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1. Introduction  
 In recent years, the importance of serviceability limit 

state for design becomes more apparent due to the 

availability of high strength steel and concrete coupled with 

availability of more accurate and efficient analytical 

procedures. In the design of reinforced concrete buildings, 

the control of lateral drift is a critical design criterion that 

must be satisfied to prevent large second-order P-delta 

effects. Due to the low tensile strength of concrete, cracking, 

which is primarily load dependent, is an inevitable 

phenomenon occurring at service loads, generally leading to 

reduction in flexural and shear stiffnesses of reinforced 

concrete members and, consequently, deflection increase. 

The formation of plastic hinges also decreases the structure 

stiffness and, thus, causing the deflections to increase 

significantly. It is therefore important to consider the plastic 

hinge formation together with concrete cracking in the 

structural analysis and design of reinforced concrete frames 

in order to obtain more accurate prediction of deflections 

and capacity of reinforced concrete frames. 

Two basic types of algorithm, namely the finite element and 

direct stiffness methods, have been extensively developed 

to analyze reinforced concrete structures. The finite element 

method directly uses the stress and strain as the variant, 

while the direct stiffness method is based on internal forces. 

Over the past three decades, significant advancements to the  
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finite element method for the analysis of reinforced 

concrete frames have been proposed, including the type of 

finite elements used, the constitutive models adopted and 

the methods of stiffness evaluation and mesh discretization. 

Several researchers (Ingraffea and Grestle 1985, Polak 1995, 

Chan et. al. 2000, Wang and Hsu 2001, Kwak and Song  

2002, Kwak and Kim 2004, Spiliopoulos and Lykidis 2006, 

Stramandinoli and Rovere 2008) proposed constitutive 

models for reinforced concrete following the rules of 

nonlinear elasticity and plasticity. These include the 

softening effects in compression, the effect of cracking in 

tension and shear retention. On the other hand, the 

procedures concerning the type of finite elements and mesh 

discretization can be classified as microelement and 

macroelement approaches. The microelement is defined in 

such way that the structure is divided into many small finite 

elements including the two dimensional and three 

dimensional elements modeling concrete, bar elements 

modeling steel, and discrete crack representation modeling 

cracks. However, the macroelement approach incorporates 

such factors as the cracking effect, mechanical aggregate 

interlock and bond-slip behavior into a comprehensive 

constitutive model of reinforced concrete. In this approach, 

each finite element represents both concrete and steel, and 

the local phenomena are incorporated into a constitutive 

model used to obtain stiffness matrix of a macroelement. 

However, most of these analyses have restrictions in their 

application to large scale reinforced concrete buildings 

(Chen 1982, Berzegar 1989, Nilson 1967, Vecchio and 

Emara 1992, 1993, Bratina et. al. 2004, Karthiga et al. 

2014). 

A simplified method for the analysis of reinforced concrete 

frames with cracked beam and column elements was 
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developed by Dundar and Kara (2007), in which the 

probability-based effective stiffness models, ACI (1995) 

and CEB (1985) were used to evaluate the effective 

moment of inertia of the cracked members. Shear 

deformations were also taken into account in the analysis 

and reduced shear stiffness was considered by using 

effective shear modulus models. However, the effect of 

plastic hinge formation on the behavior of reinforced 

concrete frames was not considered in the analysis. The 

formation of plastic hinges causes reduction in the structure 

stiffness and, thus, an increase in deflections of frames. 

Also consideration of plastic hinge formation in the analysis 

is important to obtain the failure mechanism and ultimate 

capacity of frames. 

Several experimental studies have been conducted on the 

determination of the plastic hinge length of reinforced 

concrete members (Tang et al. 2016, Barrera et al. 2011, 

Elmenshawi et al. 2012, Yang et al. 2013, Bae and Bayrak 

2008). On the other hand, a large number of techniques and 

models have been proposed in the past decades by 

numerous researchers to investigate the inelastic behaviour 

of plastic hinge length for accurate evaluation of the 

reinforced concrete structural ductility (Panagiotakos and 

Fardis 2001; Lu et al. 2005; Berry et al. 2008; Elmenshawi 

et al. 2012, Ning and Li 2016, Babazadeh et al. 2016, Yang 

et al. 2013, Dadi and Agarwal 2015). However, due to the 

complexity and nonlinearity involved in the plastic hinge 

mechanism, large differences are encountered when 

investigating these models. 

Following a comprehensive finite element analysis of 

plastic hinge region of reinforced concrete beams, Zhao et 

al. (2014) concluded that none of the existing methods for 

the prediction of plastic hinge length is adequate and 

correctly included all major factors affecting the load 

carrying and deformation capacities of reinforced concrete 

members. In contrast, Lopez et al. (2016) showed that the 

plastic hinge modelled with few empirical expressions 

available in the literature would be adequate for simulating 

the behavior of reinforced concrete buildings located in 

seismic areas. Lopez et al. (2016) also suggested other 

equations for the yield moment, chord rotation and ultimate 

chord rotation of rectangular RC sections based on genetic 

algorithm. They concluded that proposed equations provide 

more accurate results than other expressions and reduce 

computational time needed to simulate the yield and 

ultimate behaviour of RC rectangular sections. 

In practice, the analysis of reinforced concrete frames are 

usually carried out by using linear elastic models which 

either neglect the cracking effect or consider it by reducing 

the stiffness of members arbitrarily. If cracking occurs in 

some members due to loads, the flexural and shear 

stiffnesses of these cracked members will decrease, 

resulting in additional deflection and a redistribution of 

internal forces. The formation of plastic hinges at the ends 

of members has also a significant effect on the behavior and 

strength of frames. The predictions of plastic hinges and 

progressive collapse of reinforced concrete structures are 

essential to prevent catastrophic collapse of structures. 

Therefore, an analytical model which can include the effects 

of concrete cracking on the flexural and shear stiffnesses of 

members and consider the plastic hinge formation in the 

analysis would be very useful.  

In the present study, a computer program based on the 

iterative procedure has been developed for the analysis of 

reinforced concrete (R/C) frames with cracked beam and 

column elements. The formation of plastic hinges at the 

ends of members is also taken into account in the analysis. 

The analytical procedure is based on the stiffness matrix 

method and involved the plastic hinge formations under 

increasing load until a failure condition is achieved. This 

method accounts for the zero-length hinge formation 

without considering the finite-length hinges. In obtaining 

the flexibility influence coefficients, a cantilever beam 

model is used. The effective flexural stiffness of a cracked 

member is evaluated by the ACI and probability-based 

effective stiffness model. In the analysis, shear deformation 

effect is also taken into account and the variation of shear 

stiffness due to cracking is considered by employing 

reduced shear stiffness models available in the literature. 

The analytical procedure has been compared with 

experimental results of three reinforced concrete frames 

tested in the literature. 

 

2. Stiffness Models & Analysis Method 
2.1 Effective flexural and shear stiffness models for 

cracked members 
 

The flexural stiffness of a concrete member varies along 

its length due to the presence of cracks that can occur from 

the applied loading. At crack locations, concrete carries 

essentially zero tension. Between cracks, however, concrete 

participates in resisting tensile stresses because of bond 

between reinforcement and concrete. This effect is often 

referred to as tension stiffening and is taken into account 

with the effective moment of inertia Ieff (Cosenza 1990). Fig. 

1 presents a typical moment curvature relationship taking 

into account tension stiffening. The effective moment Ieff of 

inertia in a region subjected to a moment M greater than the 

section cracking moment Mcr lies between the limit values 

of I1 and I2, which are the moments of inertia of the gross 

uncracked and cracked transformed sections, respectively. 
 

Fig. 1 Moment-curvature relationships of reinforced 

concrete section 

 

1 

2 
Ieff 

EI1 

1 

EI2 

1 

1/r 

M 

Mcr 

I1 

I2 
I2 < Ieff < I1 



 

Nonlinear analysis of reinforced concrete frames considering cracking effect and plastic hinge formation 
 

In the present study, the ACI model (ACI 318-14), which 

includes the effect of cracking and participation of tensile 

concrete to flexural rigidities, is adopted as given below: 

Ieff =
21 1 I
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where m=3. This equation was first proposed by Branson 

(1963) with m=4 when Ieff is required for the calculation of 

curvature of an individual section. The cracking moment 

Mcr is calculated using the following equation: 

 
t

vr
cr

y

If
M 1

  (2) 

where σv is the axial compressive stress, fr is the flexural 

tensile strength of concrete, and yt is the distance from the 

centroid of gross section to extreme fiber in tension. 

 

Fig. 2 Cracked and uncracked regions of the member 

In the literature (Sakai and Kakuta 1980, Cosenza 1990), 

the effective moment of inertia given by the ACI (2014) is 

perhaps the most widely used and accurate among the 

commonly accepted simplified methods for the estimation 

of instantaneous deflection. Although ACI model is usually 

considered for beams, in the present study this model is also 

used for columns but the axial force is taken into account in 

the determination of the cracking moment. 

In addition to the ACI model (2014), the probability-based 

effective stiffness model (Chan et. al. 2000) has been 

considered for the calculation of the effective flexural 

stiffness of cracked members. In the probability-based 

effective stiffness model, the effective moment of inertia is 

also obtained as the ratio of the area of moment diagram 

segment over which the working moment exceeds the 

cracking moment Mcr to the total area of moment diagram 

for each cracked element by the following form (see Fig.2): 
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where Acr is the area of moment diagram segment over 

which the calculated moment due to the applied load 

exceeds the cracking moment Mcr and At is the total area of 

moment diagram. In the same equation, Pcr and Puncr are the 

probability of occurrence of cracked and uncracked 

sections, respectively. 

Both the ACI and Probability-based effective stiffness 

models represent a weighted average of the uncracked (EcI1) 

and cracked (EcI2) flexural stiffness of concrete members. 

However, they adopt different approach in determining the 

weight of uncracked and cracked moment of inertia of 

concrete members to evaluate the effective stiffness of the 

cracked member. Hence the probability-based effective 

stiffness model can be considered as an alternative model 

over ACI model for the effective flexural stiffness of 

cracked members in the analysis of concrete frames. 

Comparisons of both techniques against experimental 

results will be presented later in this paper. 

Shear deformation in frame structures can be significant and 

thus can be of practical importance in their design and 

behavior. The effective shear modulus of concrete due to 

cracking is accounted for by employing the models 

developed by Al-Mahaidi (1978) and Yuzugullu and 

Schnobrich (1973). Al-Mahaidi (1978) suggested the 

following hyperbolic expression for the reduced shear 

stiffness Gc to be employed in the constitutive relation of 

cracked concrete 

cr1

c
c

/

G4.0
G




 
(4) 

where Gc is the elastic shear modulus of uncracked concrete, 

ε1 is the principal tensile strain normal to the crack and εcr is 

the cracking tensile strain. Details of these models can be 

found in Dundar and Kara (2007). 

In the computer program developed in the present study, the 

aforementioned models are adopted for the effective 

flexural and shear stiffnesses of cracked concrete. 

 

2.1 Basic equations and formulation of analytical 
procedure 

In the present study, the analytical process is based on 

the stiffness matrix method. Due to the nonlinear behavior 

of materials, the load is incrementally increased and, when 

a certain loading renders the determinant of the system 

stiffness matrix negative, the analysis is terminated. The 

analytical procedure deals with the plastic hinge formation 

together with concrete cracking in reinforced concrete 

members. A plastic hinge is assumed to be developed at a 
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certain section when the moment exceeds the plastic 

moment capacity of such section obtained by calculating the 

sectional moment carrying capacity of individual members 

at yielding of longitudinal steel reinforcement. This 

procedure also accounts for the zero-length hinge formation 

without considering finite-length hinges.  

In the current analysis, the member is assumed to consist of 

two zones as shown in Fig 3. The first zone is the plastic 

hinge zone assumed to have zero length. The second zone is 

also cracked and uncracked regions of the member. 

In the evaluation of the member stiffness equation, the 

flexibility influence coefficients of a member are first 

obtained, and then using compatibility conditions and 

equilibrium equations, the stiffness matrix of a member 

with some regions in cracked state are evaluated. The basic 

formulations of the flexibility influence coefficients of a 

member are given below and full details of the formulations 

can be found in Dundar and Kara (2007). When the plastic 

hinges are active at the ends of the member, the 

development of the member stiffness matrix is also 

described in the following section. 

Fig. 3 shows a typical member, and positive end forces with 

corresponding displacements. A cantilever model is used for 

computing the relations between nodal actions and basic 

deformation parameters of a general planar element (Fig. 4). 

The basic deformation parameters of a general planar 

element may be established by applying unit loads in turn in 

the directions of 1, 2 and 3. Then, the compatibility 

conditions give the following equation in matrix form: 
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in which, fij is the displacement in the i-th direction due to 

the application of a unit load in the j-th direction, and can 

be obtained by using the principle of virtual work as follows: 

dx
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 (6) 

In Eq. (6), Mi, Mj, Vi, Vj, Ni and Nj are the bending 

moments, shear forces and axial forces due to the 

application of a unit load in i-th and j-th directions, 

respectively, Ec denotes the modulus of elasticity of 

concrete, s and A are the shape factor and cross sectional 

area of element section, respectively. 

The stiffness influence coefficients are simply obtained by 

inverting the flexibility matrix in Eq. (4) using the 

equilibrium conditions as follows 

k11=1 / f11 = Ec A / L 

k22= f33 / (f22 f33 – f32 f23) 

k23= k32 = - f23 / (f22 f33 – f32 f23) 

k33 =  f22 / (f22 f33 – f32 f23) 

k12= k13= k31= 0. 

k52= - k55= -k22 

k53= -k23 

k62= -k65 = k22 L- k32 

k66= k33 + k22 L
2
- k32 L 

(7) 

 

 

Fig. 3 A typical two dimensional member with positive end 

forces and displacements 

 

 
 

 

 

 

 

 

 

 

 

Fig. 4 A cantilever model for computing the relations 

between the nodal actions and basic deformation 

parameters 

 

The reinforced concrete members crack at relatively low 

load levels and have varying degrees of cracking ranging 

from uncracked to fully cracked regions due to the lateral 

and vertical loads. It should be noted that, since the member 

has cracked and uncracked regions, the integral operations 

used for obtaining the flexibility influence coefficients are 

carried out in each region individually.  

When only the cracking of structural concrete is considered 

in the analysis, the proposed procedure can be applied to 

reinforced concrete frames without subdividing the member 

under distributed load into many elements (Kara and 

Dundar 2009, Tanrikulu et. al. 2000). In such case, the 

member fixed-end forces for the case of point and 

uniformly distributed loads are evaluated by means of the 

compatibility and equilibrium conditions. If the plastic 

hinge formation is taken into account together with the 

concrete cracking in the analysis, the reinforced concrete 

frames are analyzed by dividing the member under 

distributed loads into many elements and applying the 

distributed loads as equivalent concentrated loads at nodes 
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distributed along the length of the member. The program 

also automatically divides the member under distributed 

loads without spending extra effort. The cracked member 

stiffness equation can be obtained as 

dk=P  (8) 

where k  (6x6) is the stiffness matrix, d  (6x6) is the 

displacement vector and P  (6x1) is the end force vector of 

the member. Eq. (8) is given in the member coordinate 

system (x, y). Hence, it should be transformed to the 

structure coordinate system (X, Y). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the cracked regions where the applied moment is larger 

than or equal to the cracking moment, the flexural tensile 

cracks develop in the tensile fibers of the flexural members, 

and, consequently, Ieff and cG vary with M along the region. 

Therefore, the integral values in these regions should be 

determined by a numerical integration technique. The 

flexural and shear stiffnesses of a cracked member vary 

according to the amount of crack formation along the 

member. Changes in the stiffness of the cracked members 

lead to a certain transfer of the internal forces of these 

members to other uncracked members, resulting in cracking 

of some of otherwise uncracked members. The variation of 

the effective moment of inertia and effective shear modulus 

of concrete in the cracked regions necessitates the 

redistribution of the internal moments and forces in the 

structure. The formation of plastic hinges at the ends of the 

member also influences the redistribution of the internal 

forces. Hence, iterative procedure should be implemented to 

obtain the final deflections and internal forces of the 

structure.  

 

2.3 Analysis of the effect of plastic hinge formation on 
member stiffness 
 

In a reinforced concrete member, a plastic hinge takes 

place in the critical section, where tensile reinforcing bars 

reach yielding due to external load. The bending moment at 

which a plastic hinge is formed at a section of a structure is 

called the section plastic moment Mp. When the moment at 

any section exceeds its plastic moment, Mp, (i.e. the yield 

moment of the section), a plastic hinge is formed at the 

same section location. The plastic moment of each member 

of the frame structure is obtained by calculating the 

sectional moment carrying capacity of the individual 

members at the yielding of the longitudinal reinforcement. 

In obtaining the plastic moment capacity of members, the 

equivalent rectangular stress block of concrete in 

compression proposed by ACI (2014) is adopted and the 

reinforcing steel bars are assumed to be elasto-plastic (σs = 

Es*εs ≤ fy and σs and εs are the stress and strain in 

reinforcing steel bars, respectively; Es and fy are the     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modulus of elasticity and yield strength of steel, 

respectively). The interaction between bending and axial 

force is also considered in the analysis. Details of the 

equations used for obtaining the plastic moment capacity of 

the member are given in Ersoy and Ozcebe (2014) (See Fig. 

5). 

The plastic hinge formation leads to a reduction in the 

stiffness and thus an increase in the deflection of reinforced 

concrete frames. The formation of plastic hinges has also a 

significant effect on the behavior and failure mechanism of 

frames. The shear capacity of members is assumed to be 

sufficient to carry shear forces that develop in the 

reinforced concrete members. However, the modifications 

in the member stiffness matrix in case of formation of 

plastic hinges at member ends are explained below. 

If a member includes a plastic hinge at one end, say end i, 

and if the rotation of this hinge is treated as an extra degree 

of freedom, the rotation at end i of the member is d3 + d3h 

where d3 is the rotation of the node at end i and d3h is the 

additional rotation due to the plastic hinge formation. The 

stiffness equations for a typical member are given in Eq. (9) 

below.  

The first six rows and columns of the member stiffness 

matrix contain the usual terms for concrete cracking 

analysis. The hinge terms in the seventh row and column 

repeat the terms in the third row and column. A similar 

additional eighth row and column arise when the plastic 

hinge is formed at end j of the member (See Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  Strains, stresses and forces on the reinforced concrete section 
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(9) 

In the present study, a step-by-step incremental load is 

applied.  In each loading step, iterative procedure is 

employed where the formation of plastic hinges and cracks 

occurring in the members are examined. When plastic 

hinges are formed, they have to be considered in the 

following steps of analysis. The iterative procedure is 

applied until the convergence criterion, which will be 

explained in the next section, is less than a predefined 

tolerance. In the iterative analytical procedure, member 

equations are first obtained and then the system stiffness 

matrix and system load vector are assembled. Finally, the 

system displacements and member end forces are obtained 

by solving the system equation. The system stiffness matrix 

and load vector are obtained by using code number 

technique. Additional rotation due to plastic hinge at the end 

of the member is also inserted to the system stiffness matrix 

by using this technique. The procedure is repeated step by 

step in all iterations. The analysis is terminated when 

sufficient plastic hinges have formed for the structure to 

have lost its stiffness, i.e. the determinant of the structure 

stiffness matrix equals to zero or negative. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 The member end forces and displacements with 

plastic hinges at each end 

 
3. Applications, Results and Discussions 
In the present study, a general purpose computer program 

developed for the analysis of reinforced concrete frames 

based on the iterative procedure is coded in FORTRAN 77 

language. The flow chart of the solution procedure of the 

program is presented in Fig. 7. The proposed analytical 

procedure provides the history of nonlinear behavior of  

reinforced concrete frames due to external loads in an 

incremental manner. In the analysis, over reduction of 

stiffness in some members at one iteration may cause 

smaller redistributions of internal forces for these members 

and, therefore, result in excessive increase in the stiffness of 

these cracked members in the subsequent iteration. The 

relative increase of flexural stiffness of some members 

attracts transfer of more internal forces to these members, 

thus leading to further stiffness reduction of these members. 

The alternate increase and decrease in stiffness of members 

is likely to generally cause a non-convergent procedure. The 

formation of plastic hinges also effects the redistribution of 

internal forces. Therefore, in the procedure, the member end 

forces used at each iteration are taken as the mean value of 

the end forces of all previous iterations. In the program, the 

following, 






n

i

n

i

n

i

P

PP
1

 (10) 

is used as a convergence criterion in each loading step. Here, 

n is the iteration number, ε is the convergence factor and P
n
i 

(i=1,6) is the end forces of each member of the structure for 

the n-th iteration. As seen in the flow chart of the program, 

the analytical procedure initially takes the members into 

account to be uncracked and performs the linear elastic 

analysis of the structure. The flexural and shear stiffnesses 

of cracked members are then decreased by the effective 

stiffness models available in the literature. In the meantime, 

the formation of plastic hinges is also considered. The 

computer program developed based on the proposed 

procedure generates the plastic hinges automatically, and 

performs incremental step by step analysis. The iterative 

procedure is applied until the convergence criterion is less 

than the predefined tolerance in each loading step. Due to 

space limitation, the listing of the computer program is not 

given in the paper.  

In order to verify the applicability and to determine the 

limitation of the proposed analytical procedure, three 

examples are taken from the literature and solved using the 

proposed method as explained below.  

 

3.1 Example 1 
 

In this example, a two story reinforced concrete frame 

tested by Vecchio and Emara (1992) has been analyzed by 

the developed computer program. This reinforced concrete 

frame was designed with a center to center span of 3500 

mm and a story height of 2000 mm as shown in Fig. 8. The 

concrete had a compressive strength of 30 MPa, and the 

reinforcing steel had a modulus of elasticity of 192500 MPa 

and a yield strength of 418 MPa. The testing setup involved 

first applying a total axial load of 700 kN to each column 

and maintaining this load throughout the test. The lateral 

load (Q) was, then, monotonically applied until the ultimate 

capacity of the frame was achieved. The reinforced concrete 

frame is modeled by four columns and two beam elements 

as shown in Fig. 8. The reinforcing steel in the beams and 

columns, the span and the loads are also shown in the 

figure.  

In the analysis, Ieff is estimated using ACI (2014) and 

probability-based effective stiffness models and cG is 

evaluated using Al-Mahaidi’s model. The flexural stiffness 

reductions of beams and columns with increasing lateral 

loads are also obtained by using probability-based effective 

stiffness model. The flexural tensile strength fr and modulus  
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Fig. 7   Solution procedure of the program 
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of elasticity Ec of concrete were not measured in the 

experiment and, therefore, the following equations 

recommended by ACI 318-14 (2014) are used: 


 cr f.f 620

(N/mm
2
) 

(11a) 


 cc fE 4730

(N/mm
2
) 

(11b) 

where fc' is the compressive strength of concrete. The 

plastic moment capacity of the members is also obtained as 

expressed in subsection 2.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Dimensions of reinforced concrete frame model 

(dimensions in mm), (Vecchio and Emara (1992)). 

Fig. 9 presents a comparison of the lateral top deflections 

using the proposed technique predictions and actual test 

results. It is observed that the analytical procedure predicts 

the lateral deflection with good accuracy up to a load equal 

to 93% of test collapse load. The linear elastic method, not 

considering the cracking effect and plastic hinge formation 

in the analysis, significantly underestimates the lateral 

deflection even at service loads. The reason is that the first 

flexural stiffness reductions caused by initial cracking of 

structural members usually occurs at a very low load level.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Comparison among linear elastic method and 

analytical and experimental results for the lateral 

deflection of the second story 

The results of the proposed analytical procedure 

considering the variation of shear stiffness due to cracking 

and formation of plastic hinges at the ends of the members 

give a better prediction of deflections than the technique 

presented in Chan et. al. (2000). The effect of plastic hinge 

formation on the lateral deflection of the frame is also 

shown in Fig. 9. It can be seen that the formation of plastic 

hinges at ends of members decreases the structure lateral 

stiffness, thus, causing the deflection to increase 

significantly. The predicted deflections of the second story 

are higher with the development of hinges compared with 

values obtained when the plastic hinge formation is ignored 

in the analysis. 

Fig. 10 presents a comparison of the deflections at the 

second level of the frame using different models for the 

effective moment of inertia of the cracked members. It 

should be noted that different models provide quite similar 

results.  

The comparison between the experimental and analytical 

results for the rotation at joint 5 is shown in Fig. 11(a). The 

moment-rotation diagram at end of the second story beam 

(joint 5) of the frame is also shown in Fig. 11(b). It can be 

seen from Fig. 11(a) that the proposed analytical procedure 

predicts the joint rotation with reasonable accuracy. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Numerical comparison of lateral deflection obtained 

by various models for the effective flexural stiffness 

Fig. 12 shows the theoretical influence of shear deformation 

on the total lateral deflection of the reinforced concrete 

frame. As seen from the figure, the influence of shear 

deformation results in an increase in the lateral deflection of 

the structure, particularly near the ultimate loads where 

deflections are approximately increased by as much as 14%. 

Consideration of the shear deformation effect in the analysis 

leads to prediction of a slight decrease in loading capacity 

and large lateral displacements compared to values obtained 

when shear deformation is not considered in the analysis of 

the frame. These results agree well with that found by 

Vechio and Emara (1992). 

The sequence of the formation of plastic hinges in the 

reinforced concrete frame obtained by the proposed 

procedure is also shown in Fig. 13. It is seen that the first 

two hinges are formed at the ends of the first story beam. 

Then, two more hinges develop at the ends of the second 

story beam. Shortly after, the last two hinges are formed at 

the base of the columns, converting the frame into a 

mechanism. These analytical results are almost consistent  
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Fig. 11 (a) Comparison between experimental and 

analytical results of the rotation at joint 5  

(b) Moment-rotation diagram at the beam of the second 

story (near joint 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 12 Theoretical influence of shear deformation on 

lateral deflection of frame 

with the test results (Vecchio and Emara 1992).The load 

carrying capacity of the frame is also underestimated by the 

proposed procedure with a difference of 7%.  

The theoretical results of cracking sequence and flexural 

stiffness reductions of beams and columns with respect to 

the lateral applied load are also shown in Fig. 14. As seen 

from the figure, the beams of the first and second stories are 

initially cracked, followed by cracking of the two columns 

at the first story, C1 and C2, and, then,  both columns at 

the second story, C3 and C4 cracked. From Fig. 14, it is 

shown that, at 50% of the ultimate lateral load, the two 

columns at the first story have 67 and 72%, respectively, of 

their gross moment of inertia, and the two beams at the first 

and second stories have 48 and 49% of their uncracked 

values. The columns of the second story have also 89 and 

93% of the gross moment of inertia. However, when the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13 The sequential formation of the plastic hinges at the 

ends of the member 

lateral load reaches 80% of the ultimate load, the stiffness 

of the four columns further decreases to the 58, 61, 64 and 

69%, respectively, whereas the two beams maintain 45-46% 

of the uncracked values. These results provide design 

engineers with significant information on the sequence of 

member cracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 14 Flexural stiffness reduction of beams and columns 

with respect to increasing lateral loads 

 
3.2 Example 2 

 
The applicability of the proposed procedure has been 

investigated using other frame test results (Chan et. al. 

2000). As seen in Fig. 15, a two story reinforced concrete 

frame was designed with a center to center span of 3000 

mm, a first story height of 1170 mm and a second story 

height of 2000 mm. The concrete had a compressive 

strength of 29 MPa, whereas the reinforcing steel had a 

modulus of elasticity of 200000 MPa and a yield stress of 

460 MPa. The section dimensions of the columns were 250-

mm wide and by 375 mm deep and the section dimensions 

of the beams were 250-mm wide and 350-mm deep. The 

testing sequence involved first applying a total axial load of 

200 kN to each column and maintaining this load 

throughout the test. The lateral load (Q) was then 

monotonically applied until the ultimate capacity of the 

frame was achieved.  

The reinforced concrete frame is modeled by four columns 
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and two beam elements. The reinforcing steel in the beams 

and columns, the span and the loads are also shown in Fig. 

15. In the analysis, ACI and probability-based effective 

stiffness models are used for the effective moment of inertia 

and Al-Mahaidi’s model is used for the shear modulus of 

concrete in the cracked regions. The flexural stiffness 

reductions of beams and columns with increasing lateral 

loads are also obtained by using the probability-based 

effective stiffness model.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Two story reinforced concrete frame model tested 

by Chan, C.M. et. al. (2000), (dimensions in mm). 

The comparison between the test and theoretical results for 

the lateral deflection of the second story is presented in 

Fig.16. It can be seen from the figure that the analytical 

procedure predicts the lateral deflection of the second story 

with good accuracy to a load equal to 91% of the test 

collapse load. The effects of concrete cracking and plastic 

hinge formations on the lateral deflection of the frame can 

also be shown explicitly in Fig. 16. The cracking effect 

causes the reduction of the overall lateral stiffness which in 

turn results in an increase in the lateral deflection of the 

reinforced concrete frame. The formation of plastic hinges 

at the member ends also reduces the structure stiffness' and, 

thus, significantly increases the lateral deflection of the 

frame. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 16 Comparison between experimental and analytical 

results of the lateral deflection of the second story 

 

Using the probability-based effective stiffness and ACI 

models for the effective flexural stiffness, the theoretical 

lateral deflections of second story are also obtained by the 

computer program as shown in Fig. 17. As seen from the 

figure, although different models have been used for the 

effective flexural stiffness, the results are very close to one 

another. 

Fig. 18 also shows the theoretical influence of shear 

deformation on the total lateral deflection of the reinforced 

concrete frame. As depicted from this figure, the percentage 

of shear deformation in the total deflection increases with 

increasing lateral loads, particularly following crack 

developments and plastic hinge formations in the members. 

A slight decrease in the loading capacity is also predicted 

compared with the value obtained when the shear 

deformation effect is not considered in the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 17 Comparison of lateral deflections obtained, by 

various models for the effective moment of inertia 

The sequence of development of plastic hinges in the 

reinforced concrete frame obtained by the proposed 

analytical procedure is also shown in Fig. 19. It is seen that 

the first two hinges are formed at the ends of the first story 

beam. Then, two more hinges are developed at the ends of 

the second story beam when the frame is converted to a 

mechanism and achieved its ultimate capacity. The program 

underestimates the ultimate load of the frame by a value of 

9%. The prediction is reasonable, considering that there are 

many factors that may influence the results, particularly 

nonlinear behavior of the material properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 18 Theoretical influence of shear deformation on the 

lateral deflection of frame 
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The variation of the flexural stiffness of beams and columns 

with respect to the lateral applied load is also shown in Fig. 

20. It can be seen from the figure that the beams at the first 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19 The sequential formation of the plastic hinges at the 

ends of the member 

and second stories, B1 and B2, crack first and, then, the two 

columns on the lateral loading side, C4 and C2, crack, 

respectively. Finally, the two columns on the opposite 

loading side, C3 and C1, start to crack, respectively. When 

the stiffness of the two beams are reduced to 50% of their 

uncracked stiffness, the stiffness of the two first-story 

columns has been reduced to 59-62% of their uncracked 

stiffness.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 20 Stiffness reduction of each member versus lateral 

loads 

 

3.3 Example 3 
 

In this last example, the single-story reinforced concrete 

frame tested by Ernst et. al. (1973) has been analyzed by the 

developed computer program (Fig. 21). The dimensions and 

reinforcement of the members and the loads are given in 

Table 1. This frame is analyzed under vertical loads that are 

applied gradually up to failure. In the analysis, Ieff is 

predicted using ACI model and cG  is evaluated using Al-

Mahaidi’s model. 

The load-central deflection (joint 1) curves from the 

analytical predictions and the test results are shown in Fig. 

22. The proposed analytical procedure predicts the vertical 

deflection with reasonable accuracy. From Fig. 22, it is also 

shown that the effects of concrete cracking and plastic 

hinge formations on the central deflection of the frame 

become significant. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 21 One story reinforced concrete frame tested by Ernst 

et. al. (1973) 

 

Table 1 Dimensions and reinforcement of the member 
Member The section 

dimensions(mm) 

(bxh) 

Longitudinal 

bars  (mm2) 

Concrete 

cover(mm) 

Beam 152.4x228.6 387 (Outer) 

258 (Inner) 

38.1 

Column 152.4x228.6 258 (Outer) 

142 (Inner) 

25.4 

 

Fig. 23 also shows the sequence of the formation of plastic 

hinges in the reinforced concrete frame obtained by the 

proposed analytical procedure. The first two hinges are 

formed at the top ends of the columns. Then the other 

hinges develop at the locations of the point loads and the 

frame is achieved its ultimate capacity. The ultimate load 

capacity is predicted fairly accurate with computed values 

of 46 kN corresponding to 97% of the test value. These 

results provide engineers with significant information with 

respect to the behavior of the reinforced concrete frame. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 22 Comparison between experimental and analytical 

results of the vertical deflection (joint 1) 

 

 

 

 

 

 

 

 

 

 
 

Fig. 23 The sequential formation of the plastic hinges 
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Fig. 24 also shows the influence of shear deformation on 

the total vertical deflection of the beam. It can be observed 

that the contribution of the shear deformation to the total 

vertical deflection of the beam increases with the lateral 

load increase. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 24 Theoretical influence of shear deformation on the 

central deflection of the beam of the frame 

 

4. Conclusions 
 

An iterative procedure has been developed to analyze 

reinforced concrete frames.  The effective flexural 

stiffness of a cracked member has been evaluated by the 

ACI and probability-based effective stiffness models. The 

variation of shear stiffness in the cracked regions of 

members has also been considered by employing reduced 

shear stiffness models available in the literature. In the 

analysis, the formation of plastic hinges at the ends of 

members is also taken into account. The proposed 

procedure is able to predict the locations and sequential 

formation of the plastic hinges in the frame members.  

The stiffness matrix method has been employed to obtain 

the numerical solutions of the proposed analytical 

procedure. This iterative procedure is efficient from the 

viewpoints of computational effort and convergence rate to 

analyze reinforced concrete frames.   

The validity of the proposed procedure has been tested by 

means of comparisons between the theoretical and 

experimental results of reinforced concrete frames available 

in the literature. The analytical procedure predicts the 

deflections and load carrying capacity of frames with 

reasonable accuracy.   

Cracking sequence and flexural stiffness reductions of 

beams and columns with respect to the applied load can be 

obtained by the developed computer program. This feature 

can minimize the uncertainty of flexural stiffness of 

members and, therefore, provide design engineers with 

significant information on the consequence of cracking in 

members. The cracking effect on the reinforced concrete 

members has been found to cause reduction of overall 

lateral stiffness which, in turn, results in an increase in the 

lateral deflection of the reinforced concrete frames. The 

numerical results of the analytical procedure also indicate 

that the development of plastic hinges at the ends of 

members reduces the structure stiffness and, thus, causing 

the deflection to increase significantly.  

Shear deformation is found to contribute the deflection of 

reinforced concrete frames. The analytical results indicate 

that the contribution of the shear deformation to the total 

defection of the reinforced concrete frames increases with 

increasing loads. It is therefore important to consider the 

reduction of shear stiffness for the cracked members in 

order to obtain more accurate results. 

Although different models for the effective flexural 

stiffness have been used, the results are very close to one 

another.  
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