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Abstract

In this paper we consider four restricted cases of the generalised communicating P systems and
study their computational power, by providing improved results, with respect to the number
of compartments involved. We illustrate the expressive power of these devices by modelling
several problems, such as producer/consumer, workflow patterns, broadcasting problem and
comparative operations. We also present some relationships between generalised communi-
cating P systems and P colonies, tissue-like P systems with very simple components.

Keywords: Generalised communicating P systems, register machine, computational power,
producer/consumer, workflow patterns, broadcasting problem, comparative operations, P
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1. Introduction

Membrane computing represents a branch of natural computing that brings a set of con-
cepts and principles from cellular biology to computer science, with the aim of producing a
family of coherent, powerful and efficient computational models, called membrane systems
or (P systems), that are inspired by the behaviour of some cellular processes. These mod-
els include various computational paradigms like non-deterministic, parallel and distributed
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calculus that mimic, through a set of evolution and communication rules applied in different
compartments, the behaviour of various bio-chemical systems defining key functions of the
living cells [21].

Professor Marcus develops in [14] a taxonomy of five characteristics of a living system,
and concludes: “As we can see, membranes are involved in four of the above five steps.
The scenario above calls attention to the fact that the closure of a membrane around some
autocatalytic chemical reaction system is an attractive candidate for a first step towards the
origin of a living system”.

One of the most studied P system models is called cell-like P system, and consists of
a hierarchical structure of membranes (tree structure) delimiting compartments (or regions);
each compartment contains a multiset of objects that react according to a set of rules belonging
to the compartment. The rules of the most basic cell-like P systems are of the form u → v,
where u and v are multisets of objects. The multiset v consists of objects that remain in this
compartment and others that will go into the compartment that contains the current one (the
parent compartment) or to compartments contained in it (child compartments). When such
a rule is applied to a multiset it replaces u, if it is contained in the multiset, by v. Other
types of objects (strings instead of multisets), rules (using states or activators/inhibitors,
considering electrical charges, dissolving or creating compartments etc.) and connections
between compartments (arbitrary or specific graphs) have been considered ([21], Chapters 4,
5, 7 - 11, 13, 14). Some of these models replace the hierarchical structure of membranes with a
graph structure and the model is called tissue-like. Most of these systems are computationally
complete and when membranes can be multiplied they are able to provide efficient solutions,
with respect to time, to complex problems ([21], Chapters 12, 21). Membrane computing has
introduced a plethora of variants of P systems and the above mentioned enumeration of such
systems reflects only some of the many existing models.

A special type of P systems emphasises the communicating aspects of these models by
using different rules to transport objects across membranes ([21], Chapter 5). One of these
models uses the biological metaphor of exchanging pairs of bio-chemical elements between
compartments, and has been called symport/antiport P systems [18]. A special case of such
communicating mechanisms has been considered for generalised communicating P systems
[26], where only communication rules are used, but in a very general way. They are simul-
taneously moving symbols from two compartments into other two. This model is inspired
by both the symport/antiport paradigm and the way transitions of the Petri nets fire tokens
coming from various input places and then send them out to other output places [23]. The
model has been introduced in [26] and further investigated in [8, 9, 13, 12, 1].

The key contributions of the paper are: (a) the improvement of the computational power
results presented in [9], with respect to the number of compartments; (b) a set of examples
illustrating the modelling capabilities of these classes of P systems in specifying problems
such as producer/consumer, workflow patterns, broadcasting problem and comparative op-
erations; and (c) some relationships between generalised communicating P systems and P
colonies, variants of tissue-like P systems with very simple cells acting and evolving in a
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shared environment. Theorems 1 - 4 have been for the first time introduced in [12, 13], the
proof of Theorem 1 in [13] and of the others in the technical report [12]. In this paper these
proofs have been all revised and are presented in a more compact and clearer form than in
the previous publications.

The paper consists of four key sections. Section 2 introduces the key concepts and defi-
nitions of the paper. Section 3 presents the computational power results of the generalised
communicating P systems. Several applications of this computational model are described in
Section 4 and relationships with P colonies are presented in Section 5. Finally, conclusions
are drawn in Section 6.

2. Definitions

In this section we introduce the definitions of the main concepts utilised in this paper,
generalised communicating P systems, P colonies and register machines.

A Generalised Communicating P System of degree n (a GCPS of degree n) is a P system
consisting of n compartments, called cells, linked in a tissue-like manner. These links are
implicitly specified by the rules. Formally, a GCPS of degree n is a construct,

Π = (O,E,w1, . . . , wn, RΠ, i0),

where O is a finite alphabet ; E ⊆ O is the set of environment symbols; wi ∈ O∗, 1 ≤ i ≤ n,
is the initial multiset associated with cell i; RΠ is a finite set of interaction rules of the form
r : (a, i → k; b, j → l) (also written as r : (a, i)(b, j) → (a, k)(b, l)), with a, b ∈ O and
0 ≤ i, j, k, l ≤ n (0 denotes the environment), and such that if i = j = 0 then at least one of
a and b is not in E; and i0 ∈ {1, . . . , n} is the output cell.

The P system Π consists of n cells, labelled 1, . . . , n, containing multisets of objects over
O. The environment contains an unbounded number of copies of symbols from E. The cells,
and the environment, are supposed to interact through rules from RΠ. A rule r : (a, i)(b, j)→
(a, k)(b, l), moves a from cell i to k and b from cell j to l. The rules are applied in each step
of the computation in the usual non-deterministic and maximally parallel manner. According
to maximal parallelism principle, after associating objects to rules, no rule can be applied to
any of the remaining objects, if any (see [21]). As usual in membrane systems, the multisets
will be denoted by strings and the empty multiset denoted by λ (for further details see [21]).

A configuration of Π is an n + 1-tuple (xE , x1, . . . , xn), where xE ∈ (O \ E)∗ and xi is
the multiset from cell i, 1 ≤ i ≤ n. If c is a configuration of Π then a computation step or
transition is the process of obtaining a new configuration c′ from c by applying the rules of
RΠ in a maximally parallel manner. A computation is a sequence of transitions. Only halting
computations are considered. The result of any computation, obtained in cell i0, is given by
the number of objects from this cell at the end of the computation. The set of non-negative
integer numbers computed by the GCPS Π, as the number of symbols obtained in the output
cell i0, is denoted by N(Π). The family of sets of numbers generated by GCPS with at most
n cells is denoted by NGCPSn.
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The functionality described by each rule r : (a, i → k; b, j → l), is similar to that of a
transition in a Petri net model [23], in which tokens a and b from the input places are then
moved to output places. Apart from moving objects between compartments, the rules can
increase or decrease the number of objects in the system by involving the environment.

Some variants of the GCPS models have been defined in [26] and their computational
power studied in [9]. They utilise a set of particular rules. In this paper we refer to: (a) join
rules (k = l, i 6= k, j 6= k, i 6= j); (b) split rules (i = j, i 6= k, i 6= l, k 6= l); (c) presence move
rules (i = k, i 6= l, i 6= j, j 6= l); and (d) parallel shift rules (i 6= k, i 6= l, i 6= j, j 6= l). We call
these classes of systems, GCPS with minimal interaction.

If only rules of type (a), (b), (c) or (d) are used then the corresponding family of
sets of numbers computed by these GCPS devices with minimal interaction is denoted by
NGCPS(t)n, t ∈ {join, split, presence move, parallel shift}.

P colony [7] represents a simple membrane system model with communities of cells com-
municating with a shared environment. Here we consider a restricted version of it, called P
colony without checking rules. More on this model can be found in [11].

A P colony (without checking rules) is an n+ 3-tuple, n ≥ 1

Π = (O, e, F,C1, . . . , Cn),

where O is an alphabet (the alphabet of objects), e ∈ O (the environment object), and F ⊆ O
(the set of final objects). Each pair Ci = (Oi, Pi), 1 ≤ i ≤ n, is called a cell of Π, where Oi is a
multiset over {e} having the same cardinality (called capacity) for every Ci, and Pi is a finite
set of programs. Each program consists of a finite multiset of rules of the following forms: (a)
a→ b (internal point mutation or evolution), specifying that an object a ∈ O inside the cell is
changed to b ∈ O; (b) c↔ d (one object exchange with the environment or communication),
specifying that if c ∈ O is contained inside the cell and d ∈ O is present in the environment,
then c is sent out of the cell to the environment while d is brought inside the cell from the
environment. The number of rules in each program of Ci coincides with the capacity of Π.

An n + 1-tuple (xE , x1, . . . , xn), where xE ∈ (O \ {e})∗, xi ∈ O∗i are finite multisets, is
called a configuration of Π. At the initial configuration, the environment contains arbitrarily
many copies of e and each cell contains inside as many objects e as the capacity of Π.

The P colony works with direct changes of its configurations, called transitions. To obtain
a new configuration by a transition, the programs of the cells are used in the non-deterministic
maximally parallel manner, i.e., each cell which is able to use one of its programs should use
one. The use of a program means the parallel application of the rule(s) of the program to the
object(s) inside the cell. A sequence of transitions starting from the initial configuration is
a computation. A computation is successful if it is halting, i.e., if a configuration is obtained
where no cell can use any program. The result of a successful computation is the number of
copies of objects from F present in the halting configuration. The set of numbers obtained
as results of successful computations of a P colony Π is denoted by N(Π).

A register machine with k registers is a 5-tuple,

M = (Q,R, q0, qf , P ),
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where Q is a finite non-empty set of states; R = {A1, . . . , Ak}, k ≥ 1, is a set of registers;
q0 ∈ Q is the initial state and qf ∈ Q is the final state; P is the set of instructions of the
following forms: (a) (p,A+

i , q, s) where p, q, s ∈ Q, p 6= qf , Ai ∈ R (an increment instruction,
which increments register Ai by 1 and moves non-deterministically to either q or s); (b)
(p,A−i , q, s) where p, q, s ∈ Q, p 6= qf , Ai ∈ R (a decrement instruction, which decrements
register Ai by 1 and moves to q, if strictly positive, otherwise left it unchanged and jumps
to state s). For every p ∈ Q, (p 6= qf ), there is exactly one instruction of the form either
(p,A+

i , q, s) or (p,A−i , q, s). A configuration of a register machine M , defined above, is given
by a (k + 1)-tuple (q,m1, . . . ,mk), where q ∈ Q and m1, . . . ,mk are non-negative integers;
q corresponds to the current state of M and m1, . . . ,mk are the current numbers stored in
the registers A1, . . . , Ak, respectively. We say that a register machine M with k registers
generates a non-negative integer u if starting from the initial configuration (q0, 0, 0, . . . , 0) it
enters the final configuration (qf , u, 0, . . . , 0). The set of non-negative integers generated by
M is denoted by N(M). It is known that register machines are able to generate all recursively
enumerable sets of non-negative integers [16], denoted by NRE.

3. Main results

In [9] it is proved that GCPS devices with minimal interaction achieve universality for
systems using at most: (a) 7 cells and join rules; (b) 9 cells and split rules; (c) 19 cells and
parallel shift rules; and (d) 36 cells and presence move rules. We improve in the sequel all
these results, by showing that universality can be achieved for these systems when at most 4,
5, 5 and 6 cells are, respectively, used.

The proofs of these results have been initially provided in [12] and the proof for join rules
appeared initially in [13]. In this paper they have been revised and are presented in a more
compact and clearer form than in the previous publications.

3.1. GCPS with minimal interaction - join

The proof below uses for an arbitrary set in NRE a register machine which will be si-
mulated by a GCPS with at most 4 cells and using only join rules, which are such that
k = l, i 6= k, j 6= k, i 6= j, i.e., distinct source cells and the same destination cell.

Theorem 1. NGCPS(join)4 = NRE.

Proof. Consider a register machine M = (Q,R, q0, qf , P ), as defined in Section 2, with Q
a finite non-empty set of states, R = {A1, . . . , Ak}, k ≥ 1, a set of registers, q0 ∈ Q is
the initial state, qf ∈ Q is the final state and P is the set of instructions. We construct a
GCPS with minimal interaction, Π = (O,E,w1, w2, w3, w4, RΠ, 2), using only join rules, such
that N(M) = N(Π). It will be shown that for any computation in M there is a halting
computation of the constructed GCPS, Π, and no unexpected computations are allowed in Π.

We define the following two sets
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• Q+ = {p+ | p is the state corresponding to an increment instruction},

• Q− = {p− | p is the state corresponding to a decrement instruction}.

Given the register machine M , the GCPS with minimal interaction, Π, is constructed with
the elements below.

• O = Q+∪Q−∪{q | q ∈ Q}∪{qf , c1, . . . , ck}∪{f, g, a, b, e, Y1, Y2, Y3, †, χ} is the alphabet
of the system; the number of symbols ci, 1 ≤ i ≤ k, in Π represents the content of register
Ai at any given point in time; f, g, a, b, e, Y1, Y2, Y3, †, χ are auxiliary symbols and help
the computation.

• E = Q+ ∪Q− ∪ {q | q ∈ Q} ∪ {†, g, qf} ∪ {ci | 1 ≤ i ≤ k} is the set of symbols present
in the environment in infinitely many copies.

• w1 = fabχ,w2 = λ,w3 = Y2Y3, w4 = eY1 are the initial multisets of Π.

• Cell 2 is the output cell.

• The set of rules, RΠ, consists of

– I. Initialisation rules:

I.1 (a, 1)(Y2, 3)→ (a, 0)(Y2, 0), (b, 1)(Y3, 3)→ (b, 0)(Y3, 0),
(q+

0 , 0)(e, 4)→ (q+
0 , 1)(e, 1).

– II. For each increment instruction, (p,A+
i , q, s), if r ∈ {q, s}, then in the rules

below r? stands for r+ or r−, depending on whether r is the state corresponding
to an increment instruction or a decrement instruction:

II.1 (p+, 1)(ci, 0)→ (p+, 2)(ci, 2);

II.2 (p+, 2)(r, 0)→ (p+, 3)(r, 3);

II.3.1 (p+, 3)(Y2, 2)→ (p+, 0)(Y2, 0); II.3.2 (r, 3)(r?, 0)→ (r, 1)(r?, 1).

– III. For each decrement instruction, (p,A−i , q, s), the following rules are added to
RΠ:

III.1 (p−, 1)(ci, 2)→ (p−, 4)(ci, 4);

III.2 (p−, 4)(q, 0)→ (p−, 3)(q, 3);

III.3.1 (p−, 3)(Y2, 2) → (p−, 0)(Y2, 0), III.3.2 (q, 3)(q?, 0) → (q, 1)(q?, 1), where
q? stands for q+ or q−;

III.4 (p−, 1)(Y2, 2)→ (p−, 3)(Y2, 3);

III.5 (p−, 3)(f, 1)→ (p−, 2)(f, 2);

III.6 (p−, 2)(s, 0)→ (p−, 3)(s, 3);

III.7 (p−, 3)(Y2, 4) → (p−, 0)(Y2, 0), (s, 3)(s?, 0) → (s, 1)(s?, 1), where s? stands
for s+ or s−.
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– IV. For the halting instruction corresponding to state qf , the following rule is added
to RΠ:

IV.1 (qf , 1)(Y1, 4)→ (qf , 0)(Y1, 0).

– V. Auxiliary rules:

V.1 (Y1, 4)(Y2, 0)→ (Y1, 2)(Y2, 2);

V.2 (Y1, 2)(Y3, 0)→ (Y1, 4)(Y3, 4);

V.3 (f, 2)(Y2, 3)→ (f, 4)(Y2, 4);

V.4 (g, 0)(f, 4)→ (g, 1)(f, 1);

V.5 (f, 2)(†, 0)→ (f, 3)(†, 3);

V.6 (χ, 1)(†, 3)→ (χ, 2)(†, 2);

V.7 (χ, 2)(†, 0)→ (χ, 3)(†, 3);

V.8 (χ, 3)(†, 0)→ (χ, 2)(†, 2);

IV.9 (p, 1)(Y3, 4)→ (p, 0)(Y3, 0).

In the sequel we describe successful computations in Π corresponding to successful gene-
ration of non-negative numbers in M .

Initialisation step.
The computation in Π starts from the initial configuration, given by (xE , fabχ, λ, Y2Y3, eY1),
with xE = λ, by applying the initialisation rules, (I.1), in one step. The objects Y2, Y3 from
cell 3 and a, b from cell 1 go to the environment, while the state of the initial instruction, q+

0 ,
from the environment and e from cell 4 come to membrane 1. Formally, the new configuration
of Π is (abY2Y3, efq

+
0 χ, λ, λ, Y1). This configuration appears before any of the instructions of

the register machine is simulated. The symbols a and b from the environment will be included
in the current environment contents xE ∈ (O \ E)∗.

Before we begin the simulation of the register machine instructions, let us observe that the
current configuration of Π, corresponding to the start of the simulation of a register machine
instruction, (p,A?i , q, s), where A?i is either A+

i or A−i , has the form (xEY2, eg
αfpp?χ,w, λ,

Y1Y3w
′), where p? is either p+ or p−, w = cl11 . . . c

lk
k , li ≥ 0, 1 ≤ i ≤ k, w′ = c

l′1
1 . . . c

l′k
k , l′i ≥ 0,

1 ≤ i ≤ k, α ≥ 0. Please note that objects g appear in cell 1 when a decrement instruction
cannot be applied and objects of w′ appear in cell 4 when a decrement instruction is applied.
Also, p appears after at least one instruction simulation takes place.

Simulation of an increment instruction (p,A+
i , q, s).

Initially, when p = q0, the system configuration is given by the result of the initialisation
step, i.e., (xEY2Y3, efq

+
0 χ, λ, λ, Y1). In general, when p 6= q0, then the system configuration is

(xEY2, eg
αfpp+χ,w, λ, Y1Y3w

′).
Now we show the sequence of steps in Π while simulating (p,A+

i , q, s) from the above
generic configuration of the system, with r denoting one of q or s and r? standing for ei-
ther r+ or r−. The configuration (xEY2, eg

αfpp+χ,w, λ, Y1Y3w
′) evolves into (xEY3, eg

αfχ,
p+ciwY1Y2, λ, w

′) by using rules II.1, V.9 and rule V.1 (when q = q0, the rule V.9 is not
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applicable, as p does not appear in cell 1). From the last configuration using rules II.2 and
V.2 we obtain the configuration (xE , eg

αfχ, ciwY2, p
+r, Y1Y3w

′) and this one in turn evolves
into (xEY2, eg

αfrr?χ, ciw, λ, Y1Y3w
′) by applying rules II.3.1 and II.3.2. This configuration

shows that the increment instruction applied to register Ai has been simulated by bringing a
ci into cell 2. The other cells and the environment have returned to the values they had at
the start of the increment instruction simulation, now with rr? in cell 1.

Simulation of a decrement instruction (p,A−i , q, s).

We start from a configuration (xEY2, eg
αfpp−χ, cliw, λ, Y1Y3w

′), where l ≥ 0 (i.e., symbol ci
appears in zero or more copies in cell 2).
Case 1. The content of register Ai is non-zero (l > 0). In this case, we apply rules III.1
and V.9 and a rule V.1 which lead to p− from cell 1 and a copy of ci from cell 2 moving
together to cell 4 (III.1), Y1 from cell 4 with Y2 from environment move to cell 2 (V.1)
and p from cell 1 and Y3 from cell 4 move to environment (V.9). This step leads to a
configuration (xEY3, eg

αfχ,wY1Y2, λ, p
−ciw

′). Then p− from cell 4 and symbol q from the
environment go to cell 3 (rule III.2) and in parallel, the symbol Y1 from cell 2 and Y3 from
environment go to cell 4 (V.2), leading to a configuration (xE , eg

αfχ,wY2, p
−q, Y1Y3w

′′),
where w′′ = ciw

′. Next, the symbols p−, Y2 return to the environment (III.3.1), while q from
cell 3 and q? from the environment go to membrane 1 (III.3.2), producing a new configuration
(xEY2, eg

αfqq?χ,w, λ, Y1Y3w
′′), which is ready for the simulation of another register machine

instruction.
Case 2. The content of register Ai is zero (l = 0). In this case the rule III.1 can no longer
be applied as ci does not appear in cell 2, although p− is in cell 1. However, symbols Y1, Y2

move to cell 2 using the rule V.1 and p from cell 1 and Y3 from cell 4 move to environment
(V.9), hence we get to the configuration (xEY3, eg

αfp−χ,wY1Y2, λ, w
′). In this case, we have

the symbol p− in cell 1, and Y2 in cell 2. Then we use rule III.4, moving both p−, Y2 to cell
3 and, in parallel, symbols Y1, Y3 move to cell 4 by rule V.2, leading to the configuration
(xE , eg

αfχ,w, p−Y2, Y1Y3w
′). This is followed by p− moving to cell 2 along with f from cell 1

using rule III.5. In the next step p− in cell 2 and s from the environment move to cell 3 (III.6)
and, in parallel, symbols f, Y2 move to cell 4 (rule V.3). After these two steps the configuration
(xE , eg

αχ,w, p−s, Y1Y2Y3fw
′) is obtained. Next, p−, Y2 return to the environment from cells

3 and 4, respectively, while s from cell 3 and s? from the environment move to cell 1 (rules
III.7) and the symbol f from cell 4 goes back to cell 1 together with g from the environment
(rules V.4). The newly obtained configuration is (xEY2, eg

α+1fss?χ,w, λ, Y1Y3w
′), which is

ready for the simulation of the register machine instruction corresponding to state s.
Exception Handling.

Note that in Case 1 in the configuration (xE , eg
αfχ,wY2, p

−q, Y1Y3w
′), instead of using both

rules III.3.1 and III.3.2, one could use the rules III.5 and III.3.2. If this is done we get the
configuration (xE , eg

αqq?χ, fp−wY2, λ, Y1Y3w
′). Now, rules V.9 and III.6 can be applied, but

as we have f and Y2 both in cell 2, the rule V.3 is no longer applicable and rule V.5 is used
instead, producing the configuration (xEY3, eg

αq?χ,wY2, p
−sf†, Y1w

′). Now, using V.6, the
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symbol χ is moved to cell 2, and this produces a non-halting computation, where rules V.7
and V.8 are indefinitely applied.

Halting step.
Once we obtain qf in cell 1, the symbol Y1 is removed from the system to the environment using
the rule IV.1. This way, the chain of actions (Y1, 4)(Y2, 0) → (Y1, 2)(Y2, 2), (Y1, 2)(Y3, 0) →
(Y1, 4)(Y3, 4) can be stopped. The number of symbols ci, 1 ≤ i ≤ k, in cell 2 is the output.

It is clear that every set of numbers generated by a register machine can be simulated by
a GCPS using only join rules. �

3.2. GCPS with minimal interaction - split

We show now that using only split rules (i = j, i 6= k, i 6= l, k 6= l), i.e., the same source cell
and distinct destination cells, and at most 5 compartments, register machines are simulated.

Theorem 2. NGCPS(split)5 = NRE.

Proof. As in the proof of Theorem 1, we construct a GCPS with minimal interaction,
Π = (O,E,w1, w2, w3, w4, w5, RΠ, 2), this one using only split rules and simulating a register
machine M , such that N(M) = N(Π). It will be shown that for any computation in M there
is a halting computation of the constructed GCPS, Π, and no unexpected computations are
allowed in Π.

Given a register machine, M , with k registers and the set of states Q = {p1, . . . , pm}, we
define Q+, Q− as in the proof of Theorem 1. The minimal interaction GCPS is constructed.

• O = Q+ ∪ Q− ∪ {ci | 1 ≤ i ≤ k} ∪ {p′, p′′, p′′′ | p ∈ Q\{qf}} ∪ {qf , X,X ′, X}, is the
alphabet of the system.

• E = Q+ ∪Q− ∪ {ci | 1 ≤ i ≤ k}, is the set of symbols present in the environment.

• w1 = q+
0 X, w2 = λ, w3 = p′1 . . . p

′
mX, w4 = p′′1 . . . p

′′
mX

′, w5 = p′′′1 . . . p
′′′
m.

• Cell 2 is the output cell.

• The rules RΠ are as follows

– I. For each increment instruction (p,A+
i , q, s), if r ∈ {q, s}, the rules below are

introduced into RΠ, where r? stands for r+ or r−, depending on whether r corre-
sponds to an increment instruction or a decrement instruction.

I.1 (p+, 1)(X, 1)→ (p+, 3)(X, 4);

I.2 (p+, 3)(p′, 3)→ (p+, 1)(p′, 0);

I.3 (p+, 1)(X ′, 1)→ (p+, 0)(X ′, 5), (p′, 0)(ci, 0)→ (p′, 4)(ci, 2);

I.4 (p′, 4)(p′′, 4)→ (p′, 3)(p′′, 0);

I.5 (p′′, 0)(r?, 0)→ (p′′, 4)(r?, 1).
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– II. For each decrement instruction (p,A−i , q, s), the following rules are added to

RΠ, where q? ∈ {q+, q−} and s? ∈ {s+, s−}.
II.1 (p−, 1)(X, 1)→ (p−, 2)(X, 3);

II.2 (p−, 2)(ci, 2)→ (p−, 4)(ci, 0);

II.3 (p′′, 4)(p−, 4)→ (p′′, 0)(p−, 1);

II.4 (p−, 1)(X, 1)→ (p−, 0)(X, 2), (p′′, 0)(q?, 0)→ (p′′, 4)(q?, 1);

II.5 (X, 2)(X, 2)→ (X, 1)(X, 3);

II.6 (p−, 2)(X, 2)→ (p−, 3)(X, 1);

II.7 (X, 1)(X, 1)→ (X, 2)(X, 3);

II.8 (p−, 3)(X, 3)→ (p−, 5)(X, 1);

II.9 (p−, 5)(p′′′, 5)→ (p−, 1)(p′′′, 0);

II.10 (p′′′, 0)(s?, 0)→ (p′′′, 5)(s?, 1), (p−, 1)(X, 1)→ (p−, 0)(X, 2).

– III. Auxiliary rules

III.1 (X, 4)(X ′, 4)→ (X, 5)(X ′, 1);

III.2 (X, 5)(X ′, 5)→ (X, 1)(X ′, 4);

III.3 (X, 3)(X, 3)→ (X, 2)(X, 1).

For any instruction of the register machine, a state p ∈ Q is associated with it. For each
state p, we associate a symbol p′ in cell 3, a symbol p′′ in cell 4 and a symbol p′′′ in cell 5.
Note that the symbols p′, p′′, p′′′, for p ∈ Q, and X,X ′, X are present in the system only in
one copy. Cell 2, the output cell, contains the contents of the registers.

Let us observe that the configuration of the system corresponding to the start of the
simulation of an instruction (p,A?i , q, s), where A?i is either A+

i or A−i , is given by the contents
of the environment, which is empty, and the five cells, i.e., (λ, p?X,w, p′t′X, p′′t′′X ′, p′′′t′′′),
where p? is either p+ or p−, t′ denotes p′1 . . . p

′
m without p′ and similarly for t′′ and t′′′;

w = cl11 . . . c
lk
k , li ≥ 0, 1 ≤ i ≤ k.

Simulation of an increment instruction (p,A+
i , q, s).

The computation proceeds as follows: one starts from the configuration (λ, p+X,w, p′t′X,
p′′t′′X ′, p′′′t′′′) and the computation evolves into (λ, λ,w, p′t′Xp+, p′′t′′X ′X, p′′′t′′′), by using
the rule I.1. This in turn evolves into (p′, p+X ′, w, t′X, p′′t′′, p′′′t′′′X), by using in parallel the
rules I.2 and III.1. Using in parallel the rules I.3, we get (λ, λ,wci, t

′X, p′′t′′p′, p′′′t′′′XX ′).
Since the environment has infinitely many copies of the symbols from Q+, we do not depict
that p+ has just joined the environment. Next, using I.4 and III.2 in parallel, we obtain
(p′′, X,wci, p

′t′X, t′′X ′, p′′′t′′′). Finally, using I.5, we get (λ, r?X,wci, p
′t′X, p′′t′′X ′, p′′′t′′′). A

new symbol ci has been added to cell 2 and cells 3, 4 and 5 have restored the multisets they
started with at the beginning of simulating the increment instruction. We are now ready to
begin simulating the next instruction corresponding to state r ∈ {q, s}.
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Simulation of a decrement instruction (p,A−i , q, s).

The computation starts from the configuration (λ, p−X,w, p′t′X, p′′t′′X ′, p′′′t′′′). We distin-
guish two cases.
Case 1: The content of register Ai is non-zero, i.e., w = ciw

′. Starting from (λ, p−X, ciw
′,

p′t′X, p′′t′′X ′, p′′′t′′′), we obtain (λ, λ, ciw
′p−, p′t′XX, p′′t′′X ′, p′′′t′′′), by using the rule II.1.

Further, using rules II.2 and III.3, we get (λ,X,w′X, p′t′, p′′t′′X ′p−, p′′′t′′′). A copy of ci is
sent to the environment. Next, using II.3, we have (p′′, p−X,w′X, p′t′, t′′X ′, p′′′t′′′). Further,
using rules II.4 in parallel, we obtain (λ, q?, w′XX, p′t′, p′′t′′X ′, p′′′t′′′). Finally, II.5 restores
X back to cell 1 and X back to cell 3, giving (λ, q?X,w′, p′t′X, p′′t′′X ′, p′′′t′′′), and we are
ready to simulate the next instruction.
Case 2: The content of register Ai is zero, i.e., w does not contain any ci. In this case,
we start again with II.1 obtaining (λ, λ,wp−, p′t′XX, p′′t′′X ′, p′′′t′′′). As it has been no-
ticed, w does not contain any ci. The rule II.2 can no longer be applied, but III.3 is
used and we get (λ,X,wp−X, p′t′, p′′t′′X ′, p′′′t′′′). Rule II.3 is not applicable now, but we
use rule II.6 instead, obtaining (λ,XX,w, p′t′p−, p′′t′′X ′, p′′′t′′′). Next, using II.7, we get
(λ, λ,wX, p′t′p−X, p′′t′′X ′, p′′′t′′′). Further, II.8 gives us (λ,X,wX, p′t′, p′′t′′X ′, p′′′t′′′p−). Next,
we obtain (p′′′, Xp−, wX, p′t′, p′′t′′X ′, t′′′), using II.9. This evolves into (λ, s?, wXX, p′t′, p′′t′′X ′,
p′′′t′′′), using II.10. Now, using II.5, X,X are restored to their usual positions and we obtain
(λ, s?X,w, p′t′X, p′′t′′X ′, p′′′t′′′).

When we obtain the halting state qf , the system halts. The contents of cell 2 is then the
output of Π. �

3.3. GCPS with minimal interaction – parallel shift

We recall that parallel shift rules are such that i 6= k, i 6= l, i 6= j, j 6= l. We show below
that 5 compartments are enough for simulating a register machine with such rules.

Theorem 3. NGCPS(parallel shift)5 = NRE.

Proof. As in the earlier two results, for a given register machine, M , we construct a GCPS
with minimal interaction, Π = (O,E,w1, w2, w3, w4, w5, RΠ, 2), using only parallel shift rules
and simulating M . It will be shown that for any computation in M there is a halting com-
putation of the constructed GCPS, Π, and no unexpected computations are allowed in Π.
Define Q+ and Q− as in the proofs of the previous theorems.

• O = Q+∪Q−∪{q, q̂ | q ∈ Q\{qf}}∪{qf , c1, . . . , ck}∪{a, b, e, Y1, Y2, Y3}, is the alphabet
of the system.

• E = Q+ ∪ Q− ∪ {c1, . . . , cn} ∪ {q, q̂ | q ∈ Q\{qf}}, is the set of symbols present in the
environment.

• w1 = ab, w2 = λ, w3 = Y2Y3, w4 = Y1e, w5 = λ.

• Cel 2 is the output cell.
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• The rules RΠ are as follows

– I. Initialisation rules:

I.1 (a, 1)(Y2, 3)→ (a, 5)(Y2, 0), (b, 1)(Y3, 3)→ (b, 5)(Y3, 0),
(q+

0 , 0)(e, 4)→ (q+
0 , 1)(e, 5).

– II. For each increment instruction (p,A+
i , q, s), the rules below are introduced into

RΠ. As in the previous proofs for r ∈ {q, s}, r? stands for r+ or r−.

II.1 (p+, 1)(ci, 0)→ (p+, 3)(ci, 2);

II.2 (p+, 3)(Y2, 2)→ (p+, 4)(Y2, 0);

II.3 (p+, 4)(r?, 0)→ (p+, 5)(r?, 1).

– III. For each decrement instruction (p,A−i , q, s), the following rules are added to
RΠ; q? and s? are used with the meaning from the previous proofs:

III.1 (p−, 1)(ci, 2)→ (p−, 3)(ci, 0);

III.2 (p−, 3)(q̂, 0)→ (p−, 5)(q̂, 1);

III.3 (q̂, 1)(q, 0)→ (q̂, 3)(q, 2);

III.4 (q, 2)(q?, 0)→ (q, 5)(q?, 1), (q̂, 3)(Y2, 2)→ (q̂, 5)(Y2, 0);

III.5 (p−, 1)(Y2, 2)→ (p−, 4)(Y2, 0);

III.6 (p−, 4)(s?, 0)→ (p−, 5)(s?, 1).

– IV. For the halting instruction corresponding to state qf , the following rules are
added to RΠ:

IV.1 (qf , 1)(Y2, 2)→ (qf , 3)(Y2, 5);

IV.2 (qf , 3)(Y1, 1)→ (qf , 0)(Y1, 5).

– V. Auxiliary rules:

V.1 (Y1, 4)(Y2, 0)→ (Y1, 3)(Y2, 2);

V.2 (Y1, 3)(Y3, 0)→ (Y1, 1)(Y3, 5);

V.3 (Y1, 1)(Y3, 5)→ (Y1, 4)(Y3, 0).

In the sequel we describe successful computations in Π corresponding to successful gene-
ration of non-negative numbers in M .

Initialisation step.
Before the simulation ofM begins, starting from the initial configuration (λ, ab, λ, Y2Y3, Y1e, λ),
we attain the configuration (Y2Y3, q

+
0 , λ, λ, Y1, abe).

As in the proofs of the previous results we depict the configuration of the system at the
start of the simulation of an instruction (p,A?i , q, s), where A?i is either A+

i or A−i . This is

given by (Y2Y3, p
?, w, λ, Y1, abex), where p? is either p+ or p−, w = cl11 . . . c

lk
k , li ≥ 0, 1 ≤ i ≤ k,

and x is a multiset over Q+ ∪Q− ∪ {q, q̂ | q ∈ Q\{qf}}.
Simulation of an increment instruction (p,A+

i , q, s).

We start the simulation of the increment instruction from the configuration (Y2Y3, p
+, w, λ, Y,
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abex) (when p = q0, w = λ). We use rules II.1 and V.1 in parallel obtaining (Y3, λ, wciY2, p
+Y1,

λ, abex). A copy of ci is brought into cell 2. This is followed by the use of II.2 and V.2 giving
(Y2, Y1, wci, λ, p

+, abexY3), where symbol p+ is moved into cell 4. This is followed by the use
of II.3 and V.3 producing (Y2Y3, r

?, wci, λ, Y1, abexp
+), by moving p+ from cell 4 to cell 5 and

r? from the environment to cell 1. This copy of p+ stays forever in cell 5; hence cell 5 can be
considered as a “garbage collector” component. We are ready for the simulation of the next
register machine instruction corresponding to state r, where r ∈ {q, s}.

Simulation of a decrement instruction (p,A−i , q, s).

As in the previous proofs, q? ∈ {q+, q−} and s? ∈ {s+, s−}. To begin the simulation of a
decrement instruction, we start with the configuration (Y2Y3, p

−, w, λ, Y1, abex). Two cases
are considered.
Case 1: The content of register Ai is non-zero, i.e., w = ciw

′. We start by applying the rules
III.1 and V.1 and obtaining (Y3, λ, w

′Y2, p
−Y1, λ, abex). Next, using III.2 and V.2, we get

(λ, q̂Y1, w
′Y2, λ, λ, Y3abexp

−). Next, using III.3 and V.3, we have (Y3, λ, qw
′Y2, q̂, Y1, abexp

−).
This is followed by III.4, obtaining (Y2Y3, q

?, w′, λ, Y1, abexp
−qq̂). The auxiliary symbols q̂, q

are pushed into the “garbage collector” component (cell 5), and we are ready for the simulation
of the next instruction corresponding to state q.
Case 2: Content of register Ai is zero; in this case w does not contain any ci. In this case,
we cannot use the rule III.1, since there is no ci in cell 2. We therefore start with the
rule of V.1, obtaining Y1 in cell 3 and Y2 in cell 2, and p− staying in cell 1. So, the fol-
lowing configuration is obtained: (Y3, p

−, wY2, Y1, λ, abex). This is followed by rules III.5
and V.2, obtaining (Y2, Y1, w, λ, p

−, abexY3). Then, rules III.6 and V.3 are used which gives
(Y2Y3, s

?, w, λ, Y1, abexp
−). Y2, Y3 go back to the environment, and s? comes to cell 1. We are

now ready to simulate the instruction corresponding to state s.
Halting step.

To halt the computation, we move the auxiliary symbols Y1, Y2 into the “garbage collector”
component, cell 5. When we obtain qf in cell 1, the configuration is (Y2Y3, qf , w, λ, Y1, abex).
Applying rule V.1 to this configuration one gets (Y3, qf , wY2, Y1, λ, abex). Then using IV.1 and
V.2 in parallel we end up with (λ, Y1, w, qf , λ, abexY2Y3). Now, rule IV.2 is used, and qf goes
to the environment, Y1 goes to the “garbage collector” obtaining (λ, λ,w, λ, λ, abexY1Y2Y3).
There are no more rules to apply, and the system halts. The content of membrane 2 is the
output. �

3.4. GCPS with minimal interaction – presence move

We recal that presence move rules are such that i = k, i 6= l, i 6= j, j 6= l. We show below
that 6 compartments are enough for simulating a register machine with such rules.

Theorem 4. NGCPS(presence move)6 = NRE.

Proof. As in the proofs of the earlier results, we construct a minimal interaction GCPS Π
with presence rules, having 6 cells which simulates a register machine, M = (Q,R, q0, qf , P ),
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with k registers and m states (Q = {q0, qf , p1, . . . , pm−2}), such that N(Π) = N(M). It will
be shown that for any computation in M there is a halting computation of the constructed
GCPS, Π, and no unexpected computations are allowed in Π.

Given Q′ = Q\{qf}, the sets Q′+, Q′− are defined as in Theorems 1, 2 and 3. We construct
Π = (O,E,w1, . . . , w6, RΠ, 2) as it is described below.

• O = Q′+ ∪Q′− ∪ {ci | 1 ≤ i ≤ k} ∪ {qf , †, γ, δ, η1, η2, χ}, is the alphabet of the system.

• E = {ci | 1 ≤ i ≤ k} ∪ {†}, is the alphabet of the environment.

• w1 = q+
0 χ, w2 = w3 = λ, w4 = η2, w5 = γ, w6 = δη1p

+
1 . . . p

+
m−2p

−
1 . . . p

−
m−2qf , are the

initial multisets.

• Cell 2 is the output cell, storing the result of the computation.

• The rules RΠ are as follows:

– I. For each increment instruction (p,A+
i , q, s), if r ∈ {q, s}, the rules below are

introduced into RΠ, where r? stands for r+ or r−, when r ∈ Q′ or r? = qf .

I.1 (p+, 1)(ci, 0)→ (p+, 1)(ci, 6);

I.2 (ci, 6)(p+, 1)→ (ci, 6)(p+, 3);

I.3 (ci, 6)(†, 0)→ (ci, 6)(†, 3);

I.4 (p+, 3)(ci, 6)→ (p+, 3)(ci, 2);

I.5 (δ, 4)(p+, 3)→ (δ, 4)(p+, 5);

I.6 (p+, 5)(r?, 6)→ (p+, 5)(r?, 1);

I.7 (η2, 4)(p+, 5)→ (η2, 4)(p+, 6).

– II. For each decrement instruction (p,A−i , q, s), the following rules are added to

RΠ; with q? ∈ {q+, q−} or q? = qf and s? ∈ {s+, s−} or s? = qf :

II.1 (p−, 1)(ci, 2)→ (p−, 1)(ci, 3);

II.2 (ci, 3)(p−, 1)→ (ci, 3)(p−, 4);

II.3 (ci, 3)(†, 0)→ (ci, 3)(†, 6);

II.4 (p−, 4)(ci, 3)→ (p−, 4)(ci, 5);

II.5 (ci, 5)(p−, 4)→ (ci, 5)(p−, 3);

II.6 (η1, 6)(ci, 5)→ (η1, 6)(ci, 0), (p−, 3)(q?, 6)→ (p−, 3)(q?, 1);

II.7 (q?, 1)(p−, 3)→ (q?, 1)(p−, 6);

II.8 (p−, 3)(†, 0)→ (p−, 3)(†, 6);

II.9 (δ, 4)(p−, 1)→ (δ, 4)(p−, 2);

II.10 (p−, 2)(s?, 6)→ (p−, 2)(s?, 1);

II.11 (η2, 4)(p−, 2)→ (η2, 4)(p−, 6).
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– III. For the halting instruction corresponding to state qf , the following rule is added
to RΠ:

III.1 (qf , 1)(γ, 5)→ (qf , 1)(γ, 0).

– IV. Auxiliary rules:

IV.1 (γ, 5)(δ, 6)→ (γ, 5)(δ, 4);

IV.2 (γ, 5)(δ, 4)→ (γ, 5)(δ, 6);

IV.3 (†, 3)(χ, 1)→ (†, 3)(χ, 4), (†, 3)(χ, 4)→ (†, 3)(χ, 1);

IV.4 (†, 6)(χ, 1)→ (†, 6)(χ, 4), (†, 6)(χ, 4)→ (†, 6)(χ, 1).

The only objects available in infinitely many copies (in the environment) are the symbols
ci and †; cell 6 has a copy of p+, p− for all p ∈ Q′ \ {q+

0 , q
−
0 } as well as one copy of each of the

auxiliary symbols δ, η1. Symbols in Q′+ ∪Q′− as well as {qf , γ, δ, η1, η2, χ} are available only
in a single copy in Π.

As in the proofs of the previous results we start by describing the generic configuration of
the system at the start of the simulation of an instruction (p,A?i , q, s), where A?i is either A+

i

or A−i . This is given by (λ, p?χ,w, λ, η2, γ, δη1x), where p? ∈ {p+, p−}, w = cl11 . . . c
lk
k , li ≥ 0,

1 ≤ i ≤ k, and x is a multiset over Q′+ ∪ Q′− ∪ {qf}. After the simulation of an increment
instruction one can have in cell 5 the multiset γr+, r ∈ Q′, but r+ will be moved to cell 6
immediately afterwards.

Simulation of an increment instruction (p,A+
i , q, s).

The configuration of Π before the simulation of the increment instruction (p,A+
i , q, s) is de-

rived from the generic one described above; in this case the multiset in cell 1 is p+χ and the
rest remains unchanged. We start with rules I.1 and IV.1 obtaining (λ, p+χ,w, λ, η2δ, γ, η1xci),
i.e., a copy of ci from the environment is moved into cell 6 and δ from cell 6 goes to cell 4,
respectively. Also, we should not get more copies of ci from the environment. For this, we
shift p+ from cell 1 to cell 3, in the presence of ci in cell 6 and get δ back to cell 6, by using
rules I.2 and IV.2, respectively. Consequently, (λ, χ,w, p+, η2, γ, δη1xci) is obtained. Note
that δ keeps shuttling between cells 4 and 6 in the presence of γ in cell 5 (rules IV.1 and
IV.2). Rules I.3 and IV.3 are to ensure that p+ is shifted to cell 3; using I.3 and IV.3 will lead
to an infinite computation. We need to move ci to cell 2, where the contents of all the registers
are stored (rule I.4). Rules I.4 and IV.1, used in parallel, produce (λ, χ,wci, p

+, η2δ, γ, η1x).
Next, using I.5, p+ is shifted to cell 5, in the presence of δ in cell 4. Using rule I.6, p+ in
cell 5 begets from cell 6, the symbol r? ∈ {q+, q−, s+, s−} and in parallel, rule IV.2 will move
δ from cell 4 to 6; r?, placed in cell 1, corresponds to the state of the new instruction, i.e.,
(λ, r?χ,wci, λ, η2, γp

+, δη1x). The symbol p+, corresponding to the old instruction, is moved
to cell 6; where symbols from Q′+ are stored; this is done using rule I.7. Note that if I.7 is
used before I.6, then we will not beget the symbol r? corresponding to the state of the new
instruction, in cell 1; in this case, δ will keep on shuttling between cells 6 and 4, using rules
IV.1 and IV.2, respectively, generating an infinite computation. Note also that I.7 happens
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in parallel with the beginning of the simulation of the next instruction; δ is in cell 6 at the
start of a new simulation.

Simulation of a decrement instruction (p,A−i , q, s).

At the start of a decrement instruction (p,A−i , q, s), we have the configuration derived from
the generic one, whereby cell 1 contains the multiset p−χ and the rest stays unchanged. We
consider two cases here:
Case 1: The content of register Ai is non-zero, i.e., w = ciw

′. In this case, we start with
II.1 and IV.1. A copy of ci is moved from cell 2 to cell 3 and δ moves from cell 6 to cell 3,
respectively. The resultant configuration is (λ, p−, w′, ci, η2δ, γ, η1x). To prevent the removal
of more than one copy of ci from cell 2, we use rule II.2, which moves p− to cell 4; in parallel
δ is moved from cell 4 to 6 (IV.2). If rule II.2 is not executed (assume p− stays in cell 1, and
removes another copy of ci, or uses rule II.9) then rule II.3 is used, and the symbol † is brought
inside Π, cell 6, resulting in an infinite computation by using IV.4. This is followed by rule
II.4, and the copy of ci is shifted from cell 3 to cell 5; the rule IV.1 is used in parallel, resulting
the configuration (λ, λ,w′, λ, η2p

−δ, γci, η1x). Rule II.5 moves p− to cell 3 and then rules II.6
release ci from cell 5 into the environment, and bring q?, the symbol corresponding to the state
of the next instruction, from cell 6 to 1. The configuration then is (λ, q?, w′, p−, η2δ, γ, η1x

′),
where x′ is x without q?. This is followed by II.7, which moves p− to cell 6; note that if
q? gets involved in any rule other than II.7, an infinite computation is obtained (rules IV.4)
using rule II.8. If II.7 is used, then we obtain (λ, q?, w′, λ, η2, γ, δη1x), and we are ready for
the next simulation.
Case 2: The content of register Ai is zero, i.e., there is no ci in cell 2. In this case we cannot
use the rule II.1. Then we have p− in cell 1, and δ in cell 4. We then use rule II.9 and p− is
moved to cell 2. From cell 2, p− obtains s? in cell 1 using rule II.10, and δ comes to cell 6.
This s? can start the next simulation, while in parallel, p− is moved to cell 6 using II.11. It
must be noted that if II.11 is executed before II.10, we would obtain an infinite computation
due to δ moving between cells 4 and 6.

Halting step.
To halt the computation, we remove γ from cell 5, once we obtain qf in cell 1. The output of
Π is given by the contents of cell 2. �

4. Applications

In this section we will present some problems that are modelled with GCPS. They consist
of a producer/consumer problem, some examples of workflow patterns, two broadcasting
problems and comparative operations.

For these applications we use a GCPS model given by

Π = (O,E,w1, . . . , wn, RΠ)

where its elements will be defined in each of the cases below. Please note that we do not need
output cells as the result is not captured in a distinguished cell.
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4.1. Producer/consumer models

The producer/consumer paradigm consists of a system with two processes, a producer
and a consumer, which synchronise through a buffer of one item. This has been modelled in
different formalisms, including Petri nets [22] and membrane systems [2]. The last model uses
generalised membrane systems with rewriting rules taking objects from various compartments
and placing the results in other compartments. A slightly different version of this problem is
investigated in [19, 20] by using numerical P systems. In the sequel we will use GCPS models
with the same number of rules as those in [2].

The GCPS, Πp/c of degree 6 will consists of cells identified by P (“ready to produce”) and
D (“ready to deliver”) – for the producer, R (“ready to remove”) and C (“ready to consume”)
– the consumer, and F (“filled”) and E (“empty”) – the buffer. The alphabet O = {t} (where
t stands for a token available in certain cells). We consider that the environment will also
contain t. The initial multisets are wP = wE = wC = t and the others are empty. The rule
set Rp/c contains the following rules:
r1 : (t, P )(t, 0)→ (t,D)(t, 0);
r2 : (t, C)(t, 0)→ (t, R)(t, 0);
r3 : (t, E)(t,D)→ (t, F )(t, P );
r4 : (t, F )(t, R)→ (t, E)(t, C).

The producer starts producing by moving the token t from P to D (rule r1) and the
consumer is preparing for consuming what the producer is sending, by moving t from C to R
(rule r2). At this moment the buffer moves t from E to F , signalling that the buffer is full,
and the producer is returning it from D to P (rule r3). Then the consumer consumes the
object sent by the producer and stored by the buffer by using rule r4. The process described
by the GCPS Πp/c is very similar to the process described by the Petri nets model [22] and
by the membrane systems [2].

4.2. Workflow patterns

Workflow patterns represent the basis of building various workflow processes and are
modelled with different formalisms, the most utilised being Petri nets [25, 24]. In the sequel we
present GCPS models for the sequence, parallel split, synchronisation and mutual exclusion
workflow patterns.

A Sequence pattern is used to model consecutive steps in a workflow process. The control
pattern cannot be started again until it has completed the execution of the preceding thread
of control. We represent this pattern with a GCPS consisting of five cells, in, aux1, aux2, p
and out; two symbols c,X and two rules:
r1 : (c, in)(X, aux1)→ (c, p)(X, aux2);
r2 : (c, p)(X, aux2)→ (c, out)(X, aux1).

This model describes precisely the behaviour of a sequence pattern where a new pattern
is executed only after processing the last rule.

A Parallel split workflow pattern describes the situation of separating a workflow into two
workflows running in parallel, each of them ending in different states. The GCPS uses seven
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cells denoted in, p1, p2, aux1, aux2, out1, out2; two symbols c,X and five rules:
r1 : (c, in)(c, in)→ (c, p1)(c, p2);
r1+i : (c, pi)(X, auxi)→ (c, outi)(X, auxi); 1 ≤ i ≤ 2;
r3+i : (c, pi)(X, auxi)→ (c, pi)(X, auxi), 1 ≤ i ≤ 2.

After c′s are distributed, each one for a different workflow, then the two workflows are
executed in parallel, in any order. The rule r1 is a split operation, r2, r3 are presence move
rules and r4, r5 are identity rules (the same left and right side).

The Synchronisation pattern describes the problem of a parallel merge. Two parallel
workflows are synchronised such that their final results are processed at the same time. A
GCPS for this problem consists of eight cells, in1, in2, p1, p2, aux1, aux2, aux, out; two symbols
c,X and the rules:
ri : (c, ini)(X, auxi)→ (c, pi)(X, auxi); 1 ≤ i ≤ 2;
r2+i : (c, ini)(X, auxi)→ (c, ini)(X, auxi); 1 ≤ i ≤ 2;
r5 : (c, p1)(c, p2)→ (c, out)(c, aux).

The two c′s that start from in1 and in2 arrive at p1 and p2, respectively; they might not
proceed at the same time, due to jkjr3 and r4 that delay there move. The synchronisation is
achieved through rule r5.

The Mutual exclusion problem with a common resource consists of two processes A and
B which are executed in parallel, but only one is executed at a given time when a shared
resource is requested [22]. The GCPS consists of the following cells: p1, p2, p3 and a for A
and q1, q2, q3 and b for B and a1, b1, s for the common resource; symbols c,X, x are used. The
rules are:
for the process A:
r1 : (c, p1)(X, a)→ (c, p2)(X, a);
r2 : (c, p2)(x, s)→ (c, p3)(x, a1);
r3 : (c, p3)(x, a1)→ (c, p1)(x, s);
for the process B:
r4 : (c, q1)(X, b)→ (c, q2)(X, b);
r5 : (c, q2)(x, s)→ (c, q3)(x, b1);
r6 : (c, q3)(x, b1)→ (c, q1)(x, s).

The processes A and B will start executing when a c enters p1 and q1, respectively. So, A
and B can be executed in any order or at the same time and c moves to p2 and q2, respectively,
by using r1 and r4, respectively, which are presence move rules. Now they are ready to enter
the critical region, i.e., an x available from s will trigger the execution of either r2 or r5,
but not both (parallel shift rules); this means that only one process enters the critical region.
Once a process finishes then x is restored back to s and c moves to the initial state for a new
iteration.

4.3. Broadcasting

Broadcasting a signal in a network has been investigated for various types of P systems
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using tree-like structures [4, 5] or hyperdags [17]. The hyperdag structure has been used in
the case of bounded fanout broadcast problem [10]. In these cases the network is modelled as
a P system structure with nodes being cells of the P system. We will investigate this problem
by using a GCPS model. Our model will be implicitly a bounded fanout broadcast.

The brodcasting problem considered here can be formulated as sending a signal in a
tree-like network from the root to every other node. We also present the case when an
acknowledgement is received from each child of a node.

The tree will be defined by using a graph notation where the set of nodes is V and the
edges are E. For a set V with m elements this will be {1, . . . ,m}, with 1 being the root.
For any edge (i, j), i denotes the parent and j one of its children. In order to use a GCPS
model we have to add some auxilliary cells and links to “wire” them with those of the tree-like
structure. This model is a parallel shift GCPS.

The GCPS is no longer relying on an underlying tree structure, but we will use the
graph terminology, like parent-child, when cells corresponding to the nodes of the initial tree
structure are utilised.

Broadcasting. The GCPS Πp s of degree n has, apart from the cells labelled i, for i ∈ V,
where 1 stands for the root, the additional cells labelled [i, j] for (i, j) ∈ E and x, a new
symbol not in V. Hence, n = 2m, where m is the number of nodes of the tree. Πp s consists of

• O = {s, t}, where s is the signal to be broadcast and t is used in selecting a child where
s will be sent to; the system will contain one s located initially in the root, and a t for
each non-leaf node, as explained below; the environment is considered to contain copies
of s;

• w1 = s, w[i,j1] = t, j1 indicates the first of the p children, j1, . . . , jp of i, (i, jk) ∈ E,
1 ≤ k ≤ p; all the other initial multisets are λ;

• the rule set Rp s contains for every non-leaf node i, such that (i, jk) ∈ E, 1 ≤ k ≤ p, the
rules

– p = 1

∗ r(i,j1) : (s, i)(t, [i, j1])→ (s, j1)(t, x);

– p > 1

∗ r(i,j1),1 : (s, i)(t, [i, j1])→ (s, j1)(t, [i, j2]);

∗ r(i,jk),2 : (s, 0)(t, [i, jk]) → (s, jk)(t, α), where α = [i, jk+1], 1 < k < p and
α = x, when k = p.

When signal s is in cell i as [i, j1] has a t, then we have the following situations: when
p = 1, s goes to cell j1 – rule r(i,j1) is enabled and t goes to x; if p > 1 then s goes to j1,
according to rule r(i,j1),1 which is enabled in this case, and t moves to [i, j2]. Signal s arrives
in the other cells jk, 1 < k ≤ p, from the environment (cell 0) by using rules r(i,jk),2, as t
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becomes available in [i, jk]. So, it takes p steps for the signal to get to all p children of i. The
process will iterate until s arrives in leaf compartments.

The number of rules of the GCPS Rp s is equal to m − 1, the number of edges in the
tree. The maximum number of steps of the computation is also equal to the number of edges,
m− 1; this maximum is attained when every non-leaf node has precisely one child. Typically,
the number of steps required is less than m − 1 since, in maximal parallelism mode, rules
at different levels of the tree are applied simultaneously. We have an upper bound on the
number of steps given by the height of the tree plus the maximum degree of a node.

Broadcasting with acknowledgement. The GCPS Πp s,ac is similar to Πp s introduced above,
but has some more cells and rules necessary to handle the acknowledgement process. Πp s,ac

has cells labelled i, i ∈ V , x – as above, and [i, j, 1] and [i, j, 2] for each (i, j) ∈ E. Hence, the
total number of cells is n = 3m− 1. Πp s,ac consists of

• O = {s, a, t}, where s and t are as in Πp s and a is the acknowledgement symbol; the
system will contain one s located initially in the root, a t for each non-leaf node and an
a for each node of the tree different from the root, as explained below; the environment
is considered to contain copies of s;

• the initial multisets are w1 = s, wk = a, 1 < k ≤ m, wx = λ; w[i,j1,1] = t, w[i,jk,1] = λ,
1 < k ≤ p and w[i,jk,2] = λ, 1 ≤ k ≤ p, for all (i, jk) ∈ E, 1 ≤ k ≤ p;

• the rule set Rp s,ac contains for every non-leaf node i, such that (i, jk) ∈ E, 1 ≤ k ≤ p,
the rules

– p = 1

∗ r(i,j1,1) : (s, i)(t, [i, j1, 1])→ (s, j1)(t, [i, j1, 2]);

∗ r(i,j1,2) : (a, j1)(t, [i, j1, 2])→ (a, i)(t, x);

– p > 1

∗ r(i,j1,1),1 : (s, i)(t, [i, j1, 1])→ (s, j1)(t, [i, j1, 2]);

∗ r(i,j1,2),1 : (a, j1)(t, [i, j1, 2])→ (a, i)(t, [i, j2, 1]);

∗ r(i,jk,1),2 : (s, 0)(t, [i, jk, 1])→ (s, jk)(t, [i, jk, 2]);

∗ r(i,jk,2),2 : (a, jk)(t, [i, jk, 2])→ (a, i)(t, α), where α = [i, jk+1, 1], 1 < k < p and
α = x, when k = p.

The behaviour of Πp s,ac is similar to Πp s, but additionally an acknowledgement is sent
from each child cell to its parent. For this reason an additional cell appears associated with
each (i, j) ∈ E. In one step the signal is sent from the parent to the first child (either of the
rules r(i,j1,1) or r(i,j1,1),1), or from the environment to each of the other children when more
than a child exists (rule r(i,jk,1),2). In the second step an acknowledgement is received by
the parent from each child (one of the rules r(i,j1,2), r(i,j1,2),1 or r(i,jk,2),2, depending on the
number of children).
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The number of rules of GCPS Πp s,ac is 2(m−1), twice the number of edges. The maximum
number of steps of the computation is also equal to 2(m−1). This maximum is attained when
every non-leaf node has one child, otherwise, due to the maximal parallelism mode, less steps
are needed. We have an upper bound on the number of steps given by the height of the tree
plus the maximum degree of a node.

The model presented is bounded fanout broadcast [10], with only one single communication
per each step.

4.4. Comparative operations

Comparative operations between two integers have been implemented with a great
variety of P systems, and have been used to develop sorting methods with such systems.

In the context of bringing together membrane computing and the human genome project,
Professor Marcus in [15] says: ”The rules identifying the genes are a mixture of chemistry,
biology and combinatorial and comparative operations.” This emphasises the importance of
comparative operations, which are in turn key operations for sorting methods.

We present in the sequel a comparator implemented with minimal interaction rules. Unlike
in the previous applications, two different types of rules are used.

We codify two integers x1 and x2 with the number of apparitions of one symbol, a, in two
different cells, labelled respectively 1 and 2. We have w1 = ax1 and w2 = ax2 , all the other
cells are empty. We collect the result of the comparison in other two cells, labelled 1′ and 2′.
In 1′ we collect min{x1, x2}, and in 2′ we collect max{x1, x2}, both codified as number of
occurrences of symbol a.

We have the following set of rules:
(a, 1)(a, 2)→ (a, 1′)(a, 2′);
(a, 1′)(a, 1)→ (a, 1′)(a, 2′);
(a, 1′)(a, 2)→ (a, 1′)(a, 2′).

The first rule is a parallel shift rule, and it places min{x1, x2} occurrences of a in mem-
branes 1′ and 2′. The next two rules are presence move rules. Their role is to placemax{x1, x2}
occurrences of a in cell 2′. They do so by moving remaining objects a from cell 1 or from cell
2 into 2′.

This comparator works very similar to the comparator devised in [3] based on symport/an-
tiport rules, with priorities. The comparator in [3] achieves the result in one step, but it uses,
apart from communication rules, priorities in triggering the rules.

5. Relations between GCPS models and P colonies

GCPSs and P colonies demonstrate formal and functional similarities. Both of them are
networks of cells where the cells and their shared environment are represented by multisets
of objects and the cells may interact with the environment via exchange of objects. However,
differences between the two models can also be noticed: while the number of objects in each
cell of a P colony is constant during functioning, the cells of a GCPS may contain an arbitrarily
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large number of objects in the course of computation. Furthermore, when a program of a cell
of a P colony is used, then a rule is applied to each object in the cell, while in the case of
GCPSs a cell may contain objects which are not affected by any of the rules applied during
the transition.

P colonies, as generalised communicating P systems, are computationally complete com-
puting devices [7]; even those of capacity 1 [6]. In the following we show how these systems
can be simulated with GCPSs. For easier reading, we slightly deviate from the standard
labeling of cells.

Theorem 5. For every P colony Π = (O, e, F,C1, . . . , Cn), n ≥ 1, of capacity 1, we can
construct a GCPS Π′ = (O,E,w0E , w0F , w1, . . . , wn, RΠ′ , 0F ), such that N(Π) = N(Π′) holds.

Proof. Let us consider Π = (O, e, F,C1, . . . , Cn), n ≥ 1. Components of Π′ = (O,E,w0E ,
w0F , w1, . . . , wn, RΠ′ , 0F ), simulating Π are defined as follows. Let O = E, w0E = w0F = λ
and let wi = e for every i, 1 ≤ i ≤ n.

The rule set RΠ′ of Π′ is given as follows:

1. For any program p : a→ b in Pi, 1 ≤ i ≤ n, where a, b ∈ O, RΠ′ has a rule
r : (a, i)(b, 0)→ (b, i)(a, 0).

2. For any program of the form p : a ↔ b in Pi, 1 ≤ i ≤ n, where a, b ∈ (O \ (F ∪ {e})),
RΠ′ has a rule r : (a, i)(b, 0E)→ (b, i)(a, 0E).

3. For any program of the form p : a↔ e in Pi, 1 ≤ i ≤ n, where a ∈ (O \ (F ∪ {e})), RΠ′

has a rule r : (a, i)(e, 0)→ (e, i)(a, 0E).

4. For any program of the form p : e↔ a in Pi, 1 ≤ i ≤ n, where a ∈ (O \ (F ∪ {e})), RΠ′

has a rule r : (e, i)(a, 0E)→ (a, i)(e, 0).

5. For any program of the form p : f ↔ a in Pi, 1 ≤ i ≤ n, where a ∈ (O \ (F ∪ {e})),
f ∈ F , RΠ′ has a rule r : (f, i)(a, 0E)→ (a, i)(f, 0F ).

6. For any program of the form p : a ↔ f in Pi, 1 ≤ i ≤ n, where a ∈ (O \ (F ∪ {e})),
f ∈ F , RΠ′ has a rule r : (a, i)(f, 0F )→ (f, i)(a, 0E).

7. For any program of the form p : e ↔ f in Pi, 1 ≤ i ≤ n, where f ∈ F , RΠ′ has a rule
r : (e, i)(f, 0F )→ (f, i)(e, 0).

8. For any program of the form p : f ↔ e in Pi, 1 ≤ i ≤ n, where f ∈ F , RΠ′ has a rule
r : (f, i)(e, 0)→ (e, i)(f, 0F ).

RΠ′ consists of the previously given rules.
Next we show that N(Π) = N(Π′). Our idea is based on the following considerations.

Firstly, we consider E = O, thus ensuring the availability of object b for simulating an
evolution a → b of Π at any step of the computation in Π′. Secondly, since a cell of Π can
import an object a 6= e from the environment only if a is present there, Π′ should have at
least one cell for storing the objects different from e which are present in the environment of
Π in the current computation step. Thus, Π′ needs to have n + 2 cells, out of which n cells
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simulate the cells of Π, cell 0E stores the objects which are different from elements of F ∪{e}
and are present at that step of the computation of Π in the environment. Cell 0F contains as
many copies of objects f ∈ F as are present in the environment at the current computation
step and it has no other elements. Cell 0 denotes the environment of GCPS Π′. The given
rules of Π′ correspond to programs of Π and the initial configurations of Π and Π′ correspond
to each other, by the definition of Π′.

We show that if configuration (yE , y1, . . . , yn) can be obtained from configuration (xE , x1,
. . . , xn) by a transition in Π, then there exist configurations (λ, y0E , y0F , y1, . . . , yn) and
(λ, x0E , x0F , x1, . . . , xn) where yE = y0Ey0F , xE = x0Ex0F such that (λ, y0E , y0F , y1, . . . , yn)
can directly be obtained from configuration (λ, x0E , x0F , x1, . . . , xn) in Π′. If the transition
from (xE , x1, . . . , xn) to (yE , y1, . . . , yn) is performed in Π, then for every object xj , 1 ≤ j ≤ n,
one of the following cases holds: (1) no program (rule) is applicable to xj ; (2) yj is obtained
from xj by evolution; (3) yj is obtained from xj by communication. Then, by definition of RΠ′ ,
the corresponding rules can be applied to (λ, x0E , x0F , x1, . . . , xn) resulting in configuration
(λ, y0E , y0F , y1, . . . , yn). The reverse statement can be proved by using analogous reasoning.
We obtain that all computations in Π correspond to computations in Π′ and reversely, which
implies that N(Π) = N(Π′).

6. Conclusions

In this paper we have further improved the completeness results for GCPS models with
minimal interaction, which was formulated as an open problem in [26]. Finally, some exam-
ples illustrating the modelling capabilities of GCPS are presented. We briefly investigated
relations between GCPSs and P colonies; in the future, we plan to investigate this relation
for P colonies of capacity k, k > 1, for GCPSs with minimal interaction, with dynamically
changing environment, and with different functioning modes. We also plan to compare the
synchronisation mechanisms in these models. There are some open problems related to the
minimal number of cells for the GCPS models with minimal interactions as well as the generic
ones that require further investigations.
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[20] Gh. Păun and R. Păun, Membrane Computing and Economics. In [21], 632 – 644.
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