
University of Bradford eThesis 
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access 
repository. Visit the repository for full metadata or to contact the repository team 

© University of Bradford. This work is licenced for reuse under a Creative Commons 
Licence. 

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Co-processing of drugs and co-crystal formers and its 

effect on pharmaceutical dosage-form performance 

Co-crystallization of urea/ 2-methoxybenzamide, caffeine/ malonic acid, 

caffeine/ oxalic acid and theophylline/ malonic acid systems: Solid-state 

characterization including imaging, thermal, X-ray and Raman 

spectroscopic techniques with subsequent evaluation of tableting 

behaviour 

  Asim Yousif Ibrahim Mohamed, MPharm 

 Submitted for the degree of 

 Doctor of Philosophy 

      Drug Delivery Group 

       School of Pharmacy 

      University of Bradford 

  UK 

  2008 



 i

Abstract 

           Asim Yousif Ibrahim Mohamed, MPharm 

Co-processing of drugs and co-crystal formers and its effect on 
pharmaceutical dosage-form performance 

This dissertation has focused on the solid-state characterization of different co-crystal 
system as well as the effect of co-crystallization of these systems on pharmaceutical dosage 
form performance. Urea/ 2-MB, caffeine/ malonic acid, caffeine/ oxalic acid and 
theophylline/ malonic acid co-crystals were prepared using co-grinding- and co-
precipitation techniques. In addition, the synthesis of co-crystals through two novel 
methods has been demonstrated. This includes compaction and convection mixing. The 
solid-state characterization of the co-crystals has been carried out using XRPD, Raman 
spectroscopy, DSC, TGA, hot-stage microscopy and SEM. After preparation of co-crystals, 
tablets have been produced from co-ground-, co-precipitated-, and physical mixtures using 
Compaction Studies Press (Kaleva), and the data were recorded to compare between the 
different mixtures, regarding compactibilty, compressibility and deformational properties. 
The DSC results showed that the physical mixtures of all systems, formed co-crystals 
during heating process. For systems of urea/ 2-MB, caffeine/ malonic acid and 
theophylline/ malonic acid, the co-ground mixture produced tablets with higher tensile 
strength compared with either co-precipitated or physical mixture. However, for caffeine/ 
oxalic acid system, the tensile strengths of compacts produced from the physical mixture 
were greater than those obtained from either co-ground or co-precipitated mixtures. The 
Heckel data suggested that urea/ 2-MB, caffeine/ malonic acid and theophylline/ malonic 
acid systems are Type 1 materials, as an extensive linearity during compression was 
indicative of a plastic deformation mechanism, while the caffeine/ oxalic acid system was 
Type 2 materials. However, the co-precipitated mixture of urea/ 2-MB system was the least 
compressible, as it possessed the greatest value of yield pressure (85 MPa) and the highest 
elastic recovery (7.42%). The co-precipitated mixture of both of caffeine/ malonic acid and 
theophylline/ malonic acid systems was the most compressible with small yield pressure 
values of (44 & 80 MPa) and elastic recovery of (7.2% & 6.56%), respectively. The co-
ground mixture of caffeine/ oxalic acid possessed the highest value of yield pressure (166 
MPa) and thus the lowest compressibility among other mixtures. Furthermore, the addition 
of microcrystalline cellulose and α-lactose monohydrate has affected the crystallinity as 
well as the tableting properties of the co-crystals. After the addition of excipients, the 
tensile strength of compacts was about 2 times higher than any other mixture.  Finally, 
urea/ 2-MB and caffeine/ malonic acid co-crystals were successfully synthesized through 
convection mixing and compaction. 

Keywords: 
Co-crystals, urea, 2-methoxybenzamide, caffeine, malonic acid, oxalic acid, theophylline, 
convection mixing, compaction, tensile strength. 
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1. Introduction 
 

1.1. General introduction 
 
Crystal engineering of pharmaceuticals may open new avenues to improve poorly soluble 

drugs and provide formulation development options. Solid-state reactions of drugs have 

been investigated for the preparation of crystalline materials (Caira et al. 1995), (Braga et 

al. 2002). Solvent free processing, especially the mechanical mixing of solid reactants, has 

attracted the interest of chemists and technologists, as they often provide fast routes to 

prepare novel organic and inorganic materials (Rastogi et al. 1963).  The literature suggests 

that the same product can be obtained quantitatively by different methods, e.g. manual 

grinding, electromechanical ball milling (Boldyrev and Takacova 2000), kneading (Watano 

et al. 2002), and by seeding the growth of crystals from solution (Seiler and Dunitz 1982). 

In recent years, a number of studies have focused on the preparation of molecular co-

crystals (Etter 1991). Within crystal engineering of molecular solids assembly may 

principally be through hydrogen–bonding interactions, as documented by numerous papers 

on hydrogen bonded crystal engineering strategies (Subramanian and Zaworotka 1995). As 

a result of the progress in supramolecular and crystal engineering approaches, which are 

defined as spatial arrangements of intermolecular interactions, organic solid-state materials 

are intensively investigated in the context of crystal packing and in the design of new solids 

with enhanced physical and chemical properties (Desiraju 1989).  

When formulating an active pharmaceutical ingredient (API) into a specific dosage form, 

the physical form of a drug substance is carefully selected. However, other factors can 

determine the solid-state properties of the drug in the final product, e.g. co-processing of 
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drugs and excipients can change the product performance (Alsaidan et al. 1998). 

Additionally, processing steps during tablet manufacture, including milling, granulation, 

drying, compression, as well as the processing conditions has also been found to have a 

major impact on the physical form of the drug.  Ultimately, the choice of API physical form 

was found to have a great impact on the dissolution rate profile (Phadnis and Suryanayanan 

1997). 

Few studies have focused on the effect of processing-induced phase transformation 

(Yoshinari et al. 2003). However, it has been observed that the crystal form of a drug 

substance can influence the properties of granules and behaviour of tablets (Otsuka et al. 

1997). 

1.2. Pharmaceutical co-crystals 

Co-crystals represent a well-established class of compounds, and an example of which is 

quinhydrone, which was reported by (Wöhler 1844) and (Ling and Baker 1893). The 

definition of the term co-crystals is still a matter of topical debate. For example, a broad 

definition is that a co-crystal is a mixed crystal or crystal that contains two different 

molecules (Kitaigorodskii 1984). Alternatively, from applying the concept of 

supramolecular chemistry and crystal engineering, a co-crystal is the consequence of a 

molecular recognition event between different molecular species (Dunitz 2003). However, 

pharmaceutical co-crystals are defined as crystalline materials that consist of two or more 

molecular species held together by non-covalent forces (Aakeröy 1997). These crystalline 

phases are developed for greater efficacy, stability and solubility in drug formulation 

(Walsh et al. 2003). It has been suggested that co-crystals are made from reactants that are 

solid at ambient temperature. It has also been stated that all hydrates and other solvates are 
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excluded which, in principle, eliminates compounds that are classified as clathrates or 

inclusion compounds (Aakeröy et al. 2003). However, there is still some disagreement as to 

whether to include solvates in the category of co-crystals. Some scientists suggest that co-

crystals are part of the broader family of multicomponent crystal systems which include 

salts, solvates, clathrates, inclusion crystals and hydrates, and that solvates differ from 

hydrates primarily in the physical state of the single components (Morissette et al. 2004). 

Almarsson and Zaworotka, (2004) argued that solvates are commonplace as they occur as a 

serendipitous result of crystallization from solution. In addition, solvated crystals are often 

unstable, because it is common to observe dehydration/desolvation of hydrates/solvates and 

such evaporation of the solvent may result in crystallising of the amorphous phase into less 

soluble forms. However, co-crystals are the products of choice, if these have been designed. 

They are more stable, as the co-crystal formers are solid at room temperature. On the other 

hand, solvates are described as a special type of multi-component solids. They may be 

classified according to the molecular network of the solvent molecules into two types: 

i) A co-crystal, if the solvent is an integral part of the network structure and forms 

at least a two-component crystal. 

ii) A clathrate, if the solvent does not contribute to the network itself (Rodriguez-

Spong et al. 2004). 

For distinguishing between multi-component crystalline materials that are comprised of two 

or more solids, versus those composed of one or more solids and a liquid, the latter have 

been called solvates or pseudopolymorphs (Nangia 2005). 
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1.2.1. Groups and classes of pharmaceutical co-crystals 

The multi-component crystal is a group of pharmaceutical co-crystals that are formed 

between a molecular or ionic active pharmaceutical ingredient (API) and co-crystal former 

that is a solid under ambient conditions. This group also includes salts, solvates, clathrates, 

inclusion crystals and hydrates as shown in (Figure1). An overlap between these classes 

exists, since there are crystalline materials that consist of two or more components that are 

solid under ambient conditions and a liquid component. However, a multi-component 

system resulting from a molecular co-crystal former and an ionic API would be classified 

as a pharmaceutical co-crystal (Childs et al. 2004). It is important to bear in mind that, from 

a supramolecular perspective (which is defined as recurring hydrogen bond and/or 

intermolecular interaction patterns for crystal engineering (Desiraju 1995)), pharmaceutical 

co-crystals and solvates are closely related to one another since components within the 

crystal interact by hydrogen bonding or other directional non-covalent interaction. An 

example of these is the multiple solvates and co-crystals of carbamazepine (Fleischman et 

al. 2003). The principal difference between solvates and pharmaceutical co-crystals is the 

physical state of the isolated pure components (Morissette et al. 2004). For example, if one 

component is a liquid at room temperature a compound is a solvate; if both components are 

crystalline solids at room temperature, they are pharmaceutical co-crystals. The solvated 

forms of spironolactone were found to enhance the drug dissolution rate (Salole and Al-

Sarraj 1985). However, solvated crystals are often unstable, leading to desolvation during 

storage, which may lead to the amorphous phase crystallizing into less soluble forms. Like 

other crystalline systems, a number of polymorphic co-crystals have been reported to date, 

including caffeine and glutaric acid co-crystals (Trask et al. 2004).  
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Figure 1: Types of multi-component crystals adopted from Morissette et al., (2004).  
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1.2.2. Crystal engineering of pharmaceutical co-crystals 

Crystal engineering can be defined as the application of the concept of supramolecular 

chemistry to the solid state. It has been described as the exploitation of non-covalent 

interactions between molecular or ionic components for the rational design of solid-state 

structures with other unique properties e.g. electrical, magnetic, and optical phenomena. It 

is becoming evident that the specificity, directionality, and predictability of intermolecular 

hydrogen bonds can be used to assemble supramolecular structures of controlled 

dimensionality (Subramanian and Zaworotka 1995). It is apparent that crystal engineering 

enjoyed rapid growth during the 1990s, especially in terms of organic solids and metal-

organic solids and also in terms of organometallic (Braga et al. 1998), and inorganic 

structures (Finn et al. 2003). Taking crystal engineering in the context of co-crystals, the 

structural units of supramolecular synthons ( defined as recurring hydrogen bond and/ or 

intermolecular interaction patterns for crystal engineering) can be formed by synthetic 

operation involving intermolecular interactions (Desiraju 1995). Pharmaceutical co-crystals 

are considered to be much more useful in pharmaceutical products than solvates or hydrates 

for the following reasons:  

1. The number of pharmaceutically acceptable solvents is very small. 

2.  Solvents tend to be more mobile and have higher vapour pressures than small 

molecular co-crystal formers.  

3. Depending on storage conditions, it is rare to observe dehydration/desolvation of 

hydrates/solvates in solid dosage forms.  
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4. Additionally, solvates can lose solvent, which may lead to amorphous compounds 

that are principally less chemically stable and can crystallize resulting in less 

soluble forms.  

5. In contrast to solvates, most co-crystal formers are unlikely to evaporate from solid 

dosage forms, making phase separation less likely. 

 

As a potential method for the design of co-crystals, the Cambridge Structural Database 

(CSD) is used to carry out analysis of existing crystal structures. This method enables 

empirical information about functional groups and confirm their engagement in molecular 

association, hence the formation of supramolecular synthons. Allen and co-workers (1983) 

highlighted it when they noted that the systematic analysis of large numbers of related 

structures is a potential field of research since it has the capability to yield results not 

achieved by any other method. 

Similar to salt screening, co-crystal screening is particularly suited to high-throughput 

technologies (Morissette et al. 2004). In order to start co-crystallization studies on an API, 

the co-crystal former(s) with acceptable pharmaceutical properties must first be selected, 

and should not be toxic (Remenar et al. 2003). This requirement limits the use of co-

crystallizing agents to pharmaceutical excipients and compounds that have been approved 

for consumption by humans. These are classified as generally recognized as safe (GRAS) 

for use as food additives (U.S. Department of Health and Human Services, 2005).  

In order to realize the pharmaceutical applications of these co-crystallizing agents that are 

classified as GRAS in the formation of co-crystals, the level of active drug and hence the 

resulting stoichiometric amount of co-crystal agent must be less than the permitted additive 

level for human administration (Almarsson and Zaworotka 2004). 
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There has been much co-crystallization research carried out using pharmaceutically 

acceptable co-crystallizing agents. A recent study of acetaminophen (paracetamol) adducts 

with ethers and amines provide examples of supramolecular synthons for co-crystal 

formation (Oswald et al. 2002). However 1,4-dioxane, N-methylmorpholine, morpholine, 

N,N-dimethylpiperazine, piperazine, and 4,4-bipyridine are not GRAS substances. 

Piperazine dihydrochloride and morpholine as the salt(s) of one or more fatty acids, are 

permitted as food additives at the relevant level (Oswald et al. 2002). 

It can be concluded that the formation of co-crystals requires a consideration of the 

hydrogen bond donors and acceptors of the materials to be co-crystallized. Etter (1990) 

proposed some guidelines to facilitate the rationale design of hydrogen-bonded solids. 

These rules included the following: 

1. All good proton donors and acceptors in hydrogen bonding are used in hydrogen 

bonding. 

2. Six-membered rings intermolecular hydrogen bonds form in preference to intermolecular 

hydrogen bonds. 

3.  The best proton donor and acceptor remaining after intermolecular hydrogen-bond 

formation will form intermolecular hydrogen bonds to one another but not all acceptors will 

necessarily interact with donors. 

1.2.3. Intermolecular Interactions 

The attractions between molecules are described by intramolecular bonding which can be 

divided into covalent, that involves the mutual sharing of a pair of electrons by two atoms, 

or noncovalent interactions. The covalent bonding of molecules occurs in organic synthesis, 

while noncovalent bonding interactions occur in supramolecular chemistry. 
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The directionality of non-covalent interactions and the distance dependence are of 

importance to crystal engineers. The repeating interactions of a crystalline compound are 

additive and the relatively weak forces become significant in this context. According to the 

distance range, non-covalent interactions are divided into Van der Waals interactions, metal 

coordination, hydrogen bonds and electrostatic ion pairing.  

Van der Waals interactions are medium range forces, responsible for molecular shape, close 

packing of the molecules, and contribute to the overall crystal stability. Hydrogen bonds are 

longer-range forces, directional and may show some covalent property. The very long-

range forces are those between salts, may have specific controls, and constraints on 

molecular structure. 

Supramolecular synthons are defined as recurring hydrogen bond and/ or intermolecular 

interaction patterns for crystal engineering and the synthetic organic structural features are 

described by the synthon (Desiraju 1995). However, supramolecular synthons are spatial 

arrangements of intermolecular interactions. The core objective of crystal engineering is to 

identify and design synthons that are strong enough to be interchanged between network 

structures.  This ensures an overview eventually leading to the certainty of one, two and 

three-dimensional patterns fashioned by intermolecular interactions. 

In the crystal engineering, the Cambridge Structural Database (Allen 2002) may be utilized 

to identify stable hydrogen bonding motifs (Bruno et al. 2002) with the objective that the 

most robust motifs will remain intact a cross a family of related structures. However, the 

nature of APIs, that is, molecules or ions with exterior functional groups that engage in 

hydrogen bonding; this makes all APIs inherently predisposed to formation of 

pharmaceutical co-crystals (Almarsson and Zaworotka 2004; Blagden et al. 2007). 
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Supramolecular synthons are sub-classified into homothynthons and heterosynthons 

according to similarities and differences of the interacting complementary functional 

groups (Scheme 1) (Walsh et al. 2003). 

 

 

Scheme 1: Examples of homosynthons (1) and heterothynthons (2). 

 

The functional groups in carboxylic acids and amides are self-complementary and have the 

capability of forming supramolecular heterothynthons; however, they are also 

complementary with each other and can interact through formation of a supramolecular 

heterothynthon. This motif has been studied for some time in the context of crystal 

engineering (Etter 1985; Huang et al. 1973). The interaction of carboxylic acids with 

heterocyclic bases is perhaps the most widely studied type of synthon (Aakeröy et al. 1998; 

Caira et al. 1995; Etter 1990). (Aakeröy et al. 2000; Batchelor et al. 2000; Carrow and 

Wheeler 1998; Edwards et al. 2002; Pedireddi et al. 1998; Pedireddi and PrakashaReddy 

2002; Shan et al. 2002b; Shan et al. 2002c; Zhang et al. 2003). 

In an attempt to assist the prediction of co-crystal formation, competition and prediction of 

synthon have been investigated (Etter 1991). This study suggested that the synthon with the 
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lowest hydrogen bonding energy would often attribute in the co-crystal structure, as this 

was demonstrated and verified experimentally through comparisons to the generated single- 

crystal structures. 

1.2.4. General methods of preparation of co-crystals  

1.2.4.1. Introduction 
 
Co-crystals are usually synthesized by slow evaporation from solutions that contain co-

crystal formers, grinding two solid co-crystal formers using a ball mill or mortar and pestle. 

Sublimation, growth from the melt, and slurry preparation have also been reported 

(Zaworotka 2005). Recently, a technique of solvent drop grinding is reported to be a 

promising preparation method. It has been performed by the addition of small amount of 

suitable solvent to accelerate the process of co-crystallization (Trask et al. 2004). Solvent 

drop grinding has the advantage over the traditional solvent crystallization techniques in 

that the former avoids the use of excessive crystallization solvent. Furthermore, the solvent-

drop grinding helps in polymorph control and is useful for selective transformation of 

polymorph (Trask and Jones 2005).  

Regardless of the method used to prepare co-crystals, formation of these classes is still 

challenging for a scientist. There are some difficult situations described in the literature in 

the context of co-crystal formation. For example, the preparation of a single co-crystal of 

good quality for single X-ray diffraction analysis can take 6 months (Portalone and 

Colapietro 2004) and it has been reported that approximately 50 co-crystal agents used for 

the 10 new co-crystals of carbamazepine, give a success rate of only 20% (Fleischman et al. 

2003). Similar to salt formation, co-crystal formation requires a difference of at least two 

pKa units between a drug and co-crystal former, and in a co-crystal, proton transfer does 
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not take place between the acidic and the basic component; rather, a hydrogen bond of the 

type A-H…B is formed between them (Serajuddin and Pudipeddi 2002). Additionally, 

there are other requirements for co-crystal formation such as functional group 

complementarity and viable packing interaction (synthon compatibility) (Trask et al. 

2005a). If one considers a polymorphic component as a co-crystallizing agent, it has been 

demonstrated that a chance of bringing such a molecule into a different packing 

arrangement in coexistence with another molecule is evidently increased (Aakeröy 1997). 

However, other studies on co-crystal formation from pairs of polymorphic APIs in their 

pure forms concluded that they appeared to be less prone to polymorphism than the 

corresponding single component APIs (Banerjee et al. 2005). 

It is obvious that polymorphism alone is no guarantee that a compound is able to act as a 

co-crystallizing agent, however the ability of a molecule to participate in intermolecular 

interaction is the crucial factor (Aakeröy et al. 2003). 

1.2.4.2. Co-grinding 
 
Co-grinding involves the milling of the drug and excipient or between two drugs using 

high-energy comminution. This additional energy is utilized to cause particle size reduction 

of the active compound, decrease in drug crystallinity to amorphization (Hancock and 

Zografi 1997; Yonemochi 1999), or formation of metastable modifications  which may lead 

to an increase in apparent dissolution rate (Miyamae et al. 1994; Takahashi 1985). Drug 

interaction with carriers can stabilize the system and delay the recrystallization. Many 

papers review the role of polymorphic modification during the co-grinding process. The 

dissolution properties of a mixture of glisentide with polyvinylpyrrolidone (PVP) (Mura et 

al. 2002), hydroxypropylmethylcellulose (HPMC) and nifidipine (Sugimoto et al. 1998), 
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furosemide and cross-linked (PVP-CL) (Shin et al. 1998), modified gum karaya/gum 

karaya and other APIs (Murali Mohan Babu et al. 2002)  were  found to improve after 

grinding. Grinding was also performed on a mixture of indometacin with PVP and with 

silica nanoparticles (Watanbe et al. 2003). Furthermore, grinding of the pure active 

ingredient decreased the intensities of powder X-ray diffraction peaks for ursodeoxycholic 

acid (UDCA), phenanthrene and anthrone. These peaks were either changed into halo 

patterns or completely disappeared after grinding, indicating a lowering of crystallinity 

without any polymorphic change with the drug becoming amorphous (Oguchi et al. 2000). 

Reported solubility studies indicate an enhancement of drug dissolution, if components are 

co-ground. This was solely rationalized by the state of the drug and was irrespective of the 

carrier species. Amorphous indometacin has been stabilized by co-grinding with silica 

(Watanbe et al. 2001), talc and  Mg(OH)2-SiO2 mixture (Watanbe et al. 2002). The use of 

cross-linked (PVP-CL) as an excipient for co-grinding created an amorphous drug form, 

found to be stable after 1 year (Shin et al. 1998). Also, compatibility studies on excipients 

reported a decrease in drug melting endotherms upon co-grinding with both linear, and/ or 

cross-linked forms of polymers as monitored by differential scanning calorimetry (Botha 

and Lotter 1989). A similar effect to grinding is the preparation of solid dispersions of 

griseofulvin and saccharides via a roll mixing method (Saito et al. 2002). It has been 

reported that griseofulvin gradually converted to an amorphous form during mixing with 

each of the carriers, namely processed starch and cornstarch. This process was also found to 

improve the dissolution profile of griseofulvin. 

The preparation of co-crystals via grinding generally leads to products that are consistent 

with those produced by solution (Etter et al. 1993). This may signify that hydrogen-bond 

connectivity patterns are not distinctive or indomitable by non-specific and unmanageable 
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solvent effects or crystallization conditions. However, there are exceptions. While many co-

crystals can be prepared from both solution growth and solid-state grinding, other can only 

be produced by solid-state grinding (Lynch et al. 1991). For example, the co-crystallization 

of 2,4,6-trinitrobenzoic acid and indole-3-acetic acid resulted in different crystal forms 

when prepared by solution compared with grinding (Lynch et al. 1991). 

The inability to generate suitable co-crystals arrangements is most likely the reason behind 

the failure to form co-crystals by grinding rather than the stability of initial phases. If a co-

crystal has been formed successfully by solution but not by grinding, solvent inclusion in 

stabilizing the supramolecular structure may be a reason (Pedireddi et al. 1996). Though 

co-crystallization by solid-state grinding has been recognized in the 19th century (Ling and 

Baker 1893), the current technique of solvent drop grinding was found to improve the 

kinetics and ease the formation of co-crystals and has shown the way to the solid-state 

grinding as a method of co-crystal preparation (Shan et al. 2002). 

When cyclohexene-1, 3cis, 5cis-tricarboxylic acid with bipyridine, that previously was 

found to crystallize from MeOH solutions, was co-ground for 60 min, only partial 

conversion occurred, while the addition of some drops of MeOH to the mixture during 

grinding led to complete conversion into co-crystal after 20 min.   

1.2.4.3. Physical mixes and co-crystals 
 

Historically, physical mixtures are prepared by combining of two or more solid compounds 

using adequate agitation of two or more solid compounds without the addition of any liquid 

(Harnby et al. 1989). In the pharmaceutical context, this process involves the combination 

of one or more drugs with one or more excipients. This technique is straightforward and 

adaptable and is carried out using different mixing mechanisms, e.g. tubular mixer, mortar 
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and pestle, etc. The use of physical mixes of carriers and drugs is required as standards or a 

control, against which formulation systems (i.e. solid dispersions) are measured for 

improvements in physicochemical properties (Tantishiyakul et al. 1996). Additionally, 

physical mixes of carriers and drug have sometimes been shown to induce molecular 

conformation changes of the API and lead to an improvement in dissolution profile without 

any further treatment of the mixes. 

Physical mixes of paracetamol and polyethylene glycol 4000 showed a lower heat of 

solution than the theoretical value calculated from the heats of solution corresponding to 

the individual components (Lloyed et al. 1999). This may have resulted from the possible 

formation of a solid dispersion. There is some evidence that hydrogen bonding has been 

observed in physical mixes of linear PVP and indometacin (Forster et al. 2001). A lowering 

in crystallinity has also been reported for drug compounds containing cross-linked PVP in 

physical mixes (Fujii et al. 2005), while other excipients did not show similar results, e.g. 

microcrystalline cellulose. However, it has been reported that a marked reduction in 

ibuprofen crystallinity when mixed with cross-linked PVP and an improvement in the 

dissolution profile was not reproduced on scale up of the batch size or on using different 

mixing equipment (Lu 2002). 

Compared with melting, solvent depositions or co-grinding that induces strong molecular 

interaction between active pharmaceutical ingredients (APIs) and carriers within delivery 

systems, mixing is less energetic. As mentioned previously, these systems have the 

advantages of solid dispersions in that the exposure of the drug molecules to mechanical 

stress, heat or solvent is avoided.  
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1.2.4.4. The use of co-crystals in drug formulation 
 
Marketed solid dosage forms of APIs have traditionally been limited to crystal forms of 

single component solids (i.e. they contain only the API), salts of the API or solvates of the 

API (Haleblian 1975). The form of the active pharmaceutical ingredient is of great 

importance in determining key physical properties such as water solubility and 

bioavailability. The crystal form varies according to crystallization solvent, the rate of 

cooling, or the presence of other materials in solution (Haleblian 1975). 

 The pharmaceutical co-crystals, as a new class of multiple component crystalline forms, 

are able to pack with increased efficiency due to the complementaries of the API and co-

crystal former. In polymorphism that occurs in single component crystals or 

pseudopolymorphism that exists in salts, solvates and single component crystals, the crystal 

packing can also vary and most active ingredients exhibit this phenomenon. 

 Since pharmaceutical co-crystals do not involve covalently modifying the API, they offer a 

great opportunity to enhance the physical properties of the crystal form of APIs without 

changing their therapeutic attributes. 

Studies on the processing of theophylline tablets reported that the crystallinity decreased 

(Shefter and Higuchi 1963) and phase transformation occurred during dissolution (Urakami 

et al. 2002). The crystallinity of anhydrous theophylline tablets was found to decrease upon 

both milling and aqueous wet granulation and this processing-induced decrease in 

crystallinity accelerated the conversion of anhydrate to monohydrate during dissolution 

(Debnath and Suryanarayanan 2004). Remenar and co-workers (2003) compared the 

dissolution of co-crystals of itracanazole (a trizole drug) with succinic acid, maleic acid and 

tartaric acid, to that of the pure crystalline and amorphous drug. They found that the co-
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crystals of itracanazole behaved in a manner similar to the amorphous form rather than the 

crystalline drug, and the solution concentrations were higher than that of the crystalline 

drug. This ability to form a supersaturated solution could have a dramatic effect on drug 

absorption and bioavailability (Kwei et al. 1995). Fleischman et al., (2003) reported that of 

the melting points of thirteen carbamazepine co-crystals, only two had melting point higher 

than the pure components. 

The stability of solid active materials against atmospheric moisture is important in the 

pharmaceutical industry, since hydrates can form upon processing, formulation, storage and 

packaging (Byrn 1999). Examination of the relative humidity stability was carried out for 

caffeine/dicarboxylic acid co-crystals against the pure crystalline anhydrous caffeine. There 

have been no co-crystal hydrates observed and the unstable co-crystal with respect to 

relative humidity tended to dissociate to the crystalline starting materials (Trask et al. 

2005a).  

Hickey and co-workers (2007) compared the performance of carbamazepine/ saccharine co-

crystal with that of the marketed carbamazepine, in an attempt to address the suitability of a 

model co-crystal as an alternative to the currently marketed versions of carbamazepine 

(Tegretol® tablets). They reported that the carbamazepine co-crystal was found to have 

comparable chemical stability to carbamazepine form 3 (the polymorph found in Tegretol 

tablets), and that the physical stability of the co-crystal appeared to be similar to the 

anhydrous polymorph form 3. In addition, the co-crystal showed a dependence of 

dissolution rate on particle size above 150 μm and the resistance of the smaller particle 

sizes to conversion to dihydrate in aqueous suspension during the time scale of drug 

absorption. However, the aqueous solubility of carbamazepine has not been affected by co-
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crystal formation to such a degree to completely relieve the known dissolution rate 

limitation of carbamazepine (Hickey et al. 2007). 

With regards to marketability of a variety APIs as chloride salts is well documented, and, 

recently, such chloride salts, specifically fluoxetine hydrochloride has been utilized to 

generate co-crystals of an amine hydrochloride salt via a chloride-mediated carboxylic acid 

supramolecular synthon (Childs et al. 2004). 

It has also been reported that polymorphism can have significant effects on pharmaceutical 

processing, e.g., granulation, milling and tableting. It was found that polymorph B of 

phenylbutazone is more ductile (plastic deformable) and tends to form stronger bonding 

than polymorph A, and the deformation of polymorph B was more sensitive to compression 

rate (Tuladhar et al. 1982). 

The granulation of chlorpromazine hydrochloride with different solvents can lead to the 

formation of different polymorphs, and the changes in the crystal form produced different 

bonding properties of this drug during wet granulation (Wong and Mitchell 1992). Also, 

form II crystals of chlorpromazine hydrochloride take up water more easily than form I and 

convert to the hydrate. Consequently, tablets produced from form II were found to crack 

during storage, while those obtained from form I did not crack under the same storage 

conditions (Yamako et al. 1982).  

Other studies on the tableting behavior of different polymorphic forms of carbamazepine 

indicated that the tablets have different hardness (Otsuka et al. 1997). It has been reported 

that the different yield strengths of two polymorphs of acetaminophen are due to their 

crystal structures (Nichlas and Frampton 1998). 
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1.2.5. Characterization of pharmaceutical co-crystals 
 
Several methods exist to characterize co-crystals and excellent reviews have been published 

(for example X-ray powder diffraction (XRPD), Raman spectroscopy, solid-state nuclear 

magnetic resonance (SSNMR), differential scanning calorimetry (DSC), and scanning 

electron microscopy (SEM).  

1.2.5.1. X-ray Powder Diffraction (XRPD) 
 
X-ray diffraction techniques used for characterizing pharmaceutical solids include the 

analysis of single crystals and powders. The electrons surrounding the atoms diffract X-

rays in a manner described by the Bragg equation: 

nλ = 2d sin θ      (n = 1, 2, 3 . . .)                                                                equation 1 

 

Where 

 

λ =  x-ray wavelength 

d = spacing between the diffraction planes 

θ = diffraction angle 

n = order of reflection 

 

Crystal structures provide important and useful information about solid-state 

pharmaceutical materials. It is not always possible to grow suitable single crystals of a drug 

substance. In this case, X-ray diffraction of powder samples can be used for comparison of 

samples. X-ray diffraction peaks provide definitive proof of crystallinity in a solid. X-ray 
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powder diffraction (XRPD) is the analysis of powder sample. The typical output is a plot of 

intensity versus the diffraction angle (2θ). Ruland (1961) using internal comparison (i.e. 

compare amorphous and crystalline scattering) described the % crystallinity determination. 

Krimm and Tobosky (1951) provided more approximate methods, using external 

comparison, which requires the assignation of areas of the diffraction to either amorphous 

or crystalline scattering. 

1.2.5.2. Fourier transfer Raman spectroscopy 
 

The Raman effect was discovered in 1928, but the first commercial FT-Raman 

instrumentation appeared in 1988 and by the next year, FT-Raman microscopy was 

possible (Ferraro 1996). Raman spectroscopy has been widely used for the qualitative and 

quantitative characterization of polymorphic compounds of pharmaceutical interest. This 

solid-state vibrational spectroscopy can be used to probe the nature of polymorphism on a 

molecular level, and is therefore considered to be useful in instances where full 

crystallographic characterization of polymorphism was not found to be possible. 

1.2.5.3. Thermal Analysis (TA) 
 
Thermal analysis is defined as “a group of techniques in which a physical property of a 

substance is measured as a function of temperature whilst the substance is subjected to a 

controlled temperature programme” (Mackenzie 1979). 

Thermal analysis encompasses a wide variety of techniques, including Differential Thermal 

Analysis (DTA), Differential Scanning Calorimetry (DSC) and Thermogravimetric 

Analysis (TGA) (Skoog et al. 1998). TA techniques help researchers to study and gain 

physical and chemical information on substances, such as thermal stability, polymer system 
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analysis, glass transition, purity, chemical reactions, etc. For more TA application, see 

Cooper and Johnson. 

1.2.5.3.1. Thermo Gravimetric Analysis (TGA) 

Thermogravimetric analysis is a thermal analytical technique in which the mass of a sample 

under a controlled atmosphere is continuously recorded as a function of temperature for a 

controlled temperature programme (Mackenzie 1979). Many modifications of such devices 

are used to determine the weight changes with heat, e.g. moisture content of tablet 

granulations, hydrated substances, and decomposition (Hamed 1995). 

1.2.5.3.2. Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetry (DSC) is a commonly used technique that provides 

information about thermal changes that do not involve a change in the sample mass 

(Haines, 2002). Information is obtained by heating or cooling a sample alongside an 

external reference (an empty sample pan). In power compensated DSC the two pans are 

maintained at the same temperature by separate heaters and two identical platinum resistive 

temperature sensors are incorporated in the test chamber, one for the sample and one for the 

reference. As the pans are heated or cooled during the temperature scan, a differential 

heating rate will be required to maintain equality in pan temperature if endothermic or 

exothermic changes occur within the sample. This differential between the sample and the 

reference is transformed into an electrical signal and transformed into a thermal analysis 

curve. The comparative nature of this data collection means that thermal changes can be 

studied free from external thermal effects, i.e. variation will affect both sample and 
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reference sensors equally. The integral, or area, under the DSC peak is directly proportional 

to the heat absorbed or evolved by the thermal event (Brittain 1995). 

1.2.5.4. Scanning Electron Microscopy (SEM) 

In SEM, a high-energy electron beam is thermoionically emitted from a tungsten cathode 

and is accelerated towards an anode. One or two condenser lenses focus this electron beam. 

It then passes through a pair of scanning coil in the objective lens, which deflects the beam 

horizontally and vertically so that it scans over a rectangular area of the sample surface. 

The energy exchange between the electron beam and the sample results in the emission of 

electrons and electromagnetic radiation, which can be detected to produce an image. 

1.3. Tableting 

 
Tableting is a process in which powder particles are forced into close proximity to each 

other by compression, which enables the particles to cohere into a porous, solid mass of 

defined dimension. However, the art of compressing discrete solid particulate matter into a 

cohesive mass has its roots extended in history and has been practiced since the days of the 

ancient Egyptians. The involvement of the process in medicinal use was not developed until 

the mid nineteenth century when (Brockedon 1843) took out a patent for shaping pills, 

lozenges and black leads by pressure in a die. 

Fundamental research began in the 1920s mainly in the field of powder metallurgy, but 

quickly spread to other disciplines as the implications become more widely realized. There 

are two broad lines of investigation that may be distinguished: One is the study of the 

distribution of forces at die and punch walls, and within compacts during compression 

(Fuhrer 1962; Knoechel et al. 1967; Leigh et al. 1967; Lewis and Shotton 1965; Nelson et 
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al. 1954; Shotton et al. 1963; Shotton and Obiorah 1960). The second line of investigation 

is the analysis of the relationships between the applied pressure and the resulting density of 

compact (Cooper and Eaton 1962; Fell and Newton 1971; Heckel 1961a; Heckel 1961b; 

Herssy and Rees 1970). 

The force transmitted radially to the die wall was first measured by Nelson (1955) and 

(Windheuser et al. 1963) who cut away a section of the die wall and bonded strain gauges 

on it. They stated that materials, which permitted good conversion of axial to radial 

pressure, tend to form better tablets. A residual die wall pressure, after removal of the upper 

punch was found by (Higuchi et al. 1965). Several workers have reported the 

instrumentation of this type. They used it to record the compaction profiles of several 

pharmaceutical materials (Leigh et al. 1967; Long 1960). 

1.3.1. Powder compaction and bonding mechanisms 
 
The compression process takes place in a die by the action of two punches, the lower and 

the upper, by which the compressive force is applied. There are several stages for the 

formation of the compact, firstly, the rearrangement of particles followed by elastic 

deformation, plastic deformation and particle fragmentation (Duberg and Nystroem 1986) 

and cold welding with or without fragmentation (York 1978). Powder compression is 

defined as the reduction in volume of a powder owing to the application of a force. If these 

volume reduction mechanisms result in a permanent consolidation into a compact, then 

bonds must be formed between solid surfaces in the compact. There have been several 

bonding mechanisms proposed (Fuhrer 1977; Rumpf 1958). However, for tablets, three 

types are usually observed: (a) solid bridges formed by e.g. a melting process or 

recrystallization; (b) attractive forces active over a distance, i.e. intermolecular forces 
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(Karehill et al. 1990); (c) mechanical interlocking, depending on the shape of the particles. 

The surface area of the individual particles themselves changes during the compaction 

process. Initially, an increase in surface area is noted due to the fracture as compression 

forces increase. Eventually, the surface area decreases due to bonding and consolidation of 

particles at higher compression forces (Hiestand et al. 1977; Nelson et al. 1954). 

When a loose powder bed is subjected to a constant pressure, the pressure transmitted 

through the bed will decrease uniformly with the distance from the source. However, when 

the powder is filled in a die, there are force losses due to extra forces, which the upper 

punch has to overcome. The major forces involved in the formation of a tablet compact are 

illustrated in Figure 2. These forces include die wall friction, which is dependent on powder 

properties; the state of compaction and the interfacial condition between powders and die 

wall. 
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Figure 2: Forces operating on a powder during compression 
 
 
Where 

FA represents the axial pressure, which is the force applied by the upper punch, FL is the 

force transmitted to the lower punch, FD is the force lost to the die wall and FR is the radial 

force. 

FA 

FL 

FD FR 

Lower Punch 

Upper Punch 
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For elastic materials, the elastic strain induced by the application of a load can be recovered 

by unloading the materials. The change in dimension is generally attributed to the 

stretching of the atomic bonds and changes in the internal energy of a loaded and unloaded 

specimen (Stanley-Wood 1983). When a material undergoes a linear stress-strain 

relationship, the elastic characteristics of the material such as Young modulus and Poisons 

ratio can be calculated. 

Plastic materials are materials, which have non-recoverable strain on unloading when 

loaded beyond the elastic limit. The process occurs mainly because of the sliding of atoms 

over each other (Stanley-Wood 1983). The plastic deformation of materials occurs non-

homogeneously by means of lattice dislocation within the crystal structure of material. 

1.3.2. Pressure/ volume relationship 
 

Many equations have been proposed to account for pressure/ volume relationships during 

compaction (Kawakita and Ludde 1971). However, the equation developed by Heckel 

(1961a, 1961b) has been found particularly useful in numerous compaction studies. The 

Heckel equation essentially describes a first order relationship for the change in pore 

volume with pressure. This relationship is given by: 

 

ln (1/(1-D)) = KP + A                                                                                equation 2 

Where D is the density of the compact relative to the absolute density of the material being 

compacted, P is the applied pressure (MPa), K = 1/Y where Y is the yield pressure of the 

material and A is a function of the original compact volume. 
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Some researchers have however, expressed caution when analyzing data by the Heckel 

equation (Rees and Rue 1978; York 1978), since the experimental conditions and methods 

of measurement influence the numerical values of the parameter (i.e. compressibility) 

derived from the analysis. Alternatively, by standardizing the experimental procedures it is 

possible to use the data to compare the compaction behaviour of materials. 

When analyzing the compaction properties according to the Heckel relationship, two types 

of behaviour can be described (Herssy and Rees 1970). Type A was observed for particles 

with bulk density dependant on the initial particle size. The densification was due to 

particle rearrangement or slippage, followed by plastic deformation. On the other hand, 

type B was observed for materials that have higher yield pressures and undergo 

consolidation by initial fragmentation to form consistent packing followed by plastic 

deformation. These materials mainly do not maintain the initial bulk density difference due 

to particle size variation. York and Pilple (1973) distinguished Type C, which shows a very 

rapid approach to a limiting density for materials with very low yield pressures. 

1.3.3. Evaluation of tableting properties 
 
A number of terms and parameters are used to evaluate the tableting behaviour of powders 

(Joiris et al. 1998). These parameters represent an effective means to describe the 

compaction properties and enable comparisons of different powder batches. 

1.3.3.1. Compressibility 
 
Compressibility is defined as the ability of a material to undergo a reduction in volume as a 

result of an applied pressure (Joiris et al. 1998). Compressibility describes how a powder 

bed undergoes volume reduction under compaction pressure. It is calculated from a plot 
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showing the decrease in tablet porosity with increasing compression force. The lower the 

compaction pressure at a given compaction force, the better is the compressibility and 

greater is the interparticulate bonding area in a tablet. 

1.3.3.2. Compactibility 
 

Compactibility is defined as the ability of a material to produce tablets with sufficient 

strength under the densification (Joiris et al. 1998). In many cases, the tensile strength 

decreases exponentially with increasing porosity (Ryshkewitch 1953). It is interpreted by 

calculating the tensile strength that is normalized by tablet porosity. By extrapolating the 

tensile strength to zero porosity, the compactibility plot will indicate the interparticulate 

bonding strength that may be related to intermolecular/ interionic interaction (Roberts et al. 

1991). 

1.3.3.3. Tabletability 
 

Under the effect of compression force, the tabletability is the capacity of a powder to 

transform into a tablet of specified strength. It indicates the effectiveness of the applied 

pressure in increasing the tensile strength of the tablet (Joiris et al. 1998). Compressibility 

also describes the relationship between the cause, the compression pressure, and the result, 

which is the strength of the compact.  

1.3.4. Selection of model drugs and co-crystal systems 
 
 
In this thesis, several model drugs/ co-crystal agents were studied. These were: 

1. Urea/ 2-MB 
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2. Caffeine/ malonic acid 

3. Caffeine/ oxalic acid 

4. Theophylline/ malonic acid 

1.3.4.1. Urea/ 2-methoxybenzamide (2-MB) system 
 
 
 
 

2-MB                                   H2N NH2

O

    Urea 
 
 
 
Figure 3: Chemical structures of 2-MB and urea.  
 
 
Previous reports have been already established on equimolar complex formation of urea 

with 2-methoxy-benzamide (2-MB). Complex formation of urea and 2-MB was achieved 

both by a co-grinding technique and by a co- precipitation method (Moribe et al. 2006). It 

has been reported that in the urea/2-MB complex, not only show an intermolecular 

hydrogen bond between urea and 2-MB but also a hydrogen bond network between urea 

molecules is present and takes part in the overall assembly of the complex. Complexation 

results in an overall change in conformation. The molecular arrangement of the compound 

was characterized using the single crystal X-ray diffraction method, and the conformational 

change of guest molecules has been reported in terms of intramolecular hydrogen bond 

length and the dihedral angles (Moribe et al. 2006). It has also been reported that the 

basicity and symmetrical location of amines in guest molecules could be a crucial factor for 
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the formation of either a corrugated or a laminar structure. It was found that in case of the 

conventional urea inclusion complexes, a three dimensional hydrogen bonded array of urea 

formed hexagonal channels with an internal diameter of 5.5-5.8 Å, within which organic 

molecules such as n-alkenes (Takemoto and Sonoda 1984), fatty acids (Brandstaetter and 

Burger 1997), and polymer (Rusa et al. 2002) were densely packed  through Van der Waals 

forces. Most of the urea inclusion complex exhibited incommensurate structural properties 

(Harris and Thomas 1990) (Penner et al. 1992). However, α, ω-dinitriles, di- and 

tricarboxlic acids have been reported to form specific co-crystals with urea molecules 

(Videnova-Adrabinska 1996). 

1.3.4.2. Caffeine/ malonic and oxalic acid systems 
 
 

N

N N

N

O

O

CH3

CH3
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HOOC COOH    Malonic acid                         HOOC COOH      Oxalic acid 
 
 
Figure 4: Chemical structures of caffeine, malonic acid and oxalic acid.  
 
 
Caffeine is a central nervous system stimulant and smooth muscle relaxant. It is widely 

employed as a formulation additive to analgesic remedies. As a model pharmaceutical 

compound, caffeine is known to exist as two anhydrous crystal forms (α, β) and one 
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crystalline nonstoichiometric hydrate (Bothe and Cammenga 1980). At high temperature 

the stable anhydrous β- caffeine crystal form converts to the metastable caffeine (Lehto and 

Laine 1998). The nonstoichiometric crystalline hydrate of caffeine was found to contain 0.8 

moles of water per mole of caffeine which might result from a channel inclusion of water in 

the hydrate crystal structure (Edwards et al. 1997). The α or β crystalline form of caffeine 

converts to caffeine hydrate at high relative humidity. Conversely, caffeine hydrate loses its 

water of hydration at low relative humidity and reverts to β-caffeine (Pirttimaeki and Laine 

1994). This hydration behaviour of caffeine has been a challenge to develop this model 

drug substance into a marketed form and requires a synthesis of a crystalline salt form to 

enhance its physical properties. However, the only one pharmaceutically acceptable salt 

form of caffeine revealed by the CSD is a hydrochloride dehydrate (Mercer and Trotter 

1978). It seems, however, that the stable anhydrous, pharmaceutically acceptable form of 

caffeine is not yet known (Stahl and Wermuth 2002). The limited salt forming capability of 

caffeine is behind the reason for reporting structure of only one pharmaceutically 

acceptable caffeine. The suitability of co-crystallisation of caffeine in its neutral form has 

been based on its weak basicity as imidazole nitrogen of caffeine results in a pKa of 3.6. It 

has already been published that caffeine can form 12 neutral organic co-crystals, including, 

complexes of caffeine with sulfacetamide (Leger et al. 1977), sulfaproxylline (Ghosh et al. 

1991), a co-crystal of caffeine with the sedative barbital (Graven and Gartland 1974) and 

two other not acceptable co-crystals of caffeine with unionized aromatic carboxylic acids. 

Recently, a number of co-crystals of caffeine with dicarboxylic acids has been reported, i.e. 

oxalic acid, malonic acid, maleic acid and glutaric acids (Trask et al. 2005a). For our study, 

we selected malonic acid and oxalic acid to co-crystallize with caffeine (Figure 4). 
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1.3.4.3. Theophylline/ malonic system 
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Figure 5: Chemical structures of theophylline and malonic acid.  
 
 
 
Theophylline is a drug used for respiratory treatment. From a physicochemical point of 

view, the formulation of theophylline represents a challenge because of its interconversion 

between crystalline anhydrate and monohydrate forms as a function of relative humidity 

(RH). This interconversion complicates the design of a consistent, reproducible formulation 

process (Kahnkari and Grant 1995). The reversible hydrate formation causes a stability 

problem across a range of common processing conditions. It indicates that neither the 

anhydrate nor the hydrate may be fully stable as reported by several researchers (Hermann 

et al. 1988; Otsuka and Kaneniwa 1988; Shefter et al. 1973; Suzuki et al. 1989).  

Theophylline has been found to form a number of co-crystals with guest compounds, 

including, 5-chlorosalicylic acid, urea, sulfathiazole, phenobarbital, p-nitrophenol, N-2-

aminoethyl-carbamate, 5-fluorouracil and water. Recently, co-crystals of theophylline with 

dicarboxylic acids including: oxalic acid, malonic acid, maleic acid and glutaric acids were 
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reported (Trask et al. 2005a). For our study, we selected malonic acid and oxalic acid to co-

crystallize with theophylline (Figure 5). 

 

1.3.5. Aims and objectives 
 

The aim of this thesis was to investigate the factors that affect the production of co-crystals 

with enhanced physico-chemical properties including compressibility, compactibility and 

processability. Moreover, pharmaceutical co-crystals represent a promising area of research 

and offer a genuine opportunity to enhance the formulation of a compound, optimize the 

product performance and to improve marketed products. 

Objectives of this thesis are: 

1. To study the effect of co-processing drug and excipient mix on the crystallographic and 

solid-state properties and behaviour using model drug substances and different co-crystal 

formers. 

2. To explore the manipulation of the solid-state properties of co-crystals through different 

methods such as dry and wet grinding and co-precipitation. 

3. To investigate any possible crystal transformation during compression and convection 

mixing.  

4. To examine the impact of additives, namely microcrystalline cellulose (MCC) and α-

lactose monohydrate on the crystallinity, formation of co-crystals and stability. 

5. Finally, the subsequent effect of the modification of the solid-state properties of the 

model drug on the overall mechanical and deformational characteristics of the compact has 

also been explored. 
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1.3.6. Thesis structure 
 
This thesis is structured as follows: 
 
Chapter 1 gives an intensive and detailed introduction about engineering of co-crystals, 

their groups and classes, methods of preparation, characterizations, and use in the drug 

formulation. This chapter also introduces the tableting process, bonding mechanisms as 

well as parameters used to evaluate the tableting behaviour of the co-crystals and the 

physical mixtures. In addition, reported molecular chemistry, chemical structures and uses 

of the selected systems have also been introduced. 

Chapter 2 describes the materials, material processing, mixing and compaction procedures 

as well as the analytical techniques used throughout the thesis. 

Chapter 3, Chapter 4, Chapter 5 and Chapter 6 presents respectively, the solid-state 

characterization of urea/ 2-MB, caffeine/ malonic acid, caffeine/ oxalic acid and 

theophylline/ malonic acid systems and evaluate the effect of co-crystallization by both 

grinding and precipitation on the compaction and deformational properties. 

Chapter 7 examines the impact of additives (α-lactose monohydrate and MCC) on the 

crystallinity, phase transformation and molecular structure of an in situ co-crystals and 

subsequent tableting behaviour. 

Chapter 8 presents out finding of co-crystal formation of urea/ 2-MB and caffeine/ malonic 

acid systems during compression using both the Compaction Studies Simulator the IR-

Press. 

Chapter 9 presents out finding of co-crystal synthesis of urea/ 2-MB systems through 

convection mixing and investigates the mechanisms of the phase transformation using 

different analytical techniques. 
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Chapter 10 discusses and concludes the results given in the previous chapters and gives 

suggestions for future work. 
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2. Methodology 

2.1. Materials 
 
All materials used in this study are given in Table 1. 
 
 
 
Table 1: Materials selected for study.  
 
Material Purity Product 

number 
Company 

Urea 98% A 12360 or 
L05020 

Alva Aesar Avocado & 
Lancaster 

2-methoxybebnzamide 98% A12520 or 
L05588 

Alva Aesar Avocado & 
Lancaster 

Caffeine 100% A 12360 or 
L05020 

Alva Aesar Avocado & 
Lancaster 

Theophylline 100% A12520 or 
L05588 

Alva Aesar Avocado & 
Lancaster 

Oxalic acid 98% 58-93-5 Sigma-Aldrich Company Ltd. 
(United Kingdom) 

Malonic acid 98% 62517-86-2 Sigma-Aldrich Company Ltd. 
(United Kingdom) 

α-lactose monohydrate 98% 5989-81-1 Sigma-Altra Company Ltd. 
(United Kingdom) 

Microcrystalline 
cellulose 

98% 9288 Edward Mendell Co., Inc. 
New York 

 

 

 

2.2. Material processing 

2.2.1. Preparation of a mixture of urea and 2-MB by co-precipitation 
 

2-MB (1.6 g) was dissolved in 40ml ethanol and heated to 60 0C. After the addition of 0.8 g 

of urea, the solution was stirred for 10 min. Then the solution was stored at 25 0C for 24 h 
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to obtain the crystals. The precipitated product was collected on a filter paper and dried at 

room temperature for 24 h. 

2.2.2. Preparation of co-ground mixture of urea and 2-MB  
 

Firstly, 0.8 g of 2-MB was added to 0.4 g of urea. The mixture was co-ground with a pestle 

and mortar for 2 min. Then 0.5 ml of water was added to the mixture. The wet mixture was 

co-milled gently for 20 min. After that the co-ground mixture was collected on a filter 

paper and dried at room temperature for 24 h. 

2.2.3. Preparation of physical mixture of urea and 2-MB 
 
Urea was physically mixed with 2-MB at molar ratio of 1:1 in a glass vial and shaken by 

hand for 20 min. 

2.2.4. Preparation of a (2:1) caffeine/ oxalic acid co-crystal by co-
grinding 
 
Caffeine (0.38g) was added to oxalic acid (0.89g) in a glass mortar and co- ground with 0.5 

ml methanol using a pestle for 30 min. The ground mixture then collected on a filter paper 

and stored at room temperature for 24 h. 

2.2.5. Preparation of a (2:1) caffeine/ oxalic acid co-crystal by co-
precipitation 
 
Caffeine (4.85g) and oxalic acid (1.12g) were dissolved in 7:2 (v/v) chloroform- methanol 

(90 ml) and heated to 50 0C. The solution was removed from heat and allowed to cool at 

ambient temperature. The precipitated solids were filtered, collected on a filter paper and 

dried at room temperature for 24 h. 
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2.2.6. Preparation of the physical mixture of caffeine/ oxalic acid 
 
Caffeine was physically mixed with oxalic acid at molar ratio (2:1) in a glass vial and 

shaken by hand for 20 min. 

2.2.7. Preparation of a (2:1) caffeine/ malonic acid co-crystal by co-
grinding 
 
Caffeine (0.30g) was added to malonic acid (0.81g) in a glass mortar and co- ground with 

0.5 ml methanol using a pestle for 30 min. The ground mixture was collected on a filter 

paper and stored at room temperature for 24 h. 

2.2.8. Preparation of a (2:1) caffeine/ malonic acid co-crystal by co-
precipitation 
 
Caffeine (1.43g) and malonic acid (0.38g) were dissolved in 7:2 (v/v) chloroform- 

methanol (90 ml) and heated to 50 0C. The solution was removed from heat and allowed to 

cool at ambient temperature. The precipitated solids were filtered, collected on a filter 

paper and dried at room temperature for 24 h. 

2.2.9. Preparation of physical mixture of caffeine and malonic acid 
 
Caffeine was physically mixed with malonic acid at molar ratio of 2:1 in a glass vial, and 

shaken by hand for 10 min. 

2.2.10. Preparation of a (1:1) theophylline/ malonic acid co-crystal by 
co-grinding 
 
Theophylline (149mg) was added to malonic acid (86mg) in a glass mortar and co- ground 

with 0.5 ml methanol using a pestle for 30 min. The ground mixture was collected on a 

filter paper and stored at room temperature for 24 h. 
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2.2.11. Preparation of a (1:1) theophylline/ malonic acid co-crystal by 
co-precipitation 
 
Theophylline (587mg) and malonic acid (339mg) were dissolved in a mixture of 40 ml 

chloroform and 2ml methanol (50 0C). The solution was removed from heat and allowed to 

cool to ambient temperature. The precipitated solids were filtered, collected on a filter 

paper and dried at room temperature for 24 h. 

2.2.12. Preparation of a physical mixture of theophylline and malonic 
acid 
 
Theophylline was physically mixed with malonic acid at molar ratio of 1:1 in a glass vial 
and shaken by hand for 10 min. 
 

2.2.13. Addition of MCC and α-lactose monohydrate to the co-ground 
mixture of urea and 2-methoxy-benzamide 
 
100 mg of a co-ground mixture of urea/2-MB (Section 2.2.2) (prepared at molar ratio 1:1) 

was added to 150 mg of MCC and 100 mg of α-lactose monohydrate in a glass vial and 

shaken by hand for 10 min. 

2.2.14. Addition of MCC and α-lactose monohydrate to the co-ground of 
caffeine and malonic acid 
 

100 mg of a co-ground mixture of caffeine/malonic acid (Section 2.2.18) (prepared at molar 

ratio 2:1) was added to 150 mg of MCC and 100 mg of α-lactose monohydrate in a glass 

vial and shaken by hand for 10 min. 

2.2.15. Addition of MCC and α-lactose monohydrate to the co-
precipitated mixture of urea and 2-methoxy-benzamide 
 
100 mg of a co-precipitated mixture of urea/2-MB (Section 2.2.1) (prepared at molar ratio 

1:1) was added to 150 mg of MCC and 100 mg of α-lactose monohydrate in a glass vial and 

shaken by hand for 10 min. 
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2.2.16. Addition of MCC and α-lactose monohydrate to the co-
precipitated mixture of caffeine and malonic acid 
 
100 mg of a co-precipitated mixture of caffeine/malonic acid (Section 2.2.19) (prepared at 

molar ratio 2:1) was added to 150 mg of MCC and 100 mg of α-lactose monohydrate in a 

glass vial and shaken by hand for 10 min. 

 

2.2.17. Addition of MCC and α-lactose monohydrate to the physical 
mixture of urea and 2-methoxy-benzamide 
 
100 mg of a physical mixture of urea/ 2-MB (Section 2.2.3)(prepared at molar ratio 1:1) 

was added to 150 mg of MCC and 100 mg of α-lactose monohydrate in a glass vial and 

shaken by hand for 10 min 

2.2.18. Addition of MCC and α-lactose monohydrate to the physical 
mixture of caffeine and malonic acid 
 
100 mg of physical mixture of caffeine/ malonic acid (Section 2.2.20) (prepared at molar 

ratio 2:1) was added to 150 mg of MCC and 100 mg of α-lactose monohydrate in a glass 

vial and shaken by hand for 10 min. 

2.3. Compaction procedures 
 
Tablet compactions were performed using a Compaction Studies Press (Caleva Process 

Solutions Ltd) (Figure 6) and crushing values were obtained using a Schleuniger Hardness 

Tester Type 4M (Copley Instrument). The thickness and diameter of the tablets were 

measured using an ID-C Digimatic Indicator (Mitutoyo Corporation). 

The die wall of the press was cleaned with acetone and pre-lubricated with magnesium 

stearate before each compression. An average powder weight of 350 ± 5 mg was used to 

make each tablet, with the initial compaction load for both speeds studied (10 mm sec-1 and 
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100 mm sec-1) set at 5000N. The compaction load was then increased incrementally by 

2500N until a maximum crushing value was obtained. The compaction behavior of the two 

co-crystals (co-ground –and co-precipitated mixtures) and the physical mixture was 

evaluated by means of crushing strength measurement of the compact. A graph of crushing 

strength versus compaction force was then produced for each co-crystal. Experiments were 

performed in triplicate. The compact tensile strength (Ts) was calculated by the following 

equation (Fell and Newton, 1970): 

 

Ts = 2F/πDT                                                                                                    Equation 3 

 

Where F is the compact hardness (N), D and T are the diameter and thickness of the 

compacts (mm), respectively. 
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Figure 6: Caleva Compaction Studies Press (Caleva Process Solution Ltd.). 
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2.3.1. Pycnometric Density Determination 
Helium Pycnometry 

True density determinations were carried out using a Micromeritics AccuPye 1330 Gas 

Pycnometer (Micromeritics Limited, UK). The instrument was initially calibrated using a 

spherical metal standard of known volume. The volume of the empty vessel was calculated 

by filling with helium gas at a fixed pressure and allowed to equilibrate. This sample vessel 

was then filled two-thirds full with sample and weighed. The filled sample vessel was 

pressurized by helium gas and allowed to re-equilibrate. The change in volume between 

empty and sample vessel at same pressure was measured. The calculated volume of gas 

displaced by sample at a given pressure was divided by the mass of sample to measure true 

density of the material. 

2.3.2. Bulk density 
 
The bulk density of each co-crystal was determined as follows: A 0.5g quantity of sample 

was poured into a size graduated measuring cylinder and the initial bulk volume has been 

taken to calculate the initial bulk density D0 (also known as fluff or poured bulk density). 

The powder contained in the measuring cylinder was then mechanically tapped and the 

final volume read and used to calculate the final bulk density Df (also known as 

equilibrium, tapped or consolidated bulk density). 

2.3.3. Measurement of elastic and plastic energy 
 
The typical punch stroke against upper punch force is illustrated in Figure 7 where A is 

maximum punch force, B is punch stroke when punch force is zero, C is punch stroke when 

punch force is maximum, D is punch stroke after decompression when punch force is zero 

again. The area of ABC shows the gross energy, and the area of ABD and ADC is plastic 
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energy and elastic energy, respectively. These areas were calculated for the samples 

compacted. 

 

 
 
  
Figure 7: Typical force/ displacement curve generated by Caleva Compaction Studies 
press.   
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2.3.4. Analysis of the elastic recovery of the tablets  
 

Elastic recovery E is defined as the fractional increase in tablet thickness after 

decompression due to immediate elastic relaxation of the tablet. The parameter E is 

calculated according to equation 4: (Armstrong and Haines-Nutt 1974). 

 

E = (t2 –t1)/ t1 Χ 100                                                                                         Equation 4 

 

Where t1 is the minimal thickness of the powder bed in the die and t2 is the thickness of the 

recovered tablet. This parameter was calculated for the samples compacted. 

2.3.5. Heckel analysis of compaction data 
 
The thickness of the compact during the single compaction event was plotted as a function 

of the compression pressure applied by the upper punch. The obtained data was analyzed 

by the following equation (Heckel, 1961a and Heckel, 1961b). 

 

ln (1/ (1-D) = kP +A                                                                                        Equation 5 

 

 

Where D is the relative density, the ratio of the compact density, at an applied pressure P, to 

true density of powder, and k and A are constants. Value of k and A were obtained from the 

linear portion of the Heckel plot, over a range of compression pressures from 20 to 50 MPa 

(Figure 8). The reciprocal of k is the yield pressure, the total densification of powder bed 

after particle rearrangement, DA, was calculated from the extrapolated intercept (A), D0 is 

the initial densification after filling of die, and DB is calculated by subtracting D0 from DA. 

 

The Heckel plot (Figure 8) describes five regions, namely:  
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Region 1 represents the densification phase in which the orientation of powder particles 

occurs. 

 Region 2 represent the true compression phase in which the bondings and the plastic 

deformation take place. The slope in this region is used to calculate the deformation of 

powder.  

Region 3 starts at the maximum compression force and ends at the dead point of the upper 

punch in the die.  

Regions 4 and 5 represent the decompression phase, where the upper punch loses its 

contact with the tablet at Region 5, and its force gets back to zero.  

 

 

 

Figure 8: Densification regions in Heckel adapted from Morris L.E. and Schwartz, J. 
(1995). 
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2.4. Mixing procedures 
 

2.4.1. Milling of Individual materials (urea, 2-MB, caffeine, and malonic 
acid) 
 
7 g of each material was ground individually using a mortar and pestle for 30 min. 
 

2.4.2. Particle size separation of individual materials by sieving 
 

Sieving was performed using sieves from Endcotts Ltd., (London England). Each 

individual ground material was separated into three-size fractions 20- 45μ, 75- 125μ, and 

180- 250μm using a sieve nest connected to a mechanical vibrator. Sieving time for each 

material was 35 min. 

 

2.4.3. Mixing of urea/ 2-MB system (1:1 molar ratio) 
 

0.8 g of each 20- 45μm, 75-125μm and 180- 250μm size fraction of 2-MB was added to 

0.4g have 20- 45μm, 75-125μm, and 180- 250μm fractions of urea in glass vials, 

respectively. Each of the glass vials was sealed with tissues and put in a plastic container. 

The glass container was then placed on to the roll mixer (Pascall Engineering Co. Ltd. 

England). The samples for X-ray diffraction were taken after 30 min, 1h, 2h, 4h, 8h, 12h, 

24h, 2 days, 4 days, 10 days and 14 days. 

2.4.4. Mixing of caffeine/ malonic acid system (2:1 molar ratio) 
 
1.43g of each 20- 45μ, 75-125μ, and 180- 250μm fractions of caffeine were added to 0.38g 

of 20- 45μ, 75-125μ and 180- 250μm size fractions of malonic acid in glass vials, 

respectively. The mixtures were sealed and treated as in the previous section (2.4.3). 
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Figure 9: Roll mixer (Pascall Engineering Co. Ltd. England). 
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2.5. Analytical techniques 

2.5.1. X-ray Powder Diffraction (XRPD) 
 
The Bruker D-8-X-ray diffractometer was used to obtain XRPD spectra for samples at 

room temperature. Powder samples were placed into a sample holder and leveled using a 

glass cover slide. Samples were scanned over 5-50° 2θ at a rate of 1° 2θ/ min by a copper 

Ka radiation source of wavelength 1.542Å with 1mm slits. The simulated patterns of the 

co-crystal have been calculated from CSD using CanQuest 1.10 software. 

2.5.2. Fourier Transform Raman spectroscopy 
 

Fourier-transform Raman spectroscopy was carried out using a Bruker IFS 66 instrument 

with an FRA 106 Raman module attachment and a Nd3+ /YAG laser operating at 1064 nm 

in the near infrared. The powdered specimens were examined in aluminum cups. The 

spectra were recorded at 4 cm-1 spectral resolution and 500 spectral scans accumulated to 

improve signal-to-noise ratio. Laser powers were maintained at 200 mW for the sample. 

2.5.3. Thermo Gravimetric Analysis (TGA) 
 

The TGA module (Q 5000, TA Instruments Iimited, Crowley, UK) was employed to study 

sample weight loss on heating. Samples weighing 5-20mg were placed onto an open 

platinum pan. This pan was weighed by the microbalance (accuracy ± 1µg), which is inside 

the instrument. Samples were heated over a predetermined temperature range at a heating 

rate of 10 0C/ min. and changes in sample weight were monitored by the microbalance. The 

temperature axis of the TGA was calibrated with a ferromagnetic standard. 
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2.5.4. Differential Scanning Calorimetry (DSC) 
 
DSC profiles were obtained using a calorimeter (Q2000, TA Instruments limited, Crawley, 

UK) with a refrigerated cooling accessory. The instrument was calibrated with pure indium 

and zinc standards at the heating rates of interest. Samples weighing between 1-10mg were 

accurately weighed into an aluminum pan and an aluminum lid crimped onto the pan 

(closed system with a pin-hole). The samples were heated in an atmosphere of dry nitrogen 

at a heating rate of 10 0C/ min. over a predetermined temperature range. The energy (heat 

flow) required maintaining the contents of the sample pan (accuracy 0.1mW) at the same 

temperature as an identically prepared empty reference pan was measured. 

2.5.5. Scanning Electron Microscopy (SEM) 
 
Scanning electron microscopy of all samples was carried out using a Quanta 400 SEM (FEI 

Company, Cambridge, UK).  

2.5.6. Hot-Stage Microscopy (HSM) 
 

Microscopy was performed on a Zeiss Axioplan-2 microscope using a Linkam 44 hot stage 

(THMS600). Data were visualized using Axiovision (4.5) software with the linksys 32 

patches for hot stage control. Contact thermal microscopy was conducted by heating from 

room temperature using a 1 °C/ min heating rate and discontinued on the melting of all 

material. 
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2.5.7. Moisture Sorption Isotherm 

The samples were firstly prepared by milling the materials using a mortar and pestle. The 

freshly milled samples were then taken for the analysis of the moisture sorption isotherm. 

Moisture sorption isotherms were obtained using a Hiden IGAsorp Moisture sorption 

Analyzer HAS-036-080 (Hiden Analytical Limited. Warrington, Cheshire, UK). The 

temperature of the sample chamber was maintained at 25 °C using a R2 Hiden water bath 

(Grant Instruments, Cambridgeshire, UK.). The sample pans were tarred to zero before the 

sample was loaded. The isotherm programme analyzed the sample over the 0%RH to 

95%RH range with steps of 10%RH for each equilibration and included a drying stage. For 

the desorption isotherm the experimental run was repeated in reverse. 
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3. Co-crystallization of urea/ 2-MB by co-grinding and co-
precipitation methods: Evaluation of tableting properties 
 

3.1. Introduction 
 
Urea is known to form clathrates or host-guest complexes and can be regarded as a 

promising candidate to form co-crystals. As mentioned earlier in the first chapter, urea was 

found to form an equimolar complex with 2-methoxybenzamide (2-MB) as well as with 

other molecules such as α, ω-dinitriles, di- tricarboxylic acids (Videnova-Adrabinska 

1996). The commonly used method to prepare urea/ 2-MB co-crystals is the co-

precipitation methods. However, in this project, grinding methodology was also used 

because of its advantages over other techniques. It is an easier preparation method and the 

use of large amount of solvent can be avoided or minimized. In this study, we prepared 

urea/ 2-MB co-crystals by wet grinding at molar ratio 1:1 using mortar and pestle for 20 

min. as well as co-precipitation at the same molar ratio (1:1).  

In the urea/ 2-MB complex, the contribution of an intermolecular hydrogen bond between 

urea and 2-MB, as well as a hydrogen bond network between urea molecules, has been 

reported (Moribe et al. 2006). The characterization of the molecular arrangement of the 

compound has been carried out using the single crystal X-ray diffraction method, and the 

conformational change of guest molecules was tested in terms of intramolecular hydrogen 

bond length and the dihedral angles (Moribe et al. 2006). 

In this chapter, the urea/ 2-MB co-crystal was prepared by grinding and co-precipitation 

(using the methods outlined in sections 2.2.1 and 2.2.2). The solid-state of this system was 

characterized using XRPD, Raman spectroscopy, DSC and SEM. After the 
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characterization, the effect of the co-crystallization on the tableting behaviour has been 

investigated. 

 
 

3.2. Results and discussion 

3.2.1. XRPD of a urea/ 2-MB co-crystal prepared by two methods 
 
The XRPD patterns of urea/ 2-MB system are presented in Figure 10. 
 
 

 
Figure 10: PXRD patterns of urea/ 2-MB systems (Simulated patterns = patterns 
calculated from CSD using CanQuest 1.10 software). 
 

 

 

When urea was co-ground with 2-MB at a ratio of (1:1), new PXRD peaks at 2θ = 9.0 °, 

10.8 °, 11.8 °, 14.9 °, 18.2° and 18.9 ° were observed as shown in (Figure 10). It is obvious 

that the peak positions of the new peaks are different from those of the physical mixture, 
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indicating that urea may have formed a co-crystal with 2-MB. For the co-precipitation of 

urea and 2-MB at molar ratio (1:1) with ethanol, the PXRD patterns (Figure10) show new 

peaks similar to those obtained from the co-ground mixture. These results are in agreement 

with results already published by Moribe and co-workers (2006) for the co-precipitated 

product. They found that 2-MB formed N3-H5…O3 intramolecular hydrogen bonding 

(2.66 Å) and interacted with urea through N3-H6…O1 (3.001 Å), N1-H1…O2 (3.022 Å) 

and N2-H3…O2 (3.032 Å) along the a axis. On the other hand, urea molecules interacted 

each other through N2 - H4…O1 (2.978 Å) and N1- H2…O1 (2.997 Å) hydrogen bondings 

to form extended polymeric structure using 8-membered hydrogen-bonded ring motifs 

(Moribe et al. 2006), as shown in Figure 11 and Figure 12. 
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Figure 11: The molecular structure of the co-crystal of urea/ 2-MB produced using 
software (CanQuest 1.10) software permitted from CSD. 

 

 
 
Figure 12: Crystal packing of urea/ 2-MB co-crystal in the crystal lattice. 
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3.2.2. Raman spectroscopy results of wet co-grinding and co-
precipitation to produce urea/ 2-MB co-crystals 
 

 
 The Raman spectra of urea/ 2-MB system are shown in Figures 13a, 13b, 13c and 13d, 

respectively. 

 

 

 
 
 
Figure 13a: F.T.Raman spectra of urea/ 2-MB-system (from 678 – 50 cm-1). 
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Figure 13b: F.T.Raman spectra of urea/ 2-MB-system (from 1275 – 678 cm-1). 
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Figure 13c: F.T.Raman spectra of urea/ 2-MB-system (from 1750 – 1275 cm-1). 
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Figure 13d: Raman spectra of urea/ 2-MB system (3158- 2931 cm-1). 
 

 

 It is believed that, this is the first reported study of Raman spectroscopy on the co-crystal. 

As shown in Figures 13a, 13b, 13c and 13d, both co-ground-and co-precipitated mixtures 

show spectra different from that of the physical mixture, in the wave number regions 678- 

50 cm-1, 1275- 687 cm-1, 1750- 1275 cm-1 and 3158-2931 cm-1. 

The bands at 115 cm-1 and 155 cm-1 disappeared, indicating a change in the lattice vibration 

(Figure 13a). In addition, the ring vibration bands of 2-MB at around 750 cm-1 disappeared 

(Figure 13b), while the amide 1-vibration bands of 2-MB at 1630 cm-1 and 1595 cm-1, 

observed in the intact crystals, were shifted to higher wave numbers at 1660 cm-1 and 1606 



 60

cm-1 by both grinding and co-precipitation, respectively (Figure 13c). Furthermore, the 

position of N-H vibration band and C═O stretching of urea at around 1540 cm-1 and 1648 

cm-1, respectively, was changed by grinding and by co-precipitation. Furthermore, the 

═CH2 stretches of 2-MB at 2980 and 3070 disappeared (Figure 13d). These results suggest 

that the 2-MB formed a co-crystal with the urea molecule. 
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3.2.3. SEM results of a urea/ 2-MB co-crystal prepared by two methods 
 
Figure 14 illustrates the SEM micrographs of urea/ 2-MB system. 
 
 

                                 
                                                     Physical mixture 

                   

                    Co-ground mixture                                      Co-precipitated mixture 

Figure 14: The SEM micrographs of urea/ 2-MB system. 
 
 
The co-precipitated- and co-ground mixtures show SEM micrographs different from that of 

the physical mixture as shown in Figure 14. The co-precipitated mixture possessed prism-

like crystals, while the co-ground mixture showed rougher surface and aggregated particles, 
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indicating a phase transformation during grinding. These results are consistent with X-ray 

diffraction- and Raman results that a co-crystal formed between urea and 2-MB. 

3.2.4. DSC results of a urea/ 2-MB co-crystal prepared by two methods 
 
Figure 15 shows the DSC traces of the urea/ 2-MB system in its various forms. 

 

 
 
 
Figure 15: DSC curves of urea/ 2-MB system (sample weight 4-6mg, scan rate 10 
°C/min). 
 
 

The DSC traces of urea/ 2-MB systems are presented in Figure 15. The melting points 

(Peak temperatures) of urea and 2MB are 133 °C and 129 °C respectively. The physical 

mixture shows an endothermic peak at 127 °C, followed by an exothermic shift and an 
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endothermic peak at 136°C. Both the co-precipitated-and co-ground mixtures show melting 

points at 137°C and 136 °C respectively. These results indicated that urea formed a co-

crystal with 2-MB by these methods. In the case of a physical mixture, the endothermic 

peak at 136°C, similar to that of the co-ground mixture is indicative of formation of some 

co-crystal during the heating process. 

3.3. Effect of urea/ 2-MB co-crystal methods of preparation on 
compression properties  
 

3.3.1. Compactibility 
 
The compaction properties of three mixtures were compared, as shown in (Figure 16).  
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Figure 16: Tensile strength of urea/ 2-MB system obtained at a compression speed of 
10 mm/s. 
 
 

From the data presented in Figure 16, it is obvious that the tensile strength values of all 

mixtures increased with increasing compression forces. However, the co-ground mixture 
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showed the greatest values of tensile strength compared with those of co-precipitated or 

physical mixture, indicating a good tabletability of the co-ground mixture. All compacts 

were intact and showed no capping or lamination, either on ejection or before the crushing 

strength test. Good compact tensile strength may be due to the particle size reduction 

achieved by grinding, as the small size generally has good compactability. The tensile 

strength of compacts have been shown to increase as the particle size decreases (McKenna 

and McCafferty 1982; Morishima et al. 1994). It is also possible that the smaller crystals 

have more contact points between them, and can be compacted more densely than larger 

crystals.  

From SEM micrographs (Figure 14), the co-precipitated mixture has needle-like crystals, 

which might result in poorer compactibility compared with other forms. In addition, good 

compactability of the co-ground mixture was in agreement with the theory that smaller 

particles produce a greater density and a greater number of contact points for 

interparticulate bonding (Rhines 1947). However, another reason for better compactibility 

of the co-ground mixture could result from its slightly smaller particle size and lower 

porosity, as the co-ground mixture showed the greatest bulk density (Table 2) compared 

with the co-precipitated mixture or physical mixture. 
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Table 2: Densities of the physical mixture, co-ground mixture and co-precipitated 
mixture of urea/ 2-MB system (mean ± SD, n =3). 
 
Sample True density (gm/cm3) Bulk density (gm/cm3) 

Physical mixture 1.324 ± 0.0037 0.2915 ± 0.0063 

Co-ground mixture 1.335 ± 0.0146 0.5158 ± 0.0184 

Co-precipitated mixture 1.378 ± 0.0133 0.323 ± 0.0103 

 

 

3.3.2. Compressibility 
 
The Heckel plots of urea/ 2-MB system are illustrated in Figure 17. 

 

 
 
Figure 17: Heckel plots of urea/ 2-MB system obtained at a compression force of 10 
KN and a compression speed of 10 mm/s. 
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Table 3: Heckel parameter of different mixtures of urea/ 2-MB system: (obtained at a 
compression speed of 10 mm/s and a compression force of 10 KN). 
 
Sample Yield pressure (MPa) D0 DA DB 

Physical mixture 
 

74 0.477 0.642 0.165 

Co-ground mixture 72 0.487 0.678 0.191 

Co-precipitated 
mixture 

 

85 0.446 0.626 0.180 

 
D0 = initial relative density, DA = 1- e –A is the extrapolated relative density from the intercept (A) of the 
linear portion of the Heckel plot, and DB increase in relative density due to particle arrangement. 
 
 
 
 
The relative volume changes during the early stage (0-120 MPa) of the compression event 

were recorded for each of the physical, co-ground and the co-precipitated mixtures.  

 The results of the Heckel data are presented in Figure 17 and Table 3. The Heckel plot 

profiles are classified into two types (Herssy et al. 1973). Type 1 describes powder that 

exhibits different initial bulk densities, depending on factors (e.g. particle size). 

Densification occurs under pressure due to particle slippage, and subsequently by plastic 

deformation. The initial curved portion followed by the parallel straight lines represents the 

two stages. Type 2, on the other hand, describes materials, in which consolidation occurs by 

fragmentation. The initial structure is progressively destroyed, so that above a certain 

pressure, coincident linear portions are obtained for all particle size fractions (Duberg and 

Nyström 1982).  

The data shown in Figure 17 and Table 3 suggest that the Heckel plots of urea/ 2-MB 

systems are Type 1 materials, as the yield pressures of all mixtures are nearly similar. 

Furthermore, an extensive linearity during compression is indicative of a plastic 
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deformation mechanism, as the linear portion started below 20 MPa. However, the co-

precipitated mixture possessed the greatest value of yield pressure, which indicates that the 

densification process by particle deformation is poorer than in other mixtures. In addition, 

the co-precipitated mixture exhibited the smallest particle slippage (D0 = 0.446) compared 

with those of the co-ground or physical mixture (Table 3). This indicates that the co-

precipitated mixture was the least compressible, as the plastic deformation decreases with 

increasing yield pressure. On the other hand, the co-ground mixture was the most 

compressible. These results were consistent with the compaction results reported for 

mannitol grades as the most compactible was the most compressible (Yoshinari et al. 

2003).  

 

Table 4: Elastic recovery of tablets produced from urea/ 2-MB systems obtained at a 
compression speed of 10 mm/s and a compression force of 10 KN. 
 
Sample t1 (mm) t2 (mm) Elastic recovery E (%) 

Co-precipitated mixture 3.50 3.76 7.42 

Co-ground mixture 3.54 3.78 6.77 

Physical mixture 3.53 3.79 7.30 

 
t1 = minimal thickness of the powder bed in the die, and t2 = is the thickness of the recovered 
tablet. 
 
 
 
From the data given in Table 4, it is obvious that the elastic recovery of the co-precipitated 

mixture was greater than that of the co-precipitated mixture or physical mixture. This 

contributes to the lower compressibility of the co-precipitated mixture, as the greater elastic 
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recovery increases the tablet porosity during decompression phase (Roberts and Rowe 

1987).  

3.3.3. General Discussion 
 

In this chapter, we have shown that the methods of preparation of urea/ 2-MB co-crystals 

affected compaction properties. Both methods produced the same co-crystal structure as 

indicated by XRPD and Raman spectroscopy. 

In the next chapter, we evaluate a more representative drug-like model: caffeine and 

malonic acid. 
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4. Co-crystallization of caffeine/ malonic acid via both co-
grinding and co-precipitation: Evaluation of compaction 
properties 
 

4.1. Introduction 
 

As it has been mentioned in the first chapter, caffeine was found to form co-crystals with 

dicarboxylic acids, e.g. oxalic acid, malonic acid, maleic acid and glutaric acids (Trask et 

al. 2005a). The co-crystallization was performed by both co-precipitation- and co-grinding 

techniques. Based on its basicity, caffeine may be suitable for co-crystallization in its 

neutral form. The pharmaceutical acceptability of malonic acid as a pharmaceutical salt 

former has already been confirmed (Stahl and Wermuth 2002). 

It has been reported that in the co-crystals of caffeine with dicarboxylic acid, including 

malonic acid, the desired supramolecular interaction was the acid-base heterodimer synthon 

( Scheme 2) in order to allow  stronger O─H···N and weaker C─H···O hydrogen bonding 

(Desiraju and Steiner 1999). 

                                       

Scheme 2: Heteromemeric synthon showing stronger O─H···N and weaker C─H···O 
hydrogen bond interaction. 
 
 
 
Like all caffeine/ acid materials, in the caffeine/ malonic acid system, the location of the 

acidic proton is of importance in differentiation between salts (ionic complexes) and co-

crystals (neutral complexes). In all caffeine/ acid co-crystal structures, the location of acidic 



 70

protons on the acid in the X-ray difference maps has been observed, indicating, that the salt 

formation has not occurred. However, typical O─H bond distances were observed in all 

cases (Trask et al. 2005a). 

In this chapter, XRPD, Raman spectroscopy, DSC and SEM techniques were used to 

characterize the co-crystal of caffeine/ malonic acid that prepared using the methods 

outlined in sections 2.2.7 and 2.2.8 and after the characterization, their tableting properties 

were compared.  

4.2. Results and discussion 
 

4.2.1. XRPD of a caffeine/ malonic acid co-crystal prepared by two 
methods 
 
 
Figure 18 illustrated the X-ray powder diffraction patterns of caffeine/ malonic acid system. 

 
Figure 18: PXRD patterns of the caffeine/ malonic acid system (Simulated patterns = 
patterns calculated from CSD using CIF format). 
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 When caffeine was co-ground or co-precipitated with malonic acid at a ratio of (2:1), new 

PXRD peaks at 2θ = 16.2 0, 18.28 0, 22.45 0, 25.34 0 and 28 0 were observed (Figure 18). 

The peak positions of new peaks were different from those of the physical mixture, 

indicating that caffeine may have formed a co-crystal with malonic acid. These results are 

in agreement with results already published by Trask et.al (2005). They reported that 

caffeine/ malonic acid co-crystal crystallizes in the orthorhombic Fdd2 space group and its 

calculated crystal density is 1.472 g cm -3.  

The co-crystal of caffeine/ malonic acid exhibited stacks of trimeric intermolecular 

hydrogen bonded units. The central sp3 carbon of malonic acid imposes a V- shaped 

geometry to the trimeric unit (Trask et al. 2005a)(Figure 19) and (Figure 20). 

 

 

 

 



 72

 
 
Figure 19: The molecular structure of the co-crystal of caffeine/ malonic acid 
produced using software permitted from Cambridge crystallographic database using 
CIF format. 
 
 

 
 
Figure 20: Crystal packing of caffeine/ malonic acid co-crystal in the crystal lattice. 
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4.2.2. Raman spectroscopy  
 
 
 
Figures 21a, 21b and 21c illustrate the Raman spectra of caffeine/ malonic acid system. 

 

 
 
 
Figure 21a: Raman spectra of the caffeine/ malonic acid system (550- 400 cm-1). 
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Figure 21b: Raman spectra of the caffeine/ malonic acid system (775- 600 cm-1). 
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Figure 21c: Raman spectra of the caffeine/ malonic acid system (3175- 3050 cm-1). 
 
 

 

 
From Figures 21a, 21b and 21c, it can be seen that there were no differences observed 

between the peak positions for the pure drugs and the physical mixture. However, the data 

clearly show noticeable differences between the physical mixture and both co-ground- and 

co-precipitated mixtures in the wave number regions 550- 400 cm-1, 775- 600 cm-1 and 

3175- 3050 cm-1as shown in Figure 21a, 21b and 21c, respectively. 

The δ-pyrimidine ring vibrational bands of caffeine at around 442cm-1 and 484 cm-1 found 

in the intact crystal were shifted to higher wave numbers at 448 and 490 cm-1, respectively. 
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In addition, the δ-pyrimidine imidazole ring vibrational bands of caffeine at 644 cm-1 and 

740cm-1 were shifted to higher wave numbers at 649 cm-1 and 752 cm-1, respectively. 

Furthermore, The OH stretch of malonic acid at 2989 cm-1 and the C=CH stretch of 

caffeine at around 3115 cm-1  were shifted to higher wave numbers at 2998 cm-1.and 3122 

cm-1, respectively. This suggests that caffeine may have formed hydrogen bonds with 

malonic acid. 
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4.2.3. SEM results of caffeine/ malonic acid co-crystal prepared by two 
methods 
 
The SEM micrographs of caffeine/ malonic acid system are presented in Figure 22.  

 

                              
                                           Physical mixture 

            
        Co-precipitated mixture                                              Co-ground mixture 

 

Figure 22: SEM micrographs of caffeine/ malonic acid system.  
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Figure 22 shows that the particles of starting materials were unchanged, as seen in the 

physical mixture, while the co-precipitated mixture exhibited prism-like crystals. The co-

ground mixture, on the other hand, showed aggregated particles that may result from 

milling of the powder with the solvent. These results were consistent with X-ray and 

Raman results and indicated that caffeine may have formed a co-crystal with malonic acid. 
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4.2.4. Thermal Analysis 
 

Figure 23 illustrates the DSC traces of caffeine/ malonic acid system. 

 

 
 
Figure 23: DSC traces of the caffeine/ malonic acid system (sample weight 4-6mg, scan 
rate 10 °C/ min). 
 
 

 The melting points (peak temperatures) of caffeine and malonic acid are 160 °C and 136 

°C respectively. However, malonic acid shows an endothermic peak at 100°C. Both co-

ground- and co-precipitated mixtures show melting points at 132.7 °C and 133.4°C 

respectively. The physical mixture shows small endothermic peak at 100 °C, corresponding 

to malonic acid, followed by endothermic peak at 132.3 °C. The endothermic peak of the 

physical mixture at 132.3°C, similar to that of the co-ground mixture, is possibly co-crystal 
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due to formation during the heating process in the calorimeter. These results indicate that 

caffeine might have formed a co-crystal with malonic acid. 

 

4.3. Mechanical properties of tablets and deformational behaviour 
of powders: Caffeine/ Malonic acid system 

 

4.3.1. Compactibility 
 
Figure 24 presents the tensile strength of caffeine/ malonic acid systems. 
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Figure 24: Tensile strength of the caffeine/ malonic acid system obtained at a 
compression speed of 10 mm/s. 

 
 

As shown in Figure 24, the tensile strength values of compacts of all caffeine/ malonic acid 

systems increased with increasing compression force. This is consistent with fact that the 

mean contact area between the particles increases in proportion to the compaction pressure 
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(Rumpf 1962). However, the proportional increase of tensile strength with compaction 

pressure was higher for the co-ground mixture than for co-precipitated mixture, indicating 

better compactibility of the co-ground mixture. The data show a dramatic difference in 

compactibility between co-ground and co-precipitated mixture. This is because, on one 

hand, the co-precipitated mixture possessed needle-like or prism particles, which may result 

in smaller compactibility, compared with other mixtures. On the other hand, the particles of 

co-ground mixture were reduced in size during milling of the components, which may 

result in higher compactibility. Furthermore, the lower porosity of a co-ground mixture, as 

it showed the highest bulk density (Table 5), may contribute to its better tabletability, 

compared with the co-precipitated mixture or physical mixture. 

These results were in agreement with the assumption that smaller particles generally have 

better compactibility than larger ones (Morishima et al. 1994), (McKenna and McCafferty 

1982). 

 
 
 
Table 5 Densities of physical mixture, co-ground mixture and co-precipitated mixture 
of caffeine/ malonic acid systems (mean ± SD, n =3). 
 
Sample True density (gm/cm3) Bulk density (gm/cm3) 

Physical mixture 1.4739 ± 0.0068 0.393 ± 0.008679 

Co-ground mixture 1.4651 ± 0.0105 0.427 ± 0.012137 

Co-precipitated mixture 1.4441 ± 0.0010 0.317 ± 0.00626 
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4.3.2. Compressibility 
 

Figure 25 illustrates the Heckel plots of the caffeine/ malonic acid system. 

 

 

 
 
Figure 25: Heckel plots of the caffeine/ malonic acid system obtained at a compression 
force of 10 KN and a compression speed of 10 mm/s. 
 
 

 

The linear portion of the Heckel plots below 20 MPa (Figure 25) clearly indicates that the 

caffeine/ malonic acid systems undergo plastic deformation, similar to Type 1 materials. 

The compaction processes were proceeded by deformation rather than fragmentation of 

particles as observed for sodium chloride (McKenna and McCafferty 1982). 

However, the co-precipitated mixture showed the best compressibility compared with both 

the co-ground- and physical mixtures, as indicated by the highest slope of the Heckel plot 
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(Figure 25) and the smallest yield pressure (Table 6). Although the co-ground mixture was 

the most compactible among all mixtures, the co-precipitated mixture showed the best 

ductility. This indicates that the yield strength is more a material property for this system 

and it is not affected greatly by the morphology of the crystals. However, crystal 

morphology was found to have an impact on the tableting behaviour of the compacts in 

other studies (Shell 1963; Staniforth et al. 1981). The compressibility (using the Heckel-

plot) of different crystal forms (polyhedral and thin plate-like crystals were compared. It 

was found that polyhedral crystals produced the greater slope in the Heckel plot (Garekani 

et al. 1999). In the present study, the physical mixture showed compressibility, which was 

closely akin to that of the co-ground mixture. This is consistent with the compaction 

results, where the tensile strengths of both were very similar. 

 

 

 
 
Table 6 Heckel parameters of the caffeine/ malonic acid system obtained at a 
compression speed of 10 mm/s and a compression force of 10 KN. 
 
Sample Yield pressure (MPa) D0 DA DB 

Physical mixture 
 

62.9 0.569 0.728 0.158 

Co-ground mixture 60 0.568 0.750 0.182 

Co-precipitated 
mixture 
 

44 0.512 0.719 0.207 

 
D0 = initial relative density, DA = 1- e –A is the extrapolated relative density from the intercept 
(A) of the linear portion of the Heckel plot, and DB = increase in relative density due to particle 
arrangement. 
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Table 7: Elastic recovery of tablets produced from the caffeine/ malonic acid systems 
obtained at a compression speed of 10 mm/s and a compression force of 10 KN. 
 
Sample t1 (mm) t2 (mm) Elastic recovery E (%) 

Co-precipitated mixture 3.10 3.32  7.28 

Co-ground mixture 3.05 3.33 9.21 

Physical mixture 3.02 3.35 11.34 

t1 = minimal thickness of the powder bed in the die, t2 = is the thickness of the recovered tablet. 
 
 
 
 
 
Furthermore, the data presented in Table 7 show that the co-precipitated mixture exhibited 

the smallest elastic recovery compared to that of co-precipitated or physical mixture. This 

was may be due to the higher compressibility of the co-precipitated mixture, because the 

greater elastic recovery acts to increase the compact porosity during decompression phase 

(Roberts and Rowe 1987).  

4.3.3. General Discussion 
 
In this chapter, we have shown that the methods of preparation of caffeine/ malonic acid 

co-crystals affected the tableting behaviour. Both methods produced the same co-crystal 

structure as indicated by Raman and XRPD. 

In the next chapter, we evaluate a more representative drug-like model: caffeine and oxalic 

acid. 

 
 
 



 85

5. Co-crystallization of caffeine/ oxalic acid using both co-
grinding and co-precipitation: Evaluation of compaction 
properties 
 

5.1. Introduction 
 
Similar to caffeine/ malonic acid co-crystal, a stoichiometry of 2:1 has been observed for 

caffeine/ oxalic acid co-crystal from the solved crystal structure. In addition, the trimeric 

caffeine-acid-caffeine motif is demonstrated in both co-crystal structures (Figure 27). 

However, the different geometries of oxalic acid and malonic acid require differences in 

crystal packing (Trask et al. 2005a). 

Caffeine/ oxalic acid that crystallizes in the P21/c space group was found to have the 

highest calculated density (1.542 g cm-3) of all the solved co-crystal structures (Trask et al. 

2005a). The planarity of the oxalic acid molecule allows a flat trimeric motif to stack along 

the a axis. 

Similar to caffeine/ malonic acid co-crystal, in the caffeine/ oxalic acid co-crystal the 

supramolecular interaction was the acid-base heterodimer synthon (see Scheme 2) in order 

to permit stronger O─H···N and weaker C─H···O hydrogen bonding (Desiraju and Steiner 

1999). 

In this chapter, the solid-state characterization of the caffeine/ oxalic acid co-crystals 

(prepared using the methods outlined in sections 2.2.4 and 2.2.5) was carried out using 

XRPD, Raman spectroscopy, DSC and SEM. Furthermore, the impact of the co-crystal 

formation on the tableting behaviour and deformation properties has been investigated. 
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5.2. Results and discussion 
 

5.2.1. XRPD of a caffeine/ oxalic acid co-crystal prepared by co-
grinding and co-precipitation methods 
 
The XRPD spectra of caffeine/ oxalic acid systems are presented in Figure 26. 
 
 

 
Figure 26: XRPD spectra of the caffeine/ oxalic acid system (Simulated patterns = 
patterns calculated from CSD using CIF format). 
 
 
 
When caffeine was co-ground or co-precipitated with oxalic acid at a ratio of (2:1), new 

PXRD peaks at 2θ = 16.31°, 17.67 °, 22.53 0 and 24.84° were observed (Figure 26). The 

peak positions of new peaks were different from those of the physical mixture and similar 

to those of the simulated patterns, indicating that caffeine may have formed a co-crystal 

with oxalic acid. These results are in agreement with results already published by Trask et 
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al. (2005), as they reported that caffeine/ oxalic acid co-crystal formed by both co-grinding 

and co-precipitation methods. 

  
 
Figure 27: Molecular structure of the co-crystal of caffeine/ oxalic acid produced 
using software permitted from Cambridge crystallographic database using CIF 
format. 
 

 

 
Figure 28: Crystal packing of caffeine/ oxalic acid co-crystal in the crystal lattice. 
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5.2.2. Raman spectroscopy results of wet co-grinding and co-
precipitating physical mix induced caffeine/ oxalic acid acid co-crystal 
 
Figures 29a, 29b, 29c and 29d illustrate the Raman spectra of caffeine/ oxalic acid system. 

 
 

 
 
 
Figure 29a: Raman spectra of the caffeine/ oxalic acid system (550-400 cm-1). 
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Figure 29b: Raman spectra of the caffeine/ oxalic acid system (775- 600 cm-1). 
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Figure 29c: Raman spectra of caffeine/ oxalic acid system (1767-1671 cm-1). 
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Figure 29d: Raman spectra of the caffeine/oxalic acid system (3175- 2900 cm-1). 
 
 
 
 
 
 
As shown in Figures 29a, 29b, 29c and 29d, there were no differences observed between 

the peak positions for the pure drugs and the physical mixture. However, the data clearly 

show noticeable differences between the physical mixture and both co-ground- and co-

precipitated mixtures in the wave number regions 550- 400 cm-1, 750-600 cm-1, and 3175- 

2900 cm-1.  

The δ-pyrimidine ring vibrational bands of the caffeine at around 482 cm-1 and 641 cm-1 

found in the caffeine crystal was shifted to higher wave numbers at around 489 cm-1 and 
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649 cm-1, respectively in the co-crystals (Figure 29a). In addition, the δ-pyrimidine 

imidazole ring vibrational band of caffeine at around 741cm-1 was shifted to higher wave 

number at 749 cm-1, respectively for the co-crystals (Figure 29b). In addition, the C═O 

stretch of oxalic acid at 1684 cm-1 disappeared (Figure 29c). 

Furthermore, the CH3 and C=CH2 stretches of caffeine at 2957 cm-1 and 3114cm-1 were 

shifted to higher wave numbers at 2963 cm-1 and 3120 cm-1, respectively (Figure 29d). 

These results are consistent with the XRPD results and suggest that caffeine may have 

formed a co-crystal with oxalic acid. 
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5.2.3. SEM results of caffeine/ oxalic acid co-crystal prepared by two 
methods 
 
Figure 30 illustrates the SEM of the caffeine/ oxalic acid systems.   
 
 

                                        
                                                     Physical mixture 

         
          Co-precipitated mixture                                        Co-ground mixture  
 
Figure 30: SEM micrographs of caffeine/ oxalic acid system.  
 
 
 
 
The SEM micrographs presented in Figure 30, clearly show that the physical mixture 

possesses particles different from that of the co-precipitated or co-ground mixture. On one 

hand, the co-precipitated mixture exhibited well-defined needle-like crystals that are 
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believed to be due to solvent crystallization. On the other hand, fully aggregated particles 

can be seen in the co-ground mixture. This suggests a phase transformation during both co-

precipitation and co-grinding and indicates that caffeine may have formed a co-crystal with 

oxalic acid. 

5.2.4. DSC results of the caffeine/ oxalic acid co-crystal prepared by 
two methods 
 
The DSC traces of the caffeine/ oxalic acid system are presented in Figure 31. 
 
 

 
 
Figure 31: DSC traces of the caffeine/ oxalic acid system (sample weight 4-6mg, scan 
rate 10 °C/min). 
 



 95

 
 
 
Figure 32: TGA and DSC curves of caffeine (sample weight 4-6mg, scan rate 10 
°C/min). 
 
 

 

As shown in Figure 31, the melting points (peak temperature) of caffeine and oxalic acid 

are 160 °C and 105 °C, respectively. Both the co-ground- and co-precipitated mixtures 

show an endothermic peak at 209 °C, followed by exothermic peak at 211°C and 

endothermic peak at 236°C. The first endothermic peak of both mixtures at 209°C is the 

suggested melting point of the caffeine/ oxalic acid co-crystal, however, the second 

endothermic peak at 237°C is supposed to be due to degradation and not the melting point 

of the caffeine (TGA and DSC of caffeine in Figure 32). This is in agreement with the 

literature, as it has been reported that the endotherms of caffeine between 225°C- 320°C are 
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due to fusion and evaporation respectively (Colacio-Rodriguez et al. 1983). On the other 

hand, the physical mixture shows an endothermic peak at 209 °C, followed by exothermic 

peak at 211°C and endothermic peak at 236°C, similar to those of co-ground and co-

precipitated mixtures is indicative of some co-crystal formation during the heating process. 

 

5.3. Effect of the co-crystallization of caffeine/ oxalic acid on 
mechanical properties of tablets and deformational properties of 
powders 
 

5.3.1. Compactibility 
 
Figure 33 presents the tensile strength of caffeine/ oxalic acid systems. 
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Figure 33: Tensile strength of the caffeine/ oxalic acid system obtained at a 
compression speed of 10 mm/s. 
 
As shown in Figure 33, the tensile strength values of compacts produced from all mixtures 

increase proportionally with increasing compression force. However, tablets produced from 
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the physical mixture show the highest values of tensile strength, and thus the greatest 

compactibility among all tablets produced from other mixtures. On the other hand, tablets 

of the co-precipitated mixture show the lowest values of tensile strength and thus the 

smallest compactibility. The reason for this is understandable, as the needle-like crystals 

(Figure 30) are less dense (Table 8) and possess less contact points between them, which 

may result in smaller compactibility compared to other mixtures. The good compactibility 

of the physical mixture was possibly due to its lower porosity, as it possessed the highest 

bulk density (Table 8) compared with the co-ground or co-precipitated mixtures. It is 

unexpected that the compactibility of compacts of the co-ground mixture is smaller than 

that of the physical mixture as the tensile strength of compacts have been shown to increase 

with decreasing particle size (McKenna and McCafferty 1982; Morishima et al. 1994). 

However, this could result from the irregularity of particle of the physical mixture, which 

may have enhanced its compactibility. 

 
 
Table 8: Densities of physical mixture, co-ground mixture and co-precipitated mixture 
of caffeine/ oxalic acid systems (mean ± SD, n =3). 
 
Sample True density (gm/cm3) Bulk density (gm/cm3) 

Physical mixture 1.5458 ± 0.0071 0.428 ± 0.025534 

Co-ground mixture 1.7319 ± 0.0402 0.408 ± 0.00802 

Co-precipitated mixture 1.6057 ± 0.0253 0.367 ± 0.01527 
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5.3.2. Compressibility 
 
Figure 34 and Table 9 illustrate the Heckel plots and Heckel parameter of the caffeine/ 

oxalic acid system, respectively. 

 
 

 
 
Figure 34: Heckel plots of the caffeine/ oxalic acid system at a compression force of 10 
KN and a compression speed of 10 mm/s. 
 
 
 

The results shown in Figure 34 and Table 9 clearly demonstrate that the patterns of Heckel 

plots of caffeine/ oxalic acid system are typical of Type 2 materials. In contrast to the 

caffeine/ malonic acid system (Figure 26 and Table 6), this system exhibited higher values 

of yield pressure. In addition, below 30 MPa, all mixtures show significant deviation from 

linearity, which indicates that the densification, up to this value of compression pressure 
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(30 MPa), occurs by fragmentation, while beyond this point, the particles will deform 

plastically, as indicated by perfect linearity. 

However, the data presented in Figure 34 and Table 9, obviously show that the co-ground 

mixture possess the highest value of yield pressure and thus the smallest compressibility 

among all mixtures. In addition, the co-ground mixture was found to have the smallest 

particle slippage (D0 = 0.397) compared with those of the co-ground or physical mixture. 

This indicates that the co-ground mixture was the least compressible, as the plastic 

deformation decreases with increasing yield pressure. The co-precipitated mixture, on the 

other hand, shows the best compressibility as indicated by the lowest value of the yield 

pressure. This may result from its crystal shape (Figure 30), as it has been reported by 

Garekani and co-workers (1999) that the compressibility (using the Heckel-plot) of 

polyhedral crystal was greater than that of thin plate-like crystal. 

The data presented in Table 10 are consistent with the Heckel results, as the elastic 

recovery was greater for the co-ground mixture compared with those of the co-precipitated 

or the physical mixture. Both the physical and co-precipitated mixtures show similar yield 

pressure values and similar relative densities (Table 9), which may indicate similar 

densification behaviour of the powder during compression. 
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Table 9: Heckel parameters of caffeine/ oxalic acid system obtained at a compression 
speed of 10 mm/s and a compression force of 10 KN. 
 
Sample Yield pressure (MPa) DA D0 DB 

Physical mixture 
 

76.9 0.595 0.478 
 

0.117 

Co-ground mixture 166 0.640 0.397 
 

0.243 

Co-precipitated 
mixture 
 

74 0.692 0.483 
 

0.209 

 
D0 = initial relative density, DA = 1- e –A is the extrapolated relative density from the intercept 
(A) of the linear portion of the Heckel plot, and DB = increase in relative density due to particle 
arrangement. 
 

 
Table 10: Elastic recovery of tablets produced from the caffeine/ oxalic acid systems 
obtained at a compression speed of 10 mm/s and a compression force of 10 KN. 
 
Sample t1 (mm) t2 (mm) Elastic recovery E (%) 

Co-precipitated mixture 2.99 3.14 5.0 

Physical mixture 3.09 3.26 5.5 

Co-ground mixture 3.11 3.28 5.5 

 
t1 = minimal thickness of the powder bed in the die, and t2 = is the thickness of the recovered 
tablet. 
 

5.3.3. General Discussion 
 
In this chapter, we have shown that the methods of preparation of caffeine/ oxalic acid co-

crystals affected the tableting properties. Both methods produced the same co-crystal 

structure as indicated by Raman, XRPD, DSC and SEM. 

In the next chapter, we evaluate a more representative drug-like model: theophylline and 

malonic acid. 
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6. Solid-state characterization of theopylline/ malonic 
acid; Evaluation of compaction properties 
 

6.1. Introduction 
 
The availability of good hydrogen bond donors and acceptors is of considerable 

consequence for the design of co-crystals (Etter 1990). It has been documented, from 

systematic studies of co-crystals that all hydrogen bond donors and acceptors are utilized in 

hydrogen bond formation. In addition, for the design of a co-crystal, hydrogen bond donors 

will be inclined to interact with good hydrogen acceptors in a given crystal structure (Etter 

1990). From a formulation perspective, theophylline represents a challenge, as is known to 

interconvert between crystalline hydrate and monohydrate forms as a function of relative 

humidity (RH) (Trask et al. 2006). It has been reported that the crystalline hydrate 

formation, could probably confuse the design of a reliable, reproducible formulation 

process of an API in the drug development process (Kahnkari and Grant 1995). The study 

of theophylline as a model API is of a great interest, as its hydrate/ anhydrate 

interconversion is demonstrated by many researchers (Agbada and York 1994; Duddu et al. 

1995; Hermann et al. 1988; Otsuka and Kaneniwa 1988; Phadnis and Suryanayanan 1997; 

Puttipipatkhachorn et al. 1990; Rodriguez-Hornedo et al. 1992; Shefter et al. 1973; Suihko 

et al. 1997; Suzuki et al. 1989; Ticehurst et al. 2002). 

By comparing theophylline with its chemical analogue caffeine, co-crystal design of 

theophylline is more complex. The hydrogen bonding competence of theophylline includes 

the numerous hydrogen bond acceptors it shares with caffeine; in addition, it has one less 

methyl group than caffeine, and possesses a good N-H hydrogen bond donor. Theophylline 
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is regarded as both weakly acidic and weakly basic, with pKa and pKb values of 8.6 and 

11.5, respectively (Cohen 1975). 

Suihko and co-workers intensively investigated the impact of solid-state transformations of 

theophylline on tableting properties, as they reported that the densification and compact 

properties were linked with its dynamic solid-state transformation (Suihko et al. 2001). 

However, in the current study, the solid-state of theophylline/ malonic acid co-crystal 

(prepared using the methods outlined in sections 2.2.10 and 2.2.11) was characterized. In 

addition, the impact of the co-crystallization on the subsequent tableting behaviour has 

been intensively investigated. 

6.2. Results and discussion 

6.2.1. XRPD of a theophylline/ malonic acid co-crystal prepared by two 
methods 
 
Figure 35 illustrates the XRPD spectra of the theophylline/ malonic acid system. 
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Figure 35: XRPD spectra of the theophylline/ malonic acid system. 
 
 
 
As shown in Figure 35, when theophylline was co-ground or co-precipitated with malonic 

acid, new XRPD peaks at 2θ= 10.42°, 11.84°, 18.35°, and 21.25° were observed. The peak 

positions of the new peaks were different from those of the physical mixture, indicating that 

theophylline may have formed a co-crystal with malonic acid. However, a small peak at 

2θ= 7.3°, appears in the co-precipitated mixture corresponding to theophylline hydrate, is 

indicative of a co-crystal formation with unconverted theophylline hydrate. These results 

are in agreement with results already published by Trask and co-workers (2006). They 

reported that the packing of theophylline/ malonic acid co-crystal demonstrates the primary 

intermolelcular O─H···N bonds as well as the theophylline dimmer formation via secondary 

N─H···O bonds (Figure 36). Further, the 1:1 stoichiometry was observed, which means that 
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only one of the acid groups bonds of the theophylline leaving the other to participate in a 

bifracted hydrogen bond with the two carbonyls of a neighbouring acid (Figure 37).  

 

 

Figure 36: Crystal packing of theophylline/ malonic acid system. 
 

 

Figure 37: Molecular structure of theophylline/ malonic acid system. 
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6.2.2. Raman spectroscopy results of co-grinding and co-precipitating 
physical mix induced theophylline/ malonic acid co-crystal 
 
 
Figures 38a, 38b, 38c and 38d illustrate the Raman spectra of theophylline/ malonic acid 

system. 

 
 
Figure 38a: Raman spectra of the theophylline/ malonic acid system (712-330 cm-1). 
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Figure 38b: Raman spectra of the theophylline/ malonic acid system (1141-897 cm-1). 
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Figure 38c: Raman spectra of the theophylline/ malonic acid system (1400- 1145 cm-1). 
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Figure 38d: Raman spectra of the theophylline/ malonic acid system (1800- 1500 cm-1). 
 
 
The Raman data presented in Figure 38a, 38b, 38cand 38d, clearly show noticeable 

differences between the physical mixture and both co-ground- and co-precipitated mixtures 

in the wave number regions (712-380 cm-1), (1355-858 cm-1) and (1740-1526 cm-1). The δ-

pyrimidine ring vibrational bands of theophylline at around 447 cm-1, 493 cm-1, 555 cm-1, 

and 668 cm-1, found in the intact crystal were shifted to higher wave numbers at 451 cm-1, 

500 cm-1, 569 cm-1, and 676 cm-1, respectively. In addition, the δ-pyrimidine imidazole ring 

vibrational band of caffeine at around 741cm-1 was shifted to higher wave number at 749 

cm-1. In addition, the CH─N bands of theophylline at 1052 cm-1 and 1085 cm-1 were shifted 

to higher wave numbers at 1056 cm-1 and 1094 cm-1, respectively. Furthermore, the C═C 

stretch of theophylline at 1611 cm-1, was shifted to higher wave number at 1620 cm-1. 

Further, the C═O stretch of malonic acid at 1684 cm-1 disappeared, while the C═O of 
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theophylline at 1707 cm-1 was shifted to lower wave number at 1697 cm-1. These results 

suggested that theophylline might have formed a co-crystal through both grinding and co-

precipitation. 

6.2.3. SEM results of theophylline/ malonic acid co-crystal prepared by 
two methods 
 

Figure 39 presents the SEM micrographs of the theophylline/ malonic acid system. 
 
 

                               
                                                  Physical mixture 

   
             Co-precipitated mixture                                          Co-ground mixture 
Figure 39: The SEM micrographs of the theophylline/ malonic acid system. 
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From Figure 39, it can be seen that physical mixture possesses SEM micrograph, very 

different from either co-ground or co-precipitated mixtures. The SEM micrograph of the 

co-precipitated mixture possesses relatively thick plate-like crystals with flat surfaces, 

while SEM micrograph of the co-ground mixture exhibits aggregated particles with rough 

surfaces. These results are consistent with XRPD and Raman, and confirm a phase 

transformation via both co-grinding and co-precipitation. 

6.2.4. DSC results of a theophylline/ malonic acid co-crystal prepared 
by two methods 
 
Figure 40 shows the DSC traces of the theophylline/ malonic acid system in its various 

forms. 

 

 

Figure 40: DSC traces of the theophylline/ malonic acid system (sample weight (4-
6mg, scan rate =10 °C/min.). 
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As presented in Figure 40, the melting points (peak temperature) of theophylline and 

malonic acid are 272°C and 136°C, respectively. The physical mixture firstly shows two 

small endothermic peaks at 117°C and 120°C, followed by an endothermic peak at 152°C. 

Both the co-precipitated and co-ground mixtures show melting points at 157°C and 156°C 

respectively. These results indicated that theophylline formed a co-crystal with malonic 

acid by these methods. In the case of a physical mixture, the endothermic peak at 152°C, 

nearly similar to that of the co-ground mixture is indicative of formation of co-crystal 

during the heating process. However, the first two small peaks of the physical mixture at 

117°C and 120°C are thought to be due to evaporation and in agreement with the TGA 

curve (Figure 41), and the endothermic reaction at 170°C can be related with further water 

loss as reported by Picker (Picker 2001). 

 

 

Figure 41: TGA and DSC of the physical mixture of theophylline/ malonic acid. 
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6.3. Effect of co-crystallization of theophylline with malonic acid 
on tableting properties 
 
 

6.3.1. Compactibility  
 
 
The tensile strengths of compacts of the theophylline/ malonic acid system are illustrated in 
Figure 42. 
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Figure 42: Tensile strength of the theophylline/ malonic acid system obtained at a 
compression speed of 10mm/ s. 
 
 
 
The compaction properties of the co-precipitated, co-ground and physical mixtures of 

theophylline/ malonic acid system were compared, as presented in Figure 42. It can be seen 

that the tensile strength values of tablets produced from all mixtures increased with 

increasing compression force. Tablets produced from the co-ground mixture showed higher 

values of tensile strength compared to those of co-precipitated and physical mixtures. The 
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tablets were intact and showed no capping or lamination, either on ejection or during 

crushing strength test. This was may be due to the small particle size of the co-ground 

mixture that results from grinding, as the small size generally has good compactability. It 

has been reported that the tensile strength of compacts increases as the particle size 

decreases (McKenna and McCafferty 1982; Morishima et al. 1994). It is also possible that 

the smaller crystals have more contact points between them, and can be compacted more 

tightly than larger crystals. The lower porosity of the co-ground mixture may have 

contributed to its better compactibility, as it showed the highest bulk density among all 

other mixtures (Table 11). However, the difference in tensile strength values between the 

mixtures may result from crystal morphology, as the plate-like crystals of the co-

precipitated mixture shows the least compressibility (Figure 39). The good compactability 

of the co-ground mixture is in agreement with the theory that smaller particles produce a 

greater density and a greater number of contact points for inter-particulate bonding (Rhines 

1947). 

 

 

Table 11: Densities of physical mixture, co-ground mixture and co-precipitated 
mixture of theophylline/ malonic acid system (mean ± SD, n =3). 
 
Sample True density (gm/cm3) Bulk density (gm/cm3) 

Physical mixture 1.4988 ± 0.0079 0.2860 ± 0.0010 

Co-ground mixture 1.4823 ± 0.0031 0.4767 ± 0.0030 

Co-precipitated mixture 1.5111 ± 0.0039 0.3763 ± 0.0025 
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6.3.2. Compressibility 
 
The Heckel plots of theophylline/ malonic acid system are presented in Figure 43. 
 

 
 
Figure 43: Heckel plots of the theophylline/ malonic acid system obtained at a 
compression force of 12.5 KN and a compression speed of 10mm/ s. 
 
 
 
Table 12: Heckel parameter of different mixtures of theophylline/ malonic acid 
system: (obtained at a compression speed of 10 mm/s and a compression force of 10 
KN). 
 
Sample Yield pressure (MPa) DA D0 DB 

Physical mixture 
 

83 0.698 0.489 0.209 

Co-ground mixture 87 0.686 0.492 0.194 

Co-precipitated 
mixture 

 

80 0.757 0.587 0.17 

D0 = initial relative density, DA = 1- e –A is the extrapolated relative density from the intercept (A) of the 
linear portion of the Heckel plot, and DB increase in relative density due to particle arrangement. 



 115

The relative volume changes during the early stage (0-120 MPa) of the compression event 

were recorded for each of the physical, co-ground and the co-precipitated mixtures.  

 The results of the Heckel data are presented in Figure 43 and Table 12 suggest that the 

Heckel plots of the theophylline/ malonic acid systems are Type 1 materials, as the yield 

pressures of all mixtures are nearly similar. Furthermore, an extensive linearity during 

compression is indicative of a plastic deformation mechanism, as the linear portion started 

below 20 MPa. However, the co-ground mixture possessed the greatest value of yield 

pressure, which indicates that the densification process by particle deformation is poorer 

than in other mixtures. In addition, the co-ground mixture exhibited the smallest particle 

slippage (D0 = 0.489) compared to those of the co-precipitated or physical mixture (Table 

12). This indicates that the co-ground mixture was the least compressible, as the plastic 

deformation decreases with increasing yield pressure, despite the fact that the most 

compactible is the most compressible (Yoshinari et al. 2003). However, the co-precipitated 

mixture was the most compressible among all other mixtures. This indicates that the crystal 

morphology of the co-precipitated mixture contributed to its better compressibility 

(Garekani et al. 1999). 
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Table 13: Elastic recovery of tablets produced from theophylline/ malonic acid 
systems obtained at a compression speed of 10 mm/s and a compression force of 10 
KN. 
 
Sample t1 (mm) t2 (mm) Elastic recovery E (%) 

Co-precipitated mixture 2.909 3.100 6.56 

Co-ground mixture 3.014 3.226 7.03 

Physical mixture 2.976 3.195 7.35 

t1 = minimal thickness of the powder bed in the die, and t2 = is the thickness of the recovered 
tablet. 
 
 
 
The data shown in Table 13 are in agreement with the Heckel results in Figure 88 and 

Table 16, as the co-precipitated mixture possesses the smallest value of elastic recovery 

compared to either co-ground or physical mixture. This indicates that the lower elastic 

recovery of the co-precipitated mixture contributes to its better compressibility, as the 

greater elastic recovery increases the tablet porosity during decompression phase (Roberts 

and Rowe 1987).  

6.3.3. General Discussion 
 
In this chapter, we have shown that the methods of preparation of theophylline/ oxalic acid 

co-crystals affected the tableting properties. Both methods produced the same co-crystal 

structure as indicated by Raman, XRPD, DSC and SEM. 

In the next chapter, we evaluate the impact of additives, namely MCC and α-lactose 

monohydrate on phase transformation, crystal structure of an in situ co-crystals formation 

and subsequent tableting properties of urea/ 2-MB and caffeine/ malonic acid systems. 
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7. Effect of additives (microcrystalline cellulose & α-
lactose monohydrate) on phase transformation and 
molecular structure of in situ co-crystal formation and 
subsequent tableting behaviour 
 

7.1. Introduction 
 
The inclusion of fillers in tablet formulation is required, especially for drugs presented in 

low doses. However, these types of excipients may have an impact on other properties, 

including, for example crystallinity changes, tablet compactibility and the compressibility 

of powders. Microcrystalline cellulose (MCC) is widely used as a filler, disintegrant, and 

binder of oral tablets. Several studies and reviews on the tableting properties of MCC 

indicate some limitation to its use as direct compression excipient. These limitations 

include low bulk density, poor flow, high sensitivity to lubricant and moisture content, 

excessive mechanical strength of tablets and other physical properties (Bolhuis and 

Chowan 1996). On the other hand, lactose is a disaccharide, which can exist in different 

forms in the solid-state. These various forms of lactose show different compaction 

behaviour (Bolhuis et al. 1985; Fell and Newton 1970). Lactose was chosen for our study 

because it is one of the most extensively used excipients in pharmaceutical dosage forms. 

Many researchers (De Boer et al. 1986; Van Kamp et al. 1986a) have studied the tableting 

properties of lactose.  

It has been shown in the previous chapters (Chapter 3 and Chapter 4) that the co-crystals of 

urea/ 2-MB and caffeine/ malonic acid systems have successfully been prepared by both 

grinding and precipitation. It has also been shown that the co-crystallization has clearly 

affected the tableting properties and deformation characteristics of both systems. 
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In this chapter, we combined MCC and α-lactose monohydrate as diluents to investigate 

their impact on the structure and on the formation of urea/ 2-MB and caffeine/ malonic acid 

co-crystals. Furthermore, the effect of these fillers on the mechanical properties of tablets 

produced from co-crystals and physical mixtures was also studied. 

Details of the composition of the blends are given in sections 2.2.13 to 2.2.18. 

7.2. Results and discussion 

7.2.1. Effect of additives (MCC & α-lactose monohydrate) on the 
structure of co-crystal of urea/ 2-MB produced by grinding before and 
after compression 
 

The X-ray powder diffraction patterns of the urea/ 2-MB system are presented in Figure 44.  

 
 
Figure 44: PXRD patterns of the urea/ 2-MB system: (A) the physical mixture, (B) the 
co-ground mixture, (C) the co-ground mixture with excipients, and (D) crushed tablet 
of the co-ground mixture with excipients. 
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The effect of MCC and α-lactose on the crystallinity of urea/ 2-MB co-crystal produced by 

grinding was investigated using XRPD, as shown in Figure 44.  

After the addition of MCC and α-lactose monohydrate to the co-ground mixture, the 

intensities of the diffraction peaks of the intact co-crystal, that were observed at 2θ = 9.0°, 

10.8°, 11.8°, 14.9°, 18.2° and 18.9° disappeared, indicating a lowering of crystallinity and 

an increasing amorphous state of the co-crystal. The SEM images presented in Figure 45 

are in good agreement with the XRPD, as the rough surface of the co-ground mixture was 

completely changed into a smooth surface. On the other hand, the tablet of the co-ground 

mixture with excipients shows the same XRPD spectra, similar to those of the same 

mixture before tableting. This indicates that the interference of excipients between co-

crystal particles has affected the crystallinity of the co-crystal by weakening the hydrogen 

bonds. Furthermore, the new diffraction peaks with small intensities at 2θ = 12.14°, 20.88° 

and 21.24°, are consistent with lactose(Gombas et al. 2003). These results suggest a change 

in the molecular structure of the urea/ 2-MB co-crystal. 
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                      (A)                                                                          (B) 

          
(C) (D) 

 
Figure 45: SEM of the uea/2-MB system: (A) the physical mixture, (B) the co-ground 
mixture, (C) the co-ground mixture with excipients, and (D) crushed tablet of the co-
ground mixture with excipients. 
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7.2.2. Effect of additives (MCC & α-lactose monohydrate) on the 
structure of co-crystal of urea/ 2-MB produced by co-precipitation 
before and after compression 
 

Figure 46 illustrates the X-ray powder diffraction patterns of urea/ 2-MB system. 

 

 
 
Figure 46: PXRD patterns of the urea/ 2-MB system: (A) the physical mixture, (B) the 
co-precipitated mixture, (C) the co-precipitated mixture with excipients, and (D) 
crushed tablet of the co-precipitated mixture with excipients. 
  

 

The effect of MCC and α-lactose on the crystallinity of urea/ 2-MB co-crystal produced by 

co-precipitation was investigated using XRPD, as shown in Figure 46. 

 After the addition of MCC and α-lactose monohydrate to the co-precipitated mixture, the 

diffraction peaks of the co-crystal, at 2θ = 9.0 0, 10.8 0, 11.8 0, 14.9 0, 18.2 0 and 18.9 0 

could still be seen with a dramatic decrease in their intensities. However, new peaks with 
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small intensities, similar to those observed in the co-ground mixture, at 2θ = 12.14°, 20.88° 

and 21.24° were also formed. The SEM micrographs presented in Figure 47, were 

consistent with the XRPD results, as the needle-like crystals of co-precipitated mixture 

have transformed into plate-like crystals after the addition excipients. On the other hand, 

the tablet of the co-precipitated mixture with excipients showed the same XRPD spectra, 

similar to those of the same mixture before tableting. These results show, on one hand, that 

the crystallinity of the co-crystal decreased, as indicated by the decreased intensities of the 

diffraction peaks. On the other hand, the new peaks formed due to lactose, suggest that 

these excipients have been able to interrupt the feature of the co-crystal and change its 

molecular structure. 
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                          (A)                                                                        (B) 

          
(C)                                                                     (D) 

 
 
Figure 47: SEM of the urea/ 2-MB system: (A) the physical mixture, (B) the co-
precipitated mixture, (C) the co-precipitated mixture with excipients, and (D) crushed 
tablet of the co-precipitated mixture with excipients. 
 
 
 
 
 
 
 
 
 
 
 



 124

7.2.3. Effect of additives (MCC & α-lactose monohydrate) on the 
structure of co-crystal of caffeine/ malonic acid produced by co-
grinding before and after compression 
 
Figure 48 shows the PXRD patterns of the caffeine/ malonic acid system. 

 
 
Figure 48: PXRD patterns of the caffeine/malonic acid system: (A) the physical 
mixture, (B) the co-ground mixture (C) the co-ground mixture with excipients, and 
(D) crushed tablet of the co-ground mixture with excipients. 
 
 

The effect of MCC and α-lactose on the crystallinity of the caffeine/ malonic acid co-

crystal produced by co-grinding was investigated using XRPD, as shown in Figure 48. 

 The diffraction peaks intensities of the intact co-crystal at 2θ = 8 0, 16.2 0, 18.28 0, 22.45 0, 

25.34° and 28 0, dramatically decreased after the addition of MCC and α-lactose 

monohydrate, indicating a lowering of crystallinity. This assumption is supported by the 

SEM micrographs in Figure 49, as the agglomerated particles of the co-ground mixture 
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transformed into a smooth surface after the addition of excipients. In addition, new peaks at 

2θ = 20° and 19.5°, were due to lactose, indicating a change in the molecular structure of 

the co-crystal.  

 
 
 

       
                      (A)                                                                      (B) 
 

         
(C) (D) 

 
 
Figure 49: SEM of the caffeine/ malonic acid system: (A) the physical mixture, (B) the 
co-ground mixture, (C) the co-ground mixture with excipients, and (D) the crushed 
tablet of the co-ground mixture with excipients. 
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7.2.4. Effect of additives (MCC & α-lactose monohydrate) on the 
structure of co-crystal of caffeine/ malonic acid produced by co-
precipitation before and after compression 
 
 
 
Figure 50 illustrates the XRPD patterns of the caffeine/ malonic acid system. 
 

 
 
Figure 50: PXRD patterns of the caffeine/ malonic acid system: (A) the physical 
mixture, (B) the co-precipitated mixture (C) the co-precipitated mixture with 
excipients, and (D) the crushed tablet of the co-precipitated mixture with excipients. 
 
 
 

When MCC and α-lactose monohydrate were added to the co-precipitated mixture, 

diffraction peaks intensities of the co-crystal at 2θ = 8 0, 16.2 0, 18.28 0, 22.45 0, 25.34 0 

and 28 0 decreased, indicating a lower of crystallinity, as well as an increase in the 

amorphous portion of the co-crystal (Figure 50). In addition, new peaks were found at 2θ = 

20° and 19.5°, due to lactose (Gombas et al. 2003), indicating a change in the molecular 
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structure of the co-crystal. Furthermore, the SEM micrographs illustrated in Figure 51 were 

consistent with the PXRD results, as the prism-like crystals of the co-precipitated mixture 

changed into random shapes after the addition of excipients.  

 
 
 
 

        (A)                    
(B) 
 

                                  
(C)                                                                     (D) 
 
 
Figure 51: SEM of the caffeine/ malonic acid system: (A) the physical mixture, (B) the 
co-precipitated mixture, (C) the co-precipitated mixture with excipients, and (D) the 
crushed tablet of the co-precipitated mixture with excipients. 
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7.2.5. Effect of additives (MCC & α-lactose monohydrate) on the 
tableting behaviour of urea/ 2-MB co-crystal 

 

7.2.5.1. Compactibility 
 
The tensile strength values of the urea/ 2-MB system, with excipients are given in Figure 

52. 
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Figure 52: Tensile strength of the urea/ 2-MB system with excipients obtained at a 
compression speed of 10 mm/s. 
 
 

 As presented in Figure 52, for all mixtures, the tensile strength values of compacts 

increased with increasing compaction force. The pure co-ground mixture showed good 

compactibility compared with the pure co-precipitated mixture, which was indicated by the 

higher tensile strength values of compacts of the co-ground mixture. This was possibly due 
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to the particle size reduction achieved by grinding, as the small size generally has good 

compactibility. The tensile strength of compacts increases as the particle size decreases 

(McKenna and McCafferty 1982; Morishima et al. 1994). It is also possible that the smaller 

crystals have more contact points between them, and can be compacted more tightly than 

larger crystals. The difference in crushing strength between the co-ground mixture and the 

co-precipitated mixture may result from crystal morphology and crystal size, which 

possibly was caused by the method of crystallization and the type of crystallization 

solvents.  

After the addition of MCC and α-lactose monohydrate to each of the pure co-ground or co-

precipitated mixtures, the tensile strength values of compacts of both mixtures containing 

the excipients dramatically increased, indicating a good compactibility on the addition of 

MCC and α-lactose monohydrate. However, the compactibility of the co-ground mixture 

was still greater than that of the co-precipitated mixture after the addition of excipients. 

This resultant change in the mechanical strength of tablet was, on one hand, related to the 

fine particles of α-lactose monohydrate as the small sizes have generally good 

compactibility (McKenna and McCafferty 1982; Morishima et al. 1994).  On the other 

hand, the combination of α-lactose monohydrate with MCC, which is known as a moisture 

sensitive excipient, might result in good compactibility. This is consistent with results 

published by Ferrari and co-workers as they reported that the interparticle bonding of the 

final component containing α-lactose monohydrate with MCC resulted in the overall inter-

particle area of contact (Ferrari et al. 1995; Mashadi and Newton 1987). Furthermore, the 

surface properties of MCC may have contributed to good tabletability of either co-ground 

or co-precipitated mixtures, as it has been reported that microcrystalline celluloses possess 

highly desirable compaction characteristics (Fox et al. 1963). 
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7.2.5.2. Compressibility 
 

The Heckel data of the urea/ 2-MB system with excipients are presented in Figure 53 and  

Table 14, respectively. 

 
 

 
 
Figure 53: Heckel plots of the urea/ 2-MB systems with excipients obtained at a 
compression speed of 10 mm/s. 
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Table 14: Heckel parameter of different mixtures of the urea/ 2-MB system, with 
excipients, at a compression speed of 10 mm/s, and a compression force of 10 KN. 
 
Sample Yield pressure (MPa) DA D0 DB 

Co-ground mixture 
 

72 0.678 0.487 0.191 

Co-ground mixture + 

excipients 

149 0.434 0.282 0.152 

Co-precipitated 
mixture 

 

85 0.626 0.446 0.180 

Co-precipitated 
mixture + excipients 

185 0.416 0.295 0.121 

 
D0 = initial relative density, DA = 1- e –A is the extrapolated relative density from the intercept 
(A) of the linear portion of the Heckel plot, and DB increase in relative density due to particle 
arrangement. 
 
 
 
 
 
It is clear that the yield pressures of the both co-ground and co-precipitated mixtures 

dramatically increased after the addition of excipients. For both mixtures containing MCC 

and α-lactose monohydrate, the yield pressure values were two times higher than those of 

pure mixtures were. This is an indication of a decrease in compressibility, as it increases 

with decreasing yield pressure. The changes in the inter-particle bonding caused by 

excipients were possibly behind the dramatic collapse in compressibility of both mixtures. 

As the combination of MCC and α-lactose monohydrate was found to affect the inter-

particle bonding of final component and resulted in the overall inter-particle area of contact 

(Ferrari et al. 1995; Mashadi and Newton 1987). On the other hand, the co-ground mixture 

with excipients still has higher compressibility than the co-precipitated mixture with 

excipients. Another reason for the decrease in compressibility of pure mixtures after the 
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addition of MCC and α-lactose monohydrate was possibly due to moisture induced by 

MCC that affected the plastic deformation of powders. 

The data presented in Table 15 are consistent with the Heckel data in Figure 53 and Table 

14, as the elastic recovery of pure mixtures increased with addition of MCC and α-lactose 

monohydrate. 

 

 
 
 
Table 15: Elastic recovery of tablets produced from the urea/ 2-MB systems with 
excipients at a compression speed of 10 mm/s and a compression force of 10 KN. 
 
Sample t1 (mm) t2 (mm) Elastic recovery E (%) 

Co-precipitated mixture 3.50 3.76 7.42 

Co-ground mixture 3.54 3.78 6.77 

Co-precipitated mixture + 

excipients 

3.12 3.45 10.7 

Co-ground mixture + 

excipients 

3.07 3.35 9.12 

 
t1 = minimal thickness of the powder bed in the die, and t2 = is the thickness of the recovered 
tablet. 
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7.2.6. Effect of additives (MCC & α-lactose monohydrate) on the 
tableting behaviour of caffeine/ malonic acid co-crystal 
 

7.2.6.1. Compactibility 
 
Figure 54 illustrates the tensile strength of the caffeine/ malonic acid system with 
excipients. 
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Figure 54: Tensile strength of the caffeine/ malonic acid system with excipients 
obtained at a compression speed of 10 mm/ s. 
 
 
 
For all mixtures, the tensile strength values increased with increasing compaction force. 

The pure co-ground mixture was more compactible than the pure co-precipitated mixture. 

The difference in tensile strength values between the co-ground and the co-precipitated 

mixtures may have resulted from crystal morphology and crystal size, as the co-precipitated 

mixture exhibited needle-like crystals, while the co-ground mixture consisted of relatively 

fine particles. These differences in sizes and shapes very possibly be caused by the method 
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of crystallization and the type of crystallization solvents (Kachrimanis et al. 2003). After 

the addition of MCC and α-lactose monohydrate to the pure mixtures, the tensile strength 

values of both mixtures containing excipients increased, indicating good tabletability on the 

addition of MCC and α-lactose monohydrate. 

7.2.6.2. Compressibility 
 
The Heckel data of the caffeine/ malonic acid system are given in Figure 55 and Table 16, 

respectively. 

 

 
 
Figure 55: Heckel plots of the caffeine/ malonic acid system: (A) the co-precipitated 
mixture, (B) the co-ground mixture, (C) the co-precipitated mixture with (MCC and 
α-lactose monohydrate), and (D) the co-ground mixture with (MCC and α-lactose 
monohydrate. 
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Table 16: Heckel parameter of different mixtures of the caffeine/ malonic acid system 
with excipients at a compression speed of 10 mm/s and a compression force of 10 KN. 
 
Sample Yield pressure (MPa) DA D0 DB 

Co-ground mixture 
 

60 0.750 0.568 0.182 

Co-ground mixture + 

excipients 

133 0.456 0.317 0.139 

Co-precipitated 
mixture 

 

44 0.719 0.512 0.207 

Co-precipitated 
mixture + excipients 

129 0.436 0.293 0.143 

 
D0 = initial relative density, DA = 1- e –A is the extrapolated relative density from the intercept 
(A) of the linear portion of the Heckel plot, and DB increase in relative density due to particle 
arrangement. 
 

The data presented in Figure 55 and Table 16 showed nearly similar slopes of Heckel plot 

for both co-ground and co-precipitated mixtures, indicating similar compressibility, with 

slightly higher plastic deformation for the co-ground mixture. As with the urea/ 2-MB 

system, the addition of MCC and α-lactose monohydrate to the pure mixtures of the 

caffeine/ malonic acid system was found to exert a significant increase in the yield 

pressures of both mixtures. As a result, the compressibility decreased. As mentioned above, 

the combination of MCC and α-lactose monohydrate might affect the interparticle bonding 

of final component and resulted in the overall inter-particle area of contact (Ferrari et al. 

1995; Mashadi and Newton 1987). 

On the other hand, the elastic recovery data in Table 17 were consistent with the Heckel 

data in Figure 46 and Table 13. The elastic recoveries of both pure mixtures were higher 

than those containing excipients.   
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Table 17: Elastic recovery of tablets produced from the caffeine/ malonic acid systems 
with excipients at a compression speed of 10 mm/s and a compression force of 10 KN. 
 
Sample T1 (mm) t2 (mm) Elastic recovery E (%) 

Co-precipitated mixture 3.10 3.32 7.28 

Co-ground mixture 3.05 3.33 9.21 

Co-precipitated mixture + 

excipients 

2.95 3.27 10.84 

Co-ground mixture + 

excipients 

2.99 3.28 9.69 

t1 = minimal thickness of the powder bed in the die, and t2 = is the thickness of the recovered 
tablet. 
 
 

7.2.6.3. General Discussion 
 
In general, the addition of MCC and α-lactose monohydrate affected the crystal structure of 

the co-crystals as well as phase transformation during compression of the physical mixtures 

of both systems. However, the co-precipitated mixtures had been less affected as indicated 

by XRPD patterns. In addition, the tableting properties of the co-crystals and the physical 

mixtures had been greatly influenced after the addition of these excipients. 

In the next chapter, we demonstrate findings of the co-crystal formation of urea/ 2-MB and 

caffeine/ malonic acid by compaction as a novel method of preparation of co-crystals using 

the Compaction Studies Simulator and IR-Press.  
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8. Pharmaceutical co-crystal of urea/ 2-MB-and caffeine/ 
malonic acid systems formed during compaction; 
Relationship between the compression force and the 
degree of crystallinity.  

 
 

8.1. Introduction 
 
As mentioned in the previous chapters, co-crystals can be obtained quantitatively by 

different methods, such as manual grinding, or electromechanical ball milling (Boldyrev 

and Takacova 2000), kneading (Watano et al. 2002), and by seeding which is the growth of 

crystals from solution (Seiler and Dunitz 1982). Co-crystals are usually synthesized by 

slow evaporation from solutions that contain co-crystal formers, growth from melt, 

sublimation, or slurrying and grinding two solid co-crystal formers using a ball mill or 

mortar and pestle (Zaworotka 2005). 

As it was shown earlier in Chapter 3 and Chapter 4, the co-crystals of urea/ 2-MB and 

caffeine/ malonic acid systems have been prepared via both co-precipitation and co-

grinding methods and several techniques (e.g. XRPD, Raman spectroscopy, DSC and 

SEM) were used to characterize the co-crystals. 

However, in this chapter, we present our findings of co-crystal formation during 

compaction using both a Compaction Simulator and an IR-Press, as this is not reported in 

the literature to date as a method for the preparation of pharmaceutical co-crystals. For this 

study, we investigated caffeine and urea as model APIs and malonic acid and 2-

methoxybenzamide (2-MB) respectively, as co-crystal formers. Furthermore, the effect of 

compaction forces on the degree of crystallinity of co-crystals and the subsequent effect on 
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deformational characteristics of powders, as well as the mechanical properties of the tablets 

have been investigated. Compacts were prepared using the methods presented in section 

2.3. 

8.2. Results and discussion 
 

8.2.1. XRPD results of a urea/ 2-MB co-crystal formed during tableting 
using Compaction Studies Simulator  
 
Figure 56 illustrates the XRPD patterns of tablets produced from the urea/ 2-MB system. 

 

 
Figure 56: PXRD patterns of the urea/ 2-MB tablets prepared by the Compaction 
Studies Press at different compression forces. 
 

 
As shown in Figure 56, the XRPD patterns show that all tablets possessed  new peaks at 2θ 

= 9.0 0, 10.8 0, 11.8 0, 14.9 0, 18.2 0 and 18.9 0, different from those of the physical mixture. 
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The co-crystal started to form at 2.5 KN. However, the intensity of the new peaks increased 

with increasing compression force, indicating higher crystallinity at higher compaction 

pressure. As shown in Chapter 3 the co-crystals of the urea/ 2-MB system have successfully 

been prepared via both co-precipitation and co-grinding and our recent findings are in line 

with both co-precipitation and co-grinding results. These findings demonstrate that 

compaction represents a novel means of obtaining co-crystals, as it is a fast and inexpensive 

route of production. Braga and co-workers (2002) have tried dry compression as a method 

of co-crystal formation. They pressed a mixture of 1,1 di-pyridyl-ferrocene and anthranilic 

acid using an IR-pellet maker. They showed no success, as no reaction had taken place. 

However, their trials were successful with wet compression of the same mixture and the 

addition of small amount of methanol. 

Figure 57 presents the XRPD patterns of the urea/ 2-MB system for different methods of 

preparation, the simulated patterns, physical mixture and the starting materials. 
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Figure 57: XRPD patterns of the urea/ 2-MB system: all methods of preparation, the 
simulated patterns, the physical mixture and the starting materials. 
 
 
 
By comparing the X-ray powder diffraction patterns of urea/ 2-MB co-crystals prepared by 

the different methods (Figure 57), the positions of the new peaks are similar for all 

methods. However, the intensities of the new peaks are different. The co-precipitated 

mixture exhibited peaks of highest intensity compared with co-grinding or compaction. The 

small intensity of XRPD peaks of the co-ground mixture was possibly due to grinding, as it 

is known to decrease XRPD peaks intensity (Oguchi et al. 2000). As for compaction, it is 

possible that the reduction of the diffraction peak intensities may result from the collapse of 

the crystalline phase without reorganization into a new charge-transfer crystal phase. 
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Furthermore, during compaction, the particles were exposed to high mechanical energy for 

a short period of time, which may also tend to reduce the intensity of the peaks. 

8.2.2. Quantitative (peak width) analysis of the crystallinity of urea/ 2-
MB system by XRPD 
 
 

              
 
 
 
The analysis was carried out by calculating the net areas of the relevant peak for the co-

crystal and one of the starting materials. Then, the ratio was obtained by dividing the area 

of the co-crystal by the area of the starting material (Area co-crystal/ Area st.material). Finally, the 

analysis is presented by plotting the ratio versus compression force (Klug and Alexander 

1970). 

 
 
The peak width analysis of the urea/ 2-MB system is given in Figure 58. 
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Figure 58: Quantitative representation of the urea/ 2-MB co-crystal produced by 
compaction at different compression forces. 
 
 
 
From Figure 58, it can be seen that the ratio increases with increasing compression force, 

indicating higher crystallinity at a higher compression force. In addition, the ratios obtained 

from both starting materials are comparable, which indicates that the urea/ 2-MB co-crystal 

formed from 1:1 molar ratio of the starting materials. 

 
The SEM micrographs of the urea/ 2-MB are illustrated in Figure 59. 
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(A)                                                                                             (B) 

Figure 59: SEM micrographs of the urea/ 2-MB system: (A) the physical mixture and 
(B) the crushed tablet of the physical mixture. 
 
 
 
It is obvious from the SEM in Figure 59 that the tablet produced from the physical mixture 

is morphologically different from that of the intact particles of the physical mixture. The 

smooth surface of the particles has totally changed into plate-like crystals during 

compression, indicating a phase transformation of the components in the compacted 

product. These results are in agreement with XRPD results and confirm that urea may have 

formed a co-crystal with 2-MB during compaction. 

8.2.3. XRPD results of a caffeine/ malonic acid co-crystal formed during 
tableting using Compaction Studies Simulator  
 

Figure 60 presents the XRPD patterns of the caffeine/ malonic acid system. 
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Figure 60: PXRD patterns of the caffeine/ malonic acid tablets prepared by the 
Compaction Studies Press at different compression forces. 
 

 

 

As mentioned earlier in Chapter 4, caffeine successfully formed a co-crystal with malonic 

acid by both co-grinding and co-precipitation methods, The XRPD patterns presented in 

Figure 60 show new peaks at 2θ = 16.2 0, 18.28 0, 22.45 0, 25.34 0 and 28 0 similar to those 

observed in the co-ground- or co-precipitated mixtures, indicating a co-crystal formation 

during compaction. Similar to the urea/ 2-MB system, the co-crystal started to form at 2.5 

KN and the intensity of the new peaks increased with increasing compression force, 

indicating higher crystallinity at higher compaction pressure. 

The XRPD patterns of the caffeine/ malonic acid system for different preparation methods 

were compared in Figure 61.  
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Figure 61: XRPD patterns of the caffeine/ malonic acid system (all methods). 
 
 

 

It is apparent from Figure 61, that the peak positions of new peaks at 2θ = 16.2 0, 18.28 0, 

22.45 0, 25.34 0 and 28 0 are similar to those of simulated patterns and that they are different 

from those of the physical mixture. However, the diffraction peak intensities were different. 

As with the urea/ 2-MB system, the co-precipitated mixture of this caffeine/ malonic acid 

system showed the highest peak intensities compared with co-grinding or compaction.  

8.2.4. Quantitative (peak width) analysis of the crystallinity of caffeine/ 
malonic acid system by XRPD 
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The peak width analysis of the caffeine/ malonic acid system is presented in Figure 62. 
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Figure 62: Quantitative representation of the caffeine/ malonic acid co-crystal 
produced by compaction at different compression forces. 
 
 

It is apparent that the crystallinity of the caffeine/ malonic acid co-crystal increased with 

increasing compaction force, as reflected by the increased ratios at higher compression 

force. However, in contrast to the urea/ 2-MB co-crystal that formed in a molar ratio 1:1, 

the difference in the ratio of the starting materials is indicative of a co-crystal formation by 

a 2:1 molar ratio. 
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(A) (B) 

 

Figure 63: SEM micrographs of the caffeine/ malonic acid system: (A) the physical 
mixture, and (B) the crushed tablet of (A). 
 

 

 

Figure 63 clearly shows that the tablet possessed a surface morphology different from that 

of the physical mixture. The intact particles of starting materials changed into a fully 

aggregated single phase. 

 

 

8.2.3. XRPD results of a urea/ 2-MB co-crystal formed during tableting 
using IR-Press 
 
The XRPD patterns of tablets produced from the physical mixture of urea/ 2-MB are given 

in Figure 64.  
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Figure 64: XRPD patterns of the physical mixture and tablets of urea/ 2-MB produced 
by IR-Press. 
 

 

The data presented in Figure 64 showed no traces of co-crystal of urea with 2-MB, as the 

peak positions of XRPD spectra of tablets produced with different compression forces are 

the same as those of the physical mixture. Although the pressure was sufficient to bring 

particles in closer contact to each other, it is possible that the IR-press is not well calibrated.  

8.2.4. XRPD results of a caffeine/ malonic acid co-crystal formed during 
tableting using IR-Press  
 

The XRPD patterns of tablets produced from the physical mixture of caffeine/ malonic acid 

using IR-Press are given in Figure 65. 



 149

 
Figure 65: XRPD spectra of the physical mixture and tablets of caffeine/ malonic acid 
system produced by the IR-Press. 
 

 

 

Whereas the XRPD spectra of tablets of pure mixture of urea / 2-MB produced by IR-Press 

(1min under pressure) showed no evidence of co-crystal formation, the caffeine/ malonic 

acid system, obviously showed co-crystal formation during compression by the IR-Press as 

shown in Figure 65. However, in contrast to tablets produced by the Compaction Studies 

Simulator from the same system, the diffraction peak intensities decreased with increasing 

compression load, indicating a lower degree of crystallinity at higher forces.  

8.2.5. Effect of additives (MCC & α-lactose monohydrate) on the co-
crystal formation of urea/ 2-MB during compaction 
 
 
Figure 66 presents the XRPD patterns of the urea/ 2-MB system with excipients. 
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Figure 66: XRPD spectra of the urea/ 2-MB system. 
 

 

 

As shown in this chapter (Section 8.2.1, Figure 56), urea formed a co-crystal with 2-MB 

during compaction. The new peaks observed at 2θ = 9.0 0, 10.8 0, 11.8 0, 14.9 0, 18.2 0 and 

18.9 0, were different from those of the physical mixture. 

The data presented in Figure 66 show that after the addition of additives to the physical 

mixture, two peaks of the co-crystal at 2θ = 9°, 14.9° disappeared while one peak at 2θ = 

18.9°, with a very small intensity, was preserved and new peak at 2θ = 12.14° was formed. 

When the same mixture was compressed, the two peaks of the co-crystal at 2θ = 14.9° and 

18.9° disappeared while the peak at 2θ = 9°, with small intensity was observed. It is 

obvious that excipients interfered between the co-crystals particles, led to a breakdown of 

some hydrogen bonds, and may have stopped the co-crystal formation. However, the 
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molecular structure of the co-crystal has been affected greatly by the addition of additives 

before and after compression. Furthermore, a new peak at 2θ = 12.14°, due to the additives, 

explains that excipients not just delayed or stopped the co-crystal formation but also 

changed the nature of the co-crystal structure.  

 

8.2.6. Effect of additives (MCC & α-lactose monohydrate) on the co-
crystal formation of caffeine/ malonic acid during compaction 
 
 
Figure 67 presents the XRPD patterns of the caffeine/ malonic acid system with excipients. 
 
 
 

 
Figure 67: XRPD spectra of the caffeine/ malonic acid system. 
 
 
As mentioned in this Chapter (Section 8.2.3, Figure 60), caffeine formed a co-crystal with 

malonic acid during compaction. The new peaks observed at 2θ = 16.2°, 18.28°, 22.45° 
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and 28° are similar to those of simulated patterns and that they are different from those of 

the physical mixture. 

 The data presented in Figure 67 show that after the addition of MCC & α-lactose 

monohydrate to the co-crystal, all new peaks of the co-crystal disappeared and the 

compound is likely to be amorphous. However, after tableting this mixture, there was no 

significant difference observed and spectra remained the same as before compression. 

These results indicated that the excipients not only stopped the formation of the co-crystal 

during tableting but also affected even the nature of the physical mixture by converting it 

into an amorphous form. 

8.3. Conclusion 
 
It can be concluded that it was possible to form co-crystal during compaction. For both of 

the urea/ 2-MB and caffeine/ malonic acid systems, the physical mixtures were found to 

form co-crystal by compression using a Compaction Studies Press. For both systems, the 

crystallinity increased with increasing compression force. By using The IR-Press, urea/ 2-

MB system showed no evidence co-crystal formation, while caffeine/ malonic acid system 

was found to form a co-crystal. However, the crystallinity decreased with increasing 

compaction loads. Furthermore, the excipients stopped the co-crystal formation of both 

systems during compression as indicated by XRPD.  

In the next chapter, we evaluate findings of the synthesis of the urea/ 2-MB and caffeine/ 

malonic acid co-crystals through convection mixing as a novel method of preparation of co-

crystals.  
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9. Co-crystal synthesis through convection mixing 

9.1. Introduction 
 

Historically physical mixtures are prepared by combining of two or more solid compounds 

using adequate agitation without the addition of any liquid (Harnby et al. 1989). In the 

context of drug development, this process may involve the combination of one or more 

drugs with one or more excipients. This technique is straightforward and adaptable and is 

carried out using different mixing mechanisms, e.g. tubular mixer, mortar, etc. The use of 

physical mixes of carriers and drugs is required as standards or a control, against which 

formulation systems (i.e. solid dispersions) are measured for improvements in 

physicochemical properties (Tantishiyakul et al. 1996). Additionally, physical mixes of 

carriers and drug have also been shown to induce molecular conformation changes of the 

API and this would lead to an improvement in dissolution profile without any further 

treatment of the physical mixes. 

Compared with melting, solvent depositions or co-grinding all of which induce strong 

molecular interaction between the active pharmaceutical ingredients (APIs) and carriers 

within delivery systems, mixing is less deemed energetic. In addition, processing using 

mixing systems has the advantages over solid dispersions in that the exposure of the drug 

molecules to mechanical stress, heat or solvent is avoided.  

In the context of new phase formation between powder components, the previously 

reported methods involved in the preparation of co-crystals using co-grinding, co-

precipitation, growth from the melt and slurry (Zaworotka 2005), all of which have 

combined mixing and attrition driven size reduction process.  
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In this study, we have separated the attrition size reduction step from the mixing step, and 

subsequently tracked the co-crystal formation during the physical mixing step. For this 

study, an investigation of the caffeine and urea drug co-crystal system and the APIs system, 

malonic acid and 2-methoxybenzamide (2-MB) was examined for co-crystal formation 

during a mixing step. For both molecular complexes, three different primary particle size 

fractions were employed of 20- 45μm, 75-125μm, and 180- 250μm. The impact of particle 

size of the components on co-crystal formation for both systems was monitored using 

XRPD, DSC, SEM, and Hot-stage microscopy. 

9.2. Cross-Reference to the methods 
 
For the methods relevant to this section, see Chapter 2, Section 2.4. 

9.3. Results and discussion 
 
 
The outcomes for both the urea/ 2-MB and caffeine/ malonic acid systems with regards co-

crystal formation from mixing pre-milled samples will be presented for each system and 

will follow powder x-ray evidence, micrograph evidence including hot stage and sorption 

studies respectively. 

9.3.1. XRPD Results of urea/ 2-MB co-crystal  
 
 
A visual inspection of the resulting diffractograms was undertaken to track any conversion 

of the components to co-crystal showed the following observations:  Figure 68 shows that 

there was no difference in XRPD spectra between the physical mixture and the starting 

materials. On the other hand, the co-ground- and co-precipitated mixtures showed new 
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XRPD peaks at 2θ = 9.0°, 14.9° and 18.9°, similar to those of the simulated patterns, and 

different from those of the physical mixture. 

 
 

 
 
Figure 68: XRPD patterns of the urea/ 2-MB co-crystal prepared by different 
methods (2θ = 9.0°, 14.9° and 18.9°). 
 

 

To ensure that only the particle size contributed to rate changes, the components were pre-

ground and sieved to specific particle size and then low-energy convection mixing was 

used to introduce the components together. 
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The progression of the co-crystal formation, from the sieved starting components, was 

monitored using X-ray powder diffraction for particle size fraction of 45μm, 125μm and 

250μm, as shown in Figures 69, 70 and 71, respectively.  

 

 
 
Figure 69: PXRD patterns of mixing system of the urea/ 2-MB for (20- 45μm) particle 
size fraction and different mixing times (30 min. to 14 days), (2θ = 9.0°, 14.9° and 
18.9°). 
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Figure 70: PXRD patterns of mixing system of the urea / 2-MB for (75- 125μm) 
particle size fraction and different mixing times (30 min. to 14 days), (2θ = 9.0°, 14.9° 
and 18.9°). 
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Figure 71: PXRD patterns of mixing system of the urea / 2-MB for (180- 250μm) 
particle size fraction and different mixing times (30 min. to 14 days), (2θ = 9.0°, 14.9° 
and 18.9°). 
 
 
 
 

For all size fractions examined, overall transformation can be seen in the diffractograms, as 

the same new XRPD peaks at 2θ = 9.0°, 14.9° and 18.9° were observed; as indicated by the 

circles (Figures 69, 70, 71). It is obvious that the positions of new peaks were different 

from those of the physical mixture and similar to those of co-ground, co-precipitated 

mixtures and the simulated patterns (Figure 59), indicating that urea may have formed a co-

crystal with 2-MB through mixing. The co-crystal started to form after 30 min. and the 

intensity of the new peaks increased with increasing mixing time for all size fractions. 
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However, the co-crystal formation for particle size fraction of 45μm was faster, compared 

with those for particle size fractions 125μm and 250μm. These findings reveal accelerated 

formation of the co-crystal upon convection mixing with decreasing initial particle size. 

Historically, systems with a submerged eutectic are found to have an accelerated formation 

as the particle size increases (Rastogi et al. 1963). This suggests that in our system the 

surface energetics of the particles are increased as particle size is reduced, thus favouring 

any surface aided processes. However, the possibilities with regards a mechanism driving 

the co-crystal formation may include submerged eutectics and the role of an amorphous 

state or uptake of water from the atmosphere (deliquescence) (Jayasankar et al. 2007), 

(Jayasankar et al. 2006), (Kuroda et al. 2004). However, in our system, not only amorphous state 

but also crystalline behaviour and polymorphic transition were present. . From observations of 

single crystal contact that will be discussed in Section 8.5, Figure 70 (components held 

together for 48 h at 25 °C on a hot-stage microscope) no conversion to the co-crystal phase 

was seen. 

9.3.2. XRPD results of caffeine/ malonic acid co-crystals 
 
Visual inspection of the resulting diffractograms was undertaken to track any conversion of 

the components to co-crystal and showed the following observations:  Figure 72 shows that 

there was no difference in XRPD spectra between the physical mixture and the starting 

materials. On the other hand, the co-ground- and co-precipitated mixtures showed new 

XRPD peaks at 2θ = 16.2°, 22.4°, 25.6 and 28°) similar to those of the simulated patterns, 

and different from those of the physical mixture. 
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Figure 72: XRPD patterns of the caffeine/ malonic acid co-crystal prepared by 
different methods (2θ = 16.2°, 22.4°, 25.6° and 28°). 
 

 

 

To ensure that only the particle size contributed to rate changes, the components were pre-

ground and sieved to specific particle size and then low-energy convection mixing was 

used to introduce the components together. 

The progression of the co-crystal formation, from the sieved starting components, was 

monitored using X-ray powder diffraction for particle size fraction of 45μm, 125μm and 

250μm, as shown in Figures 73, 74 and 75, respectively.  
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The 45μm particles converted within two days, the 125μm particles within 4 days and the 

250μm particles after 14 days. Overall transformation can be seen in the diffractograms as 

the physical mixture possesses a pair of peaks with a 2θ value of 27° whereas the co-crystal 

shows a single peak at 28°. The transformation is further characterized by the evolution of 

peaks at 16.2°, 22.4° and 25.6°. 

 

 

 
Figure 73: XRPD patterns of mixing system of the caffeine/ malonic acid for (20- 
45μm) particle size fraction and different mixing times (30 min. to 14 days), (2θ = 
16.2°, 22.4°, 25.6° and 28°).  
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Figure 74: XRPD patterns of mixing system of the caffeine/ malonic acid for (75-
125μm) particle size fraction and different mixing times (30 min. to 14 days), (2θ = 
16.2°, 22.4°,  25.6° and 28°). 
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Figure 75: XRPD patterns of mixing system of the caffeine/ malonic acid for (180- 
250μm) particle size fraction and different mixing times (30 min. to 14 days), (2θ = 
16.2°, 22.4°, 25.6° and 28°). 
 
 
 
 
 
 
It is already established that caffeine formed a co-crystal with malonic acid by both co-

grinding and co-precipitation (Trask et al. 2005b). Similar to the urea/ 2-MB system, the 

caffeine/ malonic acid system has successfully formed co-crystal during mixing. As shown 

in Figure 72, there was no difference in XRPD spectra between the physical mixture and 

the starting materials. On the other hand, the co-ground- and co-precipitated mixtures 
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showed new XRPD peaks at 2θ =16.2°, 22.4°, 25.6° and 28°, different from those of the 

physical mixture and similar to those of simulated patterns.  

For all particle size fractions of 45μm, 125μm and 250μm (Figures 73, 74, and 75), the 

same new PXRD peaks at 2θ = 16.2°, 22.4°, 25.6° and 28° were observed as indicated by 

the circles. It is obvious that peak positions of new peaks were different from those of the 

physical mixture, indicating that caffeine may have formed a co-crystal with malonic acid 

during mixing. Similar to the urea/ 2-MB system, the co-crystal started to form after 30 

min, and the intensity of the new peaks increased with increasing mixing time for all size 

fractions.  

However, the rate of co-crystal formation for size fraction of 45μm increased rapidly with 

time compared to those for size fractions of 125μm and 250μm. Even though, historically, 

systems with a submerged eutectic are found to have an accelerated formation as the 

particle size increases (Rastogi et al. 1963), the current findings suggest that on mixing, it is 

the resulting particle contact of the pre-milled crystals that contributes to co-crystal 

formation and with the observation that the rate of the process increases as the particle size 

decreases.  

9.4. Quantitative (peak width) analysis  
 
Having investigated the possible mechanism for co-crystal formation, the extent (kinetics) 

was examined using quantitative XRPD (Klug and Alexander 1970). 

The analysis was carried out by calculating the net areas of the relevant and significant 

resolvable peaks for the co-crystal and for the starting materials. Transformation was 

tracked using the ratio was obtained by dividing the area of the co-crystal by the area of the 

starting material (Area co-crystal/ Area st.material). Finally, the trajectory of transformation using 
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this peak area approach was presented by plotting the calculated ratio versus time (Klug 

and Alexander 1970). 

9.4.1. Quantitative (peak width) analysis of urea/ 2-MB mixing systems 

  
The quantitative peak width analysis of the mixing system of urea/ 2-MB using the co-

crystal/ 2-MB and the co-crystal/ urea are given in Figure 76 and Figure 77 respectively. 

 

 

 
Figure 76: Quantitative representation peak width analysis of the mixing system of 
urea/ 2-MB for different particle size fractions (time versus ratio of the co-crystal and 
the 2-MB). 
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Figure 77: Quantitative representation peak width analysis of the mixing system of 
urea/ 2-MB for different particle size fractions (time versus ratio of the co-crystal and 
the urea). 
 
 
 
To further explore the effect of particle size on the formation of co-crystals via contact in 

the solid-state, the ratio was higher for particle size fraction of 45μm than for particle size 

fractions 125μm and 250μm. On the other hand, by plotting mixing time versus ratio 

calculated from the peak areas of the co-crystal and the urea, the same result has been 

observed, and the ratio increases as the particle size decreases. This indicates that the 

smaller the size of the particles the greater the inter-particle contact and the faster the 

intermolecular interaction. In addition, the attractive forces between the particles increased 

with time during mixing; hence, an intermolecular interaction and hydrogen bonding 

between guest and host compounds were supposed to form in this manner. 
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9.4.2. Quantitative peak width analysis of caffeine/ malonic acid mixing 
systems 
 
 
The quantitative peak width analysis of the mixing system for caffeine/ malonic acid using 

the co-crystal/ caffeine and the co-crystal/ malonic acid are given in Figure 78 and Figure 

79, respectively.  

 
 

 
Figure 78: Quantitative representation peak width analysis of the mixing system of 
caffeine/ malonic acid for different particle size fractions (time versus ratio of the co-
crystal and the caffeine). 
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Figure 79: Quantitative representation peak width analysis of the mixing system of 
caffeine/ malonic acid for different particle size fractions (time versus ratio of the co-
crystal and the malonic acid). 
 
 
 
As show in Figures 78 and 79, the mixing time is plotted versus the ratio calculated from 

the peak areas of the co-crystal/caffeine, and the co-crystal/ malonic acid, respectively. The 

ratios of all particle size fractions increase proportionally with time. However, the increase 

was found to be faster for particle size fraction 45μm, than for particle size fractions 125μm 

and 250μm. This again, explains the effect of particle size on phase transformation in the 

solid-state, and in turn, on the hydrogen bond formation. 
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9.5. Results of hot-stage microscope of urea/ 2-MB system 
 
The hot-stage microscope has been developed as a technique for compound identification, 

molecular weight determination, purity testing, polymorphic analysis and determination of 

composition diagrams (Kofler and Kofler 1952), as well as to determine the co-crystalline 

phases that may form between two components (Davis et al. 2004). In this study, we used 

controlled heating microscope to explore the features of co-crystalline systems and the 

melting point diagram of binary mixtures. 

In order to identify phase behaviour between two components and rule out the effect of 

thermodynamic properties on co-crystal formation, mixed fusion or contact method was 

used to this end. 

As shown in Figure 80, when putting two particles of the host and the guest compounds 

(urea and 2-MB) close to each other under hot-stage microscope at room temperature, the 

micrograph of the system, after 30 min was similar to that after 48 h., which indicates that 

no conversion of the system into co-crystal has taken place after 48 h. These results suggest 

that the conversion via convection mixing favours any aided processes. 
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(A)                                                         (B) 

 

Figure 80: Hot-stage micrographs at room temperature of urea/ 2-MB system: (A) 
after 30 min. and (B) after 48 h. 
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The hot-stage micrographs at different temperatures of urea/ 2-MB system are presented in 

Figure 81. 
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Figure 81: Hot-stage micrographs of urea/ 2-MB system: Snapshots at different 
temperatures. 
 
 
 
From Figure 81, it can be seen that there are only solid phases at the temperatures 33.3 °C 

and 37.3°C. When the temperature was raised to 126.1 °C and 127.1 °C, the 2-MB started 

to melt, as it has the lowest melting point. At the temperatures 128.4 °C and 130.4 °C, the 

two eutectics are just visible as narrow black stripes near the center of the diagram with the 
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co-crystal phase between them. At increasing temperature by 137.3 °C, the two solid 

phases of the pure components are completely melted and the co-crystal is still solid. This 

shows that the urea/ 2-MB co-crystal has the higher melting point than either pure 

component. 

 

9.6. Results of hot-stage microscope of caffeine/ malonic acid system 
 
Similar to the urea/ 2-MB system, Figure 82 shows that both the hot-stage micrographs of 

the caffeine/ malonic acid system after 30 min. and 48 h. were the same and no change has 

occurred. This confirms that just a contact of coarse particles of host and guest compound 

did not bring about conversion into co-crystals; hence, mixing of size reduced particles 

through convection is the mechanism for transformation. 

 

 

   

(A)                                                      (B) 

Figure 82: Hot-stage micrographs of the caffeine/ malonic acid system: (A) after 30 
min. and (B) after 48 h. 



 174

By using a controlled heating microscope to explore the features of co-crystalline systems 

and the melting point diagram of binary mixtures, the schematic representation of the hot-

stage microscope in Figure 83 shows that at the temperatures 45.5 °C and 50.5 °C, only 

solid phases are detectable. Then, the malonic acid, which has the lowest melting point, 

started to melt at 103.7 °C. By raising the temperature to 120.1°C, the malonic acid was 

completely melted and the co-crystal is still visible as a narrow white stripe across the edge 

of the caffeine. At 136.7 °C, the co-crystal melted, while the caffeine was still solid. This 

situation shows that melting point of the co-crystal is an intermediate between the two 

starting materials. 
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Figure 83: Hot-stage micrographs of the caffeine/ malonic acid: Snapshots at different 
temperatures. 
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9.7. Scanning electron microscopy (SEM)  
 
To further explore the transformation and rule out the thermodynamic relationship between 

the co-crystal formation and the particle size, the SEM has been used for the starting 

materials and the mixing systems of urea/ 2-MB and caffeine/ malonic acid as shown in 

Figure 84 and Figure 85, respectively. 

9.7.1. Scanning electron microscopy (SEM) of urea/ 2-MB mixing 
system 
 

Figure 84 shows that the particles of starting materials were unchanged, as seen in the 

physical mixture. This is because in the physical mixture, the particles of the starting 

materials were pure and unmilled, and no phase transformation has occurred. On the other 

hand, all mixing systems that containing pre-milled particles show SEM micrographs 

different from that of the physical mixture. For all systems, the intact particles converted 

into rough and aggregated surfaces. These results suggest that a phase transformation has 

taken place during convection mixing, as the sizes of the particles are decreased. 
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(D) (F) 

 
 
Figure 84: SEM micrographs of the urea/ 2-MB system: (A) pure 2-MB, (B) pure 
urea, (C) the physical mixture, (D) mixing system 20- 45μm, (E) mixing system 75-
125μm, and (F) mixing system 180-250μm. 
 
 
 
 
 
 

9.7.2. Scanning electron microscopy (SEM) of caffeine/ malonic acid 
mixing systems 
 
Figure 85 shows that the particles of pure and unmilled components were unchanged, as 

seen in the physical mixture. On the other hand, all mixing systems, exhibited SEM 

micrographs different from that of the physical mixture. The particles were converted into 

fully aggregated surfaces, indicating that caffeine may have formed a co-crystal during 

mixing of the pre-milled components. 
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(D) (F) 

 
Figure 85: SEM micrographs of the caffeine/ malonic acid mixing system: (A) pure 
caffeine, (B) pure malonic acid, (C) the physical mixture, (D) mixing system (20- 
45μm, (E) mixing system 75-125μm, and (F) mixing system 180-250μm. 
 
 
 
 
 

9.8. Moisture sorption isotherms of the starting materials 
 
Moisture sorption isotherms are essential thermodynamic tools for the investigation of 

moisture sensitive materials; they relate the equilibrium water content of the sample 

material to the water activity by exposing the sample to a range of relative humidities while 

monitoring   the change in mass.  Sorption isotherms can be used to identify the solid-state 

difference in chemically identical substances or to study important structural changes such 

as recrystallisation. Moisture sorption is one of the most sensitive techniques for the 

investigation of amorphous content with a detection cut off of 1% w/w. Moisture sorption 

isotherms can be obtained by static gravimetric methods using saturated salt solutions, 

which generate the desired relative humidity.  
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Concerning the role of an amorphous phase in co-crystal formation through mixing the pre-

milled materials, the XRPD and DSC did not show the presence of such a phase. To this 

end, the moisture sorption isotherm has been determined for the starting materials to rule 

out the presence of sub-micron surface domains of amorphous material due to milling.  

The current findings suggest that on mixing it is the resulting particle contact of the pre-

milled crystals that contributes to the co-crystal formation with the observation that the rate 

of the process increases as the particle size decreases. This also suggests that the sub-

micron detail of the surface would yield an insight into the driver of solid-state co-crystal 

formation. This approach does not rule out contributions from surface defects arising from 

milling, which generate amorphous or polymorphic surface zones, or water droplets on the 

surface of a drug particle, which can then contribute to conversion. The issue of localized 

surface phases have been previously reported with regards physical transformation of 

pharmaceutical ingredients through drug surface conversion, from amorphous, hydrate and 

polymorph sites generated by milling (Price and Young 2005).  

For these reasons, the analysis of starting materials (caffeine, malonic acid, urea and 2-MB) 

through sorption has been carried out to determine the rate enhancement associated with 

these classes of sites as presented in Figures 86, 87, 88, and 89, respectively. 
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Figure 86: Sorption isotherms for a freshly milled sample of caffeine. 
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Figure 87: Sorption isotherms for a freshly milled sample of malonic acid. 
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Urea
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Figure 88: Sorption isotherms for a freshly milled sample of urea. 
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Figure 89: Sorption isotherms for a freshly milled sample of 2-MB. 
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Figure 90: XRPD of 2-MB, before and after moisture sorption. 
 
 
 
 
 
As presented in Figures 86, caffeine shows crystalline behaviour, as the weight increase 

against relative humidity, was very small. On the other hand, both urea and malonic acid 

(Figure 87 and Figure 88, respectively) exhibit some amorphous behaviour, as the weight 

of both dramatically increased above 60%RH. Finally, the isotherm of the 2-MB (Figure 

89) is indicative of polymorphic transition with atmospheric moisture (Figure 90). This 

explains the role of surface phases arising from milling with regards to physical 

transformation of pharmaceutical ingredients through drug surface conversion, from 

amorphous, hydrate and polymorph sites generated by milling (Price and Young 2005). 
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However, in the case of caffeine, milling of the particles has not brought about any phase 

transformation.  

9.9. Discussion and conclusion  

This study demonstrated our finding of co-crystal synthesis through convection mixing. We 

investigated caffeine and urea as model APIs, and malonic acid and 2-methoxybenzamide 

(2-MB) respectively, as co-crystal formers. In both systems, three different size fractions 

20- 45μm, 75-125μm, and 180- 250μm have been selected. Assessment of the 

transformation indicated that, typically, the co-crystals started to form after 30 min., as 

reflected in the intensity of the new peaks of XRPD spectra and increased with time. 

However, the co-crystal formation rapidly increased for size fraction 20- 45μm as the initial 

particle size accelerates the formation of co-crystal during convection mixing. Further 

investigations have been made to explore and rule out the thermodynamic relationship 

between co-crystal formation and particle size. In the SEM, there was no conversion 

observed for the pure mixture while conversion was observed for mixtures that contained 

pre-milled particles. The results of the hot-stage microscope study using Koffler and 

Koffler method indicated that for single crystal contact (components held together 48 h at 

25 °C) no conversion to the co-crystal was seen, while conversion occurred at higher 

temperatures. The moisture sorption isotherm has also been used for the starting materials 

to rule out the presence of sub-micron surface domain of amorphous or polymorphic 

properties due to milling. The possibilities with regards a mechanism driving the co-crystal 

formation may include submerged eutectics, role of an amorphous state or uptake of water 

from the atmosphere (deliquescence) (Jayasankar et al. 2007), (Jayasankar et al. 2006), 

(Kuroda et al. 2004). However, in our system, not only amorphous state but also crystalline 
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behaviour and polymorphic transition were present. Additionally, in both systems, the DSC 

data show that physical mixtures form co-crystal during the heating process, indicating the 

presence of sub-micron surface domains of amorphous material due to milling, as 

previously reported to these factors to contribute (Jayasankar et al. 2006), (Jayasankar et al. 

2007), (Rastogi et al. 1963). 

It is concluded that the thermodynamic picture of the co-crystallization process and 

optimization of the kinetic effect are linked to the phase transformation during mixing. 

These kinetic factors were significantly important for the co-crystal formation by solid- 

state grinding. The data demonstrated that the acceleration of co-crystal formation 

accompanied a reduction in particle size, if pre-milling and low energy mixing of the 

component is undertaken. 

The current findings suggest that on mixing it is the resulting particle contact of the pre-

milled crystals that contribute to co-crystal formation. However, initial particle size 

accelerated the formation of co-crystal upon convection mixing and the surface energetics 

of the particles are increased as particle size is reduced. The data revealed a link between 

the polymorphic behaviour of the components and the co-crystallization process. Further, 

the kinetics factors were found to play a significant role in co-crystal formation by solid-

state grinding, as the investigation has shown that the acceleration of co-crystal formation 

accompanies a reduction in particle size, if pre-milling and low-energy mixing of the 

components is undertaken. 
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10. General discussion and suggestion for future work 

10.1. Discussion 
 
Pharmaceutical co-crystallization is emerging as an attractive alternative to polymorphs, 

salts and solvates in the modification of an active pharmaceutical ingredient (API) during 

dosage form design. The physicochemical properties of the API and the bulk material 

properties can be modified, whilst maintaining the intrinsic activity of the drug molecule. 

The aim of this thesis was to study in depth the impact of the co-processing of drugs and 

co-crystal formers on the pharmaceutical performance of a medicinal agent. Pharmaceutical 

co-crystals have been studied by other researchers in the perspective of crystal engineering 

but have not been widely investigated in detail for drug formulation. In the first stage, the 

model drugs and the co-crystal formers were chosen, and the preparation of co-crystals was 

carried out using different methods of preparation (e.g. co-grinding, co-precipitation and 

hot stage temperature). In addition, other novel methods (e.g. convection mixing and 

compaction) have been tried to produce co-crystals. After the preparation of the co-crystals, 

intensive investigations had been carried out to characterize the new compounds using 

different techniques such as X-ray powder diffraction, Raman spectroscopy, DSC, TGA, 

SEM, and hot-stage microscopy. 

Furthermore, intensive investigations had been carried out to evaluate the effect of co-

crystallization of different systems on the pharmaceutical performance of a drug material, 

using different tableting parameters. These included the calculations of tensile strength of 

compacts to determine the compactibility. In addition, the raw compaction data and Heckel 

plots have been processed to calculate the yield pressure values and elastic recovery for 

evaluation of the compressibility of powders. All these parameters have been compared for 
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the different methods of preparation of the co-crystals and the physical mixtures. As a 

result, detailed information was made on the tableting behavior of the different mixtures 

and the different systems.  

The objectives of this thesis were thus: 

1. To study the effect of co-processing two drugs or a drug-excipient mix on the 

crystallographic and solid- state properties and behaviour using model drug substances and 

different co-crystal formers. 

2. To study the manipulation of the solid-state properties of drugs through different 

methods such as dry-and wet grinding and co-precipitation. 

3. To find out other methods of co-crystallization such as compression and mixing). 

4. To evaluate the impact of the additives microcrystalline cellulose (MCC) and α-lactose 

monohydrate on crystallinity of co-crystals, the delay of formation of co-crystals during 

tableting and subsequent tableting behaviour. 

5. To investigate the subsequent effect of the modification of the solid-state properties of 

the model drug on the overall mechanical and deformational characteristics. 

 

Chapter 3 examined the solid-state characterization of urea/ 2-MB co-crystals prepared by 

co-grinding and co-precipitation methods. In addition, the tableting properties of different 

mixtures of the system were evaluated. All analytical techniques utilized in this research 

confirmed the formation of urea/ 2-MB co-crystal via both co-grinding and co-precipitation 

methods. However, the co-ground mixture exhibited a small intensity of the new peaks in 

the X-ray powder diffraction compared with the co-precipitated mixture. This was due to 

grinding, as it is known to decrease the XRPD peaks intensity (Oguchi et al. 2000). Further, 

the DSC traces showed that the physical mixture exhibited an endothermic peak at 136°C, 
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similar to that of the co-ground mixture, which was indicative of formation of a co-crystal 

during the heating process. The co-precipitated mixture had prism-like crystals, while the 

co-ground mixture exhibited aggregated particles as shown in the SEM micrographs. This 

is believed to be due to crystallization conditions, as they were found to have an impact on 

the crystal morphology (Hiestand et al. 1981). 

The compaction data revealed that the tensile strength of compacts produced from the co-

ground mixture was greater compared with either the co-precipitated or the physical 

mixture. However, good compact tensile strength may be due to the particle size reduction 

achieved by grinding, as the small size generally has good compactibility (McKenna and 

McCafferty 1982; Morishima et al. 1994).  

The Heckel data suggested that the urea/ 2-MB systems are Type 1 materials, as an 

extensive linearity during compression is indicative of a plastic deformation mechanism. 

However, the co-precipitated mixture possessed the greatest value of yield pressure, which 

indicated that the densification process by particle deformation is poorer than in other 

mixtures. This indicated that the co-precipitated mixture was the least compressible, as the 

plastic deformation decreased with increasing yield pressure. On the other hand, the co-

ground mixture was the most compressible. These results were consistent with the 

compaction results as the most compactible was the most compressible (Yoshinari et al. 

2003).  

In Chapter 4, caffeine was co-crystallized with malonic acid through both co-grinding and 

co-precipitation. The co-crystals were characterized using XRPD, Raman spectroscopy, 

DSC, and SEM. Similar to the urea/ 2-MB system, the co-ground mixture XRPD spectra 

showed small intensities compared with those of the co-precipitated mixture, resulting from 

grinding. The Raman spectra of the co-ground mixture were the same as those of the co-
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precipitated mixture. On the other hand, the DSC traces of the system showed that the 

physical mixture formed co-crystals during the heating process, as indicated by 

endothermic peak at 132.3°C, similar to that of the co-ground mixture. Further, the SEM 

images revealed that the co-precipitated mixture possessed prism-like crystals, while 

aggregated particles had been shown in the co-ground mixture.  

The tableting results of the caffeine/ malonic acid system showed that the co-ground 

mixture was the most compactible among all other mixtures, as reflected by higher values 

of the tensile strength. The Heckel plots clearly indicated that this system had undergone 

plastic deformation, similar to Type 1 materials. The compaction processes were proceeded 

by deformation rather than fragmentation of particles, as observed for sodium chloride 

(McKenna and McCafferty 1982). However, the co-precipitated mixture showed the best 

compressibility compared with both co-ground and physical mixtures, as indicated by the 

highest slope of the Heckel plot and the smallest yield pressure. Although the co-ground 

mixture was the most compactible among all the mixtures, the co-precipitated mixture 

showed the best ductility. This indicated that the yield strength was more a material 

property for this system and it was not affected greatly by the morphology of the crystals. 

 

Chapter 5 presents the co-crystallization of caffeine/ oxalic acid system and its subsequent 

effect on tableting properties. The XRPD, Raman spectroscopy, SEM, and DSC confirmed 

the formation of the co-crystal by both co-precipitation and co-grinding methods. However, 

the DSC traces of the caffeine/ oxalic acid system showed that both co-ground- and co-

precipitated mixtures exhibited two endothermic peaks at 209 °C and 236°C, respectively. 

This suggested that the melting point caffeine/ oxalic acid co-crystal is 209 °C. The second 

endothermic peak at 236°C is thought to be due to degradation and not the melting point of 
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the caffeine (see TGA and DSC of caffeine in Figure 32). This is in agreement with the 

literature, as it has been reported that the endotherm of caffeine between 225°C-320°C is 

due to fusion and evaporation, respectively (Colacio-Rodriguez et al. 1983). Similar to the 

urea/ 2-MB and caffeine/ malonic acid systems, which have been discussed in Chapter 3 

and Chapter 4 respectively, the physical mixture of caffeine/ oxalic acid was found to form 

a co-crystal during the heating process, as indicated by the same melting point of both co-

ground-and co-precipitated mixtures (209 °C).  

In contrast to the caffeine/ malonic acid system (Chapter 4), the physical mixture of the 

caffeine/ oxalic acid system showed the best compactibility compared with either the co-

ground or co-precipitated mixture. On the other hand, tablets of the co-precipitated mixture 

showed the lowest values of tensile strength and thus the smallest compactibility. The 

reason for this is understandable, as the needle-like crystals of the co-precipitated mixture 

are less dense and possess less contact points between them, which may have resulted in 

smaller compactibility compared with other mixtures. The Heckel plots clearly indicated 

that the caffeine/ oxalic acid system is similar to Type 2 materials, as the densification up to 

a value of 30 MPa compression pressure occurred by fragmentation. Beyond this point, the 

particles deformed plastically, as indicated by perfect linearity. However, the co-ground 

mixture possessed the highest value of yield pressure and thus the smallest compressibility 

among all mixtures. In addition, the co-ground mixture was found to have the smallest 

particle slippage (D0 = 0.397) compared with those of the co-ground or physical mixture. 

This indicated that the co-ground mixture was the least compressible, as the plastic 

deformation decreased with increasing yield pressure. The co-precipitated mixture, on the 

other hand, showed the best compressibility as indicated by the lowest value of the yield 

pressure. This may have resulted from its needle-like crystals, as it has been reported by 
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Garekani and co-workers (1999) that the compressibility (using the Heckel-plot) of 

polyhedral crystal was greater than that of thin plate-like crystal.  

 

Chapter 6 presents findings of solid-state characterization of theophylline/ malonic acid co-

crystal and the impact of the co-crystallization of this system on the tableting properties. 

The XRPD, Raman spectroscopy, DSC and SEM revealed a co-crystal formation via both 

co-grinding and co-precipitation. However, the co-precipitated mixture showed a small 

peak at 2θ= 7.3°, corresponding to theophylline hydrate, was indicative of a co-crystal 

hydrate formation. These results are in agreement with results already published by Trask 

and co-workers (2005). Tablets produced from the co-ground mixture showed higher values 

of tensile strength compared to those of co-precipitated and physical mixture. However, the 

co-ground mixture possessed the greatest value of yield pressure, which indicates that the 

densification process by particle deformation is poorer than in other mixtures. In addition, 

the co-ground mixture exhibited the smallest particle slippage (D0 = 0.489) compared to 

those of the co-precipitated or physical mixture. 

 

The effect of excipients (MCC & α-lactose monohydrate) on the structure, formation of 

urea/ 2-MB & caffeine/ malonic acid co-crystals, and subsequent tableting behaviour were 

investigated in Chapter 7. It was obvious that MCC and α-lactose monohydrate exerted a 

significant change in the crystal structure of co-crystals of urea/ 2-MB and caffeine/ 

malonic acid systems, as shown in the XRPD and the SEM micrographs. The crystallinity 

of both co-crystal systems dramatically decreased with the addition of these excipients, as 

reflected in the reduced intensities of the peaks of XRPD patterns. However, the rate of 

decrease in the intensities was higher for the co-ground mixtures of both systems compared 
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with that of the co-ground mixtures. Furthermore, the compactibility of compacts produced 

from all mixtures of the two systems was found to increase dramatically after the addition 

of MCC and α-lactose monohydrate, however, the compactibility of the co-ground mixture 

containing excipients was always greater than that of the co-precipitated mixture containing 

excipients. On the other hand, the compressibility of all mixtures decreased after the 

addition of MCC and α-lactose monohydrate. 

 

Chapter 8 presents findings of co-crystal formation for the urea/ 2-MB and caffeine/ 

malonic acid systems. It concluded that it was possible to form a co-crystal during 

compaction, as demonstrated by XRPD. For both the urea/ 2-MB and caffeine/ malonic 

acid systems, the physical mixtures were found to form co-crystals by compression using a 

Compaction Studies Press. The peak positions of the new peaks were similar to those 

obtained by co-grinding and co-precipitation methods, as discussed in Chapter 3 and 

Chapter 4. For both systems, the crystallinity increased with increasing compression force. 

When using the IR-Press, the urea/ 2-MB system showed no evidence co-crystal formation, 

while the caffeine/ malonic acid system was found to form co-crystal. However, the 

crystallinity decreased with increasing compaction loads, as reflected in the intensity of the 

new peaks that decreased with increasing the compression force. 

 

 Chapter 9 presents findings of co-crystal synthesis through convection mixing. For this 

study, we investigated caffeine and urea as model APIs, and malonic acid and 2-

methoxybenzamide (2-MB) respectively, as co-crystal formers. In both systems, three 

different size fractions 20- 45μm, 75-125μm, and 180- 250μm have been selected. 

Assessment of the transformation indicated that, typically, the co-crystals started to form 
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after 30 min., as reflected in the intensity of the new peaks of XRPD spectra, increasing 

with time. However, the co-crystal formation increased rapidly for the size fraction 20- 

45μm, as the initial particle size accelerated the formation of the co-crystal during 

convection mixing. Further investigations have been made with the hot stage microscope 

using the Koffler and Koffler method. The results of this were consistent with the DSC 

results in Chapter 3 and Chapter 4 for urea/ 2-MB and caffeine/ malonic acid systems, 

respectively.  

It can be concluded that the thermodynamic picture of the co-crystallization process and 

optimization of the kinetic effect are linked to the phase transformation during mixing. 

These kinetic factors were significantly important for the co-crystal formation by solid- 

state grinding. The data demonstrated that the acceleration of co-crystal formation 

accompanied a reduction in particle size, if pre-milling and low energy mixing of the 

component was undertaken. 

In conclusion, within this thesis, XRPD, Raman spectroscopy, DSC, TGA, SEM, and hot 

stage microscope revealed excellent means of solid-state characterization of urea/ 2-MB, 

caffeine/ malonic acid, caffeine/ oxalic acid and theophylline malonic acid co-crystals. The 

co-crystallization of these systems showed a significant impact on the tableting behaviours. 

However, each system revealed different compression properties. In addition, the addition 

of MCC and α-lactose monohydrate exercised a significant effect on the crystal structure, 

compaction behaviour, and deformational characteristics of the co-crystals. Furthermore, 

novel methods of synthesis of pharmaceutical co-crystals through convection mixing and 

via compaction seem to be a promising and may open a new avenue in the pharmaceutical 

industry. However, more investigation of these novel types of co-crystal synthesis may be 

required. 
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10.2. Suggestions for future work 
 

1. Perform dissolution testing on tablets produced from the co-crystals to evaluate the 

effect of co-crystallization on the dissolution rate of a drug material. 

2. Investigation of other model drugs and co-crystal formers, for the preparation of co-

crystals during compaction. Different particle size fractions could be used to explore 

the effect of particle size on intermolecular interaction and hydrogen bond 

formation. Furthermore, the surface energetic properties of the starting components 

could be investigated to explore its effect on the rate of conversion and co-crystal 

synthesis through compaction. 

3. The ability of physical mixtures to form co-crystals during a heating process could 

be intensively investigated, using a modulated Differential Scanning Calorimetery 

(DSC). 

4. Convection mixing gave good results in synthesizing co-crystals, depending on 

particle size and mixing time. Further investigation of the degree of crystallinity and 

determination of the amorphous content is required. This can be performed by using 

moisture sorption temperature and/ or DSC. 

5. The co-processing of the produced co-crystals with microcrystalline cellulose and 

α-lactose monohydrate revealed interesting results in decreasing the crystallinity 

and delaying the formation of co-crystals during compaction. Further investigation 

would be required to evaluate this effect. Different percentages of these excipients 

or other excipients could be used for this study. 

6.  For direct compression, the homogeneity of mixing of pharmaceuticals and 

excipients is crucial in the manufacturing processes. This will affect quality, 
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efficacy and safety of a drug material. Therefore, evaluation of the mix is required 

to avoid fluctuation of crystal shapes, as this will affect compatibility of the tablets 

and compressibility of co-crystallized powders. 

7. The compaction conditions such as reproducibility of the tableting machines, filling 

of powders and the setting of tableting parameters during compaction should be 

optimized, as these may affect the quality of products.  
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