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Abstract:    

Skin pigmentation is directed by epidermal-melanin units, characterized by long-lived and 

dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to 

contribute melanin to the epidermis. Previously we reported that MC:KC contact is required 

for melanosome transfer, that this can be enhanced by filopodial and by UVR/UVA 

irradiation, which can up-regulate melanosome transfer via Myosin X-mediated control of MC 

filopodia. Both MC and KC express Ca2+-dependent E-cadherins. These homophilic 

adhesion contacts induce transient increases in intra-KC Ca2+, while ultraviolet radiation 

(UVR) raises intra-MC Ca2+ via calcium selective ORAI1 ion channels; both are associated 

with regulating melanogenesis.  

However, how Ca2+ triggers melanin transfer remains unclear, and here we evaluated the 

role of E-Cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in 

human epidermis variably express filopodia-associated E-Cadherin, Cdc42, VASP and β-

catenin, all of which were upregulated by UVR/UVA in human MC in vitro. Knockdown of E-

cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and 

melanin transfer. Moreover, Ca2+ induced a dose-dependent increase in filopodia formation 

and melanin transfer, as well as increased β-catenin, Cdc42, Myosin X, and E-Cadherin 
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expression in these skin cells. Together these data suggest that filopodial proteins and E-

Cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca2+ 

availability, are required for filopodia formation and melanin transfer. This may open new 

avenues to explore how Ca2+ signalling influences human pigmentation. 

Key words:  melanocytes, keratinocytes, filopodial, melanin transfer. 

Introduction: 

Skin pigmentation, a critical phenotypic adaptation for ultraviolet radiation (UVR)-drenched 

terrestrial life, is dependent on the activity of cutaneous melanocytes (MC). This 

subpopulation of neural crest-derived cells migrates during embryogenesis to the 

integument’s epidermis and hair follicles. There they engage in the rather special and still 

mysterious process of synthesizing melanin within MC-specific lysosome-related organelles 

called melanosomes, only to then transfer these granules to surrounding receptor 

keratinocytes (KC) of the epidermal melanin unit (KC) (1-5). The manner in which melanin 

granules are ‘donated’ to and accumulate in neighboring KC remains unclear, as does the 

process by which melanin distributes within the stratified epidermis to provide optimal 

protection. The sum of the available evidence suggests that multiple overlapping intracellular 

processes are involved in melanosome transfer, and that factors in MC and KC are involved 

in co-regulating this. Several hypotheses have been proposed including: (i) cytophagocytosis 

of MC dendrite tips (6) (ii) exocytosis of melanosomes and their subsequent uptake via 

phagocytosis into KC (7-9) (iii) shedding of melanosome-rich ‘packages’ by MC and their 

subsequent phagocytosis by KC (10-12) and most recently (iv) filopodia-mediated 

melanosome transfer (13-18). However the underlying regulatory and signalling pathways 

involved in melanin transfer remain poorly defined and this is the subject of the current 

study.   

Originally proposed by Scott and colleagues in 2002 (13), we extended and developed the 

concept of the filopodial mode of melanin transfer to propose in 2010 a ‘filopodial-

phagocytosis model’, to reveal an actual mechanism by which melanosomes can be finally 

donated to KC (16). MC are highly dendritic cells both in situ and in culture, and both 

dendrites and filopodia are important for melanosome transfer to KC (11,13,14,16,19). 

Autocrine or paracrine factors influence melanosome transfer, and it was demonstrated that 

alpha-melanocyte stimulating hormone (αMSH), Prostaglandin E2 (PGE2) and Bone 

morphogenetic proteins (BMPs) are all major participants in the response of MC to UVR, 

mediating the melanogenic response and melanin transfer to KC by promoting filopodial 
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melanin delivery (including maturation of melanosomes, filopodia formation, and broadening 

of filopodial diameter) (15, 20-22).  

Our current view, which we develop here in this current study, is that direct cell-cell contact 

between MC and KC is a required for optimal melanosome transfer. Specifically, both MC 

and KC express E type (i.e., epithelial) cadherins, a family of glyocoproteins expressed in 

the basal layer of epidermis and involved in MC-KC interaction (23). A role of E-cadherin in 

melanosome transfer is suggested by the loss of MC and KC contact in the acanthalytic 

lesions of Darier’s disease (24), which results in disrupted pigment transfer. These 

hypopigmented lesions exhibit ‘empty’ KC, despite being surrounded by melanosome-filled 

MC dendrites (25). Cadherins are present over the entire cell surface, including filopodia and 

the lamellipodia leading edge. Their concentration at contact sites increase shortly after a 

cell makes contact with another cell, where they cluster to form higher order structures (26). 

Moreover, the extracellular domains of E-cadherin binds calcium (Ca2+), which results in a 

conformational change that promotes the homophilic interaction with E-cadherin on an 

adjacent cell (27). Meanwhile, the intracellular domain of E-cadherin contains a highly-

phosphorylated region vital for β-catenin binding, such that E-cadherin function depends on 

β-catenin regulating actin-containing cytoskeletal filaments (28). Initiation of E-Cadherin-

mediated cell-cell attachment also activates the master filopodial regulator Cdc42 (29). 

Active Cdc42 inhibits β-Catenin degradation, and so can control many aspects of cell 

differentiation in skin (30). Moreover, cellular studies have suggested these proteins are 

important regulators of actin assembly and cell motility. For example, Ena/VASP proteins 

control filopodial dynamics in epithelia by remodeling the actin network in response to 

cadherin expression, and so provides an additional filopodial target for analysis in MC (31).  

In the current study we address several fundamental questions relating to how E-cadherin 

mediates UV-induced melanin transfer, including: does E-cadherin regulate melanin transfer 

from MC to KC by altering MC filopodia formation? Does UVR and Ca2+ modulate the 

expression of major filopodial components like E-cadherin, β-catenin, Cdc42, MyoX and 

VASP to promote MC filopodia formation and melanin transfer to KC? Which signalling 

pathways (s) is/are used by UVR to regulate filopodia formation of MC and melanin transfer 

to KC in human epidermal skin cells?   
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Results and Discussion:  

Expression of filopodia-associated proteins in human skin 

Immunofluorescence analyses revealed intense plasma membrane and diffuse cytoplasmic 

expression of E-cadherin throughout the human epidermis (Fig. 1Ai). Both KC and MC 

exhibited E-cadherin expression. To investigate where filopodia-associated proteins are 

localised in human skin, tissue sections were immunostained with antibodies to β-catenin, 

Cdc42, VASP and (Fig. 1Aii-iv). β-catenin displayed marked cell surface expression in all 

layers of the epidermis with lower expression in the most superficial differentiated layers 

(Fig. 1Aii). Both KC and MC exhibited β-catenin expression. Thus, both E-cadherin and β-

catenin expression were detected on the cell membrane of skin cells, reflecting their roles as 

adhesion proteins, their association with basement membrane zone desmosomes (32), and 

in the case of β-catenin a role as a nuclear transcription factor (30). 

By contrast, the small Rho family GTPase Cdc42 displayed a diffuse cytoplasmic expression 

throughout the entire epidermis, including KC and MC (Fig. 1Aiii), with additional striking 

nuclear expression in many KC and MC, and along the basement membrane zone in direct 

contact with the dermis compartment of the skin. This small GTPase participates in 

cytoskeletal rearrangement to induce filopodia formation in human MC, and expression of 

this master regulator of filopodia formation is increased after UVR/UVA exposure (16). Our 

results indicate that normal human epidermis is a prominent location for the expression of 

this key regulator of signaling pathways that control a very diverse array of cellular functions, 

including those that regulate assembly and rearrangement of actin cytoskeleton to mediate 

cell-cell adhesion, communication (e.g., via filopodia) and migration (29).  

It has previously been reported that Ena/VASP proteins control filopodial dynamics in 

epithelia by remodeling the actin network in response to cadherin expression (31). We 

therefore were keen to assess if VASP (vasodilator-stimulated phosphoprotein) protein was 

expressed by both KC and MC in normal human epidermis. VASP expression was highest in 

the basal and suprabasal layers of the epidermis, being concentrated in the perikaryon of the 

cells (Fig. 1Aiv), and was weaker and more diffuse in the differentiated KC of the upper 

epidermal layers. The elevated perinuclear/cytoplasmic expression of VASP in cells of the 

epidermal-melanin unit, places this key regulator at the site of most active MC:KC 

communication and interaction.   
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UV regulates the expression of filopodia-associated proteins in human 

epidermal melanocytes in vitro 

Cellular E-cadherin molecules interact with the actin cytoskeleton via their intracellular 

domain and are enriched in the dense F-actin networks of filopodia (33). We have shown 

previously that UV can induce filopodia formation of MC, and also melanin transfer to KC, by 

up regulating the expression of filopodial-associated proteins MyoX and Cdc42 (16). To 

investigate the effect of UVR on E-Cadherin and on filopodia-associated proteins (including 

β-catenin, Cdc42 and VASP), cultured primary MC were irradiated with 25mJ/cm2 for 6 hrs 

and protein expression were assessed by immunofluorescence analysis. Our data shows 

that E-Cadherin and all filopodia-associated proteins tested showed increased cytoplasmic 

and nuclear expression patterns after 25mJ/cm2 UVR treatment (Fig. 1Bi-iv).  

It has previously been reported that members of the Rho family can modulate E-cadherin 

function, and that E-cadherin can then activate Cdc42 expression, which demonstrates bi-

directional interactions between the Rho- and E-cadherin signaling pathways (29). Therefore 

when MC E-Cadherin and Cdc42 are co-activated by UVR that pathways can then engage in 

bi-directional interactions to induce filopodia formation. Moreover, KC:MC intercellular 

contacts will activate the intracellular domain of E-cadherin to regulate various signaling 

proteins via E-cadherin’s multiple interaction sites, and form stable linkage with the actin 

cytoskeleton through β- and α-catenins (34). UVR is known to induces β-catenin expression 

in KC (35), and we report here that UVR upregulates β-catenin in human MC (Fig. 1Bii). 

Interestingly, the expression of an additional actin polymerization factor in filopodia, for 

example Ena/VASP involved in promoting long, unbranched actin filaments (36), was also 

induced by UVR in human MC (Fig. 1Biv).  

E-cadherin mediates UVR-induced melanocyte filopodia formation and melanin 

transfer in human skin cells in vitro 

Physical interactions between MC and KC plasma membranes are known to induce a 

transient intracellular Ca2+ signal in KC that is required for pigment transfer (37). However, 

the mechanism by which Ca2+ signaling triggers melanin transfer has not yet been clarified. 

Ca2+ regulation is crucial for melanogenesis, but given its key second messenger role in 

driving epidermal differentiation (38) may also influence filopodial protein expression/ 

filopodia formation, and so melanin transfer. Thus, we sought to determine whether Ca2+ 

may regulate filopodia formation in epidermal MC, and subsequently to promote melanin 

transfer to epidermal KC via its effect on E-cadherin. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

To investigate the effects of E-cadherin on melanin transfer and filopodial formation in vitro, 

siRNA knockdown of E-cadherin was used to investigate filopodia formation after UVR 

stimulation of MC. Treatment of MC with E-cadherin siRNA resulted in a marked reduction in 

filopodia formation as visualized by SEM compared to control-treated cells (Fig. 2A). This 

reduction in filopodial was also noted even after UVR stimulation. Thus, knockdown of Ca2+-

dependent E-cadherin demonstrated that E-cadherin is important for filopodia formation, and 

this occurs centrally as UVR-stimulation alone was not sufficient to recover filopodia 

formation in the absence of E-Cadherin.  

To investigate how the reduction in filopodia formation affected melanosome transfer to KC, 

matched KC:MC co-cultures were established after E-cadherin knockdown in both MC and 

KC. E-cadherin knockdown resulted in a 50-fold reduction in melanosome transfer between 

the partner skin cell types, despite 25mJ/cm2 UVR stimulation (Fig. 2B,C) compared to 

control cultures. UVR stimulation of E-cadherin-intact resulted in an almost 100-fold increase 

in transfer. These findings suggest that E-cadherin expression and function is important for 

melanin transfer, and is also centrally involved in UVR-induced melanin transfer. 

Interestingly, Jiang and co-workers (39) have reported that UVR irradiation of human 

epidermis can result in precipitation of calcium in the upper epidermis, and increase cytosolic 

calcium in the lower dermis, reflecting alteration of the calcium gradient in the human 

epidermis (39). It is also possible that UVR-associated changes in epidermal calcium 

distribution may reflect a perturbation of the epidermal barrier induced by UVR irradiation.  

Ca2+ induced melanocyte filopodia formation and melanin transfer in human 

skin cells in vitro  

To confirm the role of cadherin in filopodia formation and in melanin transfer, we approached 

this more directly by evaluating the impact of different concentrations of calcium ions added 

extracellularly on MC filopodia formation and melanin transfer in MC:KC co-cultures. We 

chose to use Ca2+ ions as Ca2+ ions bind to the ectodomain of E-cadherin transmembrane 

glycoprotein in the extracellular space to activate E-Cadherin (28). Cells incubated with 

increasing Ca2+ concentrations (from 0.1 - 0.25 mM) increased both MC filopodia formation 

(Fig. 3A) and gp100-positive melanosome transfer in KC/MC co-cultures (Fig. 3B,C). 

However, higher concentrations of Ca2+ (i.e., 0.5 mM) produced only a marginal increase in 

both phenotypic effects, and Ca2+ at 1mM inhibited the cultures. These results confirmed that 

Ca2+ can indeed influence both filopodial formation and melanosome transfer in MC:KC co-

culture in vitro. It is known that in the presence of Ca2+, E-Cadherin undergoes interaction 

with another E-Cadherin molecule on neighbouring cells to make MC:KC and in KC:KC 

active interaction sites possible, and ultimately triggering intracellular cell signaling to 
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promote filopodial proteins expression (28, 40) and thus promoting melanin transfer to KC 

via this route (among others). These findings concur with knowledge of gradients in calcium 

concentration that increase from 0.5mM (basal layer) to over 1.4mM in the upper epidermis 

(e.g., stratum granulosum). This gradient is critical for epidermal homeostasis (42). 

Specifically, normal epidermal homeostasis, in the context of KC, requires the expression of 

calcium binding proteins, like cadherins, to facilitate the terminal differentiation of KC (41). In 

psoriasis, where the barrier is defective, there is a global increase in calcium content (42).  

We have found that high concentration of Ca2+ at 1mM exhibited the loss of the filopodia 

formation in MC (Fig. 3A) and subsequently there was inhibition in melanin transfer (Fig. 3B, 

C). It was shown by others that a rise in Ca2+ levels can cause two distinct, concentration-

dependent effects separable by their different time courses: within the first 10 min, filopodia 

underwent significant elongation, while the second phase was characterized by a massive 

loss of filopodia (43). 

Ca2+ upregulates the expression of filopodia-associated proteins in human 

epidermal melanocytes in vitro 

To evaluate the effect of Ca2+ on E-Cadherin and filopodial protein expression (i.e., β-

catenin, Cdc42, MyoX and VASP) in normal epidermal MC these cells were incubated with 

Ca2+-free media for 24hrs, then incubated for another 24hrs in increasing concentrations of 

Ca2+ (0.1-1 mM). All filopodia-associated proteins tested showed a moderate increase in 

expression after Ca2+ treatment (Fig. s1i-iv). This was particularly marked at concentrations 

of Ca2+ from 0.1 mM-0.25 mM.  

Extracellular Ca2+ gradients in skin, which are essential for keratinocyte differentiation 

(38,44), are also affected by UV irradiation. Specifically, UVR exposure can raise 

intracellular Ca2+ in MC through ORAI1 Ca2+ channels, and the expression of these channels 

have been shown to be involved in melanogenesis (45). These data suggest that Ca2+-

regulated proteins, like E-cadherin, are dependent on intracellular and external Ca2+ 

availability, and so these are key for inducing filopodia formation of MC and melanin transfer 

to KC in MC:KC co-culture. Ca2+-induced upregulation of MC filopodial proteins also 

suggests that UVR stimulation of MC is also associated with a rise of Ca2+ in MC to induce 

the expression of major filopodial components like β-catenin, Cdc42, MyoX and VASP. 

Thus, we conclude that UVR exposure promotes filopodia formation in MC and subsequently 

induce ‘melanin transfer’ to KC. Thus, the regulation by Ca2+ of transmembrane proteins like 

E-Cadherin suggests the presence of positive feedback signal mechanism.  
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MAPK signalling is involved in UVR-induced filopodia formation and 

melanosome transfer 

We were also interested to determine whether the observed UVR-induced effects on 

filopodia formation and melanin transfer were dependent on the activation of MAPK or 

phosphoinositide 3-kinases (PI3-K) pathways. Cells were incubated with specific inhibitors to 

ERK1/2 [PD98059 (PD)], p38 stress kinase [SB203580 (SB)] and PI3K [LY294002 (LY)] 

prior to UVR irradiation in order to investigate signalling pathways in filopodia formation. 

SEM analysis of MC, treated separately with the 3 signalling pathway inhibitors for 1hr prior 

to UVR irradiation with 25 mJ/cm2, showed that p38 & PI3K inhibition decreased UVR-

stimulated filopodia formation, while ERK inhibition did not (Fig. 4A). It has been reported 

that UVR irradiation-induced melanogenesis is associated with the activation of ERK1/2 by 

upstream signals originating from reactive oxygen species or from activated tyrosine kinase 

receptors, rather than from damaged DNA (46). The current study also found that 

phosphorylation was not observed for c-Jun N-terminal kinases (JNK) or p38, indicating that 

ERK1/2 activation may be UVA-specific and not specifically needed for filopodia formation.  

To evaluate the effect of MAPK inhibition on melanin transfer, co-cultures of MC:KC were 

incubated with SB, PD and LY with/without UVR treatment at 25mJ/cm2, followed by double 

immunofluorescence analysis of gp100 (MC lineage-specific marker) and cytokeratin 

expression for KC. The transfer of melanin between MC and KC was assessed (Fig. 4B,C) 

and results showed that inhibition of either p38 (by SB) or PI3K (by LY) significantly 

decreased melanin transfer. By contrast, ERK inhibition (PD) did not inhibit melanin transfer 

compared to basal control cells. Taken together these data suggest that ERK1/2 is not 

involved in UVR-induced melanin transfer or filopodia formation. The involvement of PI3-K in 

UVR-induced melanin transfer however, substantiates our proposed view of how MC 

filopodia interact with KC phagocytosis during the melanin transfer process (16). Here the 

motor protein MyoX, a recognised effector of phagocytosis, acts as a molecular link between 

PI3-K activation and pseudopodia extension during phagocytosis (47).  

To further study the effects of UVR on p38 and phospho-p38 expression, MC were pre-

treated with SB p38 kinase inhibitor (10µM) 1hr prior to UVR irradiation (Fig. s2). UVR 

irradiation in the absence of SB translocated p38 protein to the cell nucleus and increased 

the expression of both p38 and phosphorylated p38 (p-p38) compared to the basal status. 

While addition of SB reduced phospho-p38 to below basal levels (inhibiting phosphorylation 

of p38), no change in unphosphorylated p38 expression was detected. SB addition also 

decreased levels of nuclear p38 and phospho-p-38 levels overall (both nuclear and 

cytoplasmic expression) post-UVR irradiation (Fig. s2). The above results clearly show that 
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UVR activates p38 MAPK signalling through phosphorylation of p38 and translocation of p38 

into the nucleus in epidermal melanocytes.  

It is possible that p38 MAPK activated by UVR may also induce E-Cadherin protein 

expression to stimulate filopodia formation and melanin transfer in human melanocytes, and 

there is evidence from other systems that p38 MAPK  activation can induce of CDH1/E-

Cadherin genes (e.g., colon cancer cells  (48) and during mouse gastrulation (49).  

UVR irradiation of human MC results in the p38 MAPK-dependent phosphorylation of CREB 

(Ca2+/cAMP response element binding protein), and the latter can then induce Mitf 

expression in these cells (50-52). Our demonstration here that UVR exposure activates p38 

MAPK in human melanocytes (Fig s2) to regulate filopodia formation and melanin transfer 

could involve CREB stimulation of Mitf gene expression. Rab17, whose expression is 

regulated by Mitf, is known to induce filopodia formation in melanocytes and to increase 

melanosome concentration at the periphery of melanoma cells (53). It would be interesting to 

study whether p38 MAPK-mediated activation of Mitf in human MC, under the influence of 

UVR, is also involved in filopodia formation and melanin transfer.  UVR also induced 

filopodia formation and subsequent melanin transfer in human MC:KC co-culture via the 

PI3K-pathway (Fig. 4), and it is of note that E-cadherin-mediated cell-cell adhesion has be 

recently reported to stimulate PI3K/Akt activation in human embryonic stem cells (54). Thus, 

UVR-induced filopodia formation and melanin transfer in human skin may be also dependent 

on the PI3K activation by E-Cadherin-mediated cell-cell adhesion.   

In summary, we report that E-Cadherin can mediate UVR-induced melanin transfer, opening 

a new avenue to explore how Ca2+ signalling influences human pigmentation. Also relevant 

to studies of pigmentation is the observation that homophilic E-Cadherin cell–cell adhesion is 

redox-sensitive (55), a finding we previously have shown to be most markedly observed in 

vitiligo patients (56), which may implicate ROS-disrupted status of E-Cadherin function also 

in vitiligo pathogenesis (57). The latter study reported that E-Cadherin is required for 

melanocyte adhesion to the basal layer and these authors have developed 3D models to 

show that this can be disrupted in the context of both oxidative and mechanical stresses. 

Material and Methods: 

Materials: Calcium chloride (CaCl2) was from Invitrogen, p38-specific inhibitor SB203580 

was from Sigma, while inhibitors PD98059 (MEK) and LY294002 (PI3K) were from Cell 

Signaling technology, Inc. (Beverly, MA, USA). Antibodies to β-Catenin, MyoX, E-Cadherin, 
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Cdc42 antibody and E-Cadherin were from Abcam, (Cambridge, UK), while NKI/beteb from 

Monosan and cytokeratin were from Santa Cruz Biotechnology, (Santa Cruz, CA, USA). 

Matched epidermal melanocyte/keratinocyte co-culture: Human abdominal skin was 

obtained with informed consent and local research ethics approval from normal healthy 

Caucasian donors with skin photo-type II (n=5, female 29-62y, average 52y) after elective 

plastic surgery. All cell culture reagents were from Invitrogen Ltd. (Paisley, UK) unless stated 

otherwise. Epidermal melanocytes(s) (MC) cultures were established as previously 

described (16) and grown in keratinocyte(s) (KC) serum-free medium (K-SFM) with Eagle’s 

minimal essential medium (EMEM) supplemented with 1% FBS, 1x non-essential amino 

acids, penicillin (100U/ml)/streptomycin (100µg/ml), 2mM L-glutamine, 5ng/ml basic 

fibroblast growth factor, and 5ng/ml endothelin-1 (Sigma, Dorset, UK).  

Matched epidermal KC were established from the same biopsy specimen as MC above (17) 

and grown in K-SFM supplemented with 25µg/ml bovine pituitary extract (BPE), 0.2ng/ml 

rEGF, penicillin (100U/ml)/streptomycin (100µg/ml), and 2mM L-glutamine. Culture medium 

was replenished every second day. KC and MC were identified using anti-cytokeratin 

antibody (Abcam, Cambridge, UK) and melanocyte-specific NKI/beteb antibody (Monosan, 

Uden, Netherlands) to gp100 respectively. For co-culture studies, MC (passage 3) and KC 

(passage 2) were seeded onto Lab-Tek® chamber slides (ICN Biomedicals Inc., Aurora, OH, 

USA) at 4x104 cells/well and in 1 MC to 10 KC ratio (17). Analysis of melanosome transfer 

was performed at 24h. For some experiments, MC or KC or MC:KC co-culture were treated 

with inhibitors SB203580 (SB, 10µM), PD98059 (PD, 10µM) and LY294002 (LY, 10µM) in 

the presence or absence of UVR.   

UV irradiation: MC or MC:KC monocultures were irradiated with UVR as previously 

described (16). Briefly, cells were cultured in ‘starved’ medium lacking FBS  and BPE  (i.e. 

retaining bFGF and endothelin-1 for MC viability), temporarily submerged in PBS and 

irradiated with 25mJ/cm2 UVR using a fluorescent UVB lamp (Waldmann UV6; emission 

290–400nm, peak 313nm; Herbert Waldmann GmbH, Villingen-Schwenningen, Germany). 

The UVR used consisted of 66% UVB and 34% UVA. PBS was removed immediately after 

irradiation and replaced with fresh ‘starved’ media. Control cells were treated similarly but 

not irradiated. MC were analysed by scanning electron microscopy (SEM) and the 

melanosome transfer assay after 24 h UVR irradiation to evaluate filopodia and melanin 

transfer, respectively. Expression of the test proteins was assessed by double 

immunolabeling in MC monoculture after 25mJ/cm2 UVR exposure.  

Cell treatments: For calcium treatments cells were incubated in starved calcium-free media 

for 24h then incubated in media containing CaCl2 (0.1mM, 0.25mM and 0.5mM for 24h). 
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MCs were analyzed by SEM after 24 h after treatment to evaluate filopodia status. MC:KC 

co-cultures were analyzed by melanin transfer assay after 24 h after treatment to evaluate 

melanin transfer. E-Cadherin, MyoX, VASP, Cdc42 and β-Catenin expression in MCs were 

analyzed by immunofluorescence and western blot at 24 h time point. MC/KC co-cultures 

established with MC or KC treated with either E-Cadherin siRNA or control siRNA were also 

exposed to 25 mJ/cm2 UVR. Melanosome transfer was assessed at 24h post-UVR 

irradiation. For chemical inhibition, cells were treated with inhibitor for 1h before being 

irradiated. SB203580 (SB) and LY294002 (LY) and PD98059 (PD) were used at a 

concentration of 10 μM.  

Immunofluorescence of skin: Ten micron sections were air-dried at room temperature 

(RT) for at least 1h, and then fixed in ice-cold acetone for 10 mins at -20°C. After 

equilibrating the slides were rinsed in PBS for 3 x 5 mins and sections isolated using a PAP 

Pen (Zymed, UK). Non-specific antibody binding was reduced by incubating in 10% donkey 

serum (Sigma-Aldrich, UK) diluted in PBS for at least 30 mins. Serum was poured off and 

followed by incubation in primary antibodies diluted in PBS containing 1% donkey serum 

overnight in a humidified slide chamber at 4°C. Excess primary antibody was rinsed by 

washing in PBS for 3 x 10 mins. Tissue was incubated in donkey Alexa-488 and 594 

conjugated secondary antibodies (1:100 dilution, Invitrogen Molecular Probes, UK) for 1 hour 

at RT then rinsed in PBS for 4 x 10 mins. Slides were mounted for confocal microscopy 

under sealed coverslips in fluorescent mounting medium containing DAPI nuclear stain 

(VectorLabs, UK). Images were collected using the 365nm (DAPI) and 488nm (Alexa-488) 

and 543 (Alexa-594) channels on a Zeiss LSM confocal microscope by sequential line 

scanning. Images were processed using the LSM confocal image browser software (Zeiss, 

UK) and ImageJ (freeware). 

SEM assessment of cell morphology: MC monoculture was prepared for SEM as 

described previously (16). Briefly, cells were fixed with 1% glutaraldehyde at 37 0C, post-

fixed in 1% osmium tetroxide and 1% tannic acid as a mordant, dehydrated through a series 

of alcohol (20% to 70%), stained in 0.5% uranyl acetate, followed by dehydration (90% and 

100%) before final dehydration in hexamethyl-disilazane (Sigma, Dorset, UK) and air-drying. 

Each slide was gold sputter-coated (EMITECH, K550) (Blazer 20 mA) for 10 min. Specimens 

were viewed under field emission SEM (FEI Quanta 400, Eindhoven, the Netherlands) at 10 

keV. 

Immunofluorescence confocal microscopy: Double-immunofluorescence staining in MC 

monocultures, MC:KC co-culture, and human skin cryosections was performed as described 

previously (16). Briefly, cells and tissue were fixed in ice-cold methanol for 10 min before air 
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drying and rehydration in PBS before blocking with 10% donkey serum (90 min) before 

overnight incubation at 4°C with E-Cadherin (1:50), MyoX(1:50), Cdc42 (1:50), VASP 

(1:200) and β-Catenin (1:50), followed by incubation with Alexa488-conjugated secondary 

antibody (1:100) (Invitrogen, Paisley, UK) for 1h. The second primary antibodies to 

cytokeratin (1:100) (Abcam, Cambridge, UK) or NKI/beteb (1:30), were applied for 1h 

followed by an Alexa594-conjugated secondary antibody (1:100) (Invitrogen, Paisley, UK). 

Slides were mounted in 4',6-diamidino-2-phenylindole (DAPI)-containing medium (Vector, 

Peterborough, UK) and imaged on a Zeiss LSM 510 confocal microscope (Carl Zeiss, Jena, 

Germany).  

siRNA Knockdown of E-Cadherin in MC: MC monocultures or MC:KC co-cultures were 

transfected with siRNA according to the manufacturer’s instructions (Invitrogen, Paisley, 

UK). Briefly, 1d prior to siRNA treatment the cells were incubated at 37°C, 5% CO2 for 12h to 

allow cell attachment. The following synthetic siRNAs (Qiagen, West Sussex, UK) were 

used: Felxitube Gene solution for E-Cadherin (CDH1), Entrez gene ID:999 (4siRNAs) (cat 

no. GS999; Detected transcript- NM_004360; length of transcript- 4815 bp). E-Cadherin 

siRNA (25nM) or control siRNA (25nM) (non-homologous to mammalian genome) was 

incubated with Lipofectamine 2000 (Invitrogen, Paisley, UK) for 20min to allow complex 

formation, before addition to co-cultures. Transfection medium was replaced after 12h with 

complete media and at 24h post siRNA transfection ‘knockdown’ was verified by 

immunofluorescence using antibodies against E-Cadherin (data not shown). For some 

experiments E-Cadherin siRNA-treated MC or control siRNA-treated MC were processed by 

SEM in order to test the siRNA effects on filopodia. MC:KC co-cultures were processed at 24 

h by double labelling with gp100 (NKI/beteb) and cytokeratin antibody to detect melanosome 

transfer to KC.  

Quantitative analysis of melanosome transfer: This was performed as previously 

described (17). Briefly, evaluation of melanosome transfer MC:KC co-cultures were 

performed by counting fluorescent gp100-positive spots within recipient KC in 5 random 

microscopic fields per well at 60x magnification in 3 independent experiments.  

Statistical analysis: Statistical analysis was performed using Student’s paired t test. 

Quantitative data are presented as means ± SE for three separate experiments. Statistically 

significant  differences are denoted with asterisks; *p< 0.01, **p< 0.001 and ***p< 0.0001. 
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Legends   

Figure 1: Normal adult human melanocytes express E-Cadherin and filopodial 

proteins Cdc42, β-Catenin and VASP in situ, which are upregulated by UVR in 

cultured epidermis melanocytes.  

A: Double immunolabeling  of normal human epidermis with anti-gp100 (NKI/beteb) (red) 

and  (i) anti-E-cadherin antibody (green), (ii) anti-β-Catenin antibody (green), (iii) anti-Cdc42 

antibody (green), (D) anti-VASP antibody (green). Left panel: Merge; Boxed area indicates 

high-power view of MC showing co-localization as a merged image (white, arrows).Right 

panel represent corresponding individual NKI/beteb immunoprobes.  Scale = 60 μM  

B: MC monoculture without (left panel) or with exposure to 25mJ/cm2 UVR for 24h (right 

panel). MC were double immunolabelled with anti-NKI/beteb (red) (lower panels) and in 

upper panels (i) anti-E-cadherin antibody (green), (ii) anti-β-Catenin antibody (green), (iii) 

anti-Cdc42 antibody (green), (iv) anti-VASP antibody (green) to reveal increase in protein 

expression  in response to UVR. Scale = 22 μM  

Figure 2: Effect of E-Cadherin knockdown on melanocyte filopodia formation and 
melanin transfer to keratinocytes   

A: (Upper panel) The dorsal surface of a MC treated with control siRNA: (i) basal condition, 

numerous filopodia are present, (ii) 25mJ/cm2 UVR-treated MC filopodia are induced. (Lower 

panel). The dorsal surface of a MC treated with E-Cadherin siRNA (i, ii) exhibited an almost 

complete inhibition of filopodia formation irrespective of 25mJ/cm2 UVR treatment. Scale 

bars: 50μM. High power views of the boxed regions are shown in right panels. Scale bars: 

5μM. 

B: Double-immunolabelling of MC/KC co-cultures for gp100 (NKI/beteb, green) and 

cytokeratin (red) revealed clear changes in number of transferred green fluorescent spots 

(i.e. melanin granules transferred to KC). MC/KC coculture established with control siRNA: 

(i) numerous gp100-positive spots are seen in KC in basal condition; (ii) increased numbers 

of gp100-positive spots are transferred after 25mJ/cm2 UVR treatment.  (iii, iv) MC/KC co-

culture established with E-Cadherin-siRNA-treated cells exhibited reduced number of gp100-

positive granules are transferred to KC irrespective of 25mJ/cm2 UVR treatment.  Scale 

bars: 10μM:  

C: Quantification of melanosomes transferred to KC. Data are represented as means ± S.E. 

20 cells/condition were assessed in each of 3 independent experiments. *p<0.01, **p<0.001.  
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Figure 3: Effect of Ca2+ on melanocyte filopodia formation and melanin transfer to 
keratinocytes  

A: (Left panel) The dorsal surface of a MC treated with increasing concentration of Ca2+ 

induced filopodia in a dose dependent manner : (i) basal condition (Ca2+ free) (ii) 0.1mM 

Ca2+; (iii) 0.25mM Ca2+; (iv) 0.5mM Ca2+; (v) 1mM Ca2+.  Scale bar: 20μM. High power 

views of the boxed regions are shown in right panels. Scale bar: 5μM. 

B: (i) Double-immunolabelling of MC/KC cocultures for gp100 (NKI/beteb, green) and 

cytokeratin (red) revealed a clear increase in number of transferred green fluorescent 

granules (i.e. melanin granules transferred to KC) with increasing concentration of Ca2+ : (i) 

basal condition (Ca2+-free) (ii) 0.1mM Ca2+; (iii) 0.25mM Ca2+; (iv) 0.5mM Ca2+; (v) 1mM 

Ca2+.  Scale bar: 10μM. 

C: Quantification of melanosomes/melanin granules transferred to KC. Data are represented 

as means ± S.E. 20 cells/condition were assessed in each of 3 independent experiments. 

*p<0.001.

Figure 4: Effect of MAPK inhibitors on melanocyte filopodia formation and melanin 
transfer to keratinocytes   

A: (Left panel) The effect of specific kinase inhibitors on UVR-induced filopodia on the dorsal 

surface of MC (24h). MC were incubated with or without UVR (25mJ/cm2) in presence and 

absence of SB203580 (SB, 10µM), PD98059 (PD, 10µM) and LY294002 (LY, 10µM). 

Photographs revealed that SB & LY inhibition caused a decrease in UVR-stimulated 

filopodia formation, while PD inhibition did not. Scale bars: 20μM. High power views of the 

boxed regions are shown in right panels. Scale bars: 5μM. 

B: The effect of specific kinase inhibitors on UVR-induced melanin transfer in MC/KC co-

culture was assessed. Cells were incubated with or without UVR (25mJ/cm2) for 24h in 

presence or absence of SB203580 (SB, 10µM), PD98059 (PD, 10µM) and LY294002 (LY, 

10µM). Cells were double-immunolabelled with anti-gp100 antibody (NKI/beteb, green) and 

anti-cytokeratin (red); and revealed clear changes in number of green fluorescent transferred 

to KC. Scale bar: 10μM. 

C: Quantification of melanosomes transferred to KCs shown in Da. Data are means ± S.E; 

20 cells/condition were assessed in each of 3 independent experiments. *p<0.001, 

**p<0.001, NS; Not-significant. 
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Figure s1 Effect of Ca2+ on filopodial protein expression in melanocytes 

MC monoculture without (left panel) or with (left panel) exposure to 0.25mM Ca2+ for 24 h 

(right panel). MC were double immunolabelled with anti-NKI/beteb (red) (lower panel) and in 

upper panels (i) anti-E-cadherin antibody (green), (ii) anti-β-Catenin, (iii) anti-Cdc42 antibody 

(green), (iv) anti-MyoX antibody (green), (v) anti-VASP antibody (green) to reveal protein 

expression change in response to 0.25mM Ca2+. Scale bar: 10μM. 

Figure s2: Effect of UVR on p38 MAPK activation in melanocytes  

MC monocultures were treated with or without UVR (25mJ/cm2) in presence or absence of 

SB203580 (SB, 10µM) (2h). Cells were double-immunolabelled with anti-phosphop38 MAPK 

(green) or anti-p38 MAPK (green) and anti-gp100 antibody (red) to reveal nuclear 

translocation/activation of p38 MAPK. Scale = 20µm. 
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