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Abstract 

Hot spotting is a thermal localisation phenomenon in which multiple hot regions form 

on a brake disc surface during high energy and/or high speed braking events. As an 

undesired problem, hot spots can result in high order brake judder, audible drone and 

thermal cracking. This paper presents a finite element model for hot spot modelling 

which introduces the classical axisymmetric assumptions to the brake pad in 3D by 

scaling the material properties combined with a subroutine to simulate the heat 

generation instead of modelling the rotation of the brake pad. The results from the initial 

feasibility models showed significant improvement in computing efficiency with 

acceptable accuracy when compared to a traditional FE model without such 

simplifications. This method was then applied to the 3D simulation of hot spotting on 

a realistic ventilated brake disc/pad pair and the results showed good correlation with 

experiments. In order to improve the understanding of the hot spotting mechanism, 

parametric studies were performed including the effects of solid and ventilated disc 

geometry, rotational speed and energy, pins, disc run-out, and brake pad length. Based 

on the analysis of the results, it was identified that the vents and pins affected the hot 

spot distribution. Speed was shown to be more important on the hot spot generation 

time and distribution than either the pressure or total energy input. Brake disc run-out 

was shown to affect the magnitude of both hot spot temperature and height due to the 

non-linear relationship between local deformation, contact pressure and heat generation. 

Finally, increasing the brake pad length generated fewer hot spots but the temperature 

of each hot spot increased.  
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Notations 

𝑐 J/(kg K) Specific heat capacity 

𝐸 GPa Young’s modulus 

𝐸𝑖 MJ Total energy input 

𝐾 W/m K Thermal conductivity 

P bar Brake line pressure 

𝑝 Pa Contact pressure 

𝑝𝑡 % Possibility of contact 

𝑝𝑤 kW Brake power 

q W/m2 Heat flux 

𝑅𝑖 m Inner disc radius 

𝑅𝑜 m Outer disc radius 

t s Time  

T °C Temperature 

ΔT °C Thermal gradient of hot spot 

Th mm Brake disc thickness 

x mm Circumferential brake disc coordinate 

z mm Axial brake disc coordinate 

Δz mm Height of hot spot 

α 10−6/K Coefficient of thermal expansion 

θ ° Brake pad arc length 

µ  Coefficient of friction 

ν  Poisson’s ratio 

𝜌 kg/m3 Density  

ω rad/s Angular disc velocity of real geometry 

Abbreviations 

2D Two dimensional 

3D Three dimensional 

DTV Disc thickness variation 

FE Finite element 

IBM Inboard mean disc surface 

IR Infrared 

OBM Outboard mean disc surface 

SI International system of units 

TEI Thermo-elastic instability 

1 Introduction 

During heavy duty braking, a phenomenal amount of thermal energy is dissipated into 

a brake disc and can generate effects such as bulk deformation and thermal localisation 

phenomena at the brake disc surface [1]. Hot spots are thermal localisations that are 

circumferentially distributed on the brake disc rubbing surface with local temperature 

gradients. The primary concern of hot spots forming on a brake disc surface is that it 

can cause undesired vibration issues such as judder and audible drone due to brake disc 



waviness distortion and surface ripples. The other undesired results of hot spotting 

include brake pair thermal fade, brake disc surface cracking and thermo-mechanical 

fatigue [2].  

 

The typical hot spot trigger condition is high speed and medium to heavy duty brake 

applications. Thermo-elastic instability (TEI) theory [3, 4] explained the occurrence of 

hot spots as a complex thermo-mechanical localisation process which is triggered by 

an initial disturbance of contact pressure and subsequent uneven temperature, 

distortion, friction, and heat flux. Through analytical predictions, Dow and Burton [5] 

indicated that when the relative velocity of the contact pair exceeded a critical value 

and a certain critical brake disc temperature was reached, the brake will enter an 

unstable status and the uneven conditions of the brake disc will be exponentially 

amplified into hot spots. However, by comparing analytical and experimental results, it 

was found that the TEI theory overestimated the critical speed [6, 7]. In addition, Sardá 

et al. [8] argued the existence of critical speed through experimental hot spotting 

investigations for different braking energy, braking power, velocity and pressure. It was 

observed that the occurrence of hot spots was related to the energy input to the brake 

disc, which was also in agreement with other authors [9, 10]. 

 

According to the thermal imaging results of Sardá et al. [8], the distribution of hot spots 

showed an anti-symmetric mode between the inboard (closest to the knuckle) and 

outboard (wheel side) brake disc surfaces. It indicated that the waviness distortions of 

the brake disc were the determinant of the hot spots. Kao et al. and Fieldhouse et al. 

[11, 12] also observed the waviness distortions and argued that it was caused by thermal 

buckling of the brake disc due to high energy input. However, Fan et al. and Ma et al. 

[13, 14] analytically predicted the critical temperature of the high order brake disc 

waviness thermal buckling and found it was much greater than the common hot spotting 

temperature. In addition, Kasem et al. [10] argued that the hot spots formed first due to 

high thermal energy and subsequently triggered the brake disc waviness.  

 

Moreover, there are some other possible determinants of hot spotting. Suryatama et al. 

[15] performed a 3D thermo-mechanical contact model with initial brake disc thickness 

variation (DTV) and the high temperature zones were found to be localised at the peaks 

of the brake disc surface ripples. 

 

Fieldhouse et al. [16] indicated the vents of the ventilated brake disc caused uneven 

brake disc temperature distribution and the subsequent ripples due to uneven thermal 

expansion might be related to hot spotting. On the contrary, Kao et al. [17] argued that 

the vents can contribute to the brake disc heat dissipation and reduce the occurrence of 

hot spots. In addition, to reduce the effects of uneven heat dissipation to hot spotting, 

Bryant et al. [1] improved the vent design of a ventilated brake disc and significantly 

reduced the maximum brake disc temperature and the circumferential temperature 

variation. 

 

According to analytical predictions, Lee et al. [18] suggested that the number of hot 

spots was related to the ratio of brake disc mean radius and the brake pad length. This 

was in agreement with the experiments of Sardá et al. [8] and numerical modelling of  

Panier et al. [19]. However, Cho et al. argued that the number of hot spot was 

determined by the periodic structural characteristics of the brake disc [7]. 

 



Since the analytical methods only provided the quasi-static solution and could not 

reproduce real geometry and complete boundary conditions of the brake, numerical 

methods became an effective tool to investigate hot spotting. As the discussion above 

demonstrates, the mechanism of hot spotting has not been fully understood and due to 

the complex mechanism and the high demand on computer resources, 2D in-plane and 

out-of-plane models have been focused on in previous research [19, 20, 21, 22,]. In 

order to reduce the model complicity and improve the computing efficiency, the brake 

pads were assumed to be axisymmetric and cover 360° of the contact surface [19, 20].  

 

In order to improve cooling performance, ventilated brake discs are widely used on the 

front axles of passenger cars and increasingly more commonly on the rear axles of high 

performance vehicles. Meanwhile, the complex geometric and mechanical structure of 

a ventilated brake disc provides more challenges to the prediction of hot spotting, thus 

historically numerical models of hot spotting were mainly focused on solid brake discs 

[19, 23, 24].  

 

To further the understanding of hot spotting, 3D modelling is a natural choice which 

can provide more realistic boundary conditions and represent more complicated brake 

disc structures than 2D simulations. However, the 3D simulations have rarely been 

focused upon in published research. By using a fully coupled transient thermo-

mechanical finite element method, Jung et al. [23] simulated the hot spotting in 3D and 

validated the results through a dynamometer test. However, the hot spotting mechanism 

and characteristics were not further investigated. 

 

This paper introduces an axisymmetric brake pad simplification method by applying a 

scaling factor into the material property and mechanical loading incorporated with a 

user subroutine to reproduce the frictional heat generation. The method facilitated the 

reduction in the computing time of 3D hot spotting models resulting in acceptable 

prediction accuracy. Therefore, this method enabled an efficient investigation of the 

important factors that affecting hot spotting to be performed including geometry 

factors, trigger conditions and brake pad length.   

2 Experimental set-up and test programme 

In order to provide a benchmark for the FE simulation, experiments were performed on 

a laboratory dynamometer to provide measured data to validate the FE models. The 

setup of the dynamometer and the transducers is shown in Figure 2.1. Three rubbing 

thermocouples were mounted on each friction ring at different rubbing radii; embedded 

thermocouples (±2.5°C accuracy) were mounted in each friction ring just below the 

rubbing surface at the mean rubbing radius; a pressure transducer measured brake line 

pressure, whilst synchronised capacitive non-contacting displacement transducers 

measured inboard and outboard brake disc axial displacement.  

 



 

Figure 2.1 Arrangement of the dynamometer and associated transducers 

The brake disc used for the test and simulation was a two piece pin-mounted ventilated 

brake disc using 17 pins to connect the grey cast iron friction ring to the aluminium top 

hat. There were 51 vents in total. The geometry and dimensions of the brake disc are 

shown in Figure 2.2. The brake pads comprised of semi-metallic friction material 

bonded to a steel backplate and were mounted in a single piston sliding fist type caliper.   

 

To give a constant start temperature, the brake disc was pre-heated to 60°C. During the 

actual test, the brake was applied with constant 25.5bar line pressure at a constant brake 

disc speed of 976 rpm (~150km/h) for 24s (drag braking). The details of the braking 

parameters of the brake disc and pad are provided in Table 2.1.  This formed the basis 

of the numerical study and generated suitable data to validate the models against. 

 

 

Figure 2.2 Cross section showing vent and pin geometry (left) and general brake disc 

geometry and basic dimensions (right) 

 

Table 2.1 Braking data for both experiment and FE simulation 



Braking operation parameters    

Nominal coefficient of friction, μ 0.38   

Angular velocity, ω (rad/s) 102   

Actuation pressure, P (bar) 25.5   

Brake duration t (s) 24   

Brake power Pw (kW) 51   

Total energy input Ei (MJ) 1.2   

Brake disc outer radius, Ro (mm) 190   

Brake disc inner radius, Ri (mm) 117   

Brake disc thickness, Th (mm) 30   

Brake pad arc length angle,  𝜃(°) 30   

3 Modelling assumptions and verification 

3.1 Assumptions 

In this study the assumption of an axisymmetric brake pad was inspired by Panier et al. 

and Zagrodzki et al. [19, 22], which regarded the brake pads as an equivalent friction 

material layer that circumferentially covered the brake disc surface. Zagrodzki et al. 

[22] only modelled a section of the disc in 2D equivalent to the length of the brake pad. 

To investigate the relationship between hot spot distribution with the brake disc 

waviness distortions, Panier et al. [19] modelled a solid brake disc and pad as beams 

with length equivalent to the circumference of the disc. To investigate the effects of 

vent pattern vs. brake pad length and brake disc run-out on hot spotting, it was necessary 

to model the full 3D brake disc in the present study together with a 3D axisymmetric 

brake pad.  The 3D axisymmetric pad would allow the effects of pad thermal expansion 

and axial temperature distribution to be modelled, thus influencing contact pressure 

distribution. 

 

 

Figure 3.1 Real brake disc and friction material (lining) and back-plate model (left) 

and axisymmetric brake pad model with lining and back-plate (right) 

 

Figure 3.1 shows the real brake geometry with finite length brake pad and the 

axisymmetric brake pad model. To convert the rotating 3D brake disc and stationary 

brake pad with finite arc length to the axisymmetric brake pad approximation, some 

assumptions were made and some conditions needed to be satisfied. 

 

Assumptions: 
 



i. Within one disc revolution, the nodal temperature variation due to rotational 

periodic heating is assumed to be negligible under high rotational velocity. In 

the 3D rotation model, the heating process can be regarded as a fast moving heat 

source rotating in the circumferential direction of the brake disc surface. For a 

given point on the brake disc surface, the heating procedure is composed by 

both heating and cooling phases during each brake disc revolution (illustrated 

by Figure 3.2). Thus, the circumferential temperature difference on the brake 

disc surface of the axisymmetric model is inevitable. However, the 

circumferential temperature difference is assumed to be negligible compared 

with the bulk brake disc temperature evolution when the rotation speed is high 

as in this example. Heat flux was also assumed to increase linearly with 

increasing radius for a given constant contact pressure.  

 

 

Figure 3.2 Representation of ideal heat generation time series at a fixed brake disc 

surface node for both periodic heating mode (real scenario) and continuous heating 

mode (axisymmetric approximation) with uniform constant contact pressure (Note: 

subscript ‘a’ indicates axisymmetric model and ‘real’ indicates the real model) 

 

ii. There is no relative rotation between the axisymmetric brake pad and the brake 

disc, therefore the circumferential friction force was not considered. According 

to literature [5, 19, 22], the traction force does not significantly affect the 

prediction of hot spots.  

 

Based on the assumptions, the results of the simplified model should satisfy the 

following conditions: 

 

i. Comparable brake disc temperature distribution. To reproduce the hot spotting 

generation in the axisymmetric brake pad model, the temperature distribution 

of the simplified model should be comparable with the realistic scenario in order 

to achieve same heat partition ratio and thermo-elastic deformation. 

 

ii. Identical total heat generation. In the previous heat transfer studies of brake disc 

brake assemblies, the identical total heat generation is the most frequently used 

assumption. In order to achieve identical thermal deformation of the brake disc, 

the heat that goes into the brake disc should be essentially identical.  

 



iii. Identical total mechanical loading. This assumption is made to keep the total 

clamping force and the total strain energy identical. 

 

iv. Comparable heat flux and contact pressure distribution. In order to achieve a 

comparable temperature field, the heat flux distribution should be comparable 

in both models. As the heat flux is determined by contact pressure, comparable 

contact pressure distribution should also be satisfied. 

 

v. Identical strain energy on the brake disc. To achieve comparable contact 

pressure distribution, the total strain energy should be identical. The strain 

energy density distribution in both cases should also be the same.  

3.2 Scaling factors 

Since the volume of the brake pad and contact area were increased in the axisymmetric 

brake pad model, to satisfy the above assumptions and conditions, the loading condition 

and material properties of the brake pad had to be scaled [20]. From a probability 

density point of view, the probability in the time domain is 𝑝𝑡 = 𝜃/360 for a discreet 

point on the brake disc to access the heat flux or mechanical load from the real brake 

pad, where 𝜃  is the brake pad length. To satisfy the comparable friction effects as 

discussed in section 3.1, scale factors were applied to the parameters listed in Table 3.1. 

The details of the calculations can be found in [27]. 

 

Table 3.1 list of the scaled material and brake parameters 

Parameter Original Scaled Scale factor 

Thermal 

conductivity 
𝑘𝑟𝑒𝑎𝑙 𝑘𝑎 = 𝑘𝑟𝑒𝑎𝑙 ∗ 𝜃/360 𝜃/360 

Density 𝜌𝑟𝑒𝑎𝑙 
𝜌𝑎 = 𝜌𝑟𝑒𝑎𝑙 ∗ 𝜃/360 

 
𝜃/360 

Young’s modulus 𝐸𝑟𝑒𝑎𝑙 
𝐸𝑎 = 𝐸𝑟𝑒𝑎𝑙 ∗ 𝜃/360 

 
𝜃/360 

Contact pressure 𝑝𝑎 𝑝𝑎 = 𝑝real ∗ 𝜃/360 𝜃/360 

Note: subscript ‘a’ indicates axisymmetric model and ‘real’ indicates the real model. 

3.2 Comparison of numerical models under different 

assumptions 

In order to verify the scaling factor method, three finite element models under different 

assumptions were performed as shown in Figure 3.3. The geometry of the models were 

based on a reduced scale brake system in order to reduce the total number of elements 

since the computing time for a 3D thermo-mechanical contact model with rotation is 

considerable. For model A, the brake pad length was finite (30°) whereas the brake pads 

of model B and C were 3D modelled where the axisymmetric assumption were used for 

the brake lining friction material. The brake discs of model A and B were rotating, while 

stationary in model C. The comparison between model A and B was expected to reveal 

the accuracy of the axisymmetric brake pad simplification. The purpose of comparing 

models B and C was to verify if the modelling of rotation (i.e. traction forces) can affect 

the accuracy of the results. The temperature-independent material properties (using a 



simplified isotropic assumption at room temperature) and braking parameters were 

provided by Table 3.2 and Table 3.3. In Table 3.2, the scaled material properties were 

applied to model B and C whereas the original data were used in model A. In order to 

verify the variability between the results for different models, the frictional heat 

generation and coefficient of thermal expansion were both exaggerated by 10 times 

which was presumed to amplify the variability (Note: the coefficient of thermal 

expansion shown in Table 3.2 does not include this exaggeration). In model C, since 

there was no relative motion between the contacts, the frictional heat generation was 

defined using ABAQUS user subroutine FRIC. The nodal heat flux generation was 

calculated and updated at each time increment based on the predefined coefficient of 

friction, radius dependent nodal velocity and the nodal contact pressure retrieved from 

the simulation results at the same time increment. The heat generation was assumed to 

be equally generated at the brake disc and pad and the actual heat partition was 

determined by the thermal contact conductance (30kW/m2K) at the interface which was 

set as a pressure and clearance dependent variable.  

 

Figure 3.3 Scale brake models for verification of the assumptions with boundary 

conditions indicated.  Top: scale rotating disc (Model A); bottom: axisymmetric brake 

pad with either rotating disc (Model B) or stationary disc (Model C). 

 



Table 3.2 Material properties before and after scaling for FE simulations 

Material properties Disc Pad 
Scaled 

pad 

Back-

plate 

Scaled 

back-plate 

Top 

hat 
Pins 

Thermal 

conductivity, k 

(W/(m K)) 

48 0.5 0.042 50 4.2 113 17 

Density, ρ (kg/m3) 7200 1250 104.2 7800 650 2680 7800 

Elastic modulus,  

E (GPa) 
100 0.7 0.058 210 17.5 71 210 

Poisson’s ratio, ν 0.25 0.25 0.25 0.3 0.3 0.33 0.34 

Coefficient of 

Thermal expansion,  

α (10−6/K) 

10 10 10 11 11 21 11 

Specific heat 

capacity  

c (J/(kg K)) 

480 1000 1000 500 500 880 500 

Source of data: industry, measurements and literature [21, 25] 

 

Table 3.3 Brake data for the scale brake models 

Braking operation parameters  

Nominal coefficient of friction, μ 0.38 

Angular velocity, ω (rad/s) 30 

Actuation pressure, P (bar) 10 

Brake disc outer radius, Ro (mm) 50 

Brake disc inner radius, Ri (mm) 10 

Brake disc thickness, Th (mm) 10 

Brake pad arc length angle, 𝜃 (°) 30 

 

Figure 3.4 and 3.5 shows the comparisons of the temperature and axial displacement 

fields at the end of the simulations (5s). The results suggested that the average 

temperature field and displacement distributions for all three scale models were similar. 

Though there were circumferential peak temperature and displacement variations (~ 

400 °C or ~100µm) due to the periodic heating in the rotating brake disc model 

generating higher surface temperatures at the trailing side of the pad, the average 

temperatures (351°C, 369°C and 368°C) and displacement (199µm, 213µm and 212µm) 

of the rubbing surfaces were similar. Regarding the maximum brake disc temperature 

and displacement, Figure 3.6 and 3.7 provide the time-series plot of a single node on 

the mean rubbing radius. It was clear that the periodic heating of Model A provided 

similar average temperature and displacement evolutions to the axisymmetric brake pad 

models. Since the axisymmetric brake pads were used for model B & C, the temperature 

or heat generation can be regarded as being averaged in the time domain. Therefore, 

the maximum temperature predicted in models B & C was an underestimation of the 

maximum temperature of model A; this is a limitation of the axisymmetric modelling 

technique. Moreover, Model B and C achieved similar maximum temperature (1125°C 

and 1090°C) and displacement (584µm and 579µm) at 5s respectively. These values 

and the temperature fluctuation in model A are unrealistically high compared with 

common brakes which is a result of the exaggeration the of frictional heat generation 

effect, however they help to amplify some of the effects being investigated. It should 



be noted that when the heat generation was not exaggerated the temperature variations 

between each model were much smaller and peak temperatures more realistic (not 

presented here). Therefore, the comparisons revealed that the axisymmetric brake pad 

and no traction behaviour assumptions can provide acceptable results (~5% and ~7% 

error in average surface temperature and axial displacement when compared with the 

real brake pad geometry Model A) by implementing the scaling factor method and user 

subroutine. 

 

 

Figure 3.4 Temperature fields and maximum brake disc temperature (°C) for the three 

scale models at 5s  

 

 

Figure 3.5 Displacement field with the colours indicating the maximum axial (z-

direction) brake disc displacement (m) for the three scale models at 5s 

 



 

Figure 3.6 Brake disc temperature evolution of a single surface node at the mean 

rubbing radius; comparison between periodic heating (model A) and continuous 

heating in (axisymmetric models B and C) 

 

 

Figure 3.7 Evolution of brake disc displacement of a single surface node at the mean 

rubbing radius; comparison between periodic heating (model A) and continuous 

heating (axisymmetric models B and C) 

 

The most significant aim of the axisymmetric model was to improve the computing 

efficiency with acceptable temperature and displacement results. Thus a comparison of 

the element number and computing time is provided in Table 3.4. In terms of element 

number, model B and C had the largest number of elements (16380 elements); this was 

because the axisymmetric brake pad had greater volume. Though both model A and B 

incorporated the rotation of the brake disc and frictional heat generation and had 

comparable results, model B took 5 times longer to solve due to the more complex 

contact interactions. However, the computing time of model C was significantly 

reduced, when compared with the rotating brake disc models A and B, and maintained 

comparable results. This can be explained by the elimination of the computing of 

rotation and shear traction behaviours. Thus, it is clear that the axisymmetric 3D brake 

pad assumption cannot improve the computing performance directly; the removal of 



rotation effects is the main contributor to computing performance. Therefore, the 

axisymmetric brake pad assumption should be applied in conjunction with the removal 

of rotation. 

 

Table 3.4 Number of elements in the scale 3D FE models and computing time 

Model Total element number Computing time 

A 9750 10hour 1min 

B 16380 50 hour 33min 

C 16380 1hour 16min 

 

In summary, the results from the feasibility study suggested that the axisymmetric brake 

pad models with heating defined by a subroutine (to replace the brake disc rotation) 

were the most time efficient method to obtain similar temperature and displacement 

field predictions. 

4 3D ventilated brake disc hot spotting modelling and 

results 

4.1 FE model mesh and boundary conditions 

The axisymmetric brake pad assumption and stationary brake disc assumptions were 

implemented in the full scale ventilated brake disc FE model. As shown in Figure 4.1, 

the axisymmetric assumption was applied to the brake pad and the detailed structure of 

the brake disc such as vents, pins and top hat was retained. The scaled material 

properties of the brake pad and loading conditions are shown in Table 3.2 and Table 

2.1. Since only one drag brake application was simulated with no cooling phase, the 

permanent thermo-plastic effects were considered as insignificant. Thus the plasticity 

of the material properties was not incorporated into the model. 

 

Regarding the boundary conditions as shown in Figure 4.1, the back-plates were 

constrained in the radial and circumferential directions (U1=U2=0) so that the brake 

pads were free to move in the axial direction and the friction material itself could 

thermally expand in the radial, axial and circumferential directions. The initial 

temperature was set to 60°C throughout the model which was consistent with the 

experiments. The brake disc was constrained at the outboard face of the top-hat. 

Uniform pressure was applied on the inboard and outboard back-plates according to the 

scaling factor from Table 3.1. Convective heat transfer coefficient on the brake disc 

surface was set to 70W/m2K and the vents were 100W/m2K based on experimental 

estimation. Radiation was considered small and neglected in this study. Coupled 

temperature displacement elements, C3D8T, were used for brake disc rotor surfaces 

and C3D4T for vents, pins and top-hat. The global element size was ~4.5mm. Since the 

deflection/distortion of thermal localisations are generally much smaller than the brake 

disc thickness, the mesh of the rotor surfaces were refined to ~1.5mm (see Figure 4.1) 

in order to achieve more accurate results. The frictional heat generation was defined by 

user subroutine FRIC to compensate for the absence of rotation.  

 



 

Figure 4.1 Mesh (left half) and boundary conditions (right half) of the pin-mounted 

ventilated brake disc brake FE model 

4.2 Results and validation 

The outboard temperature field of the brake disc surface showing hot spot 

developments at different time increments is shown in Figure 4.2. It can be seen that a 

hot band was initiated at the outer radius of the brake disc surface at 6s. A 

circumferential temperature difference indicating the onset of hot spotting was 

observed at 15s. At the end of the braking event (t=24s), 17 hot spots had clearly 

developed which matched the number of pins and was one third of the number of vents. 

The maximum brake disc surface temperature reached was 565°C, and the radial 

temperature difference between hot spots and surrounding brake disc surface was over 

150°C. Regarding the temperature distribution between the inboard and outboard brake 

disc surface, an anti-symmetric distribution was observed in Figure 4.3, which is in 

agreement with literature [8, 9, 11, 12]. Figure 4.4 shows the axial brake disc 

deformation, stress and contact pressure distribution on the outboard surface in SI units 

at 24s. The displacement and contact pressure distributions matched with the 

temperature distribution as 17 ripples of surface deflections and 17 high pressure 

contact zones were observed. Such correlation revealed the significant contribution to 

hot spotting in terms of the interactions of uneven contact pressure, uneven temperature 

and uneven displacement. In addition, the stress field in Figure 4.4 illustrated the high 

stress concentration on the mean rubbing radius of the brake disc surface during hot 

spotting. Meanwhile, the pins between the friction ring and the top-hat showed high 

stress indicating their potential interaction in constraining the brake disc deformation.  

 



 

Figure 4.2 FE results showing the surface temperature distribution (°C) and hot spot 

development at the outboard disc surface 

 

Figure 4.3 Brake disc mean radius surface temperature distribution extracted from the 

FE simulation at the end of the brake event (24s) 

 

 

Figure 4.4 FE results showing axial displacement (m), stress (Pa), contact pressure 

(Pa) and temperature (°C) distributions of the outboard disc surface at 24s 



 

The comparison between experimental temperature evolution (measured via the 

rubbing thermocouple at the mean radius) and the simulation results (fixed node at the 

mean rubbing radius) at the outboard mean rubbing radius is provided in Figure 4.5. It 

illustrates that the numerical maximum temperature overestimation (510°C vs. 460°C) 

was ~11% which is acceptable considering the simplifications and assumptions used  

for the FE model (absence of temperature-dependent material properties, constant 

coefficient of friction, no wear and no thermo-plastic effects), and likely difference 

between radial hot band position and rubbing thermocouple location.  

 

 

Figure 4.5 Brake disc mean radius temperature at the outboard surface; comparison 

between experiment (mean radius rubbing thermocouple) and FE simulation (mean 

radius nodal temperature) 

 

The temperature distribution was also obtained by infrared thermal imaging in the 

experimental studies using a high speed thermal camera (FLIR X6540sc operating at 

1kHz in windowed mode) with emissivity dynamically calibrated from thermocouple 

data at 3 different locations (within range from ~0.2 to ~0.6). The comparison between 

thermal image and simulation is shown in Figure 4.6, which revealed good correlation 

in terms of radial and circumferential distribution and the magnitude of the temperature 

gradients.  

Figure 4.6 Thermal imaging (IR camera) of the brake disc outboard surface (left) and 

simulation results (right; °C) 24 seconds into the braking event  

 

In the experiment, the outboard and inboard brake disc distortion were measured using 

displacement traducers with high sample rate (50kHz) that enabled the measurement of 



the brake disc surface ripples due to hot spotting. According to Figure 4.4, the height 

of the hot spots predicted in the axisymmetric model was ~5 to 15 µm which matched 

well with the experimental measurements (~5 to 15 µm) as shown in Figure 4.7. In 

addition, Figure 4.7 showed a predominant second order brake disc run-out and the 17th 

order brake disc thickness variation due to hot spotting can also be observed. The run-

out plots also validated that the hot spots were anti-symmetrically distributed since the 

inboard and outboard brake disc surface high order ripples showed the same waviness 

shape. Moreover, the line pressure also showed a 17th order variation (~0.03MPa) which 

demonstrated the judder effects due to hot spots.  

 

 

Figure 4.7 Experimental measurements of inboard and outboard brake disc surface 

displacement, brake disc thickness variation and line pressure variation in three brake 

disc revolutions at the end of the braking event (brake still applied) 

5 Parametric studies 

As identified in the introduction, the mechanism of hot spotting is still not fully 

understood. The theoretical debates mainly concentrated on the trigger conditions of 

hot spots (critical speed vs. energy input) [4, 5, 9, 10], effects of brake disc structural 

characteristics (vents, pins, solid or ventilated) [1, 16, 17], initial brake disc waviness 

[15] and brake pad length [7, 8, 18, 19]. Therefore, in order to investigate the effects of 

the determinants on hot spotting, a parametric study was performed based on the 3D 

model presented in section 4.  

5.1 Solid vs. ventilated brake disc 

As discussed, the simulation of hot spotting of ventilated brake discs has been only 

focused on by fewer authors [23, 28] in published literature compared to that of solid 

brake discs. Therefore, solid brake disc models using the modified real brake geometry 

were generated using the same axisymmetric brake pad method in order to investigate 

the effects of vents. According to [26], to achieve a like-for-like comparison in terms 

of thermal mass (i.e. equivalent temperature rise), the effective solid rotor thickness 

should be three times that of a single rotor face thickness on the ventilated brake disc. 



As shown by Figure 5.1, the rotor face thickness was 9mm, so that the effective solid 

rotor thickness was 27mm. Moreover, a twice rotor face thickness solid brake disc 

model was also constructed to investigate the effects of rotor thickness on hot spotting.  

 

 

Figure 5.1 Thickness of the ventilated brake disc and solid brake discs for the 

parametric FE study 

 

The temperature distributions of the ventilated, 18mm solid and 27mm solid models 

are shown in Figure 5.2. It can be seen that there were 17, 12 and 14 hot spots 

respectively and the maximum surface temperatures were 589°C, 689°C and 635°C 

respectively. The results implied that fewer hot spots were generated in the solid brake 

discs and the thicker brake disc generated more hot spots but lower maximum 

temperature and circumferential temperature gradient. Therefore, it is clear that the 

periodic vent and pin structure of the ventilated brake disc redistributed the braking 

energy into 17 sections and resulting 17 minor hot spots when compared with the solid 

brake disc. Moreover, it should be also noted that the distribution of hot spots were also 

anti-symmetric in the two solid models.   

 

 
 

Figure 5.2 FE results showing the outboard brake disc surface temperature 

distributions (°C) of different brake disc structures (ventilated vs. solid) at 24s 

5.2 Trigger condition for solid brake disc hot spotting 

Since the debate about the trigger condition of hot spotting was focused on velocity and 

energy input, nine drag brake models under different speed and load were performed to 



investigate their effects. The details of the models are listed in Table 5.1. It can be seen 

that three velocities and three brake line pressure were selected which provided nine 

combinations. The speed and pressure varied between 2/3, 1 and 3/2 times of the 

standard condition performed in section 4. Therefore, various braking power and energy 

input under identical speeds or pressures were able to be compared. In order to compare 

the hot spotting phenomena at the same braking time or same energy input, the brake 

duration was set to be a function of brake power. 18mm solid brake discs were selected 

in this study in order to remove the effects of periodic rotor structure, i.e. vent pattern.  

 

Table 5.1 Loading conditions of the nine FE models for the hot spot trigger condition 

investigation 

Model 

ID 

Brake 

disc 

speed 

(rev/min) 

Vehicle 

speed 

(km/h) 

Pressure 

(Bar) 

Power 

(kW) 

Brake 

duration 

(s) 

Energy 

at 24s 

(MJ) 

Time at 

which 

identical 

energy 

input 

achieved 

(s) 

1 654 100 17.1 22.9 54 0.6 54 

2 654 100 25.5 34.2 36 0.8 36 

3 654 100 38.3 51.3 24 1.2 24 

4 976 150 17.1 34.2 36 0.8 36 

5 976 150 25.5 51.0 24 1.2 24 

6 976 150 38.3 76.6 24 1.8 16 

7 1460 225 17.1 51.2 24 1.2 24 

8 1460 225 25.5 76.3 24 1.8 16 

9 1460 225 38.3 114.6 24 2.8 11 

 

Figure 5.3 shows the outboard brake disc temperature distribution of the models at the 

same braking time (24s). The maximum temperature and time are given for each plot. 

The figure illustrated that at the same speed, the maximum temperature increased with 

increasing pressure but the hot spot distributions were similar. At the lowest speed 

(654rev/min) in the study, only hot bands appeared. At 976rev/min 12 hot spots were 

equally distributed on the mean brake disc rubbing radius. Since no wear and 

temperature dependent material property effects were considered in the models, the 

results of model 7 to 9 at 1460rev/min were discarded as the maximum hot spot 

temperature predicted was unrealistically high. In addition, when both speed and 

pressure were increased, the maximum temperature increased with the total energy 

input. But for identical brake power (Model 4 vs. 2 and 5 vs. 3); the high speed low 

pressure models provided apparent hot spotting compared with the low speed high 

pressure models. Therefore, the comparison at the same braking time (24s) illustrated 

that the brake disc speed is more important than braking power and pressure in 

determining the hot spot distribution.  

 



 

Figure 5.3 Outboard brake disc surface hot spot distribution and maximum brake disc 

temperature (indicated on figure) of the FE model at 24s at different speeds and loads 

 

Figure 5.4 provides a comparison for different speed and pressure at identical total 

energy input into the brake disc (by varying the brake duration). It is clear that at the 

same energy level, the hot spot distributions were affected by speed and pressure. At 

the lowest speed in this study (654rev/min), there was no hot spotting, but the maximum 

temperature was increased with the pressure. At 976rev/min, the hot spots were more 

distinguished and with decreasing pressure, more heat was concentrated into each hot 

spot giving greater temperature.   

 

Regarding the occurrence of hot spots, Figure 5.5 provides the temperature distribution 

and the time at which the hot spots became apparent. It can be seen that with differing 

pressure, there was no change in the hot spot or hot band distribution or the time at 

which the hot spots appeared. The only difference is that the maximum temperature 

increased with increasing pressure. In addition, 12 hot spots appeared at 17s at 

976rev/min, whilst 12 more distinguished hot spots can be observed at 7s at 1460rpm. 

Therefore, it is clear that the hot spot distribution and trigger time were affected by the 

brake disc speed; greater the speed, lower the trigger time with clearer hot spots. 

 



 

Figure 5.4 Outboard brake disc surface hot spot distribution and maximum brake disc 

temperature (indicated on figure) of the FE models with the same energy at different 

speeds and loads 

 

 

Figure 5.5 Brake disc outboard surfaces temperature distribution and maximum 

temperature (indicated on figure) of the FE models at the moment that hot spots 

appeared at different speeds and loads 

 



5.3 Effects of pins on hot spotting 

In previous works, it was found that the number of pins in a two piece brake disc 

correlated with the number of hot spots [1, 12, 16]. As an extension of this work, two 

possible structural perturbations that the pins can provide to trigger hot spots: periodic 

constraints and periodic variation of thermal mass were investigated by modifying the 

elasticity and specific heat capacity of the pins. Both properties were varied within 80% 

to 120% in this parametric study. Thus both the main effects and interactions of the 

properties to the maximum hot spot temperature were identified as showed by Figure 

5.6 (left). In general, the 3D plot show that the maximum hot spot temperature varied 

from 690°C to 730°C in various combinations of Young’s modulus and heat capacity. 

The main effects of both material properties were not linear since the temperature can 

be either increase or decrease by increasing or decreasing both properties. It illustrated 

that there was a significant interaction between both properties in terms of maximum 

hot spot temperature. Regarding the average outboard brake disc surface temperature 

shown in Figure 5.6 (right), an inverse trend of the variation was predicted when 

compared with the maximum temperature plot (left). However, the average surface 

temperature variation was only within 2°C which is insignificant when compared with 

the maximum hot spot temperature variation of ~40°C. Therefore, for pin material 

selections, it was important to consider such main effects and interactions to achieve a 

proper combination for lowering the brake disc temperature. It should be noted that the 

number of hot spots generated was always 17 in this parametric study. 

 

 

Figure 5.6 Surface plot of the variation of maximum hot spot temperature (left) and 

average outboard brake disc surface (right) from the FE model with differing Young’s 

modulus and specific heat capacity of the pins (100% = 210GPa and  500J/kg.K) 

 

In addition, a comparison between a two-piece pin mounted brake disc and single piece 

brake disc with the top hat directly connected to the brake disc was made using a solid 

brake disc to remove the effects of the vents. Figure 5.7 shows the hot spot distribution 

at for both models. It illustrates that the number of hot spots was identical for both 

models, but the location, shape and temperature were different. The hot spots were 

localised at the outer radius in the single piece brake disc model; this implied that the 

coning effects of the brake disc toward outboard direction and the subsequent shift of 

outboard contact zone toward outer radius were affecting the hot spots. Meanwhile, the 

results of the pin mounted brake disc showed that the hot spots were localised at the 

mean rubbing radius which reflected an important purpose for implementing pins in 



reducing the coning effects. In addition, for the single piece brake disc, the maximum 

temperature was 799°C and the hot spots were circular, compared with 689°C and 

ellipse hot spots for the pin mounted brake disc. The different shape and temperature 

of the hot spots revealed the importance of the top hat and its connection with brake 

disc in hot spot simulations.  

 

Figure 5.7 FE results of the outboard surface temperature distribution (°C) of a single 

piece solid brake disc and pin mounted solid brake disc at 24s 

5.4 Effects of initial brake disc run-out 

Since the relationship between lower order brake disc waviness (run-out) with hot 

spotting has rarely been focused on in the previous literature, a 2nd order initial brake 

disc run-out was introduced to investigate its influence on hot spotting. The introduced 

run-out was much greater than the common values (less than 50 µm) in order to provide 

more apparent comparisons. Figure 5.8 shows the relative displacement of the mean 

radii of the brake disc inboard surface (IBM) and outboard surface (OBM) after 24s 

with, and without, initial 2nd order run-out introduced. The magnitude of the initial run-

out for both OBM and IBM are also shown in Figure 5.8 (note there was no change in 

run-out for the model with no initial run-out). The results illustrated that without initial 

waviness, the brake disc thickness increased to 100µm with 200µm of coning toward 

the outboard direction. Regarding the brake disc with initial waviness, ± 200µm 2nd 

order run-out was introduced with no initial coning. After the braking event, both the 

inboard and outboard run-out significantly increased to 800µm. Meanwhile, the brake 

disc thickness growth was less than 100µm and the coning toward the outboard 

direction was ~200µm.  

 

According to Figure 5.9, only the 2nd order hot spots can be clearly observed in the 

initial waviness model whereas the 17th order hot spots were developed in the standard 

model. Therefore, it is clear that the lower order brake disc deformation was triggered 

by the introduced brake disc initial waviness, and the thermal gradients of hot spots 

were significantly affected by the brake disc run-out. Under the interference of the 

brake disc run-out, the heat was not evenly generated throughout the hot spots. It should 

be noted that, in a real brake disc, it is difficult to develop such a high run-out and the 

energy distribution between hot spots would be more even as shown in Figure 4.7. 

 



 

Figure 5.8 FE results showing the relative displacement of brake disc inboard and 

outboard surfaces with and without initial 2nd order brake disc run-out before (0s) and 

after (24s) the braking application  

 

 

Figure 5.9 FE results showing the outboard brake disc surface temperature 

distribution (°C) with (left) and without (right) initial run-out 

5.5 Effects of brake pad length 

According to [18], brake pad length is an important determinant for hot spotting. In the 

current study, several brake pad arc length (22.5°, 30° and 45°) models were simulated 

using the axisymmetric model and compared with the standard brake pad length (30°) 

results. The brake pad length was reproduced by modifying the scale factor discussed 

in section 3. The results are shown in Figure 5.10, which shows the comparison of 

temperature distribution for both solid and ventilated brake discs. It can be seen that the 

maximum brake disc temperature increased with the increase of brake pad length. For 

brake pads shorter than 36°, no hot spots were developed. This can be explained by the 

theory of [18] that when the effective brake pad length was shorter than the minimum 

wavelength of the hot spots or significant geometry perturbation, it is difficult to 

generate hot spots.  This is because the brake pad is not always located at the regions 

where there is high contact pressure (high spots), therefore each hot spot will receive 

less energy input.  In the axisymmetric model, the material properties are less stiff for 

the shorter pad, and therefore the contact pressure will be more uniform also resulting 

in lower energy input per hot spot location.  On the contrary, for brake pad length 



models greater than 30°, the hot spots appeared and the number subsequently decreased 

with increasing brake pad length. Moreover, the shape of the hot spots changed from 

ellipse to circular when the brake pad length was 45°.   

 

Figure 5.10 FE results showing the hot spot distribution and outboard brake disc 

surface maximum temperature (°C) for both solid (top) and ventilated (bottom) brake 

discs at 24s with differing brake pad lengths. 

 

Regarding the solid brake discs, 12 and 6 hot spots were developed for the 30°and 45° 

models respectively. However, for ventilated brake discs, 17 and 15 hot spots were 

developed respectively but the maximum brake disc temperatures were lower. In 

general, the results were in agreement with literature [9, 18, 19] that argued the longer 

brake pad could develop fewer hot spots. 

6 Discussions and conclusions 

6.1 Advantage of the axisymmetric brake pad method 

According to the TEI theory [4, 5], hot spotting is a thermal localisation phenomenon 

due to uneven contact pressure and subsequent uneven temperature and displacement 

distribution. Though the initial hot spotting generation mechanism has been explained 

in different theories, a subsequent thermal localisation process was also agreed upon 

[1, 11, 19]. The established 3D FE model incorporating axisymmetric assumptions 

applied to a 3D brake pad successfully predicted the hot spotting of a ventilated brake 

disc since it reproduced such a thermal localisation process. Initially, as the brake pad 

had been modelled and thermo-mechanical contact was considered, the generation of 

the uneven contact pressure distribution due to uneven deformation was achieved. 

Moreover, the frictional heat generation was defined by a user-subroutine which 

enabled the uneven heat generation due to uneven contact pressure distribution. In 

addition, the uneven heat flux went into the brake disc with a periodic structure. The 

implementation of the coupled thermal displacement element enabled the uneven 

deformation due to the uneven temperature and brake disc geometry. Furthermore, as 

the whole brake disc has been considered the model has the capability to investigate the 

substructure such as top-hat, pins, vents, and brake disc bulk deformation. Therefore, 



the hot spotting prediction for complex brake disc structures is the most significant 

advantage of the 3D FE model incorporating axisymmetric assumptions applied to a 

3D brake pad.  

 

In addition, computing time reduction is a main challenge in hot spot simulations. This 

is because of the complex rotational friction behaviour calculation. Through the 

simplification of axisymmetric brake pad and stationary brake disc and brake pad, the 

computing efficiency can be significantly improved according to Table 3.2. The 

prediction accuracy of such a method was also verified in section 3. However, due to 

the limitation of computing power, the capability of hot spotting prediction can only be 

validated by experiment data i.e. 3D hot spotting simulations under different 

assumptions (rotating brake disc or real length brake pad) cannot be performed and 

compared. 

 

In previous experimental works [4, 8], hot spotting investigations were mainly focused 

on deceleration events. Therefore, there was a debate about the trigger condition of hot 

spotting – critical speed or energy. However, in this paper, the drag brake applications 

under various constant speed, pressure and duration were performed, which enabled the 

comparison of identical energy, duration, and hot spotting generation time.  

6.2 Energy, speed and hot spotting 

For the parametric studies, there were two interesting phenomena found: 

 

i. Initial brake disc run-out triggered excessive lower order brake disc distortions 

which resulting significant hot spotting magnitude variation along the brake 

disc circumference. 

 

ii. At the same energy level, the hot spot number increased as the maximum 

temperature reduced.  

 

Such observations implied that the energy or heat flux distribution along the brake disc 

circumference is significant in hot spot generation and the brake disc geometric 

structure determined the distribution of energy or heat flux.  

 

The hot spot thermal gradient variation with brake disc run-out can be explained by 

Figure 6.1. The x and z represent the circumferential and axial coordinates of the hot 

spots and brake disc run-out. The heights of hot spots A and B are ΔzA=z2-z1, ΔzB=z4-

z3 and thermal gradients are ΔTA=T2-T1, ΔTB=T4-T3 respectively. According to the 

TEI theory [3, 4, 5], the growth of temperature with the increase of axial brake disc 

deformation (or contact pressure) is non-linear. Therefore, the thermal gradient ΔTB of 

the hot spot B which is closer to the crest of the run-out is greater than ΔTA, if the 

heights of hot spots are equal (ΔzA= ΔzB).  

 



 

Figure 6.1 Effects of brake disc run-out on the thermal gradients of hot spots  

 

According to the parametric study of different speed and pressure, the speed was more 

important on the hot spot generation time and distribution than the pressure and total 

energy input. This was agreed by the TEI theory [3, 4, 5] that the critical speed was the 

trigger of hot spotting. In addition, the load had no effect on the hot spot distribution 

but did affect the temperature. This was also agreed by the TEI theory [5] that the initial 

contact pressure does not affect the pressure variation. At the same energy level but 

different braking power, both speed and pressure affect the hot spot distribution and 

magnitude. However, the speed was the predominant factor. This revealed that the ratio 

between speed and pressure was the determinant of hot spotting rather than the total 

energy level in such a model. However, it should be noted that as observed in Figures 

5.3-5.5, for a given constant braking power, the energy level or the brake duration also 

act a determinant of hot spot distribution. Therefore, it is suggested that a systemic 

experiment should be performed on drag brake condition for a solid brake disc to 

validate the observation of the simulations. 

6.3 Brake disc waviness and local thermal buckling 

It is clear that the waviness, or run-out magnitude of the brake disc grew (Figure 5.8) 

and that this may influence the hot spot distribution (Figure 5.9). The thermal buckling 

theory [1, 13, 14] explained the brake disc waviness as a result of the higher order brake 

disc thermal buckling, and the hot spotting as the subsequent thermal localisations on 

the peaks of the waviness. Due to the restrictions of the brake disc thermal expansion 

in the circumferential direction, the circumferential thermal stress will exceed the 

critical buckling stress of the brake disc plate when a critical temperature is reached.  

Pin mounted brake discs go some way to alleviate this by permitting radial movement, 

but do not completely eliminate the problem. However, the previous analytical higher 

order thermal buckling predictions [13] overestimated the bulk temperature to achieve 

such waviness. This is due to the fact that the temperature field of the brake disc is 

highly non-linear in all directions in the transient hot spotting process, rather than 

uniform temperature distribution as assumed in analytical studies. In addition, the 

comparison between solid and ventilated brake disc showed that that more hot spots 

were developed on the ventilated brake disc than the solid brake disc which reflected 

that the complexity of hot spotting cannot be explained by the thermal buckling theory 

alone with was agreed by [14]. Although the bulk brake disc temperature is generally 



not enough to trigger the higher order bulk thermal buckling [14], the complex 

constraints applied by the brake disc vanes and pins combined with surface heating may 

be sufficient to generate localised buckling. Therefore, the actual thermal buckling is 

more likely to occur locally such as a thin effective buckling layer on the brake disc 

surface from a periodic section of a ventilated brake disc.  

6.4 Cause-effect chain  

From the above observations and discussions, a cause-effect chain is provided in Figure 

6.2. Three input scenarios were considered: relative low speed (or high speed but the 

brake duration was short and the energy input was low), moderate speed or energy level, 

and relative high speed (or medium speed but the brake duration is relative long which 

gives high energy level). The parametric studies implied that initial waviness, uneven 

cooling, pin and vent structure can predominantly affect the hot spot distribution when 

the total energy level or speed were in a moderate range. It will generate the higher 

order brake disc waviness (17th order in this study) due to localised thermal buckling 

and the corresponding hot spots will be developed on the peaks of the waviness. At 

relative high speed/energy, the effects of the periodic structural factors had minor 

effects due to more excessive distortions and thermal stress. Then, relative bulk brake 

disc buckling will occur and greater wavelength will be developed in terms of the brake 

disc waviness, and the macroscopic hot spots will be formulated at the peaks of the 

waviness due to thermal localisation effects. Moreover, at relative low speed or energy 

level, no thermal buckling will happen since the thermal stress was not sufficient to 

trigger the brake disc waviness buckling even in a small periodic section of a ventilated 

brake disc. And there will be no subsequent hot spotting due to the small circumferential 

thermal gradients. However, it is still possible to develop the hot banding phenomenon. 

This is because of the uneven radial heat generation due to different linear velocity on 

different brake disc radii and the subsequent thermal localisation amplified these radial 

temperature gradients into hot bands. 

 

 

Figure 6.2 Cause effect chains of hot spotting 

 

6.5 Conclusions  

Based on the results and discussions, following conclusions are drawn:   



 

i. The axisymmetric brake pad assumption by applying the scaling factor can 

provide acceptable temperature and displacement field prediction when 

compared with real brake pad geometry and a rotating brake disc model. The 

computing efficiency was significantly improved by incorporating both the 

axisymmetric brake pad (remove the periodic heating) and subroutine (removed 

the brake disc rotation) i.e. converting the transient problem into quasi-static 

problem.  

 

ii. The periodic substructure of the ventilated brake disc such as pins and vents can 

affect the temperature distribution and therefore develop different hot spot 

characteristics when compared with a solid brake disc with identical effective 

rotor thickness. The brake disc pins affected the hot spot magnitude in the 

present case study, yet it was the vents which affected the number of hot spots.  

 

iii. Both speed and energy level were the determinants of hot spots. In terms of hot 

spot trigger condition, the speed determined the time of occurrence and hot spot 

distribution. Then, the continuous energy input can change the hot spot 

distribution and magnitude which reveals the importance of brake duration and 

total energy input. The result also implies that at the same energy level but 

different speed, the hot spotting characteristic might not be identical.  

 

iv. The gradients of hot spot temperature and height can be affected by the brake 

disc run-out due to the non-linear relationship between local deformation, 

contact pressure and heat generation.  

 

v. Increasing the brake pad length generated fewer hot spots but the temperature 

of each hot spot increased. 

 

vi. For completeness, wear, plasticity and temperature dependent properties should 

be modelled to further the understanding of hot spotting. 
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