
 

The University of Bradford Institutional 
Repository 

http://bradscholars.brad.ac.uk 

This work is made available online in accordance with publisher policies. Please refer to the 

repository record for this item and our Policy Document available from the repository home 

page for further information. 

To see the final version of this work please visit the publisher’s website. Access to the 

published online version may require a subscription. 

Link to publisher’s version: http://dx.doi.org/10.1021/acs.jpcb.7b00577 

Citation: Towse C, Akke M and Daggett V (2017) The dynameomics entropy dictionary: a large-

scale assessment of conformational entropy across protein fold space. The Journal of Physical 

Chemistry B. 121(16): 3933-3945.  

Copyright statement: © 2017 ACS. This document is the Accepted Manuscript version of a 

Published Work that appeared in final form in The Journal of Physical Chemistry B, copyright 

American Chemical Society after peer review and technical editing by the publisher. To access the 

final edited and published work see http://dx.doi.org/10.1021/acs.jpcb.7b00577. 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/153515212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 1 

 

 

The Dynameomics Entropy Dictionary: A Large-Scale Assessment of 

Conformational Entropy Across Protein Fold Space 

Clare-Louise Towse
†§

, Mikael Akke
‡
 and Valerie Daggett

†
* 

†
Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-

5013, USA 

‡
Department of Biophysical Chemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden 

§
Current Address: Department of Chemistry and Biosciences, Faculty of Life Sciences, Universi-

ty of Bradford, Richmond Road, Bradford, BD7 1DP, United Kingdom 

 

*Corresponding author: Valerie Daggett, Email: daggett@uw.edu 

 

Running title: Conformational Entropy from Dynameomics  

  



 

 2 

ABSTRACT 

Molecular dynamics (MD) simulations contain considerable information with regard to the mo-

tions and fluctuations of a protein, the magnitude of which can be used to estimate conforma-

tional entropy. Here we survey conformational entropy across protein fold space using the Dy-

nameomics database, which represents the largest existing dataset of protein MD simulations for 

representatives of essentially all known protein folds. We provide an overview of MD-derived 

entropies accounting for all possible degrees of dihedral freedom on an unprecedented scale. 

Although different side chains might be expected to impose varying restrictions on the confor-

mational space that the backbone can sample, we found that the backbone entropy and side chain 

size are not strictly coupled. An outcome of these analyses is the Dynameomics Entropy Dic-

tionary, the contents of which have been compared with entropies derived by other theoretical 

approaches and experiment. As might be expected, the conformational entropies scale linearly 

with the number of residues, demonstrating that conformational entropy is an extensive property 

of proteins. The calculated conformational entropies of folding agree well with previous esti-

mates. Detailed analysis of specific cases identify deviations in conformational entropy from the 

average values that highlight how conformational entropy varies with sequence, secondary struc-

ture, and tertiary fold. Notably, -helices have lower entropy on average than do -sheets, and 

both are lower than coil regions.  
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INTRODUCTION 

Conformational entropy is increasingly being recognized as a potentially important driv-

ing force for biologically relevant processes involving proteins and other macromolecules. Lig-

and binding and allostery have been shown to depend sensitively on changes in conformational 

entropy.
1-9

 Methods to derive protein conformational entropy from structural and simulation data 

date back over thirty years.
10-11 

Due to methodological challenges to experimentally characterize 

conformational entropy, most approaches have been theoretical, although some benchmarking 

against experimental data has been performed.
12

 Attempts have been made to derive conforma-

tional entropy from dihedral angle distributions observed in a database of individual protein X-

ray crystal structures.
13 

It has been demonstrated that conformational entropy can be estimated 

from NMR relaxation studies and the derived generalized order parameter, S
2
, which offers a 

unique source of experimental information on dihedral angle distributions.
1,14-16

 As initially 

shown for cooperative binding of Ca
2+

 to calbindin D9K,
1
 such studies can address the relation-

ship between internal motions and biological function. 

Given the continuing discussions regarding conformational entropy due to its importance 

in protein folding, ligand binding, allostery, and functionally relevant conformational changes, it 

is essential that the conformational entropy and the relationship to any experimental observables 

be well defined and characterized. Molecular dynamics (MD) simulations provide a critical 

complement to NMR order parameters, because both S
2
 and conformational entropy can be cal-

culated from the generated coordinate distributions, thereby enabling benchmarking between 

simulation and experiment, as well as a mechanistic interpretation of the underlying dynamics. 

For example, methyl-axis S
2
 values have been shown to partition as a measure of rotamer popu-
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lations.
17-19 

A number of MD studies have investigated the relationship between S
2
 and confor-

mational entropy.
20-25 

 Most importantly, MD simulations yield the total conformational entropy 

of the sampled ensemble, while NMR is limited by probing specific degrees of freedom, e.g., via 

the 
15

N backbone order parameter.  

Several important studies based on MD simulations have contributed to our understand-

ing of conformational entropy as an important factor in ligand binding.
9,26-27

 Aside from the 

problem of correspondence between experimental variables and conformational entropy, a num-

ber of important questions arise regarding conformational entropy per se, such as the degree of 

variability within proteins as a function of amino-acid residue type, location in secondary struc-

ture elements, and the extent of coupling between dihedral angles. However, previous studies 

have used only a single protein or very small datasets that limit the generality of these results.  

Here we present a large-scale characterization of conformational entropy in proteins, 

based on the Dynameomics MD dataset that represents 807 different proteins covering essential-

ly all known protein folds. The dataset thereby reduces the potential topological bias and far ex-

ceeds the statistical power of the earlier studies performed on only a few proteins. As a result, we 

are able to address general features of conformational entropy across protein fold classes, sec-

ondary structure elements, and residue types. Dynameomics is a large-scale effort to explore pro-

tein dynamics and unfolding, in a broad and systematic manner, across protein fold space.
28,29

  

Protein fold space was defined by constructing a consensus domain dictionary to evaluate and 

rank protein domains into metafolds based on population in the Protein Data Bank (PDB); the 

top 807 metafolds were determined to cover 97% of the known autonomous globular protein 

folds.
30,31

 Here we present the analysis of 2,421 simulations of these 807 representative proteins 
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at 298 K and 498 K, with a total simulation time of 80,700 ns (81 s). In addition, we have de-

termined benchmark entropies using an ‘idealized’ GGXGG dataset, commonly used as a ran-

dom coil reference in NMR studies, to provide intrinsic amino acid propensities where ‘X’ is any 

of the 20 proteinogenic amino acids.
32

 We also highlight some case studies comparing multiple 

members of highly populated metafolds and a heteromorphic high sequence-identity domain 

pair.  From this large-scale analysis of dihedral angle distributions from simulations of the 

GGXGG host-guest series, and the 807 protein folds under native state (298 K) and elevated 

temperature (498 K) conditions, we have surveyed the conformational entropies of proteins and 

their constituent amino acids and local secondary structure to create a ‘dictionary’ of entropy 

values, the Dynameomics Entropy Dictionary (DED).  

In total, three dictionaries were generated, one for intrinsic ‘random coil’ entropy values 

(GGXGG data), one for native state entropy values (298K protein data) and one for denatured 

state entropy values (498K protein data). The absolute entropies in these dictionaries were then 

used to determine S values, yielding good agreement between calculated Sfold values with 

previously determined experimental values. Naturally, fine detail is lost in the creation of such 

dictionaries that compute average entropies across such a large dataset, but we show that it can 

be teased out using entropy profiles of the deviations between the entropy of a given residue and 

the dictionary value highlighting relationships with secondary structure and topology.  

METHODS 

Simulation Datasets. Two datasets were used in this work: a host-guest series to model 

intrinsic propensities using GGXGG peptides,
32

 ‘X’ representing each of the proteinogenic ami-
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no acids, and a database of globular protein simulations. The latter dataset is the Dynameomics 

database
28,29

 which houses simulations of 807 proteins (D807) that represent 97% of all known 

autonomous protein folds selected from our Consensus Domain Dictionary.
30,31

 Additional simu-

lation data were used for cases studies that included a heteromorphic protein pair, the GA88 and 

GB88 protein domains,
33

 and related folds within the Dynameomics rank 1 and rank 5 metafold 

families (Table S1) for comparison with the Dynameomics dataset.  

All proteins and peptides were simulated as microcanonical (NVE) ensembles with ex-

plicit, flexible F3C water models
34,35

 at 298 K and 498 K using in lucem molecular mechanics 

(ilmm)
36

  and the Levitt et al. force field.
37

 The D807 298 and 498 K data are currently available 

up to 51 ns, with duplicate simulations at 498 K for each target. For the GGXGG dataset, the 

peptides were simulated with their N and C-termini acetylated and amidated, respectively, for 

101 ns. In all cases, the first nanosecond was discarded as an initial equilibration period. For the 

analysis, 50 ns of data were used from all the datasets. For the D807 dataset, all 50 ns of produc-

tion dynamics from the 298 K simulations was used, 25 ns were taken from the latter portion of 

each duplicate set of 498 K simulations to represent the denatured state and 50 ns taken from the 

latter portion of the GGXGG simulations. The GA88 and GB88 domains simulations and have 

been presented in depth elsewhere.
38

 The lengths of the simulations for the Rank1 and Rank 5 

sets are detailed in Table S1. The first nanosecond was discarded as equilibration for all simula-

tions. Cysteine residues are present in the D807 dataset in disulfide bonded and protonated 

forms, but the short length of the GGXGG peptides precludes modeling of the disulfide bonded 

form of Cys, hence only entropies for the protonated form (Cyh in our force field) are given for 

the GGXGG host-guest series. 
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Assessment of Datasets The convergence and suitability of using the latter 50 ns of the 100 ns 

GGXGG simulations for our comparative analyses with our Dynameomics dataset has been 

shown previously to sample conformational space sufficiently and consistently over the trajecto-

ries with negligible increase in the coverage of  space above 50 ns.
39

 We reconfirmed this by 

calculating  entropies over the first and second 50 ns portions of the trajectories for the full 

GGXGG series and the D807 test set of 51 ns trajectories (Tables S2 and S3). In both instances, 

these calculations provided the same entropies for the first and latter trajectory portions with neg-

ligible differences and showed the use of 5 bin widths to be acceptable (Table S2-S5). The data 

for the 807 trajectories has previously been scrutinized and the dihedral angle distributions ob-

tained for the 51 ns D807 trajectories were as previously reported.
18

  

Calculation of Entropy. Entropies were estimated from the side chain and main chain dihedral 

angle motions throughout the simulations.  All dihedral angle values were saved every 0.2 ps 

and, for a given dihedral angle, the entropy was evaluated as a Boltzmann sampling of states us-

ing equation (1) for a given angle, , where pi is the fractional population of microstate i and, R, 

the gas constant to convert the units into cal mol
-1

 K
-1

; the exact number used for R was 1.98721 

cal mol
-1

 K
-1

 based on 1 cal = 4.184 J. Microstates were defined in 5° increments and the popula-

tions of these microstates were obtained using histograms of the dihedral angle distributions with 

a 5° bin width. The populations in each bin were normalized using the simulation length to give 

a fractional population for each bin, pi. In this manner, the entropic contribution for amino acid 

side chains, Ssc, was taken as a simple summation of the entropies for the dihedral angles in the 

residue.  Here, this summation of the dihedral angle entropies was used to estimate the entropy of 

amino acid side chain, Ssc, using the dihedral angles in the side chain group.  
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For calculation of the main chain entropy of each amino acid residue (Smc) the coupling 

between the main chain dihedral angles was captured by determining the population of mi-

crostates using using three-dimensional histograms with 5 bin widths in each dimension, with 

the three dimensions pertaining to  and dihedral angles.  When using the three-

dimensional histograms, the probability of the i,j,k
th

 5°5°5° bin, pijk, replaces pi. Total entro-

pies for each residue, Sres, were then calculated as a summation of the constituent entropies of the 

relevant main chain and side chain dihedral angles, equation (2). For the 498 K data, as shorter 

segments of the simulations were used, histograms over duplicate simulations for a single angle 

were generated and normalized accordingly. All dihedral angles were included and are defined 

within the Levitt et al. force field (Figure S1).  

𝑆𝜃 =  −𝑅 ∑ 𝑝𝑖𝑙𝑛𝑝𝑖         (1) 

𝑆𝑟𝑒𝑠 = ∑ 𝑆𝑚𝑐 +  𝑆𝜒1 +  ⋯ +  𝑆𝜒𝑛        (2) 

For tractability and because the length of the side chains varies, the main chain and side chain 

entropies were computed independently and coupling between angles was only accounted for in 

calculating the main chain entropies. Terminal residues, not having a full complement of  an-

gles for computing the main chain entropy, were excluded from the calculations. Validation of 

the selected bin width and assessment of coupling between angles is contained in the Supplemen-

tary Information (Tables S2-S8 and Figure S2). 

RESULTS AND DISCUSSION 
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The Dynameomics MD data were acquired using our in-house molecular modeling pack-

age in lucem molecular mechanics (ilmm)
36

 and an established force field and methods.
37,40-41

 

The available molecular mechanics packages have a common origin, beginning with CFF (Con-

sistent Force Field), as has been described previously by Levitt.
42 

For reference, our force field 

and methods are direct descendants of CFF, via EREF and ENCAD
43

 from the Levitt Lab, then 

being re-written in the Daggett Lab using modern software engineering techniques. Thus, ilmm 

is related to AMBER, CHARMM and other packages, but ENCAD and ilmm focus on the simu-

lation of fully flexible, unrestrained systems. One critical feature is the use of a simple, fully 

flexible water model (F3C) that provides excellent agreement with experimental diffusion con-

stants and radial distribution functions even at elevated temperatures.
34-35,40

 We also do not em-

ploy algorithms that restrict bond and angle motion, such as SHAKE or artificially high masses 

on hydrogens. We use the microcanonical ensemble (NVE, constant number of particles and en-

ergy) to avoid the use of temperature and pressure coupling, which allows for continuous trajec-

tories for characterization of pathways, and we do not employ EWALD summations, which can 

lead to artificial periodicity.
44

  

These approaches provide good agreement with a variety of experimental results, and in 

particular for our purposes here, they include native state dynamics and S
2
 order parameters.

18,45-

46
 They have also been shown to have predictive power for moving beyond the native state, such 

as in protein folding/unfolding pathways. There include transition states (TS),
47-49

 intermediate 

states,
50-52

 denatured states.
53-55

. To better illustrate this, we focus briefly on one simple system, 

the 3-helix bundle engrailed homeodomain (EnHD), with experimental studies performed in the 

Fersht Lab. The unfolding time by MD is in good agreement with experiment,
56

 the MD-
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predicted TS structure is in good agreement with experiment,
56-58

 the structure of the MD-

predicted intermediate state
56 

was confirmed by direct NMR studies 5 years later.
59

 Furthermore, 

the unfolding pathway is independent of temperature and merely accelerated at high tempera-

ture,
56-58

 which is an important benchmark for the high temperature simulations used in this 

study. In addition, microscopic reversibility is observed
60

 as is refolding from the intermediate 

state.
61-62

 Further details regarding comparisons and benchmarking against experiment have been 

reviewed.
63-65 

Our Dynameomics project moves away from such detailed investigations of well-

studied model systems to explore the properties of all protein folds, but the earlier studies pre-

sented above (and others) represent the groundwork for studies making use of the Dynameomics 

Database.  

Determination of Conformational Entropy. Using the dihedral angle distributions from 

intrinsic propensity models (GGXGG), native state and elevated temperature simulations of 807 

protein folds, three dictionaries of entropy values were created (Table 1). For any given amino 

acid residue there are a large number of main chain and side chain dihedral angles that contribute 

to a residue’s entropy, Sres. Although some coupling between the angles can be expected,
10,66  

there is evidence suggesting that the entropy of the side chain and protein backbone can be inde-

pendent of one another with negligible coupling.
4,21,67-68  

To determine how to best approach cal-

culation of amino acid entropies, we established the extent of coupling between angles using a 

test set (Table S1)
69

 and examined the effect of different bin widths (Tables S2-S5). The test set 

contained 11 proteins from the Dynameomics dataset spanning a range of different architectures 

and sizes from 29 to 399 residues
69

 (Table S6). For every possible combination of main chain 

and side chain dihedral angles, the entropies of individual angles were calculated using 1D histo-
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grams and summed, as described in the Methods section. To estimate the coupling, these additive 

entropies were then compared to those calculated using a 2D histogram for the same two angles 

(described in detail in the Supplementary Information, Table S7).  

Although the coupling between angles could have a notable effect for an individual pro-

tein, e.g. at 298 K, TS –0.6 kcal mol
-1

 for 1/2 of Asn44 in the scorpion neurotoxin protein 

(Figure S2), in terms of general entropic propensities lower estimates were obtained, e.g. –0.1 

kcal mol
-1

 for the coupling 1/2 in Asn residues. Across the protein test set the coupling at most 

amounted to –0.4 kcal mol
-1

 (Pro 3/4) with 72% of the estimated values falling below the 

mean value of 0.05 kcal mol
-1

. The greatest coupling effects were between the backbone  an-

gles, with an average of 0.31 cal mol
-1

 K
-1

 (TS –0.09 kcal mol
-1

), and between certain side 

chain angles; for example, on average the coupling between  was –0.13 kcal mol
-1

 and it 

was strongest for Leu and Pro and (Table S7). Considering the complexity of the interactions be-

tween side chain angles, the inequivalence of the degrees of freedom for different amino acids, 

and the significantly lower coupling observed for side chain dihedral angles than the backbone 

angles, coupling effects were not included in our calculations of side chain entropies (Tables 1 

and S7).  Hence, each side chain was treated as a set of independent -angles and the total entro-

py for a side chain, Ssc, was calculated as a sum of the individual angle entropies where micros-

tate populations had been determined using one-dimensional histograms with 5° bin widths (see 

Methods).   

However, as the coupling between backbone angles could be marginally larger and ex-

hibit sensitivity to secondary structure, incorporated coupling into calculations of main chain en-



 

 

 

12 

tropy. Although many studies only consider the / angles to estimate the backbone conforma-

tional entropy, the dihedral angle for the more rigid peptide bond, , has a contribution of 3.3 cal 

mol
-1

 K
-1

 residue
-1

 (D807) to 4.5 cal mol
-1

 K
-1

 residue
-1

 (GGXGG), which is equivalent to some 

of the side chain contributions of more restricted angles (Table 1). Although S was relatively 

invariant to the amino acid identity when averaged over the D807 dataset, is was incorporated 

into the descriptor for the main chain, Smc, due to its sensitivity to the  angle
70

 and due to some 

deviations >30° from planarity observed in our MD simulations and in the PDB.
71

 For this rea-

son, 3-dimensional histograms were used for computing main chain entropies, Smc. The total en-

tropy of an amino acid residue, Sres, was then obtained from a sum of the Smc and Ssc values for 

each amino acid (Table 1). Coupling effects between angles become less pronounced with the 

size of the data set (Table S7), and, for the purposes of providing a dictionary of amino acid en-

tropic propensities across protein fold space, our approach to coupling should be valid. While it 

should be kept in mind that in certain instances there can be protein-specific and site-specific in-

stances of notable differences in entropy when neglecting the coupling between angles (Figure 

S2), the error from neglecting dihedral angle correlations is on the whole small, as has also been 

determined previously.
21,67-68

   

Main Chain and Side Chain Contributions to Residue Entropy. The contribution of a single 

residue to the total conformational entropy of a protein is heavily influenced by the side chain 

contribution (Table 1). In the D807 native state (298 K) dataset, the main chain contributes Smc = 

12.2 – 14.0 cal mol
-1

 K
-1

 towards the total entropy, Sres, of an amino acid, which equates to rela-

tive contributions between 26% (Arg) to 73% (disulfide-bonded Cys). Smc obtained from the in-

trinsic (GGXGG) dataset and denatured 498 K dataset were greater than those obtained from the 
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native state simulations, reflecting the greater freedom of the backbone in the Gly-based peptides 

and unfolded states. For many residues, the difference between the GGXGG and 498 K datasets 

was marginal, confirming that the GGXGG simulations can provide a good approximation of 

denatured state entropy. In all cases the main chain entropy was relatively invariant when con-

sidered against the range of side chain entropies determined (Figure 1a).   

An interesting aspect of side chain entropy is the variation in dihedral fluctuations along a 

side chain. Trbovic et al. have demonstrated dynamic decoupling of the terminal bond vector 

motions from the rest of the side chain for the RNase H protein.
22

 For residues with longer side 

chains, such decoupling can allow misinterpretation of the side chain conformational state from 

experimental data. In the case of Arg, salt bridges confer similar experimental order parameters 

regardless of whether the rest of the side chain is disordered or not.
22

 They found this condition 

was shared with other amino acids (Lys, Glu, Gln, and Met) and hypothesized that this behavior 

should hold for amino acids with side chains containing more than two dihedral angles. Our in-

spection of side chain entropy showed wider distributions on increasing side chain length or 

bulk. For longer side chains, this variation in side chain entropy was independent of the main 

chain entropies, most notably for Lys and Arg due to their greater degrees of freedom (Figure 

1b). Generally, the range of side chain entropies narrowed as the main chain entropy increased. 

From this we inferred that not only was there a relative decoupling between the main chain and 

side chain entropy, but that the longer side chains sampled alternative states regardless of the dy-

namics of the main chain.  

Our findings regarding the variation in entropy along a side chain follow the expected 

pattern where, the average entropy of a dihedral angle decreased with proximity to the backbone, 
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the largest entropies being for the terminal dihedral angles (Figure 2a).
72

 The side chain angles 

closest to the main chain can be restricted by the adherence to the ordered structure in the native 

state, whereas those angles furthest from the main chain can add a greater contribution to the to-

tal entropy. Within the proximity of the main chain, the entropies of the dihedral angles, particu-

larly the 1 angles, are similar between residue types, with the exceptions of Ala and Pro (Figure 

2b). The invariance in the 1 angles could be a reflection of the similar steric restraints experi-

enced close to the main chain regardless of amino acid identity. By contrast, the entropies of the 

2 angles show more variation between residues types (Figure 2b). The increase in entropy mov-

ing out along the side chain was most pronounced in the longer, aliphatic side chains, such as Ile 

(Figure 2c). However, this was not always the case. Within Arg the entropy of the side-chain an-

gles initially increased on moving away from the main chain but then decreased for the terminal 

angles, 61 and 62 (Figure 2c). This is similar to what was seen by Trbvoic et al.,
22

 possibly a 

result of the guanidinium group being involved in salt bridges. However, lysine is also common-

ly found in salt bridges and yet there is a distinct increase in the average entropy of the terminal 

5 angle. This difference might reflect the fact that the guanidinium group is planar and exhibits 

charge distribution, while the lysine amine is tetrahedral, possibly making the former relatively 

more restricted in its mobility upon interaction with other molecular moieties.  

The total entropy per residue, Sres, was calculated for the 807 proteins at 298 K and was 

found to increase in direct proportion to the side chain length (Table 1, Figure 1). In calculating 

the total conformational entropy of an entire protein, we find a linear relationship between the 

entropy and the number of residues, Nres, with correlations above 0.98 (Figure 3a); this conclu-

sion holds also for the subtotals contributed by the main chain, Smc, or side chain entropies, Ssc. 
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This result is consistent with the previous argument of Karplus et al.
10

 that the residual vibration-

al entropy of a folded globular protein is an extensive property and that proteins are large enough 

that the residual conformational entropy is similar or equal to , with  being the aver-

age configurational entropy over all amino acids in a single conformational state and n (or Nres)  

being the number of residues for that protein. However, the spread of entropy values for a given 

protein size is significant, ~10–20% of Sres, indicating that the variation in conformational entro-

py with sequence and structure leaves ample room for evolution to tap into conformational en-

tropy as a contribution to protein stability and function, and in these cases, distinctions may be 

determined by the number angles, Nchi.  

Assessment of total protein entropies for the Dynameomics dataset demonstrated that en-

tropies were distributed relatively evenly across protein fold space. Proteomic Ramachandran 

plots (PRplot)
73

 position protein structures in  space based on the average of all main chain 

angles, thereby allowing properties, such as conformational entropy, to be surveyed across pro-

tein fold space (Figure 3b). Viewing the total entropies in this manner indicated that there are no 

distinct trends in the entropy of a protein and its predominant secondary structure. This behavior 

was also seen for calculated entropy changes on folding (Sfold) with a similar relationship with 

sequence length and no clear trend in protein fold space, although there was some concentration 

of structures in the lower tail of the PRplot (all- region) with larger S (Figures 3c and 3d).  

Comparison of Predicted Entropy Changes with Experiment. The absolute entropy values 

listed in Table 1 comprise our ‘dictionary’ values, however they are physically meaningless on 

their own as these entropies can vary depending on the bin widths used (Tables S2,S3,S6). How-

   

n resS

   

resS
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ever, the relative entropies and entropy changes upon folding/unfolding or mutation calculated 

using these dictionary values should be valid, being independent of bin width (Tables S2,S3,S6), 

and can be compared with experimental data. The variation in Sfold for each of the 20 amino 

acids as determined across the D807 dataset are listed in Table 2. In the case of Cys residues, the 

entropy changes due to the removal of the disulfide bonds at high temperature are shown; the 

Cys Sfold values are more than double that seen for free Cys (termed Cyh here) residues (Table 

2).  

Protein Sfold values calculated from the dihedral distributions ranged from -235.5 (for a 

35 residue protein) to -3367.7 cal mol
-1

 K
-1

 (for 410 residues), the magnitudes being 15–37% of 

the total protein entropy. The Sfold ranged from -4.6 to -10.5 cal mol
-1

 K
-1

 residue
-1 

(mean Sfold, 

-7.8 ± 0.8 cal mol
-1

 K
-1

 residue
-1

), corresponding to folding free energies of 1.4 – 3.1 kcal mol
-1

 

residue
-1

 (298 K). These data are consistent with initial calculations by Karplus et al. using 

BPTI,
10

 showing that the Sfold of a protein can be an order of magnitude smaller than the con-

formational entropy in the folded state with a range of 4 to 6 cal mol
-1

 K
-1

 residue
-1

.  

Experimental estimates of the entropy change on folding, Sfold, give a comparable range 

of -2.6 to -9 cal mol
-1

 K
-1

 per residue.
12,74,75

 The lower value of -2.6 cal mol
-1

 K
-1

 residue
-1

 was 

determined for ps dynamics from neutron spectroscopy experiments of the thermal unfolding of 

-amylase
75

 and, as expected, is smaller than our lower limit of -4.6 cal mol
-1

 K
-1

 residue
-1

 due to 

our sampling of ns dynamics. The higher end of this range was the result of entropies calculated 

by subtraction of estimates of the solvation entropy from the total entropy.
74

 Calorimetric studies 

at high temperatures where there is no hydration contribution to the entropy include barnase, 
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with a Sfold of -4.3 cal mol
-1

 K
-1

 residue
-1

,
 
and ubiquitin, 3.3 cal mol

-1
 K

-1
 residue

-1
.
76

 D’Aquino 

et al.
12

 estimated an appropriate value for the entropic contribution of a residue to be 1.8 kcal 

mol
-1

 at 298 K (~6.0 cal mol
-1

 K
-1

 residue
-1

) in determining the backbone conformational entropy 

for mutants of a leucine zipper peptide consistent with entropies (TSfold 0.4 – 1.3 kcal mol
-1

 res-

idue
-1

) determined from backbone dynamics using order parameters by Yang and Kay.
15

 These 

experimental estimates are in close agreement with our TSres average of 2.4 ± 0.6 kcal mol
-1

 

residue
-1

 at 298 K, with an average contribution from the backbone of 1.3 ± 0.3 kcal mol
-1

 resi-

due
-1

 (TSmc). 

Similarly, when examining secondary structure formation, experimental estimates for the 

folding/unfolding of a Gly-based -helix have ranged between 4.5 – 6.5 cal mol
-1

 K
-1

 residue
-1

, 

with a wider 2 – 6.5 cal mol
-1

 K
-1

 residue
-1

 range for Sfold for Gly in any secondary structure.
16

 

The same range has also been applied to sheet and turn formation.
66

 As Figure 4 and Table S8 

illustrate, we also observed a similar pattern of entropy differences across secondary structure 

types with a lower mean entropy when a residue is in helical structure. Naturally, where there 

was a lack of structure the average entropies were greater than when secondary structure was 

present (Figure 4, Table S8). In close agreement with experimental determinations, if we consid-

er the value of Gly from D807 in the ‘unassigned’ structure category, pertaining to random coil 

and loop regions, we get a smaller entropy change of 3.1 cal mol
-1

 K
-1

 residue
-1

 on folding to an 

-helix. However, if we use the average entropy for a Gly residue, regardless of the secondary 

structure assignment in the folded state, we estimate Sfold = 4.6 cal mol
-1

 K
-1

 residue
-1

. Again, 
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these estimates derived from our Dynameomics dataset fall into the experimentally derived Sfold 

range of 2.0 – 6.5 cal mol
-1

 K
-1

 residue
-1

 for Gly.
66

  

Our dictionary values are also useful for predicting entropy changes on mutation. For ex-

ample, D’Aquino et al.
12

 indirectly estimated from experimental mutagenesis studies on a seg-

ment of GCN4 that the difference in entropy between Ala and Gly was 2.46 ± 0.2 cal mol
-1

 K
-1

 in 

a solvent-exposed position, a difference attributed solely to the lowering of entropy due to re-

striction of the backbone by the methyl side chain of Ala. We similarly observed a reduction in 

backbone entropy by 1.5 ± 2.3 cal mol
-1

 K
-1

 (D807 298K) to 1.1 cal mol
-1

 K
-1

 (GGXGG). How-

ever, when the Ala side chain was considered, an increase of 5.5 ± 2.4 cal mol
-1

 K
-1

 for the 

SGlyAla was predicted (Table 1). Using intrinsic entropies from our GGXGG dataset to take 

into account the solvent-exposure in the D’Aquino study, the SGlyAla increased to 6.1 cal mol
-1

 

K
-1

 illustrating greater sampling by the exposed Ala side chain (Table 1). The calculation of a 

value for the change in main chain entropy lower than that obtained experimentally is to be ex-

pected, the experimental study of mutagenesis not being able to unequivocally assign the change 

in entropy to the backbone alone.
12

 Moreover, an entropy difference of 1.5 to 2.0 cal mol
-1

 K
-1

 

residue
-1

 has been observed between the Gly and Ala backbone,
77-79 

supported by an estimate of 

2.5 cal mol
-1

 K
-1

 from experiment. Again, this is close to the difference of ~1.5 cal mol
-1

 K
-1

 be-

tween Gly and Ala computed here.  

Low Entropy Depressions, α-Helices and Residual Structure.  The mean main chain 

entropies calculated for each amino acid type were insensitive to the amino acid identity and 

tightly distributed between 12.2 to 14.0 cal mol
-1

 K
-1 

(Figure 1). However, the distribution of 

main chain entropies calculated for individual residues across our D807 dataset covered a wider 
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8.6 cal mol
-1

 K
-1

 range, from 9.4 to 18.1 cal mol
-1

 K
-1

. At the same time, we have shown that 

within the folded, native state a significant amount of entropy is present in the side chain angles 

furthest from the main chain (Figure 2). The extent of this contribution will likely be affected by 

the local environment and hydrogen bonding networks for a given residue. Again, examination 

of the entropy dependence on secondary structure type showed variations in the average confor-

mational entropy of the amino acids to be smaller than anticipated with the entropy of residues in 

-helices lower than their corollary in -sheets (Figure 4). Given the intrinsic stabilities of -

helix and -sheet structures, with -sheets often less stable due to the necessity for interactions 

between adjacent strands rather than the more localized hydrogen bonding in -helices,
80

 larger 

differences had been expected. The difference is marginal also when the dataset is split into the 

different topologies (Figure 5; Figure S3). However, the ranges of entropy values are wider and 

more variable between residue types than the mean values, indicating that the pertinent infor-

mation might be buried in the finer details of our D807 dataset. As Figure 5 shows, there is 

greater variability among residues in the  and  structures than indicated by the average and 

standard deviation over the dataset (Figure 1, Table 1). Hence, the averages calculated are useful 

for quantifying the relative amino acid entropies in globular proteins, but they mask the vast var-

iability in the dataset.  

An ideal case to test the relationship between secondary structure and entropy is a pair of 

heteromorphic proteins, GA88 and GB88, that share high sequence identity (88%) but adopt dif-

ferent folds.
33

 Although only differing by eight residues, GA88 forms an all- fold and GB88 a  

grasp fold (Figure 6). The differences between the GA88 and GB88 main chain entropies correlate 

most strongly with differences in secondary structure (Figure 6a), particularly in the regions 9–
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22 and 39–47, despite the N-terminal portion of the sequence being identical up to residue 24 

and there being only 1 substitution in the latter region. The mid-section of the sequence in which 

both structures contain helical structure shows the smallest difference between the main chain 

entropies (Figure 6). In fact, only one (L/Y45) of the eight non-identical residues displayed a 

large difference between the main chain entropies, indicating that secondary structure has a 

greater effect on main chain entropy than residue identity. When viewed for an individual pro-

tein, there is discrimination between the entropies of different structural elements. This discrimi-

nation was less pronounced when incorporating side chain entropies (Figure 6), but individual 

conserved side chains show sizeable differences that most likely reflect changes in the tertiary 

fold. The residue entropies (Smc + Ssc) have the largest difference at residue 30, due to a large 

difference between the side chains entropies, which is a non-identical residue (I/F30). Strangely, 

a very similar pair at residue 45 (L/Y45) does not show a change in the total Sres, but this results 

from compensation between main chain and side chain entropies, where Smc is large due to Smc 

being lower in 3 of GA88, yet this is offset by the higher Ssc, compared with GB88, resulting in 

the Sres of residue 45 being the same for the two proteins. Overall, when side chain entropies 

were included, the directionality of the differences observed at the backbone level was retained, 

showing the relationship between secondary structure and entropy is small but detectable.  

There are fewer differences between GA88 and GB88 in the denatured state entropy pro-

files (as shown mapped onto the structures in Figure 6c), with 8 residues displaying discernable 

differences observed. Interestingly, 7 of the 8 positions (residues 24, 25, 30, 33, 45, 49, 50) are 

where the sequences differ, with I/F30 showing greatest difference. The only residue that is not 

conserved between the sequences and does not show an appreciable difference in entropy is E48, 
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although its neighboring residue D47 did show an entropy difference and was the only conserved 

residue that did. Thus, once native structure has been abolished, the sequence entropies become 

comparable and have simple dependence on the degrees of freedom of the side chains.  

The fine structure was explored by plotting the difference between the entropy values 

from the GA88 and GB88 simulations at 298 K (S298) and average value at 298 K over the full 

807 proteins (Sdict) from the DED (Figure 6c). This produces a profile of peaks and troughs, 

showing how individual segments of secondary structure and loops in the GA and GB proteins 

differ from the average values across fold space. The troughs correspond to -helix in both pro-

teins, as well as 1 in GB88. The other -sheet regions are higher in entropy (Figure 6c). Interest-

ingly, these low entropy sinks also correlate with regions structured in the transition states of 

both proteins (Figure 6). This includes the  strand that, unlike the other  stands, forms a low 

entropy depression compared with our D807 dictionary values and forms helical structure in the 

transition state. Consequently, depressions may not just relate to stable structure, like -helices, 

but also regions where nucleation of folding occurs, which is also illustrated through the lower 

entropy regions mapped onto representative denatured state structures in Figure 6c.  

The residues where forming an -helix results in the largest entropic cost are Met and 

Pro, and to a lesser extent Lys. Residues where there is an increase in entropy upon forming -

helix are Phe, Leu, Ser, Trp, His. In fact, S298–Sdict, reveals a correlation between helical regions 

and low entropy depressions (Figure 6c).  

Entropy in the context of protein fold space. Given the differences in the entropy pro-

files of two domains with 88% sequence identity, a question arises whether entropy profiles are 
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conserved across metafolds where the structural topology is shared but the sequence identity var-

ies. Metafolds within our consensus domain dictionary are ranked by population, the most popu-

lated metafold being the immunoglobulin-like -sandwich (Rank 1). A contrast between entropy 

conservation in different topologies was drawn using this Rank 1 metafold family and an all- 

metafold, the DNA/RNA-binding 3-helical bundles (Rank 5). Examination of 18 members of the 

Rank 1 (7 members) and Rank 5 (11 members) metafolds (listed in Table S8) demonstrated simi-

lar patterns in the entropy profiles to those observed for the GA88/GB88 pair (Figure 7). Depres-

sions below the average entropic propensity from the Dynameomics 298 K dictionary are again 

observed for -helices. One outlier is the MATA-1 homeodomain (1f43), which does not exhibit 

the low entropy depression (Figure S4). Interestingly, this MATA-1 domain has a higher number 

of homorepeats in its sequence than the other rank 5 members, indicating some regions may have 

a tendency towards disorder, which is the consensus from disorder prediction programs (Mo-

biDB, Uniprot: POCY10).  

The packing interfaces between the helices of the rank 5 bundles in particular appear to 

harbor the lowest entropy within the folds, the termini of helices and chain termini having higher 

entropies. Entropy, however, is not necessarily always lowest in the hydrophobic core, as evi-

denced by the 1wit and 1fna -sandwich folds, which display generally higher entropies across 

all -strands. Figure 7 includes a non-canonical member, 2efj, of the Rank 1 family, which con-

tains helices and loops in addition to the core immunoglobulin domain. In this larger structure, 

the helices, again, have low entropy depressions but so do some of the -strands. This leads us to 

consider another question of entropy compensation within protein structures. Based on the exten-

sive relationship that appears to exist between the conformational entropy and number of resi-
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dues (Figure 3), it appears that, for globular proteins, high entropy regions are offset by lower 

entropy segments. This may explain why more low entropy depressions are observed as the -

sandwich folds grow larger in size, although this is not always the case, e.g. 1ahm (Figure S4). 

Nonetheless, our results suggest a limiting sequence length at which low entropy depressions be-

come necessary to maintain the fold (Figure S4).  

Conclusions 

We have generated a ‘dictionary’ of entropy values, the DED, which can be used in com-

puting S of folding/unfolding and mutation. The relative entropies computed using these dic-

tionary values are in agreement with experiment. Unlike previous studies of protein conforma-

tional entropy, these data were obtained from dihedral angle distributions captured over MD 

simulations of 807 representative proteins that span nearly all known protein folds. By using all-

atom solvated MD simulations, we have also been able to include all degrees of freedom. In per-

forming this study, we have shown the total conformational entropy of a protein is an extensive 

property that can be estimated based on the number of residues alone. However, when examined 

on a per residue basis there is also fine structure and a relationship between secondary structure 

and the entropy of a given amino acid. These details are lost when creating an entropy dictionary, 

but by determining the intrinsic entropies using the ideal GGXGG model and the average entrop-

ic propensities of the amino acids at 298 K and 498 K we have been able to tease out fine struc-

ture reflected in the deviations from the dictionary values. We found that -helices frequently 

coincide with low entropy depressions and that the entropy of a helix under native state condi-

tions can be an indication of how prevalent it will be in transition states, with higher entropy hel-
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ices forming later and that -strands are generally higher in entropy than the Dynameomics dic-

tionary values for a given residue.  
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Figure Legends 

Figure 1. Comparison of the D807 and GGXGG backbone and side chain entropies. (a) 

Relative distributions of the GGXGG and D807 298 K entropies highlighting the substantially 

higher entropies obtained from the more extensive conformational sampling possible by the cen-

tral guest residues in the GGXGG peptides. The shaded regions highlight the differences be-

tween the mean values from each of the GGXGG and D807 data sets. (b) Distribution of entro-

pies determined for amino acids demonstrating larger spread of possible side chain entropies as 

the degrees of freedom increase for amino acids with longer side chains. This reflects the com-

plexity that longer side chains can exhibit a wide range of entropies. The breadth of the distribu-

tion for the main chain entropies remains insensitive to the amino acid identity and length of side 

chain.  

 

Figure 2. Variation in entropy along side chains with respect to distance from the main 

chain. (a) Average conformational side chain entropy of the side-chain angles. Proline has been 

excluded to remove the bias from including the substantially lower entropies obtained for the di-

hedral angles in the sterically constrained cyclic side chain. (b) Conformational entropy for the 

dihedral angles closest to the main chain determined by amino acid identity. For branched resi-

dues, 21 and 22 values are used due to positional equivalence to 2. (c) Variation in side chain 

entropy for the amino acids Arg, Ile and Lys demonstrating different behaviors related to the 

chain length and salt bridge affinity.  
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Figure 3. Relationship between entropy, protein size and protein topology. (a) Distribution 

of total residue entropies for the Dynameomics set of 807 proteins in terms of number of resi-

dues. (b) Distribution of total entropy in protein fold space (PRplot) (c) Distribution of Sfold for 

the Dynameomics dataset in relation to number of residues, and (d) Sfold across protein fold 

space in terms of the PRplot using the average  angle to show spread of different protein to-

pologies.  

 

Figure 4. Relationship between entropy and secondary structure. Entropies calculated for 

different secondary structure types for population > 90% of a trajectory (legend inset). Entropies 

labeled “coil” are where no formal secondary structure could be assigned for > 90% of the trajec-

tory. See also Table S7 for detailed information for each amino acid as a function of secondary 

structure. 

 

Figure 5. Calculated, predicted and experimental estimates of entropy change on unfolding 

and relation to protein size. Box and whisker plots of calculated Sunfold for Ala, Arg and Gly 

residues in different topology and protein classes showing the extremes of the data in addition to 

the mean (blue points), median (red bars) and the lower and upper quartiles: all-, all- metafold 

topology by SCOP classification; all-, all- metafold topology; HP, hyperthermophile; L, large 

(>=150) residues; M, medium-sized (50-150 residues); MP, mesophile; , mixed- metafold 

topology; S, small (<=50 residues); NS, non-standard topology, TP, thermophile. Shaded area 

indicates negative Sunfold values. Figure S3 shows the corresponding results for all 20 amino 

acid types.  
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Figure 6. Entropy profiles for the GA88 and GB88 heteromorphic domains. (a) Sequences of the 

GA88 and GB88 domains showing 8 non-identical residues.  (b) Main chain and total residue en-

tropy differences at 298 K and 498 K for the GA88 and GB88 domains. (c) Entropy profiles of the 

difference between the dictionary values and GA88 and GB88 entropies illustrating pockets of 

low and high entropy that correlate with early secondary structure formation highlighted on na-

tive and transition state structures inset below.  

 

Figure 7. Conservation of entropy profiles across CDD metafold members (S298) showing 

positive (blue) and negative (red) deviations from the Dynameomics 298 K entropy diction-

ary (Sdict). (a) Entropy profiles for all- folds from the DNA/RNA-binding 3-helical bundle 

metafold family (rank 5) showing entropy depressions due to helix presence. (b) Entropy profiles 

for the immunoglobulin-like -sandwich metafold family (rank 1) illustrating conservation of 

higher entropy in -strands in the canonical 1wit and 1fna folds with more frequent entropy de-

pressions observed for the non-canonical immunoglobulin-like fold of 2fej. Structures inset are 

also colored by the entropy deviation from the average D807 298 K values. Figure S4 shows the 

corresponding results for all analyzed proteins in the rank 1 and rank 5 metafold families.  
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Table 1. The Dynameomics Entropy Dictionary. Contribution of dihedral angles to the residue conformational entropy (Sres) by amino 

acid identity calculated from dihedral angle distributions from simulations of the GGXGG series at 298 K and the 807 Dynameomics 

targets (D807) at 298 K and 498 K. Cysteine residues are present in the D807 dataset in disulfide bonded (Cys) and protonated forms 

(Cyh), but the short length of the GGXGG peptides precludes modeling of the disulfide bonded form of Cys, hence only entropies for 

the protonated form are given for the GGXGG host-guest series. 

 GGXGG (cal.mol
-1

 .K
-1

) D807, 298 K (cal.mol
-1

 .K
-1

) D807, 498 K (cal.mol
-1

 .K
-1

) 

Res. S Smc Ssc Sres S Smc Ssc Sres S Smc Ssc Sres 

Ala 13.8 17.1 7.2 24.2 9.4 ± 1.5 12.5 ± 1.7 7.1 ± 0.2 19.6 ± 1.7 14.0 ± 1.2 17.5 ± 1.2 7.7 ± 0.0 25.3 ± 1.2 

Arg 13.2 16.5 40.7 57.2 9.3 ± 1.3 12.4 ± 1.5 36.1 ± 3.2 48.5 ± 3.8 13.3 ± 1.1 16.9 ± 1.1 44.2 ± 0.9 61.2 ± 1.6 

Asn 12.2 15.5 18.2 33.7 9.6 ± 1.3 12.8 ± 1.4 17.0 ± 1.2 29.8 ± 2.1 13.5 ± 1.1 17.1 ± 1.1 20.5 ± 0.4 37.6 ± 1.3 

Asp 12.3 15.7 11.4 27.1 9.6 ± 1.3 12.8 ± 1.4 10.7 ± 1.3 23.5 ± 2.2 13.2 ± 1.0 16.8 ± 1.0 13.4 ± 0.7 30.2 ± 1.4 

Cys - - - - 9.8 ± 1.3 13.0 ± 1.4 4.8 ± 0.9 17.7 ± 2.0 - - - - 

Cyh 13.1 16.4 14.1 30.5 9.7 ± 1.4 12.8 ± 1.6 12.9 ± 0.9 25.7 ± 2.1 13.8 ± 1.0 17.4 ± 1.0 15.2 ± 0.2 32.5 ± 1.1 

Gln 13.4 16.7 24.6 41.3 9.4 ± 1.4 12.5 ± 1.5 23.3 ± 1.4 35.8 ± 2.4 13.5 ± 1.1 17.1 ± 1.1 27.3 ± 0.3 44.5 ± 1.3 

Glu 13.5 16.8 18.2 35.0 9.3 ± 1.3 12.5 ± 1.5 17.4 ± 1.8 29.9 ± 2.5 13.4 ± 1.0 17.0 ± 1.0 21.0 ± 0.8 38.0 ± 1.5 

Gly 15.1 18.1 - 18.1 10.8 ± 1.5 14.0 ± 1.6 - 14.0 ± 1.6 15.2 ± 1.0 18.6 ± 1.0 - 18.6 ± 1.0 

Hid 13.1 16.4 14.3 30.8 9.7 ± 1.4 12.9 ± 1.5 11.9 ± 1.7 24.8 ± 2.5 13.5 ± 1.1 17.1 ± 1.1 15.3 ± 0.2 32.4 ± 1.2 

Hie 12.9 16.2 14.8 31.0 9.5 ± 1.3 12.7 ± 1.5 12.0 ± 1.7 24.6 ± 2.5 13.7 ± 1.0 17.3 ± 1.0 15.4 ± 0.2 32.6 ± 1.1 

Ile 12.8 16.2 24.6 40.7 9.3 ± 1.2 12.4 ± 1.4 24.3 ± 1.3 36.7 ± 2.1 13.1 ± 1.0 16.7 ± 1.0 28.3 ± 0.3 45.0 ± 1.0 

Leu 13.0 16.3 25.7 42.0 9.1 ± 1.3 12.2 ± 1.4 24.8 ± 1.4 37.0 ± 2.2 13.0 ± 1.2 16.6 ± 1.3 28.7 ± 0.2 45.3 ± 1.3 

Lys 13.0 16.3 32.7 49.0 9.4 ± 1.3 12.6 ± 1.4 30.1 ± 2.6 42.7 ± 3.1 13.2 ± 1.1 16.8 ± 1.1 35.8 ± 1.0 52.7 ± 1.7 

Met 13.3 16.6 26.7 43.3 9.3 ± 1.3 12.4 ± 1.5 25.4 ± 1.3 37.8 ± 2.3 13.2 ± 1.2 16.8 ± 1.2 29.4 ± 0.2 46.2 ± 1.3 

Phe 12.8 16.2 13.8 30.0 9.5 ± 1.4 12.6 ± 1.5 11.2 ± 1.6 23.8 ± 2.4 13.3 ± 1.2 16.9 ± 1.2 14.9 ± 0.2 31.8 ± 1.4 

Pro 10.5 14.8 20.5 35.3 8.8 ± 0.8 12.6 ± 1.0 19.9 ± 0.7 32.5 ± 1.5 11.4 ± 0.5 16.0 ± 0.6 23.0 ± 0.2 39.0 ± 0.7 

Ser 13.6 16.9 13.7 30.6 9.8 ± 1.4 13.0 ± 1.5 12.0 ± 1.6 24.9 ± 2.7 13.4 ± 1.1 17.0 ± 1.1 14.7 ± 0.7 31.6 ± 1.6 

Thr 12.6 16.0 20.4 36.3 9.6 ± 1.2 12.7 ± 1.4 18.4 ± 1.7 31.1 ± 2.7 12.6 ± 1.1 16.3 ± 1.1 21.4 ± 0.9 37.7 ± 1.8 

Trp 13.0 16.3 14.2 30.5 9.3 ± 1.3 12.5 ± 1.5 10.0 ± 1.7 22.5 ± 2.6 13.3 ± 1.2 16.9 ± 1.2 14.9 ± 0.3 31.9 ± 1.4 

Tyr 13.0 16.3 21.9 38.2 9.4 ± 1.3 12.6 ± 1.5 18.1 ± 2.2 30.7 ± 2.9 13.4 ± 1.1 17.0 ± 1.1 23.1 ± 0.3 40.1 ± 1.3 

Val 12.9 16.3 20.2 36.5 9.4 ± 1.2 12.6 ± 1.4 19.1 ± 0.8 31.6 ± 1.9 13.2 ± 1.0 16.9 ± 1.0 21.8 ± 0.2 38.6 ± 1.0 

*Cyh is the protonated version of Cys. Hie is the dominant tautomer of histidine with the N protonated and Hid has N protonated.  
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Table 2. Mean conformational entropy change on unfolding, Native State (298K)  Denatured 

State (498K), calculated for individual amino acid residues in the D807 dataset and the predicted 

entropy change using the average 298 K and 498 K residue entropies for an amino acid type giv-

en in Table 1. Two entropy changes are given for cysteine residues, one for free, protonated cys-

teine residues (Cyh) and cystine residues (Cys) where the disulfide bond present in the native 

state simulation and note that the disulfide bonds were reduced in the high temperature simula-

tions.  

 
Smc 

(cal.mol-1.K-1) 
Sres 

(cal.mol-1.K-1) 
TSmc 298K 
(kcal.mol-1) 

TSres 298K 
(kcal.mol-1) 

Sres 
(cal.mol-1.K-1) 

ALA 5.03 ± 1.72 5.63 ± 1.73 1.50 1.68 5.63 

ARG 4.53 ± 1.49 12.65 ± 3.84 1.35 3.77 12.65 

ASN 4.30 ± 1.50 7.82 ± 2.16 1.28 2.33 7.82 

ASP 4.00 ± 1.46 6.68 ± 2.31 1.19 1.99 6.68 

CYH 4.46 ± 1.52 6.76 ± 2.03 1.33 2.01 6.86 

CYS* 4.50 ± 1.50 14.91 ± 2.03 1.34 4.44 14.79 

GLN 4.59 ± 1.57 8.61 ± 2.45 1.37 2.57 8.61 

GLU 4.58 ± 1.53 8.14 ± 2.67 1.36 2.43 8.14 

GLY 4.56 ± 1.66 4.56 ± 1.66 1.36 1.36 4.56 

HID* 4.27 ± 1.54 7.58 ± 2.60 1.27 2.26 7.59 

HIE* 4.62 ± 1.57 7.98 ± 2.60 1.38 2.38 8.00 

ILE 4.36 ± 1.42 8.35 ± 2.12 1.30 2.49 8.35 

LEU 4.37 ± 1.54 8.33 ± 2.21 1.30 2.48 8.33 

LYS 4.26 ± 1.49 9.97 ± 3.27 1.27 2.97 9.97 

MET 4.42 ± 1.60 8.41 ± 2.32 1.32 2.51 8.42 

PHE 4.34 ± 1.55 7.99 ± 2.53 1.29 2.38 7.99 

PRO 3.42 ± 1.08 6.51 ± 1.58 1.02 1.94 6.51 

SER 4.03 ± 1.58 6.70 ± 2.82 1.20 2.00 6.70 

THR 3.61 ± 1.49 6.64 ± 2.97 1.07 1.98 6.63 

TRP 4.46 ± 1.61 9.36 ± 2.66 1.33 2.79 9.36 

TYR 4.41 ± 1.53 9.38 ± 2.99 1.31 2.80 9.39 

VAL 4.29 ± 1.42 7.01 ± 1.91 1.28 2.09 7.01 

*Cyh is the protonated version of Cys. Hie is the dominant tautomer of histidine with the N protonated and Hid has 

N protonated.  
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