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Abstract – In this paper, a novel deterministic approach for the planning of active distribution networks within a 11 

distribution market environment considering multi-configuration of wind turbines (WTs) and photovoltaic (PV) cells is 12 

proposed. Multi-configuration multi-period market-based optimal power flow is utilized for maximizing social welfare 13 

taking into account uncertainties associated with wind speed, solar irradiance and load demand as well as different 14 

operational status of WTs and PVs. Multi-period scenarios method is exploited to model the aforementioned 15 

uncertainties. The proposed approach assesses the effect of multiple-configuration of PVs and WTs on the amount of 16 

wind and solar power that can be produced, the distribution locational marginal prices all over the network and on the 17 

social welfare. The application of the proposed approach is examined on a 30-bus radial distribution network. 18 

 19 

Index Terms — Wind power, active network management, social welfare, market-based optimal power flow, distribution 20 

network operators, distribution locational marginal prices. 21 

 22 

Nomenclature 

A. Sets and Indices 
i,j Index of system buses running from 1 to NB 

w Index of wind turbine  

G Index of substation 

D Index of loads 

t Index of energy block offered by wind turbines 
running from 1 to NT 

q Index of energy bids submitted by loads 
running from 1 to NQ 
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s Index of scenarios running from 1 to NS 

c Index of configurations running from 1 to NC 

y Index of years running from 1 to NY 

 

B. Variables 
w

ycstiQP ,,,,)/(  Active/reactive power generated by wind 

turbines at bus i, block t, scenario s, 
configuration c and year y in MW/MVAr 

G
yctiQP ,,,)/(  Active/reactive power at substation, block t, 

configuration c and year y in MW/MVAr 

ycsiycsiV ,,,,,, /  Voltage/voltage angle at bus i, scenario s, 

configuration c and year y in Volt/Radian 

w
ycsi ,,,  Power factor angle of WTs at bus i, scenario s, 

configuration c and year y in radian  

ijT  Tap magnitude of OLTC 

 

C. Parameters  
α Load growth rate  

β Operational status of each WT 

βi,c Operational status of WTs at bus i and 
configuration c 

c Scale coefficient  

v Wind speed in m/s 

vm Mean value of wind speed in m/s 

vci/vco Cut-in/cut-off wind speed in m/s 

vr Rated wind speed in m/s 

πs Probability of state s 

D
ysqiQP ,,,)/(  Active/reactive consumption of loads at bus i, 

block q, scenario s, configuration c and year y 
in MW/MVAr 

maxmin / ii VV  Min/max voltage at each bus in Volt 

maxmin / ii   Min/max voltage angle at each bus 

max,min, / w
i

w
i QQ  Min/max reactive of WTs at bus in MVAr 

w
ratediP,  WTs rated active power in MW 

w
csi ,,  Percentage of active power generated by WTs 

at scenario s and configuration c 

max,min, / G
i

G
i PP   Min/max active power at substation in MW 

max,min, / G
i

G
i QQ  Min/max reactive power at substation in MVAr 
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D
qiC ,  Price for the energy bid q at bus i submitted by 

load D in £/MWh 

w
tiC ,  Price for the energy selling t at bus i by WT w 

in £/MWh 

G
tiC ,  Price for the energy selling t at substation in 

£/MWh 

ijij BG /  Real/imaginary part of the element in the 

admittance matrix corresponding to the ith row 
and jth column in mho 

max
ijI  Maximum current flow of wires in A 

Index Terms — Wind and solar power, electricity market, social welfare, multi-configuration, distribution network 1 

operators. 2 

 3 

NOMENCLATURE 

D. Sets and Indices 
i,j Index of system buses running from 1 to NB 

w Index of WTs running from 1 to NW 

pv Index of PVs running from 1 to NPV 

G Index of substation running from 1 to NG 

D Index of loads 

t Index of energy block offered by WTs and PVs 
running from 1 to NT 

q Index of energy bids submitted by dispatchable 
loads running from 1 to NT 

m Index of periods running from 1 to NM 

c Index of configurations running from 1 to NC 

 

h Number of hours 

 

E. Variables 
)/(

,,,
pvw
cmtiP  Active power generated by WTs/PVs at bus i, 

block t, period m, and configuration c 

)/(
,,,
pvw
cmtiQ  Reactive power generated by WTs/PVs at bus i, 

block t, period m, and configuration c 

G
ctiQP ,,)/(  Active/reactive power at substation, block t, 

and configuration c 

cmicmiV ,,,, /  Voltage/voltage angle at bus i, period m, and 
configuration c 

)/(
,,

pvw
cmi  Power factor angle of WTs/PVs at bus i, period 

m, and configuration c 
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ijT  Tap magnitude of OLTC 

 

F. Parameters  

β Operational status of each WT/PV 

βi,c Operational status of WTs/PVs at bus i and 
configuration c 

m , m , m  Levels of wind, PV and demand profiles, 
respectively for mth multi-period scenario 

D
mqiQP ,,)/(  Active/reactive consumption of loads at bus i, 

block q, period m, and configuration c  

maxmin / ii VV  Min/max voltage at each bus 

maxmin / ii   Min/max voltage angle at each bus 

max,min, / w
i

w
i PP  Min/max active power of WTs 

max,min, / pv
i

pv
i QQ  Min/max reactive power of PVs 

max,min, / w
i

w
i PP  Min/max active power of WTs 

max,min, / pv
i

pv
i QQ  Min/max reactive power of PVs 

max,min, / G
i

G
i PP   Min/max active power at substation 

max,min, / G
i

G
i QQ  Min/max reactive power at substation 

w
tiC ,  Price for the energy selling t at bus i by WTs 

pv
tiC ,  Price for the energy selling t at bus i by PVs 

G
tiC ,  Price for the energy selling t at substation 

ijij BG /  Real/imaginary part of the element in the 

admittance matrix corresponding to the ith row 
and jth column 

max
ijI  Maximum current flow  

I. INTRODUCTION 1 

Recently, a huge number of photovoltaic (PV) cells are deployed in the UK.  The Government’s target is to 2 

achieve 15% of electricity generation from renewable energy sources (RES) by 2020. Nevertheless, both PV and 3 

wind turbines (WTs) have high concentration in different regions of the UK [1-3]. However, in 2014, the European 4 

Union (EU) was the world leader in residential PV installation with more than 40W installed per individual 5 
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averagely, which is 10 times more than the rest of the world. One of the most important EU 2020 strategies is the 1 

share of renewables in gross final energy consumption.  2 

The target for the EU to be achieved by 2020 is the share of 20% from RES in gross final consumption of energy. 3 

However, RES will play an important role in assisting the EU meet its energy needs beyond 2020. Thus, Member 4 

States have already agreed on a new target for RES installation of at least 27% by 2030. 5 

Among the 28 EU Member States, a third have already achieved the level needed to meet their national 2020 6 

targets including Bulgaria, the Czech Republic, Estonia, Croatia, Italy, Lithuania, Romania, Finland, Sweden, 7 

Denmark and Austria [4].   8 

The installation of large amounts of RES in distribution networks introduces several economic and technical 9 

challenges to distribution network operators (DNOs). Thus, DNOs should develop a rational operating approach 10 

considering dispatching distributed generators (DGs), interrupting loads, and purchasing power from the wholesale 11 

market subject to network constraints [5]. However, active network management (ANM) integration schemes, 12 

including coordinated voltage control (CVC) of on load tap changers (OLTCs) and adaptive power factor control 13 

(PFC) of DGs, are advantageous for DNOs in comparison with the management of passive networks [6-8].  14 

Several works have been carried out on the advantages of ANM. ANM implementations has been proposed in [9-15 

10]. Online ANM application and joint ANM and demand side management are proposed in [11-14]. Besides, many 16 

studies have been reported about the planning and operation of distribution networks with integration of DGs [15-17 

20]. In [15], a probabilistic expansion planning technique, which minimizes the investment, budget to construct new 18 

lines. In [16], the authors proposed a probabilistic approach to determine the capacity limits of wind power taking 19 

into account power transfer and voltage limits. In [17], the authors proposed a stochastic optimization approach for 20 

minimizing the active power losses of the lines using WTs’ power factor control. In [18], the application of ANM 21 

schemes based on optimal power flow algorithm has been investigated. In [19], the authors proposed a probabilistic 22 

approach to find the PVs’ optimal size in order to minimize the total power losses in distribution networks. In [20], 23 

the authors proposed an innovative approach for distribution network planning considering customer interruption 24 

and investment costs.  25 

In [21], the authors have proposed a state reduction algorithm in DG planning problems and reliability analysis to 26 

determine the minimum number of states required to represent the behaviour of wind speed and solar irradiance.  27 

 Reference [22], proposes a multistage electricity generation expansion planning incorporating energy storage 28 

systems, which minimizes the planning cost and environmental pollution simultaneously. 29 
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In [23], the authors have presented a multi-objective optimization problem for distribution network expansion 1 

planning. The model minimizes costs and emissions simultaneously and determines the optimal sizing, placement 2 

and network reinforcements over the planning horizon.  3 

In [24], the authors have proposed a multiyear model for the planning of distribution network. The model determines 4 

the optimal expansion scheme of medium voltage distribution network including the reinforcement pattern of 5 

primary feeders as well as location and size of DGs over the planning horizon. An evolutionary algorithm called 6 

Binary Chaotic Shark Smell Optimization has been proposed to solve the optimization problem.  7 

In [25], a bi-level model for distribution network and renewable energy sources expansion planning under a demand 8 

response framework is proposed. The target of the distribution network and generation planner, modeled through the 9 

upper-level problem, is to minimize generation and network investment cost while meeting the demand. The lower 10 

level problem is considered for the minimization of overall payment faced by the consumers.  11 

In [26], a stochastic two-stage multi-year mixed-integer linear programming (MILP) model for distribution system 12 

expansion planning in order to obtain the optimal allocation and timing of renewable DGs has been proposed. The 13 

authors in [27-29], proposed a multi-stage stochastic linear programming for joint expansion planning of renewable 14 

DGs and distribution networks. 15 

Table I shows a taxonomy of proposed methodologies for RES integration into distribution networks. The gap that 16 

this paper fills is how the combination of multi-configuration of renewable DGs and ANM schemes can effect on 17 

the WTs’ and PVs’ generated active power and D-LMPs within a distribution market environment.  18 

This paper proposes an innovative method, which can be used as a tool for DNOs, to assess the generated power by 19 

WTs and PVs considering: 1) uncertainties related to the stochastic nature of wind power, solar irradiance and load 20 

demand, 2) multi-configuration of WTs and PVs and 3) ANM schemes including CVC and PFC. The proposed 21 

approach also determines the effect of the aforementioned factors on the distribution-locational marginal prices (D-22 

LMPs). Multi-configuration multi-period market-based optimal power flow (MMMOPF) is used for maximizing the 23 

social welfare (SW) taking into account aforementioned uncertainties. A distribution market model within the 24 

control area of DNO is proposed under a distribution market structure on the basis of pool and bilateral contracts. In 25 

this paper, the DNO is assumed to be the market operator of the proposed distribution acquisition market [30-31]. 26 

 27 

 28 
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TABLE I. COMPARISON OF PROPOSED METHOD WITH EXISTING ONES  

Reference Multi-configuration Multi-period Distribution market ANM schemes 

6 No No No Yes 

7 No No No Yes 

8 No Yes No Yes 

10 No No No Yes 

11 No No No Yes 

12 No No No Yes 

13 No No No Yes 

26-27 No Yes No No 

28-29 No Yes No No 

30 No No Yes No 

31 No No Yes No 

Proposed method Yes Yes Yes Yes 

 1 

To the best of authors’ knowledge, no deterministic approach for the planning of distribution networks within a 2 

distribution market environment taking into account multi-configuration of WTs and PVs and ANM schemes has 3 

been reported in the literature. The power system operation’s dynamic nature has not been considered in the current 4 

studies with DG integration. In [6-8], for instance, the authors have not addressed the effect on the integration of DG 5 

level when one or more DGs are not present. Furthermore, the existence of a distribution market environment has 6 

not been addressed in the aforementioned studies. Hence, the major contributions of this paper are listed below: 7 

1) Proposing a novel MMMOPF-based method, which considers the operational status of renewable DGs (i.e. WTs 8 

and PVs) and evaluates the dispatched active power of WTs and PVs taking into account various multi-9 

configurations within the distribution market environment, which has not been addressed so far. 10 

2) Providing comprehensive analysis and results on how multi-configuration of WTs and PVs and ANM schemes 11 

can affect the amount of generated power by WTs and PVs as well as the D-LMPs throughout the network. 12 

3) Maximizing the SW by using a MMMOPF taking into account different combinations of load demand, wind and 13 

PV generation. 14 

The remainder of this paper is organized as follows. In Section II, the proposed approach’s structure is described. 15 

Sections III and IV respectively explain the multi-configuration of WTs and PVs and uncertainty modeling. Problem 16 

formulation is discussed in Section V. Case study and simulation results are presented in Section VI. Finally, in 17 

Section VII, conclusions are discussed. 18 

 19 

 20 

 21 
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II. THE STRUCTURE OF THE PROPOSED METHOD 1 

The stochastic variations of wind speed, solar irradiance and load demand are modelled by multi-period scenarios 2 

approach as described in Section IV. For each combination of wind speed, solar irradiance and load demand, 3 

different MMMOPFs are carried out to maximize SW considering multiple-configuration of WTs and PVs taking 4 

into account ANM schemes and network constraints. The generated power by WTs, SW, and D-LMPs are the 5 

products of the proposed approach. In the following the steps performed by the proposed approach are explained as 6 

shown in Fig.1: 7 

1) Set the candidate buses according to wind speed and solar irradiance historical data.  8 

2) Define the size and speed- and solar irradiance-power curves of WTs and PVs, respectively.  9 

3) Calculate the offer price of WTs and PVs as discussed in Section VI.  10 

4) For every configuration and period, the SW is maximized by using the MMMOPF considering network 11 

constraints. The formulation of the distribution market and the optimization problem are explained in Section V.  12 

5) The results of the proposed approach provide the generated power by WTs and PVs, social welfare, and D-13 

LMPs.  14 

Define size and locations of WTs and PVs and number 

of configurations 

Start Multi-Configuration Market based OPF for configuration c

Start MMMOPF 

Start Market based OPF for period m

Obtain WTs and PVs capacity for each 

configuration according to (4)

c=1 to NC

m=1 to NM

m≥NM

c=c+1

m=m+1
c≥NC

No

Yes

No

Yes

Obtain optimal dispatched active power of 

WTs and PVs and D-LMPs at each bus
 15 

Fig.1.The structure of the proposed method 16 
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III. MULTI-CONFIGURATION OF WTS AND PVS 1 

In this paper, the objective of MMMOPF approach is to incorporate multi-configuration of WTs and PVs are 2 

described as the operational status of WTs and PVs, and are selected on the basis of the decisions of DNO. The total 3 

number of all possible multi- configurations for WTs/PVs number is represented in the following: 4 

)12(1  NDGNC              (1) 5 

where NDG is the WTs’ and PVs’ total number. The total configurations are mentioned as the number of multi- 6 

configuration of WTs and PVs. For instance, if a system has two WTs and two PVs, then there are up to 15 possible 7 

multi-configurations of WTs and PVs for the DNOs to select. To characterize WTs and PVs operational status at bus 8 

i and configuration c, a binary parameter is described. The operational status of each WT/PV and all WTs/PVs are 9 

defined according to (2) and (3), respectively. 10 








otherwise,0

operatingisbusatWT/PVaif,1
,

th

ci

i
                   (2) 11 

)(
)/(,)/(,)/(,

)/(,2)/(,2)/(,2

)/(,1)/(,1)/(,1

2211

2211

2211

NDGNC
pvwcpvwcpvwc

pvwpvwpvw

pvwpvwpvw

NN

NN

NN








































        (3)   12 

 13 

The capacity constraint for WTs and PVs in relation to their operational status for each configuration is defined as 14 

follows: 15 












0,0

1,0

,

,
max),/(

,
)/(

,)/(
,

ci

ci
pvw

ci
pvw

cipvw
ci

PP
P




         (4) 16 

 17 

IV. UNCERTAINTY MODELLING 18 

Load demands versus wind and PV generations profiles are studied using a UK network’s historic data, recorded 19 

within a year time on the basis of half hourly figures (17520 periods) [32]. Fig. 2(a) shows a one-week snapshot 20 

sample of the original profile data. The load factors of demand, wind, and PV profiles are respectively 53.1%, 21 
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27.4%, and 9.6%. The original profile data with 17520 periods will have huge computational burden. For this 1 

reason, data discretization and aggregation processes are utilized. In this paper, firstly the discretization of the 2 

original profile data with 17520 periods is performed then reduced to 131 periods, as explained in the following. 3 

1) Data Discretization Process: In the process of discretization, some ranges are taken into account to allocate the 4 

profile data of demand, wind and PV generation within different intervals as presented in Table II. The relative 5 

output of a profile data in a given range is the average value of the range limits, for example 0.3 p.u. for (20%, 6 

40%]). Other assumptions are considered which are substantial to provide for worst-case scenarios of renewable 7 

generation and load demand. For instance, since minimum demand is about 20%, values near or less than 20% is 8 

assumed to be 20%, and for values more than 95% is 100% for maximum demand. Likewise, for wind and PV data, 9 

values below 3% is assumed to be 0, and above 97% is 100%. The profile data after the discretization process is 10 

shown in Fig. 2(b).  11 

2) Data Aggregation Process: The data discretization process produces 17520 periods which is similar to the 12 

original data. On the other hand, there are lots of inter-periods that can be aggregated. Therefore, each set of inter-13 

periods is characterized by one period with the whole period’s total coincident hour. As presented in Table III, the 14 

total number of 17520 periods for demand, wind, and PV profiles is reduced to 131 multi-period scenarios after data 15 

discretization and aggregation process. 16 

 17 

 18 

 19 
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 1 

 2 

 3 

Fig.2. Hourly demand, wind and solar power production in the second week of July 2005 for central Scotland (a) original profile data (b) profile 4 

data after discretization process. 5 

 

 

 
 

 
TABLE II. DATA DISCRETIZATION PROCESS 

Demand profile Wind and PV profiles 

No. Bins (%) Ranges (%) No. Bins (%) Ranges (%) 

1 20 [0, 20] 1 0 [0, 3] 

2 30 (20, 40] 2 10 (3, 20] 

3 50 (40, 60] 3 30 (20, 40] 

4 70 (60, 80] 4 50 (40, 60] 

5 90 (80, 95] 5 70 (60, 80] 

6 100 (95, 100] 6 90 (80, 97] 

   7 100 (97, 100] 

 6 

V. PROBLEM FORMULATION 7 

A. Formulation of Distribution Acquisition Market  8 

A distribution market model, called the distribution acquisition market, is proposed here under a distribution 9 

market structure based on pool and bilateral contracts. The DNO is assumed to be the market operator of the 10 

acquisition market that determines the optimization process for the acquisition of active power and price estimation. 11 

Dispatchable loads, WTs and PVs submit active power offers and bids, in form of blocks, to the market every hour 12 

[33-34]. The objective of the DNO is maximizing SW. 13 

                           Mon.     Tue.      Wed.       Thur.       Fri.         Sat.        Sun. 

                                                                      (a) 

                     Mon.     Tue.      Wed.       Thur.       Fri.         Sat.        Sun. 

                                                                      (b) 
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TABLE III. MULTI-PERIOD SCENARIOS OF DEMAND AND 

RENEWABLE GENERATIONS 

m 

D  

(%) 

W 

(%) 

PV 

(%) h m 

D 

(%) 

W 

(%) 

PV 

(%) h 

1 20 0 0 16 67 50 70 70 14.5 

2 20 10 0 29.5 68 50 90 70 3.5 

3 20 30 0 22 69 50 0 90 1.5 

4 20 50 0 15.5 70 50 10 90 2 

5 20 70 0 7 71 50 30 90 1 

6 20 90 0 2.5 72 50 50 90 3 

7 20 0 10 1.5 73 50 70 90 2.5 

8 20 10 10 1.5 74 50 30 100 1 

9 20 30 10 0.5 75 70 0 0 219.5 

10 20 10 30 1 76 70 10 0 288 

11 30 0 0 519 77 70 30 0 205 

12 30 10 0 684.5 78 70 50 0 157.5 

13 30 30 0 379.5 79 70 70 0 92.5 

14 30 50 0 287 80 70 90 0 49 

15 30 70 0 213.5 81 70 100 0 1 

16 30 90 0 106.5 82 70 0 10 156 

17 30 100 0 1 83 70 10 10 191 

18 30 0 10 54 84 70 30 10 92.5 

19 30 10 10 100.5 85 70 50 10 95.5 

20 30 30 10 63 86 70 70 10 71 

21 30 50 10 38.5 87 70 90 10 43 

22 30 70 10 21.5 88 70 0 30 19.5 

23 30 90 10 16 89 70 10 30 30 

24 30 0 30 12 90 70 30 30 21.5 

25 30 10 30 15.5 91 70 50 30 23.5 

26 30 30 30 13.5 92 70 70 30 11 

27 30 50 30 7.5 93 70 90 30 9 

28 30 70 30 4 94 70 0 50 5.5 

29 30 90 30 3.5 95 70 10 50 4.5 

30 30 0 50 2 96 70 30 50 1.5 

31 30 10 50 4 97 70 50 50 3.5 

32 30 50 50 1 98 70 90 50 1 

33 30 70 50 0.5 99 70 90 70 1 

34 30 0 70 0.5 100 70 0 90 1 

35 30 10 70 1.5 101 90 0 0 201.5 

36 30 30 70 2 102 90 10 0 162 

37 30 70 70 0.5 103 90 30 0 115.5 

38 50 0 0 191 104 90 50 0 121 

39 50 10 0 197.5 105 90 70 0 81 

40 50 30 0 122 106 90 90 0 37 

41 50 50 0 99 107 90 100 0 1 

42 50 70 0 63 108 90 0 10 37 

43 50 90 0 43 109 90 10 10 70 

44 50 100 0 2 110 90 30 10 49 

45 50 0 10 270.5 111 90 50 10 38 

46 50 10 10 333 112 90 70 10 27 

47 50 30 10 193.5 113 90 90 10 10.5 

48 50 50 10 153.5 114 90 0 30 2.5 

49 50 70 10 90 115 90 10 30 1.5 

50 50 90 10 38.5 116 90 30 30 0.5 

51 50 0 30 191 117 90 50 30 0.5 

52 50 10 30 283 118 90 70 30 1 

53 50 30 30 175.5 119 90 90 30 0.5 

54 50 50 30 133.5 120 100 0 0 46 

55 50 70 30 101.5 121 100 10 0 20.5 

56 50 90 30 69.5 122 100 30 0 17 

57 50 0 50 56.5 123 100 50 0 22.5 

58 50 10 50 96 124 100 70 0 22 

59 50 30 50 75 125 100 90 0 7.5 

60 50 50 50 50.5 126 100 100 0 0.5 

61 50 70 50 39.5 127 100 0 10 2 

62 50 90 50 32.5 128 100 30 10 1 

63 50 0 70 18.5 129 100 50 10 1.5 

64 50 10 70 40 130 100 70 10 1.5 

65 50 30 70 15 131 100 90 10 1 

66 50 50 70 13.5  

  1 
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The cleared quantities and prices are calculated by SW maximization taking into account network constraints 1 

within the distribution market. The MMMOPF is formulated as follows:  2 

, , , , , , , , , , , , , ,

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Maximize SW
NQ NB NM NT NB NM NC NT NB NM NC NT NB NC

D D w w pv pv G G

m i q i q m m i t i t m c m i t i t m c i t i t c

q i m t i m c t i m c t i c

C P C P C P C P  
             

                  (5) 3 

subject to  4 

 

, , , , , , , , , ,

1 1 1 1 1 1 1 1

, , , , , , , , , , , ,

1

cos( ) sin( )

NQNT NG NT NB NT NB NB
G w pv D

i t c m i t m c m i t m c m i q m

t i t i t i q i

NB

i m c j m c ij ij i m c j m c ij i m c i m c

j

P P P P

V V T G B

  

   

       



 
   

 

   

   



                       (6) 5 

 

, , , , , , , , , ,

1 1 1 1 1 1 1 1

, , , , , , , , , , , ,

1

sin( ) cos( )

NQNT NG NT NB NT NB NB
G w pv D
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Active and reactive power balance at each bus is represented in (6) and (7). Equation (8) represents branch flow 1 

constraints. Voltage constraints at each bus are represented in (9) and (10). The constraints of active and reactive 2 

power generated by WTs and PV are represented in (11)-(14). The capacity constraints of substation are 3 

characterized in (15) and (16).   4 

B. Incorporation of ANM Schemes  5 

1) Coordinated Voltage Control [35] 6 

The secondary voltage of the OLTC will be considered as a variable maintaining its value within a certified range 7 

as follows: 8 

maxmin
ijijij TTT            (17) 9 

2) Adaptive Power Factor Control  10 

DNOs could determine power factor for RES inverters to provide reactive power support to the grid [36]. For 11 

example, in the UK, DNOs keep the power factor of WTs and PVs in the range of 0.95 leading and 0.95 lagging. 12 

Thus, the following constraint applies: 13 

max,//

,,

min,/ pvw

i

pvw

cmi

pvw

i             (18)      14 
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Fig.3. 30-bus radial distribution system  16 
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VI. CASE STUDY AND SIMULATION RESULTS 1 

30-bus radial distribution system is explained in this section, which is used to examine the proposed approach. 2 

The following analyses are based on 33 kV 30-bus whose data are available in [37]. Fig.3 shows the single-line 3 

diagram of the distribution system. A 30-MVA 132/33 kV transformer is used to supply the feeders. An OLTC, 4 

allocated between buses 1 and 2, has a target voltage of 1.05 p.u. at the secondary. Voltage limits are assumed to be: 5 

Vmin= 0.94 and Vmax= 1.06 p.u. and the power factor of both PVs and WTs vary between 0.95 leading to 0.95 6 

lagging. In this paper, it is assumed that buses 2, 6, 14 and 24 are four possible locations for installing PVs and WTs.  7 

Section IV presents the multi-period scenarios of demand versus WTs and PVs used in this paper. Two 3 MW WTs 8 

at buses 2, 24 and two 2 MW PVs at buses 6 and 14 are installed. It is supposed that maximum four WTs and PVs 9 

can be installed at each candidate bus. For every period and configuration, this is represented by four equal blocks in 10 

the WT’s and PV’s offer with the same price. The offer price at substation is assumed to be 120 £/MWh. With 11 

regards of DLs’ bids, it is supposed that there are three blocks for each DL, as given in Table IV. Table V presents 12 

all the possible multi-configuration of WTs and PVs for the four WTs and PVs locations using (1). 13 

 14 

TABLE IV. QUANTITY AND PRICE OF DISPATCHABLE LOADS 

 Quantity (MW) Price (£/MWh) 

Bus  

No. 

Block  

1 

Block 

2 

Block 

3 

Block 

1 

Block 

2 Block 3 

2 0.34 0.24 0.15 140 140 100 

4 0.40 0.25 0.15 140 130 100 

6 0.18 0.18 0.12 150 120 100 

14 0.20 0.28 0.15 150 120 100 

24 0.20 0.18 0.13 140 120 100 

21 0.25 0.20 0.12 140 120 90 

29 0.43 0.20 0.15 140 110 100 

30 0.25 0.20 0.10 140 125 100 

 15 

 16 

 17 

 18 

 19 

TABLE V. DESCRIPTION OF MULTI-CONFIGURATION OF WTS 
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AND PVS  

Multi-
configuration 

WT and PV status/location 

Bus 2 Bus 24 Bus 6 Bus 14 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 1 1 0 0 

6 1 0 1 0 

7 1 0 0 1 

8 0 1 1 0 

9 0 1 0 1 

10 0 0 1 1 

11 0 1 1 1 

12 1 0 1 1 

13 1 1 0 1 

14 1 1 1 0 

15 1 1 1 1 

 1 

A. WTs’ and PVs’ Offer Price Calculation from the DNOs Perspective 2 

To determine the price of WTs’ and PVs’ offers, financial data, i.e. life time of PVs and WTs, interest rate, 3 

depreciation time, and installation cost are considered as summarized in Table VI. The annual cost for WTs and PVs 4 

is calculated as follows [38]:  5 

CostInst
r

rr
CostAnn

n

n

_
1)1(

)1(
_ 




                  (19) 6 

where r is the interest rate, n is the depreciation period in years, Inst_Cost is the installation cost, and Ann_Cost is 7 

the annual cost for depreciation. The offer price of WTs and PVs is calculated by dividing the annual costs by the 8 

number of equivalent hours as presented in Table VI.  9 

 10 

TABLE VI. FINANCIAL DATA FOR CALCULATING THE OFFERS 

PRICE OF  3 MW WT AND 2 MW PV 

Size WT PV 

3 MW 2 MW 

Installation cost (£/kW) 950 1400 

Depreciation time (years) 10 10 

Interest rate (%) 3 3 

Number of equivalent hours (h) 4000 4000 

Capacity factor (%) 46 46 

Annual cost (£/kW-year) 334.10 168.81 

Offer Price (£/MWh) 27.84 40.00 

 11 

The offer prices of WTs and PVs for different values of capacity factor ranging from 28% to 46%, interest rate of 12 

3% and the same installation costs, as presented in Table VI, is shown in Fig.4.  13 
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In addition, the offer prices is calculated for various values of interest rates ranging from 3% to 10%, the capacity 1 

factor of 46% and the same installation costs, as presented in Table VI, is shown in Fig.5.  2 

It is obvious from Figs. 4 and 5 that the offer prices of WTs and PVs decreases by increasing the capacity factor and 3 

increases by increasing the interest rate. As a result, offer price has inverse relation with CF and direct relation with 4 

interest rate.  5 
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Fig. 4. Offer prices of WTs and PVs for different CFs and 3% insterest rate 8 
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Fig. 5. Offer prices of WTs and PVs for different interest rates and capacity factor of 46% 11 
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The proposed method has been coded in GAMS and solved using CONOPT solver [39] on a PC with Core i7 1 

CPU and 16 GB of RAM. In order to investigate the impact of multi-configuration of WTs and PVs and ANM 2 

schemes on the SW, dispatched active power of WTs and PVs and D-LMP, two scenarios are considered as given in 3 

Table VII.  4 

TABLE VII. SCENARIOS 

Scenarios CVC PFC PF= 0.95 lagging 

A - -      

B   - 

 5 

The total dispatched active power of WTs and PVs for each configuration and all periods is shown in Fig.6. 6 

Configuration 3 (i.e. one PV at bus 6) has the lowest dispatched active power in comparison with that in 7 

configurations 2, 3 and 4. This is mainly due to higher bid price of PVs (compared with WTs) and lower bid 8 

quantity at bus 6 compared with those at buses 2, 14 and 24 (see Table III) and voltage constraints as well as the 9 

lines thermal limits.  10 

Configuration 10 has the lowest dispatched active power in comparison with that in configurations 5, 6, 7, 8 and 9 11 

(i.e. the combination of one PV and one WT or both). This is also due to the lower bid quantity, higher bid price at 12 

buses 6 and 14 compared with those in other buses and higher offer price of PVs compared with WTs as well as the 13 

voltage and thermal constraints at these buses and lines connecting these buses, respectively. It is also evident that 14 

configuration 15 (i.e. two WTs at buses 2 and 24 and two PVs at buses 6 and 14) has almost the same dispatched 15 

active power of that in configurations 11, 12, 13 and 14. As a result, configurations 3, 4, 10 and 15 are not 16 

economical.  17 

The total dispatched active power in both scenarios for all configurations at all candidate buses is shown in Fig.7. 18 

It is evident that in scenario B by considering ANM schemes higher active power can be dispatched by PVs and 19 

WTs in comparison with those in scenario A.  20 

The total SW for each configuration is shown in Fig.8. It is obvious that configurations 3, 4 and 10 have the 21 

lowest and 11, 12, 13, 14 and 15 the highest value of SW in comparison with others. This is due to the lowest and 22 

highest dispatched active power at these configurations respectively as renewable DGs installation increases the SW. 23 

 24 
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Fig.6. Total dispatched active power of WTs and PVs for each configuration 2 
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Fig.7. Total dispatched active power of WTs and PVs in each configuration and different scenarios 5 
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Fig.8. Total SW in all configurations and both scenarios 9 
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The total D-LMPs for each configuration and both scenarios are shown in Fig. 9. It is seen that configurations 3, 4 1 

and 10 have the highest and configurations 11, 12, 13, 14 and 15 the lowest D-LMPs. This is also due to the lowest 2 

and highest dispatched active power at these configurations, respectively. It can be concluded that configurations 3, 3 

4, 10 and 15 are not economical. For example, in configuration 10, the dispatched active power and the SW, are 4 

much lower and the D-LMP is higher than those in other configurations (i.e. a combination of two WTs or PVs). It 5 

is also observed that the D-LMP decreases by about 15% in scenario B by incorporating ANM schemes in 6 

comparison with those in scenario A. Therefore, by incorporating ANM schemes, more wind and PV power could be 7 

integrated into the grid in comparison with those in passive networks, therefore, D-LMPs reduce significantly.  8 
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Fig.9. Total D-LMPs in all configurations and both scenarios 10 

 11 

VII. CONCLUSIONS 12 

In this paper, a deterministic approach for the planning of active distribution networks within a distribution market 13 

environment is proposed. ANM is considered as an important means of increasing the capability of distribution 14 

networks to install renewable DGs.  In the future, ANM will characterize an efficient solution for DNOs to integrate 15 

and operate RES in distribution networks, therefore, contributes to reducing the tensions between DG developers, 16 

who aim at maximizing their profits by increasing energy production, and DNOs, who aim at minimizing network 17 

operating and investment costs.  18 

The method considers ANM schemes and multi-configuration of WTs and PVs. MMMOPF is utilized to 19 

maximize SW taking into account uncertainties associated with wind speed, solar irradiance and load demand. It is 20 

revealed that the multi-DG configurations under ANM schemes could increase the potential of wind and solar power 21 

penetration at certain locations and consequently decreases D-LMPs. It is worth noting that in order to choose the 22 
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most proper ANM scheme, each scheme or a combination of them should be assessed taking into account the 1 

economic benefits under different scenarios.  2 

The proposed approach can be used as a tool for DNOs to allocate renewable DGs at more appropriate places in 3 

terms of consumers’ benefits and cost reduction taking into account network constraints. It also can be used as a tool 4 

for DNOs to evaluate the impact of wind and solar power penetration on a given network in terms of technical and 5 

economic effects. 6 

Moreover, the proposed method allows the decision makers to understand the implications of various choices on 7 

technical and economic performances of the distribution system. 8 

 9 
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