessary because when it comes

to malware detection time is a key component. A malware can propagate and

replicate itself within minutes inside a network or in a single machine, which

means that an automated response is necessary. In MaTR approach, the pa-

rameter of response time and its affects are not mentioned. Additionally, the

classification methodology of MaTR claims a very high detection rate, however,

the performance on obfuscated malware is not present and it lacks the ability

11



to do so.

3. System Architecture

One of the contribution of this paper is the energy efficiency, which is one of

the weakest areas of many antiviruses. When it comes to higher performance

versus energy efficiency, there is always a tradeoff but the most important thing

is how the impact of that tradeoff can be minimized. The architecture proposed

and implemented in this paper hosts the modules running the malware detec-

tion algorithms, which are discussed in the later sections. Any security system,

which claims to identify a malware and protect the system in real-time with

sophisticated techniques will require a lot of resources for doing so and ends up

making the system more vulnerable than making it resilient. The algorithms

and techniques that are proposed, implemented, and assessed in the later sec-

tions have the main objective to detect malware by a set of different techniques.

To avoid burdening the host machines, which require protection against mal-

ware attacks, majority of the system is hosted on Amazons cloud platform.

The architecture present in figure 5, illustrate that when a client sends a re-

quest, it is sent to a queue, which is pulled by the detection engine to perform

the analysis and the response is then sent by the detection engine to the client

through the queue as well. To make decisions that whether a file is clean or

malicious and that too accurately and instantly, the detection engine requires

constant and rigorous training. The algorithms used to build this detection

engine, discussed in the later section, are trained continuously by analyzing a

large amount of clean and malicious files to understand the difference between

the both. These files are stored in malware repository, which is hosted on Ama-

zon Elastic File System (EFS) which makes it easier to manage and update

remotely. The reports generated after the analysis are also stored in the same

environment. Hosting the entire system on different modules of AWS not only

makes it more scalable, it is extremely reliable and efficient.

12



Figure 5: CloudIntell System Architecture

The architecture illustrates five main modules in the overall system, four out

of them are hosted on the cloud. It can support multiple individual clients and

many enterprise networks concurrently. The experiments performed in this re-

search used single request and response queues and only one detection engine

because of low number of requests. However, the architecture is designed and

implemented in a way that it can dynamically enhance itself based on the higher

number of requests or higher number of clients. This means that the same ar-

13



chitecture can cater the security needs of a distributed enterprise network or

multiple enterprise networks.

3.1. Queues

Figure 5 illustrate the functionality of both request and response queues in

the overall architecture, both queues are responsive in nature and based on the

number and frequency of requests from the client module. These queues are de-

veloped and configured using Amazons SQS (Simple Queue Service), which is a

purpose-built service for message queues fully managed by Amazon and works

flawlessly between different distributed applications and microservices. Ama-

zons SQS has elastic capabilities that allow the queues to dynamically scale

up or down based on the systems overall requirement. The client-server archi-

tecture of the system requires a platform, which guarantees message delivery

between client and server without any delay, it also requires a platform that

manages and delivers the messages based on the server availability to avoid

message loss. Additionally, the system also requires identifying each message

and avoid any message replication. All these requirements are fulfilled by SQS

along with full-scale management by service provider to eliminate the expensive

overhead of dealing with message-oriented middleware and its hosting.

3.2. Detection Engine

As presented in figure 5, the requests sent by the client are forwarded to the

detection engine by the queues. The detection engine runs all the techniques

and algorithms that are later discussed, there are multiple detection engines

that are hosted on Amazons EC2 (Elastic Compute Cloud). Amazons EC2 pro-

vides computing facility in the cloud with elastic behavior, which is available as

a webservice. Detection engine requires a hosting mechanism which is dynami-

cally scalable and extremely reliable when it comes to cater the client requests.

It also requires itself to be replicated if the number of clients and number of

14



requests significantly increase without causing any delay to other clients and

requests already in process. Moreover, detection engine is required to connect

with other modules included in the system which are designed to be distributed.

Amazons EC2 fulfills all the hosting requirements of the detection engine quite

efficiently and doesnt require to be managed in contract with other available

options, such as; dedicated external server or an inhouse server.

3.3. Repositories

The two repositories shown in the architectural diagram; repository and

analysis repository that store files to be analyzed (both clean and malicious)

and analysis reports respectively are also part of the server module. Like other

server modules, both repositories are also required to be distributed and scal-

able. The repository stores both clean and malicious files, which are used to

train and test the algorithms that are discussed in the later sections. The num-

ber of files in this repository vary from time to time and the ideal situation will

be if the hosting mechanism can scale itself up and down based on the number

of files and the number of analysis reports stored in it. Amazons EFS (Elastic

File System) allows dynamic scalability along with an ease of connectivity with

other distributed applications and service interfaces. Amazon EFS flawlessly

connects with EC2 allowing the applications hosted on EC2 to be integrated

with the filesystem in a larger distributed environment ensuring highest level of

reliability at all times.

To protect the client from a malware attack, there is cloud-assisted lightweight

agent installed on the client system, as proposed, implemented, and tested by

[10]. This lightweight agent can detect malware to a certain extent by inheriting

some of the intelligence from the cloud detection engine. When the client-based

agent detects a file, it sends the file to the cloud engine and simultaneously

checks for legitimacy of the tested file, if the client-based agent can classify it as

malicious then it blocks the file and send the report to the cloud-based detection

engine, if the client-based agent is not able to identify it as malicious then the

15



detection engine sends the response based on a detailed yet rapid analysis. Usu-

ally, the cloud-based detection engine doesnt need to analyze the file in detail

because of its rich algorithm and if there is a need for the analysis, it is done

without any extra time. The architectural diagram shows a blue dotted line

coming out of the detection engine and going to the client through the analysis

repository, which shows that if a request comes from a client the detection en-

gine first checks if that specific file or its variant is analyzed earlier by checking

in the analysis repository. If it exist in the repository, then a response action is

sent back to the client, which makes the overall process much efficient.

4. Data Collection

As stated earlier, the data for this research consisted of 150000 malicious files

and 87000 benign executables of Windows PE format. The benign executables

were retrieved from fresh installation of Windows 7, Windows 8, Windows 10,

Windows Server 2008, and Windows Server 2012. The malicious files present

in the malware repository were obtained from our industrial partner Nettitude,

which was a combination of different malware types as presented in table 2.

The files, both benign and malicious, present in their respective repositories

Malware Type Percentage

Trojan 65.82%

Adware 22.67%

Worm 8.66%

Downloader 1.21%

Virus 0.56%

Dropper 0.41%

Exploit 0.39%

Spyware 0.28%

Table 2: Malware Distribution in the Repository

16



were used to train and test the algorithms.

The distribution of both type of files is presented in table 3. Apart from

the files in the repositories, the client-based agent captures files in real-time,

which are only used to check for legitimacy and then stored in the respective

repository. The files retrieved through the client-based agent are either captured

through the browser extension or through process logs [10]. Either ways, these

files also become part of the main repository.

File Type Quantity

Benign 87000

Malicious 150000

Table 3: Distribution of Benign and Malicious Files

To extract relevant features, we developed a python-based tool that comprehen-

sively analysis the file and generates a rich set of features. We incorporated our

automated tool with another open source tool PEframe [19], which enhanced the

overall functionality of the tool and personalized it to be flawlessly integrated

with our cloud-based system. The system automatically generates JSON-based

files after statically analyzing a malicious or benign file and each JSON file con-

tains a rich set of decisive features, which are then used to training, testing,

and detection purpose. The set of features generated by our tool, unlike our ini-

tial research [10], integrates the results of multiple antiviruses by incorporating

private API of VirusTotal [20]. The use of VirusTotal API not only makes the

JSON files richer, it also endorses some of the analysis results from our tool.

Figure 6 presents the features that are extracted by the analysis tool from every

file it analyzes, it also presents the format in which the JSON file is populated

with all the extracted features. The set of features in figure 6 start with the

17



Figure 6: Feature Extraction (without values) and JSON Format

basic and most important feature of any file i.e. the hash. Our analysis tool

extracts three hashes; SHA256, SHA1, and MD5, which are presented as three

18



different elements of one set. The analysis tool also extracts the libraries used

by the analyzed file, type of file, and any other files that are linked with the

analyzed file. One of the most interesting things extracted by our analysis tool

IP addresses that the said file is trying to access, which helps to determine if the

file is trying to access any malicious IP address. Moreover, critical details in-

cluding API calls, and URL calls are also extracted, which significantly enhance

the understanding of the legitimacy of the file based on its calls to malicious

or non-malicious external calls. Additionally, to get an external endorsement

from 57 antiviruses, our tool incorporates the private API of VirusTotal.com

and returns the decision based on the outcome of 57 antiviruses, which is later

used in the process of decision making.

Along with the conventional signatures used by antiviruses, our tool generates

some useful features which can make the detection more efficient for the system.

The packer used by the malware author to pack the file is also extracted as a

feature to identify the legitimacy of the file, as proposed and implemented by

[15], pattern recognition can be applied to identify an entire family of malicious

files by identifying the packers. We used a slight different technique by identify-

ing the major classes of packers and how they are used to create variants of old

malware by applying machine learning. The rich set of features or attributes

present in a JSON file are used to train and test the algorithm. The most

important part of the whole research is the set features which is used for train-

ing, testing, and detection. We finalized the most relevant and pivotal features,

which make the system more efficient in identifying the true positives. Some

of the features we extracted have the binary value and some have percentage

or a non-binary value, which makes the decision based on this set more accurate.

5. Methodology

The approach taken in this research is combination of conventional and

unique methodologies for malware detection. We combine detection techniques

19



commonly used by antiviruses with state-of-the-art machine learning algorithms

to make the system more robust and decisive against modern malicious attacks.

The features extracted from benign and malicious files form a rich and diverse

set of features, as discussed in the previous section. We used two different

machine learning techniques and take full advantage of the rich set of features

acquired through the analysis of malicious or benign files.

In the earlier research [10], we implemented ten antiviruses in a detection mod-

ule and linked it with the static analysis module, both of these modules were in

a serialized manner separately. In this research, we combine both the techniques

and created one module that consumes lesser energy and generates a significant

number of eloquent features and that too in a coherent format.

5.1. Classification Methodology

As mentioned earlier, apart from the conventional detection techniques, we

adopted two different techniques from machine learning. We used the refined

features extracted from the PE files to create training samples by considering

each feature or attribute as Boolean, which is either exist True or not False.

We initially selected a small sample of malicious and benign files and applied

the following learning techniques, which we implemented in MATLAB; SVM

(Support Vector Machines), decision trees, we then applied boosting decision

tree. The objective of our methodology is to detect malicious files, therefore,

we refer to malicious files as positives class and benign as negatives class. The

learning techniques mentioned above are discussed in the following sections.

5.1.1. SVM (Support Vector Machine)

Support vector machines, is a training algorithm which presents a decision

boundary by maximizing the margin amongst training patterns. The algorithm

presented by [22], has performed in an optimal fashion in many conventional sce-

narios, along with some studies similar to ours [13, 14, 17]. SVM creates a linear

20



classifier, therefore, vector of weight ~w is its concept description and a threshold

or an intercept, b. To make the problem linearly separable, a kernel function is

used by the SVMs for mapping training data into a higher-dimensioned space.

To set ~w and b that hyperplanes margin is ideal, quadratic programming is

used, which means that distance to the closest examples of negative and posi-

tive classes is maximum from the hyperplane. While running, if 〈~w.~x〉 − b > 0,

positive class is predicted and if vice versa negative class is selected by the

method. However, for larger set of problems, quadratic programming can be

complex and expensive, whereas, to train SVM efficiently, SMO (Sequential

Minimal Optimization) is a much better algorithm [22], it computes the proba-

bility of positive and negative class during execution [23]. For performance, we

used implementation proposed in [23] for computing each classs probability and

then we used positive classs probability as the rating. We used the following

linear SVM formula to predict the positive classes:

t(x) =

N∑
n=1

ωnK(x, xn) + ω0 (2)

5.1.2. Decision Tree

A decision tree is decision support mechanism with nodes that represent

attributes and the leaf nodes that represent the class labels. Branches of the

tree that lead to children represent the values of the attribute. Values of the at-

tributes and those attributes of an instance are used by the performance element

to navigate in a tree starting from root and leading to leaves or an individual

leaf. By choosing the attribute that perfectly separates the training samples

into their appropriate classes, this is how a learning element generates a tree.

Node, branches, and children are created for the attribute and the value of the

attribute, the attribute is then eliminated from additional consideration, and

the examples are distributed to the relevant child node. This process runs in

a loop until the same class examples are stored in a node and then class label

is stored. Many implementation of decision trees remove subtrees which are

expected to perform inaccurately on test samples, which avoids the overtraining

21



of the whole algorithm. We have used MATLAB decision tree implementation

for training and testing.

5.1.3. Boosting

Boosting is used for combining multiple classifiers to enhance the perfor-

mance as compare to individual classifiers [24]. It uses ensemble methods,

which significantly increase the overall performance, which has been tested and

endorsed by many studies [25, 26, 27, 28]. By repetitively learning from a

weighted dataset of a model, it creates a set of weighted models by assessing,

and revising the dataset based on the performance of the model. During execu-

tion of the method, to predict the highest weight class, it uses a set of models

and their weights. We only applied boosting on decision tree implementation,

as our initial experiments didnt show any significance of applying boosting on

SVM. We used AdaBoost.M1 algorithms [24] implementation in MATLAB to

boost decision tree.

5.2. Methodology Design

The machine learning techniques discussed in the previous section are in-

corporated with the analysis and feature extraction techniques to develop a

comprehensive methodology, which can efficiently and accurately identify the

malicious files. Figure 7 illustrates the complete methodology that is used for

malware detection, this complete system is hosted on the cloud-based system

discussed earlier and illustrated in Figure 5.

We initially had benign and malicious files stored separately in the cloud reposi-

tory, before applying any classification methodology every file has to go through

the analysis module. The customized analysis module developed in this research

first prepares the file by eliminating any apparent obfuscation, it is then thor-

oughly analyzed and all the possible features are extracted from the file. One

22



Figure 7: Proposed Methodology

of the significant features of the proposed methodology is that it is extremely

effective on modern malware, which have the ability to mutate themselves while

propagating in a network, which is mainly achieved by eliminating obfuscated

parts from the extracted features and arrange the features in a format that is

understandable by the classification module. Figure 8 presents the obfuscated

part removed from the extracted features to make the features understandable

for further classification.

The output of the analysis module is stored in the analysis repository. To per-

form the experiments we put all our benign and malicious files in the respective

23



parts of the repository and our automated analysis tool extracted the features

and stored the well-formatted features in the analysis repository. To initiate the

classification experiments, the classification module pulled the features from the

repository to apply the above mentioned machine learning techniques.

Figure 8: Obfuscated Part of the Extracted Features

The methodology diagram illustrates that to produce a final verdict, the pro-

cess went through ten-fold cross-validation to train and test the algorithms to

evaluate the performance of the methodology and later based on this training

it can detect individual malicious files while running in real-time.

6. Malware Detection Experiments

Previous sections present the details of architecture and methodology of the

approach we have proposed in this research. In this section, we present the

observations of multiple experiments performed to evaluate the methodology

proposed. We performed four different experiments on a standard experimental

design to help us evaluate the methodology from different aspects. In our first

experiments, we used a smaller dataset of both benign and malicious executables

and applied all the classification techniques. In the second experiments, we used

a larger dataset to apply the classification techniques to monitor the enhance-

ment in the detection rate. In the third experiment, we introduced obfuscated

malicious files that are previously unknown and make the overall dataset much

larger, which allowed us to observe the performance of the classification tech-

niques against a much difficult dataset. The fourth experiment was performed

on real-time data where we left the system running for more than two months.

24



6.1. Experimental Design

We have used stratified ten-fold cross-validation to evaluate the methodolo-

gies we are using. This is applied by distributing the files randomly into ten

separate sets of same size. One set is selected for testing and the remaining

nine sets are combined together to create a training set. We applied ten-fold

cross-validation by conducting ten similar executions by using each of the ten

partition as a testing set in each iteration. In each iteration, relevant features,

discussed in the earlier section, were extracted from the training set and the

classification techniques were applied on it. The outcome of the classification

was used identify the files in the test set.

For the ROC (Receiver Operating Characteristic) analysis [26, 27] and to im-

plement the ten-fold- cross-validation, we extracted the features through our

analysis tool and imported in our machine learning build integrated with the

MATLAB ROC code.

6.2. Experiment with Smaller Dataset

After extracting the features, all the parameters required to perform the

experiments were achieved. We separated a set of 500 files from each category

to conduct the initial experiment by starting with ten-fold cross-validation and

then proposed classification techniques. The ROC curves of this experiment is

presented in figure 8 and the areas under curves are presented in table 4. It can

be observed from the table that applying boosting on Decision Tree enhance

the outcome.

The experiment performed on the small sample of clean and malicious files

gave a satisfactory output considering the learning samples were just 500, which

shows that the classification techniques proposed in this research have the po-

tential to perform much better if they are well trained with higher number of

samples.

25



Figure 9: ROC Curves for Malware Classification from a Small Dataset

Method AUC

Decision Tree 0.9708

SVM 0.9727

Boosting 0.9747

Table 4: Results of Applying Classification Techniques on Extracted Features of Smaller

Dataset

Method AUC

Decision Tree 0.9775

SVM 0.9896

Boosting 0.9969

Table 5: Results of Applying Classification Techniques on Extracted Features of Large Dataset

26



Figure 10: ROC Curves for Malware Classification from a Large Dataset

Figure 11: ROC Curves for Malware Classification from a Obfuscated Dataset

27



Method AUC

Decision Tree 0.9740

SVM 0.9823

Boosting 0.9910

Table 6: Results of Applying Classification Techniques on Extracted Features of Obfuscated

Dataset

Figure 12: ROC Curves for Malware Classification from a Real-Time Detection

Method AUC

Decision Tree 0.9765

SVM 0.9892

Boosting 0.9963

Table 7: Results of Applying Classification Techniques on Extracted Features from Real-Time

Detection

28



Figure 13: Performance Evaluation of Lightweight Client Agent

7. Discussion

We performed four different experiments to evaluate our methodology and

system architecture. The results presented in the previous section prove that

the classification methodology proposed in this research prove the initial hy-

pothesis of enhanced accuracy in malware identification. The initial experiment

tested the methodology with a smaller dataset to understand the effectiveness

of the methodology. The results achieved from the experiments performed on

the smaller dataset were quite satisfactory, as presented in figure 9 and table

4, but not better than the similar experiments performed by [12, 13], which

achieved a better AUC as compare our approach. However, the reason our ini-

tial experiment lack the higher AUC was the feature set selected for training and

testing, which required more testing. This was proved in the second experiment

performed on a large dataset. The results of second experiment presented in fig-

29



ure 10 and table 5 show remarkable improvement over the previous experiment

and also comparing to [13, 14]. SVM achieved a better rate than decision tree

but the implementation of boosting on decision tree significantly enhanced the

performance by producing a much higher detection rate. As discussed earlier,

boosting can enhance the performance of unstable classifiers by decreasing their

variance and bias but it can work inversely on stable classifiers [24], which is

why we only applied boosting on decision tree and not on SVM.

Our experimental results prove that CloudIntells methodology can scale in per-

formance on a larger set of files. The training and testing performed on larger

dataset was extremely rigorous because of the feature set and techniques used,

which also proved that modern obfuscated malware can also be identified with

accuracy, as illustrated in figure 11 and table 6, presenting the result of apply-

ing techniques on obfuscated dataset. Evaluating classification methodologies

based on machine learning against obfuscated and mutated dataset has not been

performed by [13] and many studies [16, 15, 30, 31, 32]. This also shows the

versatility of our approach that can be applied on multiple security threats and

can identify not just known but it can also predict unknown threats.

To evaluate the methodology against live threats, we left the entire system run-

ning for more than two months. There were two objectives behind this experi-

ment; one was to evaluate the system accuracy to detect live threats, second was

to evaluate the energy efficiency of the lightweight local agent. The proposed

methodology showed extremely good results outperforming [13] in their similar

experiments of real-time detection of malware. The lightweight host agent also

performed extremely well. Figure 13 presents the evaluation of the lightweight

client agent. The evaluation process of this client agent involved ten cycles of

malware detection and each cycle included 15000 files. The evaluation was per-

formed on every cycle, which means that after every 15000 files scanned by the

client agent we gathered the information about the number of files that were

locally detected as malicious and the percentage of CPU resources used in that

cycle. As illustrated in figure 13, in initial cycles the local detection rate is zero,

which means that the client agent is unable to detect malicious files locally and

30



detection engine supporting the detection mechanism and at the same time the

client agent is importing the local cache from the cloud-based detection engine

to enhance the local detection. Therefore, after three cycles the local detection

starts to rise and simultaneously the CPU resource consumption of the client

agent starts to go down and it can be seen at the tenth cycle, 60% of 15000 files

are detected locally and the CPU resource consumption dropped to 3% only.

Moreover, the detection rate of our proposed methodology is better in many

different than related work as discussed in this section but we were unable to

compare the systems overall performance results with any previously available

study. We were unable to find any study that combines different machine learn-

ing algorithms and deploy a comprehensive distributed architecture based on

cloud to enhance the detection and reduce the client's CPU consumption.

The architecture of CloudIntell presented in figure 5 is capable of managing a

large number of requests coming from multiple individual clients and enterprise

networks. However, we didnt test the cloud-based architecture against a large

number of clients or against a big network. The test we performed showed

scalability but the scalability of the architecture is yet to be tested. Neverthe-

less, the experimental results do suggest that the system has real-life industrial

application and can significantly enhance the detection mechanism with every

iteration.

System architecture, methodology, and their performance have been discussed

using different aspects, such as; detection rate of algorithms both individual and

combine, detection rate of lightweight client agent using ten cycles, and CPU

resource consumption of lightweight client agent during the evaluation cycles.

Another aspect of evaluating the whole system would be performance evaluation

on a local system instead of cloud. We didnt perform the overall system perfor-

mance evaluation locally but without even testing we can consider some basic

differences amongst the two approaches; 1) system requires dedicated storage

of more than 300GB to work as a repository, 2) Detection engine requires at

least 4 GB of RAM to run the combination of algorithm and the static analysis

tool, 3) Detection engine also require dedicated bandwidth to interact with the

31



external APIs for decision endorsements. Although, the cloud-based detection

engine and other module dont always require the above-mentioned resources

and rarely reach this threshold of resources but when required these resources

should be available for the cloud-based module to execute its tasks. Therefore,

the scalability feature of cloud benefits the discussed architecture by dynami-

cally scaling up and down based on the requirements of the system and helps

to avoid any unnecessary costs.

8. Concluding Remarks

Using machine learning techniques to identify malicious activity in a system

or in a network have proved to be quite effective [16, 15, 30, 31, 32]. We focused

on two main issues in domain of malware detection; a) accurately identifying

a malware, and b) enhance energy efficiency of the detection mechanism. The

methodology of CloudIntell used machine learning techniques to enhance the

malware detection rate and a cloud-based architecture to support and host the

methodology implementation. We used decision trees, SVM, and then applied

boosting on decision trees to improve the performance of weak classifiers. We

developed an automated feature extracting tool, which extracted the features

from more than 200,000 files quite efficiently. The feature extraction tool also

have the functionality of removing the obfuscated parts of the malicious file,

which allows the relevant features to be extracted appropriately to apply the

machine learning methodologies.

We designed multiple experiment to test our proposed methodology from differ-

ent perspectives. We tested our techniques against a dataset of malicious and

clean files and applied ten-fold cross-validation followed by above mentioned

machine learning techniques for an unbiased set of experimental results. We

used around 150000 malicious and 87000 benign files for training and testing.

Support Vector Machine performed better than decision tree but applying boost-

ing on decision tree improved the performance by generating the best detector

of 0.9969 area under the ROC curve. To evaluate the methodology against a

32



much difficult dataset, we used a dataset of obfuscated malware, which used the

training of previous experiment to detect the obfuscated malware. Boosting on

decision tree generated 0.9910 area under the ROC curve. This not only proved

the better performance against difficult dataset, it also suggest that previous

training was enough to detect a different set of malware. We also evaluated the

system with real-time data and generated 0.9963 area under the ROC curve.

We also tested our host based agent in the real-time experiment and observed

an optimum level of energy efficiency and unsupervised malware detection abil-

ity with the help of local cache, which proved that the system can resiliently

perform in an independent environment

Acknowledgements

The authors would like to thank Dr. Jules Pagna Disso and Dr. Anitta

Namanya of Nettitude Ltd. for their technical input during the course of this

project. We thank VirusTotal.com for providing their personalized support and

private API for detailed analysis reports. A special thanks to Mr. Ali Maina

Bukar of Centre for Visual Computing, University of Bradford for providing his

technical expertise in machine learning.

33



References

[1] B. Snell, Mobile Threat Report, Intel Security, 2016.

[2] G. AV-TEST, AV-TEST The Independent IT-Security Institute, 09-Jan-

2017. [Online]. Available: https://www.av-test.org/en/statistics/malware/.

[Accessed: 14-Jan-2017].

[3] D. Bruschi, M. Lorenzo, and M. Monga, Detecting self-mutating malware

using control-flow graph matching, in Detection of Intrusions and Malware

and Vulnerability Assessment, vol. 4064, 2006, pp. 129143.

[4] I. You and K. Yim, Malware Obfuscation Techniques: A Brief Survey, 2010,

pp. 297300.

[5] M. Schiffman, A Brief History of Malware Obfuscation: Part 1

of 2, blogs@Cisco - Cisco Blogs, 15-Feb-2010. [Online]. Available:

http://blogs.cisco.com/security/a-brief-history-of-malware-obfuscation-

part-1-of-2/. [Accessed: 08-Sep-2014].

[6] V. Harrison and J. Pagliery, Nearly 1 million new malware threats

released every day, CNNMoney, 14-Apr-2015. [Online]. Available:

http://money.cnn.com/2015/04/14/technology/security/cyber-attack-

hacks-security/index.html. [Accessed: 10-Dec-2016].

[7] D. Kozlov, J. Veijalainen, and Y. Ali, Security and Privacy Threats in IoT

Architectures, in Proceedings of the 7th International Conference on Body

Area Networks, ICST, Brussels, Belgium, Belgium, 2012, pp. 256262.

[8] P. Ducklin, Deutsche Telekom outage: Mirai botnet goes double-rogue,

Naked Security, 29-Nov-2016.

[9] J. Leyden, Sh... IoT just got real: Mirai botnet at-

tacks targeting multiple ISPs, 12-Feb-2016. [Online]. Available:

http://www.theregister.co.uk/2016/12/02/broadband-mirai-takedown-

analysis/. [Accessed: 10-Dec-2016]

34



[10] Q. K. A. Mirza, G. Mohi-Ud-Din, and I. Awan, A Cloud-Based Energy

Efficient System for Enhancing the Detection and Prevention of Modern Mal-

ware, in 2016 IEEE 30th International Conference on Advanced Information

Networking and Applications (AINA), 2016, pp. 754761.

[11] BBC, One billion affected by Yahoo hack, BBC News, 15-Dec-2016.

[12] O. Santos, Identifying and Classifying Network Secu-

rity Threats ¿ Network Visibility, 2008. [Online]. Available:

http://www.ciscopress.com/articles/article.asp?p=791595. [Accessed:

15-Dec-2016].

[13] J. Z. Kolter and M. A. Maloof, Learning to Detect and Classify Malicious

Executables in the Wild, J. Mach. Learn. Res., vol. 7, no. Dec, pp. 27212744,

2006.

[14] T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers,

Malware target recognition via static heuristics, Comput. Secur., vol. 31, no.

1, pp. 137147, Feb. 2012.

[15] L. Sun, S. Versteeg, S. Bozta, and T. Yann, Pattern Recognition Techniques

for the Classification of Malware Packers, in Information Security and Privacy,

2010, pp. 370390.

[16] K. Rieck, P. Trinius, C. Willems, and T. Holz, Automatic analysis of mal-

ware behavior using machine learning, J. Comput. Secur., vol. 19, no. 4, pp.

639668, Jan. 2011.

[17] M. Kruczkowski and E. N. Szynkiewicz, Support Vector Machine for Mal-

ware Analysis and Classification, in 2014 IEEE/WIC/ACM International

Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technolo-

gies (IAT), 2014, vol. 2, pp. 415420.

[18] J. Z. Kolter and M. A. Maloof, Learning to Detect Malicious Executables in

the Wild, in Proceedings of the Tenth ACM SIGKDD International Confer-

35



ence on Knowledge Discovery and Data Mining, New York, NY, USA, 2004,

pp. 470478.

[19] G. Amato, guelfoweb/peframe, GitHub, 2016. [Online]. Available:

https://github.com/guelfoweb/peframe. [Accessed: 29-Dec-2016].

[20] VirusTotal, VirusTotal - Free Online Virus, Malware and URL Scanner,

2016. [Online]. Available: https://www.virustotal.com/. [Accessed: 14-Jul-

2016].

[21] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A Training Algorithm for

Optimal Margin Classifiers, in Proceedings of the Fifth Annual Workshop on

Computational Learning Theory, New York, NY, USA, 1992, pp. 144152.

[22] J. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training

Support Vector Machines, Microsoft Res., Apr. 1998.

[23] J. C. Platt, Probabilistic Outputs for Support Vector Machines and Com-

parisons to Regularized Likelihood Methods, in Advances in Large Margin

Classifiers, 1999, pp. 6174.

[24] Y. Freund and R. E. Schapire, Experiments with a New Boosting Algo-

rithm. 1996.

[25] M. V. Joshi, V. Kumar, and R. C. Agarwal, Evaluating boosting algorithms

to classify rare classes: comparison and improvements, in Proceedings 2001

IEEE International Conference on Data Mining, 2001, pp. 257264.

[26] X. Carreras and L. Marquez, Boosting Trees for Anti-Spam Email Filtering,

arXiv:cs/0109015, Sep. 2001.

[27] P. Viola and M. Jones, Rapid object detection using a boosted cascade of

simple features, in Proceedings of the 2001 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition. CVPR 2001, 2001, vol.

1, p. I-511-I-518 vol.1.

36



[28] T. G. Dietterich, Ensemble Methods in Machine Learning, in Multiple Clas-

sifier Systems, 2000, pp. 115.

[29] J. A. Swets, Signal Detection Theory and ROC Analysis in Psychology and

Diagnostics: Collected Papers. Psychology Press, 2014.

[30] J. A. Hanley and B. J. McNeil, The meaning and use of the area under a

receiver operating characteristic (ROC) curve., Radiology, vol. 143, no. 1, pp.

2936, Apr. 1982.

[31] D. Gavrilu, M. Cimpoeu, D. Anton, and L. Ciortuz, Malware detection

using machine learning, in 2009 International Multiconference on Computer

Science and Information Technology, 2009, pp. 735741.

[32] R. J. Mangialardo and J. C. Duarte, Integrating Static and Dynamic Mal-

ware Analysis Using Machine Learning, IEEE Lat. Am. Trans., vol. 13, no.

9, pp. 30803087, Sep. 2015.

[33] H. V. Nath and B. M. Mehtre, Static Malware Analysis Using Machine

Learning Methods, in Recent Trends in Computer Networks and Distributed

Systems Security, 2014, pp. 440450.

37


	Introduction
	Related Work
	System Architecture
	Queues
	Detection Engine
	Repositories

	Data Collection
	Methodology
	Classification Methodology
	SVM (Support Vector Machine)
	Decision Tree
	Boosting

	Methodology Design

	Malware Detection Experiments
	Experimental Design
	Experiment with Smaller Dataset

	Discussion
	Concluding Remarks

