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Abstract 

The removal of the ubiquitous phenol and phenolic compounds in industrial wastes is a 

critical environmental issue due to their harmful threats to wildlife and potential adverse 

human health effects. The removal of such compounds is therefore of significant importance 

in water treatment and reuse. In recent years, reverse osmosis (RO) has been successfully 

utilised in several industrial processes and wastewater treatment including phenol removal. In 

this paper, a new model based on a spiral-wound RO process is developed for the removal of 

phenol from wastewater. A simplified mathematical algorithm using an irreversible 

thermodynamic approach is developed. This results in a set of non-linear Differential and 

Algebraic Equations (DAEs), which are solved based on a number of optimised model 

parameters using a combined methodology of parameter estimation and experimental phenol-

water data derived from the literature. The effects of several operational parameters on the 

performance (in terms of removal of phenol) of the process are explored using the model. 

 

Keywords: Wastewater treatment; Spiral-wound reverse osmosis; Distributed model;  

                   Irreversible thermodynamic model; Phenol removal. 

 

1. Introduction 

The heavily industrial world we live in today continues to generate large volumes of 

wastewater containing industrial effluents, sewage and other harmful by-products, which are 

disposed into rivers and oceans. At the same time, the need for clean potable water continues 

to increase at a worrying rate due to increase in population and associated demand. The urgent 

need to treat and reuse water has never been greater in the modern world. 

This paper focuses on developing efficient methods for treating wastewater by improving the 

reliability and efficiency of the underlying separation and filtration processes. The net result 
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of this work is the significant reduction of the probability of accidental release of these 

harmful compounds into the recycled water by implementing different water treatment 

approaches in many indirect potable water reuse schemes (Traves et al., 2008).  

Phenol and phenol compounds (aromatic compounds) represent a significant group of 

pollutants present in wastewater resulting from the manufacture of pesticides, herbicides, 

disinfectants, pharmaceuticals and dyes (Gami et al., 2014). Also, the presence of trace 

amounts of these compounds has restricted the reuse of water in different industrial 

applications (Mangrulkar et al., 2008). The successful treatment processes of phenol 

compounds removal from wastewater include catalytic wet air oxidation (CWAO), UV/H2O2 

and RO. CWAO used trickle bed reactor using CUO, Zn, CO oxides as a heterogeneous 

catalyst and pure oxygen as oxidant of phenol (Mohammed et al., 2016). However, the 

UV/H2O2 process requires a lot of energy but with a risk of increasing the carbon 

concentration of the reused water (Fujioka, 2014a). Among these technologies, RO is very 

promising, because of its ability to remove water/wastewater constituents such as phenol 

compounds (Schutte, 2003; Bódalo-Santoyo et al., 2004; Alzahrani et al., 2013). 

Additionally, the rapid growth of RO as a commercially attractive separation process in 

seawater desalination has paved the way for industrial effluents treatment as a promising 

technology for water recycling and reuse (Elhalwagi, 1992; Lee and Lueptow, 2001). Thus, 

seawater desalination and wastewater treatment are the core technologies for producing clean 

water (Wang et al., 2016) and provided valuable opportunity to avoid the complete 

diminution of fresh water resources (Goh et al., 2016). Specifically, the use of RO as a key 

treatment process in water reclamation applications has been confirmed to offer several 

advantages including; minimum thermal damage, high packing density as well as lower 

energy consumption (Fritzmann et al., 2007). 

Several RO theoretical transport models have been explored by various researchers to predict 

solute and solvent fluxes resulting in three types of models; the pore model (diffusion and 

convection-based), the nonporous model (diffusion–based) and the phenomenological model 

based on thermodynamic (Soltanieh and Gill, 1981). The solution-diffusion and the 

irreversible thermodynamic models are the most widely used to describe the performance of 

membrane separation systems. The validity of these models has been tested by Murthy and 

Gupta (1999) who confirmed that the Spiegler and Kedem model is more accurate for 

estimating the membrane performance. Having said this, Mujtaba (2012) showed that the 

solution-diffusion model is the simplest model and one that is widely used for describing the 

mechanism of transport in RO systems. Geraldes et al. (2005) have developed a one-

file:///E:/24-06-~1/PHD~1/RO/C95F~1/PHFEAE~1.DSC/PAPERO~1/CORREC~1/SENTTO~1.TRA/SENTAG~1/J4%20Paper%20V2(modified%20to%20Chemical%20Eng.%20Transaction%20J.%20new%202).docx%23_ENREF_3
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dimensional model for spiral-wound RO membranes based on the solution-diffusion model 

but neglected the diffusion flow in the feed side. Sagne et al. (2009) have considered an 

unsteady state one-dimensional model based on the solution-diffusion model for the rejection 

of dilute aqueous solution of five volatile organic compounds from brackish water. However, 

the model neglected the concentration polarisation impact. Oh et al. (2009) developed a one-

dimensional model based on the solution-diffusion model to analyse the performance of a 

spiral-wound RO process. This assumes a constant mass transfer coefficient and a constant 

water flux. Kaghazchi et al. (2010) proposed a one-dimensional model based on the solution-

diffusion model and the bulk flow rate is calculated as an average value of inlet and outlet 

feed flow rates.   

In summary, sea and brackish water desalination have been extensively modelled as one-

dimensional models with several assumptions (Senthilmurugan et al., 2005). However, a 

limited number of published models describing spiral-wound RO process especially for 

wastewater treatment is available in the literature (Sundaramoorthy et al., 2011a).  

For example, Ahmad et al. (2007) developed a lumped model for unsteady state simulation 

based on the extended Spiegler and Kedem model. They then validated it with experimental 

data of pre-treated palm oil mill effluent as a feed using a pilot plant scale RO system.  

Verliefde et al. (2009) proposed a transport model based on the Spiegler and Kedem model 

for the rejection of organic solutes for nano-filtration membranes. While, Sundaramoorthy et 

al. (2011a, b) developed a one-dimensional model by assuming the validity of the solution-

diffusion model and validated it against the experimental data of chlorophenol and 

dimethylphenol. Later, Fujioka et al. (2014b) have developed a one-dimensional model based 

on the irreversible thermodynamic model and used an iteration method to obtain the friction 

parameter.  

To the best of author’s knowledge, only Fujioka et al. (2014b) developed a distributed model 

for a spiral-wound RO process for wastewater treatment relying on the Spiegler and Kedem 

model. The model assumed zero pressure at the permeate side and was validated with 

experimental data of N-nitrosamine rejection. 

Although there are number of methods applied for the removal of phenol from wastewater, 

spiral-wound RO process is selected in this research to investigate in detail the effectiveness 

of this process. Although experimental investigation would be desirable, it has been decided 

to resort to a model-based investigation methodology accepting the fact that a reliable model 

must be used for this purpose. Firstly, a detailed one-dimensional process model is developed 

relaxing the assumption made by Fujioka et al. (2014b). Secondly, several model parameters 
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have been estimated using a parameter estimation technique (Jarullah et al., 2011) combined 

with experimental data of Srinivasan et al. (2010). Finally, the validated model is used in 

simulation mode to assess in detail the effect of various design and operating parameters on 

the performance of the RO process in terms of removal of phenol from wastewater.      

 

2. Model Development 

2.1. The assumptions 

The following assumptions are considered to develop the new model:  

a) A flat membrane sheet with negligible channel curvature.   

b) Validity of the Spiegler-Kedem model for the transport of water and solute through 

the membrane. 

c) Validity of the Darcy’s law where a constant friction parameter is assumed to 

characterise the pressure drop.  

d) Constant pressure of 1 atm on the permeate side.  

e) Constant solute concentration in the permeated channel and the average value is 

calculated from the inlet and outlet calculated concentrations.  

f) Complete mixing in the y-axis of the feed channel due to the existence of a network of 

spacers.  

g) Isothermal process.  

 

2.2 Governing Equations 

The working equations of the non-linear solvent and molar solute fluxes are (Spiegler and 

Kedem, 1966): 

Jw(x) = Lp (∆Pb(x)
− σ ∆πs(x) 

)                                                                                                 

(1)                                                              

Js(x) = Jw(x) (1 − σ) Cs(x)
~ + ω ∆πs(x)                                                                                       

(2)    

Where 𝜎 is the reflection coefficient and equals zero for complete coupling between the 

solvent and solute fluxes within the membrane and one if no coupling exists (The solution-

diffusion model).     

If σ =1, then Eq. (1) and (2) will be written as: 

Jw(x) = Lp (∆Pb(x)
− ∆πs(x) 

)                                                                                                     

(3)                                                              
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Js(x) =  Bs (Cw(x) − Cp(av))                                                                                                        

(4)    

The trans-membrane pressure and the osmotic pressure are: 

∆Pb(x)
= (Pb(x) − Pp)                                                                                                                 

(5)                                                                                                   

∆πs(x) = R Tb (Cw(x) − Cp(av))                                                                                                  

(6)     

Since the solute flux is lower than volumetric solvent flux, the following equation work well: 

Js(x) = Jw(x) Cp(av)                                                                                                                       

(7)                                                                           

While, the mean solute concentration is: 

Cs(x)
~ =

Cs(x)−Cp(av)

ln  (
Cs(x)

Cp(av)
)

                                                                                                                       

(8)                                                                                                             

Substituting Eq. (6) in Eq. (2) and re-arrangement yields: 

∆πs(x) =  
Jw(x) Cp(av)

ω
−

Jw(x)(1−σ) Cs(x)
~

ω
                                                                                             

(9)                                                                                                 

Eq. (9) and Eq. (7) can be combined in Eq. (1) to form Eq. (10). 

Jw(x) = Lp  [∆Pb(x)
− σ (

Jw(x) Cp(av)

ω
−

Jw(x) (1−σ) Cs(x)
~

ω
)]                                                                               (10)                                                                                                     

Then, the expression of the solvent flux can be written as: 

Jw(x) =
Lp (∆Pb(x))

1+
σ Cp(av) Lp

ω
−

C
s(x)
~ (1−σ) Lp σ

ω

                                                                                                 

(11)                                                                                             

Based on Assumption d of constant pressure at the permeated side, Eq. (12) works well. 

d ∆Pb(x)

dx
=

d Pb(x)

dx
                                                                                                                           

(12) 

Relying the Assumption c, the friction parameter is used to characterise the feed pressure drop 

along the x-axis using Darcy’s law. 

dPb(x)

dx
= −b Fb(x)                                                                                                                          

(13)     

While, the feed flow rate drop along the x-axis can be expressed as: 



6 
 

dFb(x) 

dx
= −W Jw(x)                                                                                                                       

(14)                                                                                         

Dividing Eq. (12) and Eq. (14) yields: 

d ∆Pb(x)

dFb(x) 

=
b Fb(x)

W Jw(x)
                                                                                                                         

(15) 

Putting the value of solvent flux from Eq. (11) and re-arrangement with integration gives: 

Fb(x)
2 = Fb(0)

2 + [(∆Pb(x)
2 − ∆Pb(0)

2 ) (
W Lp

b ∅(x)
)]                                                                            

(16) 

Where  ∅(x) = 1 +
σ Cp(av) Lp

ω
−

Cs(x)
~ (1−σ) σ Lp

ω
                                                                                          

(17) 

Eq. (16) can be re-written as: 

Fb(x)
 = Fb(0)

 + [(∆Pb(x)
2 − ∆Pb(0)

2 )
0.5

 (
W Lp

b ∅(x)
)

0.5

]                                                                     

(18) 

Substituting Eq. (18) in Eq. (13) and take the integration will give an expression for the trans-

membrane pressure. 

∆Pb(x) = ∆Pb(0) − b x Fb(0) − b x ∆Pb(x) (
W Lp

b ∅(x)
)

0.5

+ b x ∆Pb(0)  (
W Lp

b ∅(x)
)

0.5

                          

(19) 

Combining Eq. (19) in Eq. (11), gives a correlation of solvent flux along the x-axis. 

Jw(x) =
Lp

∅(x)
 [∆Pb(0) − b x Fb(0) − b x ∆Pb(x) (

W Lp

b ∅(x)
)

0.5

+ b x ∆Pb(0)  (
W Lp

b ∅(x)
)

0.5

]                  

(20) 

Another equation for feed flow rate can be derived by using Eq. (14) with integration. 

Fb(x) = Fb(0) −  [(
W Lp

∅(x)
) x ∆Pb(0)] + [(

W Lp

∅(x)
) b Fb(0) (

x2

2
) ] + [(

W Lp

∅(x)
)

1.5

b0.5∆Pb(x) (
x2

2
)] −

                                                                                                         [(
W Lp

∅(x)
)

1.5

b0.5∆Pb(0) (
x2

2
)]           

(21) 

While, the feed pressure equation can be derived from using Eq. (13) with integration. 
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Pb(x) =

Pb(0) − [b Fb(0)x] + [b (
W Lp

∅(x)
) (

x2

2
) ∆Pb(0)] − [b2 (

W Lp

∅(x)
) Fb(0) (

x3

6
) ] −

                                                   [(
W Lp

∅(x)
)

1.5

b1.5∆Pb(x) (
x3

6
)] + [(

W Lp

∅(x)
)

1.5

b1.5∆Pb(0) (
x3

6
)]          

(22) 

Taking a total mass balance of the unit from x = 0 to any point along the x-axis, gives: 

Fb(0) = Fb(x) + Fp(x)                                                                                                                  

(23) 

The derivation of the above equation with the x-axis, gives: 

dFb(x)

dx
= −

dFp(x)

dx
                                                                                                                         

(24) 

The volumetric permeated flow rate can be correlated in the form of Eq. (25): 

Fp(x) = W ∫ Jw(x) dx
x=x

x=0
                                                                                                           

(25) 

Also. substituting Eq. (20) in Eq. (25) and taking the integration, gives: 

Fp(x) = Fp(0) +  [(
W Lp

∅(x)
) x ∆Pb(0)] − [(

W Lp

∅(x)
) b Fb(0) (

x2

2
) ] − [(

W Lp

∅(x)
)

1.5

b0.5∆Pb(x) (
x2

2
)] +

                                                                                                            [(
W Lp

∅(x)
)

1.5

b0.5∆Pb(0) (
x2

2
)]      (26) 

The solute concentration increases along the x-axis, since the solute is retained by the 

membrane and can be calculated from Eq. (27) (Chen-Jen Lee, 2010). 

d
(Cs(x) Fb(x))

tf W

dx
= −

Jw(x) Cp(av)

tf
+

Jw(x) Cs(x)

tf
+

d

dx
(Db(x)

dCs(x)

dx
)                                                                         

(27)                                                                            

The retained solute accumulates causes Cw to be greater than Cs in a thin laminar film on the 

high-pressure side of the membrane wall.  

The solute concentration at the interface of the membrane can be included in this model by 

considering the theory of concentration polarisation. 

(Cw(x)−Cp(av))

(Cs(x)−Cp(av))
= exp (

Jw(x)

k(x)
)                                                                                                       

(28)   

Where, the mass transfer coefficient k is calculated using the following correlation of Wankat 

(1990): 
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k(x) = 1.177 (
Fb(x) Db(x)

2

tf
2 W L

)
0.333

                                                                                               (29)                                                                                

Then, by substituting Eq. (28) and Eq. (7) in Eq. (4) with re-arrangement gives a correlation 

for average permeated concentration. 

Cp(av) =
Bs Cs(x) e

Jw(x)
k(x)

Jw(x)+Bs  e

Jw(x)
k(x)

                                                                                                              

(30)                                                                                                

Following Assumption e, Eq. (30) will be used twice on the inlet and outlet dimensions to 

determine the exact average value of permeated solute concentration.  

The rejection coefficient of the membrane and the total water recovery can be calculated from 

Eqs. (31) and (32) respectively (Srinivasan et al., 2010). 

Rej =
Cs(L)−Cp(av)

Cs(L)
 x100                                                                                                             

(31) 

Rec(Total) =
Fp(Total)

Fb(0)
 x100                                                                                                       

(32) 

Where Fp(Total) is the total permeated flow rate. 

The proposed correlations of Koroneos (2007) to calculate the physical properties of seawater 

(density, viscosity and diffusion coefficient) are being considered identical to the analysis of 

dilute aqueous solutions of wastewater.  

 

2.3 Parameter Estimation (determination of transport parameters)   

Unknown parameters of the model and the operating conditions should be determined before 

solving the model equations. The aim of the optimisation is to accurately evaluate the values 

of these parameters depending on the experimental information that gives the best value of the 

performance criterion. Here, the gPROMS parameter estimation (Process System Enterprise 

Ltd., 2001) has been used to predict the model unknown parameters in a way that minimize 

the sum of square errors (SSE) between the experimental outlet concentration, average 

permeate concentration, outlet feed flow rate, total permeated water, outlet feed pressure and 

average solute rejection and the calculated values. This can be achieved by altering the model 

parameters from an initial guesstimate value to optimal values - usually referred to as the 

optimisation solver (Jarullah et al., 2011). The gPROMS software provides a mathematical 

solver tool called as MXLKHD, which is based on maximum likelihood optimisation. The 
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optimisation problem is posed as a Non-Linear Programming (NLP) problem and is solved 

using a Successive Quadratic Programming (SQP) method.   

The experiments of Srinivasan et al. (2010) have been done at different operating conditions 

of inlet feed pressure, concentration and temperature at fixed inlet feed flow rate. The 

developed model has five parameters, namely Lp, ω, Bs, σ and b.  

The process model presented in Section 2 can be written in a compact form as follows:  

f(z, x(z), x¯(z), u(z), v) = 0;    [z0, zf] 

Where, z is the independent variable (length of membrane), x(z) is the set of all differential 

and algebraic variables, x¯(z) represents the derivative of x(z) with respect to length of 

membrane, u(z) is the control variables and v denotes the constant parameters of the process. 

The membrane length under consideration [z0, zf] and function f is assumed to be 

continuously differentiable with respect to all its arguments.  

The parameter estimation problem can be formulated as follows: 

Given: Time invariant parameters: Inlet feed concentration Cs(0), flow rate Fb(0), pressure  

              Pb(0) and temperature Tb                                                     

            Measured variables data: Outlet measured concentration Cs(L), average permeate  

                                                      concentration Cp(av), outlet feed flow rate Fb(L), outlet feed  

                                                      pressure Pb(L), total permeated flow rate Fp(Total) and  

                                                      average rejection Rej(av) 

Obtain: Water permeability coefficients Lp, solute permeability constants ω and Bs , 

reflection  

              coefficient 𝜎 and friction parameter b    

Minimising: The sum of square errors (SSE).  

Subject to: Process model, Process constraints 

For example, SSE for the outlet solute concentration is:  

SSE = ∑ [Cs,L
Exp.

− Cs,L
Cal.]

2NData
i=1                                                                                                    

(33) 

In the above equation, NData, Cs(L)
Exp.

 and Cs(L)
Cal.  are the numbers of test runs, experimental and 

calculated outlet feed concentration respectively. 

The parameter estimation problem can be mathematically presented as follows: 

The complete specification of a parameter estimation problem requires: 

     Min                                                              SSE 
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Lp, ω, Bs, σ, b 

 

Subject to: Equality constraints:   

                           Process Model:     f(z, x(z), x¯(z), u(z), v) = 0;    [z0, zf] 

                Inequality constraints: 

Lp
L ≤  Lp  ≤  Lp

U 

ωL ≤   ω ≤  ωU 

Bs
L ≤  Bs  ≤  Bs

U 

bL ≤  b  ≤  b 
U

 

σL ≤   σ ≤  σU 

The results of the parameter estimation showed that Lp varies between 1.56E-6 – 1.0E-6 

m/atm s, ω varies between 0.1E-6 – 1.9E-6 kmol/m² s atm, Bs varies between 0.566E-6 – 

1.9E-6 m/s, b varies between 12826 –  13537 atm s/m
4
 and σ is 0.9 (dimensionless) for five 

different inlet feed concentrations. The total results and details of the parameter estimation 

approach can be found in Table 1. The description of experimental procedure and the 

operating conditions with the characteristics of the spiral-wound module (0.75 m² effective 

membrane area) can also be found in Srinivasan et al. (2010). 
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                             Table 1. The results of parameter estimation 

No.  𝐂𝐬(𝟎)𝐱𝟏𝟎³ 𝐏𝐛(𝟎) 𝐓𝐛 𝐋𝐩𝐱𝟏𝟎⁶ 𝛚𝐱𝟏𝟎⁶ 𝐁𝐬𝐱𝟏𝟎⁶ b 

1 2.125 4.93 32.5 1.56 0.145 1.850 13006 

2 2.125 6.90 33.1 1.39 0.128 1.890 13042 

3 2.125 8.90 33.0 1.39 0.100 1.900 13487 

4 2.125 10.90 33.2 1.43 0.201 1.810 13537 

5 2.125 14.80 34.0 1.26 0.295 1.130 12913 

6 4.250 4.93 32.2 1.46 0.547 1.280 13008 

7 4.250 6.90 32.8 1.34 0.228 1.380 13039 

8 4.250 8.90 33.5 1.34 1.030 0.830 13487 

9 4.250 10.90 33.9 1.27 0.355 0.566 13516 

10 4.250 12.80 34.5 1.26 1.900 1.100 12867 

11 4.250 14.80 34.5 1.27 1.330 1.170 12914 

12 6.375 4.93 32.5 1.43 0.102 0.849 13005 

13 6.375 6.90 33.0 1.16 1.900 0.934 13030 

14 6.375 8.90 33.2 1.14 0.319 1.060 13461 

15 6.375 10.90 33.5 1.04 0.245 0.877 13479 

16 6.375 12.80 33.8 1.07 0.100 0.866 12839 

17 6.375 14.80 34.0 1.15 1.050 0.627 12881 

18 8.500 4.93 32.0 1.41 0.118 1.310 13003 

19 8.500 6.90 32.5 1.22 0.277 1.400 13027 

20 8.500 8.90 32.8 1.20 0.155 1.400 13465 

21 8.500 10.90 33.0 1.22 1.370 1.230 13475 

22 8.500 12.80 33.2 1.15 0.117 1.140 12844 

23 8.500 14.80 33.5 1.19 0.562 1.120 12900 

24 10.600 4.93 31.5 1.17 1.900 1.090 12985 

25 10.600 6.90 32.2 1.11 1.900 1.170 13009 

26 10.600 8.90 32.6 1.14 0.107 1.080 13480 

27 10.600 10.90 32.8 1.13 0.110 1.080 13485 

28 10.600 12.80 32.8 1.00 0.259 1.010 12826 

29 10.600 14.80 33.0 1.09 1.820 0.854 12863 

  σ = 0.9 

 

 

3. Model validation 

The simulation results of the proposed model are used to compare with the experimental data 

of Srinivasan et al. (2010) for the rejection of phenol from diluted aqueous solutions at feed 

flow rate of 3.333E-4 m³/s.  

Figs. 1 to 5 show the comparison of experimental and theoretical results of a phenol-water 

system for several operating conditions as follows: 

Phenol rejection Rej, average phenol permeate concentration Cp(av), outlet phenol 

concentration Cs(L), outlet feed pressure Pb(L) and outlet feed flow rate Fb(L). 
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Fig. 1. Comparison of theoretical and experimental results of phenol rejection 

 

 

 

Fig. 2. Comparison of theoretical and experimental results of the average permeate concentration 

 

 

 
Fig. 3. Comparison of theoretical and experimental results of the outlet phenol concentration 
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Fig. 4. Comparison of theoretical and experimental results of the outlet feed pressure 

 

 

 

Fig. 5. Comparison of theoretical and experimental results of the outlet feed flow rate 

 

Generally, the predicted values of the theoretical model are in a good agreement with 
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The experimental values and model predictions of the total permeated flow rate (Fp(L)) of 

phenol solutions versus the operating inlet feed pressure for two different inlet feed 

concentrations is presented in Fig. 6.  

The permeated flow rate remains linear versus the applied pressure. Also, it increases due to 

an increase in the operating pressure. Eq. (1) confirms that the trans-membrane pressure can 

be considered as the driving force of RO process. Therefore, the recovery rate will increase 

due to an increase in feed pressure. Fig. 6 also shows the reduction of permeated flow rate due 

to an increase in inlet feed concentration. This is attributed to an increase in the osmotic 

pressure occurring due to an increase in the concentration polarisation. Furthermore, a good 

agreement between the model prediction and experimental data was observed for the 

parameters tested. 

 

 

Fig. 6. Experimental and model prediction of total permeated flow rate versus inlet feed pressure for two 

different inlet feed concentrations at (Fb(0) = 3.333E-4 m³/s) 
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experimental values and clearly confirms the consistency of the model developed. However, 

the model overestimated the case of low feed concentration and this can be attributed to lower 

accuracy of parameter estimation at very low phenol concentration.     

 

 

Fig. 7. Experimental and model prediction of phenol rejection versus inlet feed pressure of different inlet feed 

concentrations at (Fb(0) = 3.33E-4 m³/s) 

 

It is observed that the solute rejection increases over the whole applied pressure for the three 

inlet feed concentrations. This is due to the fact that the water flux is more affected by 
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new developed model are quite close to experimental results and compare well with other 

earlier models. 

    

Table 2. Comparison of the experimental phenol rejection with the prediction of the developed model and 

Srinivasan et al. (2010) and Sundaramoorthy et al. (2011a) models at inlet feed flow rate (Fb(0)= 3.33E-4 m³/s) 

No. 
Pb(0), 

atm 

Tb, 

°C 

Cs(0) 𝐸3 

kmol/m³ 

Rej. 

Exp. 

Rej. 

Model 

Rej. 

Srinivasan et 

al. (2010) 

Rej. 

Sundaramoorthy 

et al. (2011a) 

1 4.93 32.5 2.125 0.646 0.644 0.642 0.634 

2 6.90 33.1 2.125 0.727 0.703 0.698 0.698 

3 8.90 33.0 2.125 0.759 0.737 0.733 0.733 

4 10.90 33.2 2.125 0.786 0.765 0.758 0.761 

5 14.80 34.0 2.125 0.874 0.845 0.790 0.843 

6 4.93 32.2 4.250 0.766 0.713 0.680 0.700 

7 6.90 32.8 4.250 0.813 0.759 0.737 0.753 

8 8.90 33.5 4.250 0.861 0.864 0.772 0.859 

9 10.90 33.9 4.250 0.873 0.910 0.796 0.908 

10 12.80 34.5 4.250 0.880 0.847 0.813 0.844 

11 14.80 34.5 4.250 0.876 0.850 0.813 0.839 

12 4.93 32.5 6.375 0.798 0.784 0.696 0.772 

13 6.90 33.0 6.375 0.821 0.810 0.754 0.803 

14 8.90 33.2 6.375 0.834 0.821 0.790 0.816 

15 10.90 33.5 6.375 0.868 0.858 0.814 0.855 

16 12.80 33.8 6.375 0.879 0.870 0.830 0.867 

17 14.80 34.0 6.375 0.914 0.907 0.844 0.905 

18 4.93 32.0 8.500 0.706 0.699 0.704 0.684 

19 6.90 32.5 8.500 0.750 0.745 0.764 0.737 

20 8.90 32.8 8.500 0.783 0.780 0.800 0.774 

21 10.90 33.0 8.500 0.826 0.820 0.824 0.816 

22 12.80 33.2 8.500 0.840 0.837 0.840 0.834 

23 14.80 33.5 8.500 0.849 0.845 0.854 0.842 

24 4.93 31.5 10.600 0.711 0.710 0.708 0.689 

25 6.90 32.2 10.600 0.764 0.767 0.770 0.757 

26 8.90 32.6 10.600 0.816 0.816 0.806 0.811 

27 10.90 32.8 10.600 0.835 0.834 0.830 0.829 

28 12.80 32.8 10.600 0.846 0.847 0.847 0.843 

29 14.80 33.0 10.600 0.874 0.875 0.861 0.872 

 

Fig. 9 depicts an increase in the average permeate concentration of phenol and a decrease in 

the total permeate flow rate by increasing the applied feed concentration. This is because the 

water flux and total permeate flow rate are retarded along the membrane length by increasing 

the applied concentration due to the increase in the osmotic pressure, which reduces the 
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driving force of water flux. The permeate concentration of phenol will increase as a result of 

this. For this same reason, it is expected that increasing the inlet feed concentration will cause 

an increase in the outlet phenol concentration in addition to increasing the retentate flow rate 

as can be shown in Fig. 10. 

 

 

Fig. 9. Experimental and model predictions of phenol permeated concentration and outlet permeated flow rate 

versus inlet feed concentration, (inlet feed conditions, 14.8 atm and 3.33E-4 m³/s) 

 

 

Fig. 10. Experimental and model predictions of retentate phenol concentration and retentate flow rate versus 

inlet feed concentration, (inlet feed conditions, 14.8 atm and 3.33E-4 m³/s) 
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More often than not, an increment in feed flow rate causes a slight increase in phenol rejection 

for all the tested feed concentrations as can be shown in Figs. 11 and 12. It appears that there 

is a miscorrelation between these two competitive impacts, which determine the solute 

rejection as a result to increase in the inlet flow rate. The first one leads to an increase in the 

friction along the membrane, which reduces the water flux and solute rejection. While, the 

second one leads to an increase in the turbulence that causes a reduction in the concentration 

polarisation and wall membrane concentration, which increases water flux and solute 

rejection. It seems that the second impact is slightly more predominant in the process, which 

possibly causes a slight increase in phenol rejection. 

To justify the above findings further, Figs. 11 and 12 show two different responses of solute 

rejection versus inlet feed concentration given the applied pressure.  

Firstly, at high operating pressure conditions of 14.8 atm, it seems that the solute rejection 

decreases by increasing inlet feed concentration up to 4.25E-3 kmol/m³ (Fig. 11). However, 

increasing the applied concentration to 8.5E-3 and 10.6E-3 kmol/m³ causes an increase in the 

solute rejection (Fig. 11). The reason behind the first response is that an increment in feed 

concentration causes an increase in the osmotic pressure, which reduces the driving force of 

water flux and therefore reduces the solute rejection. While, using a higher inlet feed 

concentration at high applied pressure conditions leads to an increase in the solute rejection. 

This is due to an increase in the membrane isolation intensity at these conditions. However, it 

seems that inlet feed concentration of 6.375E-3 kmol/m³ has a similar high solute rejection 

(Figs. 11 and 12) and this may yield the optimum condition of feed concentration to perform 

higher solute rejection.  

Secondly, at low operating pressure conditions of 8.9 atm, it seems that the feed concentration 

has the same role in controlling the solute rejection except for the case of 6.375E-3 kmol/m³ 

feed concentration. The impact of increasing inlet feed concentration will lead to an increase 

in the solute rejection whatever inlet feed flow rate is used. Srinivasan et al. (2011) and 

Sundaramoorthy et al. (2011b) confirmed the same findings for dimethylphenol and 

chlorophenol respectively. Also, the impact of inlet feed flow rate at higher feed pressure is 

clearly noticeable than the lower feed pressure as can be seen in Figs. 11 and 12. This is 

caused by the contribution of feed pressure in lifting the solute rejection.  
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Fig. 11. Phenol rejection versus inlet feed flow rate for different inlet feed concentration  

(inlet feed conditions, 14.8 atm and 33 °C) 

 
 

 
 

Fig. 12. Phenol rejection versus inlet feed flow rate for different inlet feed concentration  

(inlet feed conditions, 8.9 atm and 33 °C) 

 

The above results readily show the feasibility of acceptable mitigation of phenol 

concentration found in industrial wastes using an individual RO module of 0.75 m² membrane 

effective area, which confirms the potential of RO as a competitive technique for wastewater 

treatment. Having said this, the model can be advanced to consider the performance of the RO 

process at higher feed concentrations after embedding the fouling impact on the transport 

parameters of the membrane.   
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5. Conclusions 

Reverse Osmosis is a key treatment process in water reclamation applications for the removal 

of organic matter, inorganic chemicals. It is therefore essential to generate an accurate model 

with a reliable process design, which can describe the process behaviour and more accurately. 

The research conducted in this study serves this precise purpose and explores the spiral-

wound RO process as an alternative approach for concentration reduction of impurities in 

industrial wastewater. The investigated pollutant was phenols which are considered as 

extremely toxic compounds with several harmful effects for humans, the environment and the 

aquatic life. Taking into account one-dimensional character of the process (x-axis as the 

spatial dimension in the direction of the feed flow), an efficient steady state model applicable 

for dilute binary aqueous solution in a spiral-wound RO process has been developed based on 

the theory of the Spiegler and Kedem model. The model can predict a variety of operating 

parameters at each point along the two sides of the membrane length. The model algorithm 

has been resolved using the gPROMS software by assuming constant temperature and 

permeate pressure. The gPROMS parameter estimation tool was used to predict the model 

unknown parameters (water and solute permeability constants, reflection coefficient and 

friction parameter). The predictions of this model in respect of the operating conditions 

compare favourably to phenol rejection experimental data results available in the literature, 

and show a good agreement with an accepted convergence for most operating parameters. 

Finally, the impact of several operational conditions on the performance of the process has 

been studied, which show that there is an optimum condition of feed concentration to perform 

higher solute rejection. This research can readily be used as a basis for a complete model for 

spiral-wound RO membranes used in wastewater treatment. 

 

Nomenclature 

b   : Feed channel friction parameter (atm s/m
4
). 

Bs   : Solute transport coefficient considering the Solution-diffusion model (Eq. 4) (m/s). 

Cp(av)  : Average permeate solute concentration in the permeate channel (kmol/m³). 

Cs(x)  : Brine solute concentration in each point along the x-axis (kmol/m³). 

 Cs(x)
~       : The mean solute concentration in each point along the x-axis (kmol/m³). 

Cw(x)  : Solute concentration at the membrane wall in each point along the x-axis 

(kmol/m³). 
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Db(x)   : Diffusivity of feed in each point along the x-axis (m²/s). 

Fb(x)   : Feed flow rate in each point along the x-axis (m³/s). 

Fp(x)   : Permeate flow rate in each point along the x-axis (m³/s). 

Fp(Total) : Total permeated flow rate for the whole unit (m³/s). 

Js(x)    : Solute molar flux through the membrane in each point along the x-axis (kmol/m² s). 

Jw(x)   : Water flux in each point along the x-axis (m/s). 

k(x)  : Mass transfer coefficient in each point along the x-axis (m/s). 

L      : Length of the membrane (m). 

Lp            : Solvent transport coefficient (m/atm s). 

Pb(x)   : Feed pressure in each point along the x-axis (atm). 

Pp   : Permeate pressure (atm). 

R    : Gas low constant (R = 0.082
atm m³

K kmol
). 

Rec(Total) : Total water recovery for the whole unit (dimensionless). 

Rej   : The rejection coefficient of the membrane (dimensionless). 

Tb   : Feed temperature (°C). 

tf     : Feed spacer thickness (m). 

W    : Width of the membrane (m). 

x   : The dimension along the x-axis (m). 

∆x    : Length of sub-section (m). 

∆Pb(x)
  : Trans-membrane pressure in each point along the x-axis (atm). 

∆πs(x)  : The osmotic pressure difference in each point along the x-axis (atm). 

σ   : Reflection coefficient (dimensionless). 

ω   : The solute permeability constant of the membrane (Spiegler-Kedem model)  

                (kmol/m² s atm). 

∅(x)       : Parameter defined in Eq. (17). 
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