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Abstract: The need to achieve high data rates in modern telecommunication systems such as
5G standard, motivates the study and development of large antenna and very-large multiple-input
multiple-output (MIMO) systems. This study introduces a large antenna-order design of MIMO quasi-
orthogonal space-time block code (QO-STBC) system that achieves better signal-to-noise ratio (SNR)
and bit-error ratio (BER) performances than the conventional QO-STBCs with the potentials for
massive MIMO (mMIMO) configurations. Although some earlier MIMO standards were built on or-
thogonal space-time block codes (O-STBCs), which are limited to two transmit antennas and data
rates, the need for higher data rates motivates the exploration of higher antenna configurations using
different QO-STBC schemes. The standard QO-STBC offers higher number of antennas than the O-
STBC with full spatial rate. Unfortunately also, the standard QO-STBCs are not able to achieve full
diversity due to self-interference within their detection matrices; this diminishes the BER performance
of the QO-STBC scheme. The detection also involves nonlinear processing which further complicates
the system. To solve these problems, we propose a linear processing design technique (which eliminates
the system complexity) for constructing interference-free QO-STBCs and also achieves full diversity
using Hadamard modal matrices with the potential for mMIMO design. Since the modal matrices
that orthogonalize QO-STBC are not sparse, our proposal also supports O-STBCs with well-behaved
peak-to-average power ratio (PAPR) and better BER. The results of the proposed QO-STBC outper-
form other full diversity techniques including Givens-rotation and the eigenvalue decomposition (EVD)
techniques by 15dB for both multiple-input multiple output (MIMO) and multiple-input single-output
(MISO) antenna configurations at 10−3 BER. The proposed interference-free QO-STBC is also im-
plemented for 16 × NR and 32 × NR MIMO systems, where NR ≤ 2. We demonstrate 8, 16 and
32 transmit antenna enabled MIMO systems with the potential for mMIMO design applications with
attractive BER and PAPR performance characteristics.

Keywords: STBC; QO-STBC; MIMO; Hadamard; Full-diversity; intersymbol interference (ISI)-
free; massive MIMO (mMIMO); PAPR

1 Introduction
The need for higher data rates at the user end is the major motivation for new multiple-input multiple
output (MIMO) schemes in modern communication systems. These modern techniques dispensing
with large number of antennas also enable spectral efficiency and increased transmit-energy efficiency
although all antennas do not contribute equally [2, 3, 4]. This is laudable in the study of massive
MIMO (mMIMO) systems that are being pursued by researchers and industrialists alike for coping with
the growing demand for higher data rates in modern telecommunication services. In 5G standard, for
example, the mmWave bands have been selected due to the abundance of unused spectrum resources [5].
However, while the high data rate problem can be overcome easily by deploying large bandwidths, the
scarcity of the electromagnetic spectrum subtends some efficiency limitations in using large bandwidths
to satisfy the high data rate demand. One of the ways of realizing such data rates (in which the
mMIMO can rely on), for example in wireless communication systems, is by enabling higher antenna
configurations or by optimizing the available/known configuration techniques. In this study, we explore
the methods of both optimizing the present MIMO design methods and exploring higher order antenna
configurations with potentials for mMIMO.

Space-time block coding (STBC) [6, 7], for example, is a MIMO technique that exploits time and
antenna dimensions to achieve high data rates with minimum error probability. In [8], it was shown

1+This paper has been presented in part at ITA 2015 Conference [1].
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that under similar spectral efficiencies, STBCs outperform spatial modulation in terms of bit error
ratio (BER) metrics. STBCs can be combined with beamforming to minimize error probability of
MIMO systems [9, 10, 11] and presently studied for systems supporting mMIMO schemes [3]. Other
methods include the use of large antennas at the transmitting base stations [3].

Although STBCs combined with beamforming are good hybrids when minimum BER is desired,
the conventional orthogonal STBC (STBC) [6] is limited to only two transmit antennas (NT=2) as
higher order antenna configurations do not achieve orthogonality [12]. These limitations are overcome
by specially combining the O-STBCs to increase the spatial diversity capability of the scheme [13].
Such codes are referred to as QO-STBCs [14, 11]. The standard QO-STBC scheme provides NT > 2
over similar spectral conditions as the O-STBC with better performance and also dispenses with full
spatial rate but not full diversity. Unfortunately, also, QO-STBC complicates the receiver design due
to the lack of orthogonality among the codes. Such limitation also leads to ISI in the decoding matrix
of the QO-STBC receiver and diminishes the BER performance.

In terms of the detection matrix, these off-diagonal (ISI) terms are described also as self-interference
terms [15]. Usually, it is difficult to decouple transmitted symbols using linear processing at the receiver
of a standard QO-STBC system. Consequently, several solutions have been offered by researchers to
eliminate the ISI, namely, using Givens-rotation [16], eigenvalues decomposition (EVD) [17, 18] and
Hadamard matrices [17, 1]. Although both the Givens-rotation technique and the EVDs approach
yielded similar results [19], the EVD method is less complex to implement. The Hadamard matrices
are equivalent modal matrices of the EVD with non-zero entries to enhance full-diversity realization
of the ISI-free QO-STBCs. In [17], the authors proposed a QO-STBC code structure of with no off-
diagonal terms in its detection matrix. Unfortunately, however, the output ISI-free matrix is complex
and it will be demonstrated later in this study to have a poor BER performance (compared to the
Givens-rotations and EVD methods). This is due to the degradation of the true gain by the power
of the ISI-terms (removed from the rest off-diagonal points) which are greater than the ISIs of the
Givens-rotation and EVD methods.

Initially, this present work was first introduced in [1] for multiple input single output (MISO)
systems; we extend our results to include large-antenna (NT > 4), MIMO, receivers up to NR = 2
receiving antennas and spectrally efficient modulation schemes (e.g. 16-QAM and 128-QAM). Large
antenna systems provide three advantages, namely the effect of small-scale fading is averaged out, the
random channel between NT and NR become pairwise orthogonal as the elements grow and lastly
it allows for transmit power efficiency in massive MIMO [20]. We apply modal matrices from the
eigenvalues of the QO-STBCs provided by the Hadamard matrices to orthogonalize the detection
matrix and enable linear processing. This is achieved by deriving an equivalent virtual channel matrix
(EVCM) first, which can be used to reduce the complexity of decoupling the space-time transmitted
messages at the receiver. With EVCM approach, the design and study of QO-STBC becomes attractive
since there exist only the estimates of the originally NT –transmitted messages received at the receiver.
Using the EVCM approach also, the receiver complexity is thus transferred to the transmitters such as
the base stations, which have the flexibility of supporting very-large/mMIMO antennas (as in [21]) and
also complex algorithms better than the receivers [14] such as the mobile phones. This is attractive to
massive MIMO as linear processing does not require the complex detection process required as well in
dirty paper coding [22]. In mMIMO, the capacities when NT � can be verified using left-truncated
Gaussian distribution [23]. Also given that the conventional STBC has found applications in multi-
directional MIMO designs [9], the proposed QO-STBC can as well impact mMIMO multi-directional
QO-STBCs being explored in [24, 25]. Our results, in future studies, can enhance the performance of
large antenna wireless sensor networks (WSNs) design [20] in mMIMO systems since the total power
consumption decays by 1/NT as NT becomes very large [26] satisfying the power efficiency criteria
of large antennas [20]. In addition, the linear process of our proposed technique will be useful for
low-complexity implementations at the decision fusion centres (DFCs) over inhomogeneous large-scale
fading between the sensors and the DFC as in [27], although, massive MIMO trade antennas at the
FDCs for energy efficiency at the sensors of WSNs [28].

QO-STBCs with non-sparse matrices enable well-performing peak-to-average power ratio (PAPR)
[29, 30]. Thus, since the modal matrices of our system do not have zero entries, then we present
among other properties a QO-STBC design scheme with well-performing PAPR. In addition, our
system exhibits full diversity, increased SNR performance that minimizes the BER and supports linear
decoding. The standard QO-STBC is combined with the modal matrices of the Hadamard matrices
motivated by EVD to construct new QO-STBC with no ISI and achieves full diversity. Also, we have
also shown in the literature that the true gain is significantly reduced by the eliminated ISI terms for
NR > 3 receiving antennas in [8] and also that realistic receivers may not support more than NR = 2
without severe mutual coupling degradation.
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In Section 2, the system model is described for specific QO-STBC characteristics. An introduction
to full-diversity QO-STBC including the proposed full-diversity QO-STBC is presented in Section 3.
We presented the pairwise error probability in Section 4 and our simulation results in Section 5 with
the conclusions following in Section 6.

Glossary of notations
NT and NR are the numbers of transmitting and receiving antennas respectively
x and X represent vectors and matrices respectively.
[·] represents a vector or matrix
[·]T is the transpose of [·]
< (·)represents the real part of (·)
x∗represents complex conjugate x
(·)H represents the conjugate transpose of (·)
|·| represents absolute value
‖·‖ represents the norm operator
INT represents the identity matrix with NT ×NT dimension
Mn represents the modal matrix of n× n dimension
Hv represents equivalent virtual channel matrix
HNT is the EVCM with NT ×NT dimension
tr {·} is the trace of {·}
P (X | C,D) is the conditional probability of X given C and D
E {·} represents the expectation value
DNT is the detection matrix that implements a QO-STBC system
Q (x) represents the Q-function of x
‖·‖F is the Frobenius norm

2 System Model
Given a standard STBC code with a full rate (Rs = 1) (e.g., [6]), the ratio of the space (number
of antennas) and time (number of timeslots) can be expressed as Rs = NT /T = 1. Then, for an
orthogonal-STBC (O-STBC) systems (e.g. [6]) with two transmit antennas (NT = 2) and one receiver
(NR = 1), the received signal at the receiver can be represented as

x = H̄s+ z (1)

where s ∈ CNT×NR , x = [x1 x2]
T , H̄ ∈ CNT×NT = [h1 h2] is a multipath Rayleigh fading channel

with h1 =
[
h1 h∗2

]
, h2 =

[
h2 −h∗1

]
and z = [z1 z2]

T represents the additive white Gaussian
noise (AWGN); h1 and h2 represents the channel coefficients from Rayleigh fading and NR = 1 in the
above example. Note that [·]T represents the transpose of [·] and (·)∗ represents complex conjugate.

Although the STBC code described in [6] achieves full rate criteria and full diversity, its major
disadvantage is that the design does not support NT > 2. This problem can be solved by deploying
QO-STBC which can be formed from the STBCs. The QO-STBC can dispense with NT > 2 and
complex entries. It achieves full spatial rate [13, 12, 31], but, it does not attain full-diversity; QO-
STBCs exhibit full spatial rate (Rs = 1) when, for example NT = T . Meanwhile, consider a QO-STBC
code with NT = T = 4 as follows [31, 18]

S =

[
Ω12 Ω34

Ω34 Ω12

]
=


s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
s3 s4 s1 s2

−s∗4 s∗3 −s∗2 s∗1

 (2)

where Ω12 =

[
s1 s2

−s∗2 s∗1

]
and Ω34 =

[
s3 s4

−s∗4 s∗3

]
follow the standard Alamouti STBC of [6]. Un-

fortunately, (2) does not satisfy the SHNTSNT =
(∑N

n=1 | sn |2
)
INT condition ∀n . This property has

also motivated the proposal for the QO-STBC design discussed in [32].
The QO-STBC signal, S, can be a phase-shift keying (PSK) or quadrature amplitude modula-

tion (QAM) modulated signal, b ∈ C1×N , of length N . Unlike the case of NT = 2, where there
are{hi}NT=2

i=1 , the QO-STBC (e.g. (2)) involves NT > 2 antenna spaces. Assuming that there are
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{hi}NT=4
i=1 antenna spaces over which the QO-STBC symbols of (2) can be transmitted at differ-

ent timeslots with one receiver (NR = 1), then combining the QO-STBC of (2) with the channel
h =

[
h1 h2 h3 h4

]T , the receiver obtains
x1

x2

x3

x4

 =


h1s1 + h2s2 + h3s3 + h4s4

−h1s
∗
2 + h2s

∗
1 − h3s

∗
4 + h4s

∗
3

h1s3 + h2s4 + h3s1 + h4s2

−h1s
∗
4 + h2s

∗
3 − h3s

∗
2 + h4s

∗
1

+


z1

z2

z3

z4

 (3)

The result in (3) follows from combining (2) and the channel vector h =
[
h1 h2 h3 h4

]T so that
the received symbols can be expressed as

x = Sh+ z (4)

where z ∈ CNT×1. The design in (3) complicates the receiver since the received signals cannot be
linearly processed without difficulty. For instance, it is difficult to decouple the transmitted messages
at the receiver using linear processing. Thus, an EVCM is derived to enable the linear processing,
simplifying decoding of only s = {si}NTi=1 and also the decoupling of received symbols into the estimates
of s (namely ŝ). As an example, computing the conjugates of the second and fourth rows of (3) and
rearranging the results,

x1

x∗2
x3

x∗4

 =


h1 h2 h3 h4

h∗2 −h∗1 −h∗4 h∗3
h3 h4 h1 h2

h∗4 −h∗3 h∗2 −h∗1



s1

s2

s3

s4

+


z1

z∗2
z3

z∗4

 (5)

A major advantage of the (5) architecture is that if si=1,··· ,NT ∈ s but s ∈ C1×N and si ∈ C1× N
NT ∀i =

1, · · · , NT , then it is therefore impossible for an eavesdropper to compromise s over a time varying
condition, hence making the scheme secure. The result realized in (5) enables that the channel H̄
given in (1), can be expressed as

Hv =


h1 h2 h3 h4

h∗2 −h∗1 −h∗4 h∗3
h3 h4 h1 h2

h∗4 −h∗3 h∗2 −h∗1

 (6)

where (6) represents the EVCM, Hv. In the literature, an EVCM can be described as a matrix with
ones on its leading diagonal and at least N2/2 zeros at its off-diagonal positions and its remaining
(self-interference) entries being bounded in magnitude by 1 [33]. Representatively,

Hv (Hv)
H

=

NT∑
i=1

| hi |2 D (7)

where D is a sparse matrix. To reduce the system complexity, we apply the EVCM which simplifies
decoding at the receiver. If there exists an optimum detector of a maximal ratio combining (MRC)
output, namely using zero-forcing (ZF), GHopt = [G1, · · · , GNT ] = (Hv)

H such that ŝ = tr
{
GHoptx

}
,

then ŝ = (Hv)
H
x = (Hv)

H
Hvs + (Hv)

H
z =

∑NT
i=1Gixi. For instance, let the received signal

estimate be

ŝ = (Hv)
H
Hvs+ (Hv)

H
z

= D4 × s+ (Hv)
H
z (8)

where (·)H is the conjugate transpose of (·). It can be verified that D4 is the detection matrix that
implements a QO-STBC systems with NT = 4 and NR = 1. In relation to (7), we define

D4 = HHv Hv = σ2
h


1 0 β 0
0 1 0 β
β 0 1 0
0 β 0 1

 (9)
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where σ2
h =

∑NT
i=1

(
| hi |2

)
and NT = 4. The mutual interference terms outside the leading diagonal

can be expressed as β = 2< (h1h
∗
3 + h2h

∗
4) and β = β

σ2
h
. Of course, the interference term diminishes the

performance of this style of QO-STBC, for example the signal-to-noise ratio (SNR) and consequently
the BER. Our interest is to minimize the impact of β so that the SNR can be maximized and then
the BER minimized. An example is in constructing a suitable channel matrix whose decoding matrix
is devoid of ISI of (9).

3 Full Diversity QOSTBC Using EVD and the Proposed
In [34], a zero-forcing detection was discussed for QO-STBC design; this is similar to the eigenvalue
method proposed in [18]. Since the matrices that orthogonalize the detection of symbols is non-
singular, the received noise estimate is non-Gaussian. Similarly also, the pre-whitening process of the
noise further amplifies the noise so that the BER statistics be impacted to reduction. In [32], the
author explored the method of analytical derivation of the closed-form expression of the pairwise error
probability (PEP). The models described in [34, 32] sacrifice the data rates and would require switching
off the first two antennas or the last two antennas at the RF-chain during each timeslot; this can be
expensive.

Meanwhile, QO-STBCs that exhibit no-ISI in its detection matrices are said to achieve full-diversity.
For example, the ISI-free QO-STBC is achieved through the rotation of one-half of the symbol con-
stellation set [35, 36, 37], multidimensional rotation [38, 39, 40], Givens-rotations [16], EVD [17][18]
and Hadamard matrices [17, 1]. Although the EVD approach is less complex and will be followed, the
results can be enhanced if an equivalent modal matrix can be derived without zeros terms.

Definition 1 [1]: If A = (ai,j) is a square matrix and x is a column matrix (xi); let Ax = vix,
where v is a scalar, then vi is an eigenvalue and xi is an eigenvector. The vector xi can be formed
into a square matrix M = [x1,x2, · · · ,xNT ] usually called a modal matrix. If the eigenvalue of A is
the leading diagonal of a matrix V , then V = viI; both A and V share the same eigenvalues, I is an
identity matrix. It follows that AM = MV .

Here we use the Definition 1 to demonstrate our proposal using a handy NT = 4 and show also
that this can easily be extended to other higher antenna configurations, namely, NT > 4. Substituting
for A using D in Definition 1, it can be observed that

DM = MV. (10)

We formulate the modal matrices depending on the number of transmitting antennas to eliminate the
interfering terms in the detection matrix; this results in different modal matrix sizes. By applying (10),
namely M−1DM = V to (9), the QO-STBC scheme can attain full diversity; this is the principle of
diagonalizing a matrix [41]. The matrix V therefore achieves the required interference-free detection.
By (9), the resulting modal matrix of the QO-STBC system under study with NT = 4 and T=4 can
be expressed as

MHv =


1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

 (11)

A new EVCM can be formed by post-multiplying Hv by MHv , such as

H = Hv ×MHv

=


h1 + h3 h2 + h4 h3 − h1 h4 − h2

h∗2 + h∗4 −h∗1 − h∗3 h∗4 − h∗2 h∗1 − h∗3
h1 + h3 h2 + h4 h1 − h3 h2 − h4

h∗2 + h∗4 −h∗1 − h∗3 h∗2 − h∗4 h∗3 − h∗1

 (12)

Note that if the channel is defined as (12), the linear model will be expressed as (1). On the other
hand, if the system has channel coefficients is given by h = {hi}NTi=1 , then the system can be described
(in linear form) as (4).

Definition 2 (see Theorem 5.5.1 of [12]): A T × n complex generalized linear processing orthogo-
nal design Oc in variables 0, ±c1, ±c∗1, ±c2, ±c∗2· · · , ±cn, ±c∗n exists if and only if there exists a
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complex generalized linear processing orthogonal design Gc in the same variables and of the same size
such that GcG∗c = G∗cGc =

(
| c1 |2 + | c2 |2 + · · ·+ | cn |2

)
I.

Notably, only the Alamouti STBC achieves this condition without other post (or pre-) processing.
Now, rewrite (4) in the following form,

x = Hs+ z

then the receiver receives

ŝ = HHx

= HHHs+HHz (13)

From (13) , the encoding matrix S of (2) simplifies to s = {si}NTi=1 only. On the other hand, the
termHHH in (13) also permits linear decoding and eliminates the off-diagonal β interfering terms,
such as

HHH = σ2
h


1 + β 0 0 0

0 1 + β 0 0
0 0 1− β 0
0 0 0 1− β

 (14)

Observe that HHH provides

M−1
Hv
DMHv = M−1

Hv
HHv HvMHv

as the new detection matrix with no ISI. Also, observe that the eliminated ISI impacts the true power
gain. For large number of antenna configurations, some antenna branches contribute more than others
[2]. In (14) for example, the energy of the last two antenna branches are reduced by the eliminated
off-diagonal ISI terms so that the resulting gains are more on the first two antenna branches. This
can be useful with RF-chain switching and also when using directional communications to concentrate
power including antenna selection technique.

For 4×1 configuration, {hi}NT=4
i=1 , while for 3×1 configuration {hi}NT=3

i=1 but within the QO-STBC
design. The 3× 1 configuration is achieved by setting h4 = 0; for example, using the method of (12),
it is possible to construct an EVCM suitable for NT = 3 with NR = 1 such as

H3 =


h1 + h3 h2 h3 − h1 −h2

h∗2 −h∗1 − h∗3 −h∗2 h∗1 − h∗3
h1 + h3 h2 h1 − h3 h2

h∗2 −h∗1 − h∗3 h∗2 h∗3 − h∗1


On the other hand, formulating equivalent symbol matrix involves eliminating the fourth column of
the matrix [16] since only three antenna spaces are required, for example

H3 =


h1 + h3 h2 h3 − h1

h∗2 −h∗1 − h∗3 −h∗2
h1 + h3 h2 h1 − h3

h∗2 −h∗1 − h∗3 h∗2

 (15)

With a receiver dispensing with a maximum likelihood (ML) detection, the receiver finds ŝ = {si}NTi=1

signals that have the closest Euclidean distance nearest to the original transmitted QO-STBC signals as
follows (ŝ1, · · · , ŝNT ). In this case, the error matrix can be expressed as ∆s = (s̄1 − ŝ1, · · · , s̄NT − ŝNT ).
We assume that the channel is quasi-static for NT consecutive timeslots.

3.1 Combined standard QO-STBC and Hadamard matrices for QO-STBC
design

Although one can easily verify that HHH = σ2
h

((
1± β

)
I
NT

)
, the limitations of (11) include poor

PAPR performance due to the sparsity of the EVD modal matrix [30] and poor BER resulting from
the zero terms [8]. Since QO-STBC matrices can be diagonalized using modal matrices (M), then
Hadamard matrices can as well be used to diagonalize QO-STBC systems. For an n × n matrix,
Hadamard matrices have ±1 entries with the columns (and rows) being pairwise orthogonal [42, 43],
for example

HnH
H
n = HHnHn = nIn (16)
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where In is an identity matrix. Considering the system example under study, the Hadamard matrix
of 4× 4 order can be expressed as

M4 =

[
M2 M2

M2 −M2

]
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (17)

where
M2 =

[
1 1
1 −1

]
It can be observed in (17) that there exist no zero (0) entries as there are in (11). These zero entries
limit the BER performance as they null-out the channel gains. From (16), it can be observed that
use of Hadamard matrix as the modal matrix gives the advantage of NT multiple of the diagonalized
matrix.

In Section 3, we discussed that modal matrices are applied to QO-STBC systems in order to
eliminate the off-diagonal (ISI) terms. This phenomenon also led to the proposal of applying Hadamard
matrices to ensure that QO-STBC systems attain full diversity by eliminating the off-diagonal terms.
Since the 0’s null-out the channel gains, the modal matrix in (11) diminishes the SNR and consequently
worsens the BER performance of the QO-STBC systems. For instance, the channel gains are eliminated
when combined with a zero. Two, the presence of these zeros lead to poorer PAPR performance (see
[30, 29] and references therein). The modal matrices subtended by the Hadmard matrices do not have
these limitations, consequently QO-STBC codes constructed from it would exhibit better BER and
better PAPR advantages. Meanwhile, our interest in this study is in minimizing the error probability
(BER). Thus, we combine (6) and (17) so that the channel matrix can be expressed as

Hnew = Hv ×M4

At the receiver, linear processing can be applied as follows

HHnewx = HHnewHnews+HHnewz (18)

where

HHnewHnew = NT × σ2
h


1 + β 0 0 0

0 1 + β 0 0
0 0 1− β 0
0 0 0 1− β

 (19)

The result in (18) can be discussed in terms of the advantages it provides. As an example, it eliminates
the nonlinear decoding that existed in standard QO-STBC. Additionally, comparing (19) with (14),
using the proposed modal matrix technique improves the gain by NT –times the power gain. Conse-
quently, the received SNR is thus improved by NT –times. With NT = 3, the channel term namely h4

is set to zero (0) [16, 17]. As an example, we express

Hnew3 = Hv3 ×M4

=


h1 h2 h3 0
h∗2 −h∗1 0 h∗3
h3 0 h1 h2

0 −h∗3 h∗2 −h∗1

×


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



=


h1 + h2 + h3 h1 − h2 + h3 h1 + h2 − h3 h1 − h2 − h3

h∗2 − h∗1 − h∗3 h∗1 + h∗2 + h∗3 h∗2 − h∗1 + h∗3 h∗1 + h∗2 − h∗3
h1 + h2 + h3 h1 − h2 + h3 h3 − h2 − h1 h2 − h1 + h3

h∗2 − h∗1 − h∗3 h∗1 + h∗2 + h∗3 h∗1 − h∗2 − h∗3 h∗3 − h∗2 − h∗1

 (20)

If s = {si}NTi=1, where NT = 4 were sent in (18) then s = {si}NTi=1 where NT = 3 are required in the
case of NT = 3. Thus, the fourth column of (20) is ignored so that the EVCM for NT = 3 becomes

Hnew3 =


h1 + h2 + h3 h1 − h2 + h3 h1 + h2 − h3

h∗2 − h∗1 − h∗3 h∗1 + h∗2 + h∗3 h∗2 − h∗1 + h∗3
h1 + h2 + h3 h1 − h2 + h3 h3 − h2 − h1

h∗2 − h∗1 − h∗3 h∗1 + h∗2 + h∗3 h∗1 − h∗2 − h∗3

 (21)
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This phenomenon (as in (21)) can be extended to designing QO-STBC systems withNT = 5, 6, 7, 9, 10, 11,
etc. for higher order antenna configurations.

In terms of complexity in comparison to the EVD method, the number of terms are exactly the
same except that when the standard QO-STBC matrix terms are multiplied by the null terms from
the sparse eigenvalues of the EVD matrix, it nulls-out the channel gains so that the resulting EVCM
matrix is reduced in number of terms; this is pronounced in the analysis results discussed in Section 3
of this paper (see (12)).

Theorem 1: The standard QO-STBCs can achieve full-diversity if the detection matrix exhibit no
off-diagonal terms and its modal matrix has non-zero entries.

In [30], it was shown that full-diversity Toeplitz STBC codes exhibit well-reduced PAPR if the
codes have non-zero entries. Meanwhile, the PAPR can be calculated as

PAPR = 10 log10

 max
(
|x̄|2

)
(

1
K

∑
|x̄|2

)
 (22)

where x̄ is the time domain orthogonal frequency division multiplexing (OFDM) symbol vector of
x with length K. Since the scheme involves multiple NT transmit branches, the OFDM driver is
performed along each of the transmit branches and the PAPR is measured using the complementary
cumulative distribution function (CCDF), namely CCDF = 1 − Cs, where Cs = Pr {|x(k)| ≤ x0}
∀k = 0, · · · ,K − 1. Pr {·} and x0 are probability of {·} and the target symbol amplitude threshold
respectively. The indicative PAPR is therefore an average of the PAPRs over each transmitting branch.

Corollary 1: As a corollary of Theorem 1, it can be established that modal matrices with no zero
entries yield better PAPR performing QO-STBCs.

Similar to the foregoing discussion, when the antenna configuration is increased to NT = 8, the
method of realizing (6) can be used. However, the process can be simplified by formulating two EVCMs
from h = {hi}NT=8

i=1 as follows; define the EVCM for antenna indices 5 to 8 as

Hv5−8 =


h5 h6 h7 h8

h∗6 −h∗5 h∗8 −h∗7
h7 h8 h5 h6

h∗8 −h∗7 h∗6 −h∗5

 (23)

Then, combining (23) and (6) in the regime of (2) and then multiplying by the necessary modal matrix,

Hv8 =

[
Hv Hv5−8

Hv5−8 Hv

]
×M8 (24)

Using the method that subtends (24), other higher antenna configurations (namely, NT > 8) can be
explored. For other base stations equipped with 4 > NT < 8, the process that subtended (21) can be
used.

3.2 Diagonalized Hadamard STBC
Other methods of constructing new codes from the standard QO-STBC have been reported [17, 30].
The method described in [30] does not adopt the use of Hadamard matrix and does not achieve full
rate. However, [17] combined cyclic matrices with Hadamard matrices to form new codes. The cyclic
matrix does not achieve orthogonality hence its combination with the Hadamard matrix. In [17], the
authors introduced new QO-STBC design from cyclic matrices called Diagonalized Hadamard STBC
(DHSTBC). For instance, the DHSTBC can be expressed as [17]

Sc =


s1 s2 s3 s4

s2 s1 s4 s3

s3 s4 s1 s2

s4 s3 s2 s1

 (25)

Given the knowledge of modal matrices proposed in this study, the equivalent symbol matrix be
discussed. As the modal matrix of D = HHH from M−1

Hv
DMHv = V was used to form an EVCM
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in (12), similarly fromM−1
s DsM s = V , the equivalent symbol matrix can be discussed knowing that

M s is the modal matrix of Ds. Considering (25), the equivalent symbol matrix can be derived as
Snew = Sc ×M s; this is realized by combining a cyclic matrix (of 25) and a Hadamard matrix to
obtain the DHSTBC code which was defined as [17]

S̄new =


s1 s2 s3 s4

s2 s1 s4 s3

s3 s4 s1 s2

s4 s3 s2 s1

×


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Recall a system model of (4). Similar to the (4) model, if the symbols matrix is defined from cyclic
matrix of (25), then the channel matrix can also be expressed as

Hc =


h1 h2 h3 h4

h2 h1 h4 h3

h3 h4 h1 h2

h4 h3 h2 h1


Then constructing an EVCM for linear decoding involves combining the EVCM and the Hadamard-
based modal matrix (17), as

H4 = Hc ×M4

=


h1 h2 h3 h4

h2 h1 h4 h3

h3 h4 h1 h2

h4 h3 h2 h1

×


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (26)

Similar to (18), the receiver receives

HH4 x = HH4 H4s+HH4 z

where s = {si}NTi=1. The detection matrix is fat in terms of elements, for example

H4
HH4 = NT


a1b1 0 0 0

0 a2b2 0 0
0 0 a3b3 0
0 0 0 a4b4

 (27)

where

a1 = h1 + h2 + h3 + h4, b1 = h∗1 + h∗2 + h∗3 + h∗4

a2 = h∗1 − h∗2 + h∗3 − h∗4, b2 = h1 − h2 + h3 − h4

a3 = h∗1 + h∗2 − h∗3 − h∗4, b3 = h1 + h2 − h3 − h4

a4 = h∗1 − h∗2 − h∗3 + h∗4, b4 = h1 − h2 − h3 + h4

where NT = 4. Also, if H4 is formed as H4 = M4 ×Hc instead of H4 = Hc ×M4, then HnH
H
n =

HHnHn = nIn (where n = 4) sequel to Hadamard criteria. The resulting matrix is huge and complex;
these have their respective implications that will be enumerated shortly. For instance, since there are
additional interfering terms in (27) after expanding aibi ∀i = 1, · · · , NT , then, when compared to the
results of the ISI-free QO-STBC in (37), the terms aibi ∀i = 1, · · · , NT further diminish the BER
performance, so that the DHSTBC scheme performs poorly.

Comparing the proposed QO-STBC result (18) with the earlier Hadamard algorithm of DHSTBC
in (27), the proposed QO-STBC has well-reduced computational complexity. For instance, expanding
aibj ∀i = 1, · · · , NT , it can be observed that there are 16 terms involved in the earlier DHSTBC
while there are only 8 terms involved in the proposed; there exist β + O (2NT ) ISI terms. In terms
of performance, the earlier Hadamard QO-STBC (DHSTBC) involves 8 additional interfering terms
(apart from β) that would degrade its BER performance.

3.3 MIMO QO-STBC
In the earlier discussions, we have supposed that there are NR = 1 receiver antennas; here, we consider
the case of NR > 1. Thus, each of channel terms from the H = {hi}NTi=1can be treated respectively as
a vector of the form:

H =
[
h1 h2 · · · hNT

]T
9



where
h1 = [h11, h21, · · · , hNR1]

T

h2 = [h12, h22, · · · , hNR2]
T

hNT = [h1NT , h2NT , · · · , hNRNT ]
T

If the equivalent channel can be derived, then the MRC when there areNR maximum receiving elements
can be described. Assuming perfect channel state information (CSI) (i.e. the channel coefficients are
perfectly available at the receiver), the detector attains optimal maximum likelihood (ML) rule as [44]:

ŝ = arg max
s

NR∏
j=1

P (xj |Hj , s)

= arg min
s

<


NR∑
j=1

HHj xj

 sH
− 1

2

NR∑
j=1

|Hj |2
 | sj |2 (28)

where P (xj |Hj , s) = 1
π exp

(
− | xj −Hjsj |2

)
. The term | xj −Hjsj |2 is the Euclidean distance

metric for a ML decoding. If an equivalent channel is known (e.g. the EVCM), the maximal ratio
combining (MRC) rule from [44, 33] provides that

ŝ =

NR∑
j=1

(
HHnew

)
j

(Hnew)j s+
(
HHnew

)
j
zj (29)

where Hnew ∈ CNT×NT , s ∈ CNT×1 and z ∈ CNT×1 for each receiver antenna branch. In the case
of [1], we only studied the QO-STBC scheme for a multiple-input and single-output (MISO) system;
thus NR = 1 but in this version, we have extended the study to include NR = 2.

Considering the MIMO scheme in (29) , both NT and the gain
[(
HHnewHnew

)]
influence the

amplitude of the received signal. Then the noise part is amplified by the
(
HHnew

)
j
∀j = 1, 2. This

is because the EVCM is unitary (see 37) except that they are scaled by the gains. Notice that ∀NR,[(
HHnewHnew

)]
represents an identity matrix impacted (as in the case NR = 1) by the channel

gains such as ‖ H ‖2F=
∑NR
j=1

∑NT
i=1 | hi,j |2. The noise term is rather amplified by

(
HHnew

)
j
,

∀j = 1, · · · , NR. The degree of impact of
(
HHnew

)
j
on the noise term impacts the Euclidean distance

metric at the receiver; this depends on the fading of the channel. The complexity in the decoupling
of the transmitted message in the receiver reduces to finding only ŝ = {ŝi}NTi=1 for all the receiving
branches. STBCs that support linear transceiver systems incur a loss in capacity over channels with
multiple receive antennas [45]. This is even more noticeable in the case of conventional QO-STBCs
due to ISI and worst when DHSTBC is used to enable transmitter diversity because the ISI terms (β)
will grow as the NR increases, in fact up to the point of no more diversity gain.

4 Pairwise Error Probability of the QO-STBCs
Usually, the channel is considered quasi-static throughout each symbol block so that the Chernoff

bound is averaged over a Rayleigh fading channel as [9]

P (s→ ŝ) = EH̄
{
P
(
s→ ŝ | H̄

)}
(30)

where P
(
s→ ŝ | H̄

)
is the pairwise error probability (PEP) which responds to the received SNR and

EH̄{·} is the expectation value over each symbol block. The conditional PEP, for a given channel say
H̄, is described using the well-discussed Chernoff bound of the form

P
(
s→ ŝ | H̄

)
= Q

√‖ H̄ (s− ŝ) ‖2
2N0

 (31)
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where N0 is from the circularly symmetric additive white Gaussian noise with zero mean and variance
σ2
Z = N0

2 ; this is the case when Es = 1. Indeed, the Gaussian Q-function is the complementary error
function expressed as

Q (x) =
1

π

∫ π
2

0

exp

(
− x2

2 sin2 θ

)
dθ

≤ 1

2
exp

(
−x

2

2

)
, x ≥ 0 (32)

In terms of (32), the conditional PEP is summarized as

P
(
s→ ŝ | H̄

)
= Q

(√
2γx

)
⇒ P (s→ ŝ) = EH̄

{
Q
(√

2γx

)}
where γx =‖ H̄ (s− ŝ) ‖2 / (4N0) is the SNR at the maximal ratio combining (MRC) receiver output.
The performance bound then follows as [9]

P (s→ ŝ) ≤ 1

2

∣∣∣∣INT + gQAMλNT
d2
min

4N0

∣∣∣∣−1

(33)

where gQAM = 3/2(M − 1) and λNT is from the detection matrix. Meanwhile, from Cauchy-Schwartz
inequality,

|AB|2 ≤ ‖AB‖22

⇒ ‖ AB ‖22 = ‖ A ‖22 ‖ B ‖22

Also, defineB as an m×n matrix, then its Frobenius norm ‖ B ‖2F= tr
{
BBH

}
, then ‖ B ‖2F =∑m

i

∑m
j | bi, j |2. Rewrite H̄ (s− ŝ) as H̄4s such that

γx =

∥∥H̄ (4s)
∥∥2

2

4N0
=

∥∥H̄ (4s)
∥∥2

F

4N0

=

(∥∥H̄∥∥2

F
‖4s‖2F

)
4N0

(34)

where
∥∥H̄∥∥2

2
=
∥∥H̄∥∥2

F
[46]. If 4s = (s− ŝ) estimates the error detection metrics, then ‖4s‖2F =

tr
{

(4s) (4s)
H
}
. Also,

∥∥H̄∥∥2

F
= tr

{
H̄H̄

H
}
. The likelihood of erroneously decoding the transmit-

ted signals can be used to discuss the diversity product of the scheme [47]. However, for any ISI-free
QO-STBC, H̄HH̄ = σ2

H̄
INT where NT > 2 and σ2

H̄
is the gain power.

4.1 The SNR performance of (EVD) and DHSTBC
The conventional O-STBC achieves full diversity and there exists only NT = 2. For NT = 4, one can
express the SNR at the receiver of the ISI-free QO-STBC (14) from EVD as

γ =
E
{
|HHHs |2

}
E
{
|HHz |2

} =
E
{
|HHH |2

}
E
{
HHH

} Es
σ2
Z

= E
{
|M−1

Hv
HHv HvMHv |

} Es
σ2
Z

(35)

where Es̄ = E
{
| s |2

}
and σ2

Z = N0

2 = E
{
| z |2

}
. For an ISI-free QO-STBC, although the results in

(35) and (27) are similar, the impacts of the channel matrix are different. When the detection matrix
is a diagonal matrix for instance, rank

{
HHH

}
= 2 when NT = 2, while rank

{
HHH

}
= 4 when NT

= 4 and so on; the Euclidean distance metrics are also different both for different QAM constellations
and different NT . Now, the probability that ŝ 6= s was detected can be expressed as

P (s→ ŝ) = EH {P (s→ ŝ |H)} (36)
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where P (s→ ŝ) = EH
{
Q
(√

2γx
)}

. In [9], EH
{
Q
(√

2γx
)}
≤ 1

2 | INT + λ2gQAM
|s−ŝ|2
4N0

|−1 for NT =

2. Then, for NT > 2, λNT
|s−ŝ|2
4N0

= λNT
d2min
4N0

and d2
min = | (s− ŝ) |2 . Notice that when NT = 4,

then λ4 = E
{
|HHH |2

}
which can be described further in terms of |H (s− ŝ) |2=‖H4s ‖2F is the

Euclidean distance metric at the receiver. Sometimes, Chernnoff bound of the Gaussian function can
be used to approximate the Q-function such as in [8]. The method of DHSTBC does not perform any
better. For example, the ISI is greater in the DHSTBC (see 27) than using either the EVD (14) or the
proposed technique (19). The effects of the ISI on diminishing the true-power gain of the DHSTBC
will be reduced as evidently shown in the BER results discussed in Section 5.

4.2 The SNR performance of Proposed Full-diversity QO-STBC

Although one can easily verify that HvH
H
v = σ2

h

((
1± β

)
I
NT

)
, the limitations of (11) include poor

PAPR performance due to the sparsity of the modal matrix [30] and poor BER resulting from the zero
terms of MHv [1] because the SNR and the BER performance depend on the power gain contributed
by Hv. The proposed modal matrix is MHd and the proposed channel matrix is Hnew. Thus, the
SNR at the receiver can be described as

γproposed =
E
{
|HHnewHnews |2

}
E
{
| HHnewz |2

} (37)

One can also verify that
HnewH

H
new = σ2

h

((
1± β

)
I
NT

)
×NT

Equation (37) provides the SNR statistics at the MRC output of the receiver and provides infor-
mation into the BER performance of the EVD ISI-free QO-STBC from Hadamard modal matrix.
Notice that HnewH

H
new provides M−1

Hd
DMHd = M−1

Hd
HHv HvMHd with an extra factor, NT im-

pacting the power gain which will further minimize the BER statistics; similarly M−1
Hv
DMHv =

M−1
Hv
HHv HvMHv . Consequently, the SNR can be well-described as

γpropsed =
E
{
|HHnewHnews |2

}
E
{
| HHnewz |2

} =
E
{
|HHnewHnews |2

}
E
{
HHnewz

HzHnew

}
=

E
{
|HHnewHnew |

}
Es

E {zHz}
(38)

Since HnewH
H
new provides

M−1
Hd
DMHd = M−1

Hd
HHv HvMHd

then (38) can be rewritten as

γpropsed = M−1
Hd
HHv HvMHd

Es
σ2
Z

= NT

(
M−1

Hv
HHv HvMHv

) Es
σ2
Z

where MHd is a 4 × 4 Hadamard matrix when NT = 4. Comparing (38) and (37) , it is clear that
the power gain in using MHd is NT -times greater than using MHv . The use of MHd thus affects the
slope of the BER so that full-diversity method of the proposed QO-STBC becomes better. In general,
the method of constructing NT = 4 antenna configurations described in Section 3.1 can be extended
to any higher order design, namely NT = 8, 16, 32, etc.

Remark: We refer the reader to our earlier discussion in [1, 48] for other designs that do not enable
full-rate but maintain full-diversity.

5 Simulation Results and Discussion
In [1], we have studied only the cases of MISO using QPSK and NT = 4, and here (in this study)
we extend the MISO configuration to include NR > 1. For fair comparisons, the simulation environ-
ments are similar except for the use of suitable EVCM configurations for different numbers of antenna
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Figure 1: 16-QAM for Full-diversity QO-STBC MIMO system NT = 8 with NR = 1, 2

configurations and code design styles. The symbols we have used are not coded; in other words no
forward error correction is applied. At the receiver, the optimum detector is assumed so that an MRC
combining method is adopted. We do not present the simulation results for NT = 4 and NT = 3 in
this work as these have been addressed in [1]. Meanwhile, the Rayleigh fading channel model is used
which is considered to be quasi-static over each symbol block. The model has zero mean with unit
variance.

Figure 2: 128-QAM for Full-diversity QOSTBC MIMO system NT = 8 with NR = 1, 2

5.1 MISO and MIMO QO-STBC Design using 8 Transmit Antennas
This study implements the standard QO-STBC code system described in Section 2 in the transmitter
and an ML detection dispensing with MRC in the receiver to construct a 8×NR, 16×NR and 32×NR
MIMO system using 16 and 128 QAM; NR ≤ 2 and these are simulated over MATLAB environment.
In the process, random symbols are generated; this involves a 7.5 × 104 symbols averaged over each
channel block. These are mapped using aforementioned mapping schemes, demultiplexed and processed
over the EVCM channels that enabled NT ×NR when NT > 4 and NR ≤ 2 transmit antennas are used
respectively.
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Using EVCM simplifies detection to linear processing so that the estimates of the transmitted sym-
bols, [ŝ1, · · · , ŝNT ]

T , are easily decoupled. Since there are NT > 4 transmitting branches, then each
branch receives NT messages up to a total of NRNT (where NR = 1 for MISO design) receptions. The
receiver finds estimates {Si}NRNTi=1 whose Euclidean distance, | x−Hs |2, is closest to the transmitted
messages; then afterwards, M-QAM signal demodulation is performed. The transmitted message (s)
and the received message (ŝ) are then compared for error value as ∆sŝ = s− ŝ; the BER is computed
and results are shown in following Figs. 1-6.

In Fig. 1, the proposed QO-STBC outperforms the standard and Eigenvalue QO-STBC styles.
Specifically, at 10−4 BER the proposed outperforms Eigenvalue QO-STBC by 10dB and better than the
standard QO-STBC by 5dB. For the MIMO design namely 8× 2, the proposed technique outperforms
the standard QO-STBC by 6dB and better than the Eigenvalue QO-STBC technique by 9dB. The
degradation is from the eliminated off-diagonal terms that diminishes the true power of the received
signal.

Figure 3: 16-QAM for Full-diversity QOSTBC MIMO system NT = 16 with NR = 1, 2

We extend our investigation to 128-QAM as shown in Fig. 2, it is found that the proposed also
outperforms both the Eigenvalue technique and the standard QO-STBC.

From (18), the gain
[(
HHnewHnew

)]
and NT impact the amplitude of the received signal while

only
(
HHnew

)
impacts the noise. The NT amplifies the amplitude of the received signal such that

the power gain is improved (see (18)) compared to the Eigenvalue interference-free QO-STBC in Fig.
2. Also in Fig. 2, this proposed QO-STBC technique translates to a 6dB gain in comparison to the
earlier Eigenvalue-based QO-STBC scheme. Significantly, two parts are involved (σ2

h and β); β is an
interference term that degrades the true gain σ2

h. Any method than can eliminate β would further
improve the BER performance.

5.2 MISO and MIMO QO-STBC Design using 16 Transmit Antennas
In (18), it is found that the result of proposed QO-STBC (in Fig. 3) satisfied the Hadamard criteria
in (18). For NT = 16 with NR = 1, 2 QO-STBC scheme, the proposed outperformed the Eigenvalue
QO-STBC. Clearly, the NT –times amplitude gain of Hadamard criteria in (18) is reflected also in Fig.
3 as the proposed QO-STBC consistently outperformed both the standard and Eigenvalue-based QO-
STBCs by about 10dB and 13dB respectively at 10−3 BER. In all cases, the proposed outperformed
all other QO-STBCs.

Although the symbols transmitted over antenna spaces are typically unique, however, the EVCM
are constructed respective to Section 2 of this study. In the receiver, AWGN terms, Z, are constructed
and added to each receiver antenna branch. Since there are NT = 4 transmitting branches, then
each branch receives NT messages up to a total of NRNT = 16 (where NR ≤ 2 for MIMO design)
receptions. Again, using the EVCM simplifies detection of transmitted symbol to a linear processing
so that the estimates of the transmitted symbols, [ŝ1, · · · , ŝNT ]

T , are easily decoupled. The receiver
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Figure 4: 128-QAM for Full-diversity QOSTBC MIMO system NT = 16 with NR = 1, 2

finds estimates of {si}NRNTi=1 whose Euclidean distance, | x − Hs |2, is closest to the transmitted
messages; then, 128-QAM signal demodulation is performed. The proposed clearly outperformed both
the standard and eigenvalue approaches. Both techniques show falling BER measures due to some
irreducible errors from the “untrue-gain” and the noise-power enhancement.

In (27), the linear detection was performed; for the QO-STBC discussed in [17], it was shown that
the detection matrix (27 ) is huge, complex and contains further degrading elements that limit the
improvement from the true gain (σ2

h); on the other hand, the QO-STBC method of [48] provided a
matrix that precludes these limitations.

The investigation is further extended to a higher modulation scheme, such as 16-QAM; the results
are shown in Fig. 5.

5.3 MISO and MIMO QO-STBC Design using 32 Transmit Antennas
Finally, we report in Fig... the results for NT = 16, 32 with NR = 1, 2 using 16 and 128 QAM
respectively. In Fig.5, the proposed QO-STBC for 16×1 antenna design at 10−4BER outperformed
Eigenvalue QO-STBC by 15dB and better than the standard QO-STBC by 8dB. Consider the design
also for 16×2 antenna configurations at 10−4 BER, the proposed QO-STBC outperformed Eigenvalue-
based QOSTBC by 15dB.

Similarly, the proposed Hadamard-based QO-STBC performs better than the standard QOSTBC
technique by 10dB. From the proposed QO-STBC design coupled with MRC rule in the receiver, it
follows that the performance of the MIMO design method using MRC provides improvement to the
QO-STBC system design for independently fading channels thus showing increasing power gain with in-
creasing receiver. By increasing the transmitter diversity, and using higher order and spectrally efficient
modulation scheme as in Fig. 6, the results for 128-QAM also corroborate the foregoing performance
gains achieved by the proposed QO-STBC over other similarly configured QOSTBC techniques. For
example, at 10−4BER for NT = 32 with NR = 1 the proposed QO-STBC design achieves 15dB better
than Eigenvalue-based QO-STBC. Similarly, when the receiver diversity is increased from NR = 1 to
NR = 2, it can be seen that the proposed scheme achieves 15dB better than the Eigenvalue-based
QO-STBC and 12dB better than the standard QO-STBC.

In general, the off-diagonal interfering terms further reduce the performance of the QO-STBC
scheme of the Eigenvalue-based QO-STBC design.

Note that due to amplitude modulation in QAMmodulators, a normalization of the received symbol
amplitudes must be observed before demodulation to realize these results. For PSK symbols, there are
no bias-energy terms and thus can be more tolerant than the QAM modulators.
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Figure 5: 16-QAM for Full-diversity QOSTBC MIMO system NT = 32 with NR = 1, 2

Figure 6: 128-QAM for Full-diversity QOSTBC MIMO system NT = 32 with NR = 1, 2

5.4 PAPR Evaluation of Different QO-STBC schemes
In this section, we evaluate the performances of these different QO-STBC schemes in our foregoing
discussion. We show in Fig. 7 the performances of the PAPR metrics of the three QO-STBCs under
study using NT = 8 and 128-QAM modulation.

From the results, the Hadamard technique proffers better PAPR than the rest EVD and standard
techniques in all cases. On the other hand, while the Hadanard technique volunteers a better PAPR
than the EVD technique, the EVD QO-STBC is also 1dB better than the standard QO-STBC scheme
which is slightly better than the conventional OFDM system. Meanwhile, the performance of the
Hadamard-based (and similarly the EVD) QO-STBC system can be improved by adopting any of the
well-known PAPR reductions techniques. Such techniques must also appeal to the aim of this work
which is geared towards reducing the complexity of the receiver as the receiver modules are general
small in nature and this will eliminate the unnecessary depletion of the limited-battery power of such
devices. Examples of such light-weight PAPR reduction techniques include companding and iterative
clipping and filtering.
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Figure 7: PAPR for different QO-STBCs (NT = 8, 128-QAM)

6 CONCLUSION
In this study, we have proposed and evaluated a simple technique for using eigenvalues or its matrix
(modal matrix) to improve QO-STBC system performances so that it can achieve full diversity. Similar
matrices of earlier methods are limited in performance by some null-terms of the modal matrix which
further impoverishes the RF chain in terms of PAPR. We suggested and proved that by using Hadamard
matrices as the modal matrices, the QO-STBC can achieve linear processing thus reducing the system
complexity, since the detection matrices are diagonal with no off-diagonal ISI terms. Two new proposed
methods of constructing QO-STBC codes for maximal diversity gain attainment were explored for up
to NR = 8, 16 and 32 antenna configurations enabling MIMO design. While the QO-STBC was used
to enable multiple antennas at the transmitter, we introduced MRC at the receiver which combines
the gains from all branches to maximize diversity gain. DHSTBC code provides a method of designing
QO-STBC system but the detection matrix provides poorer performance due to some extra interfering
terms,β +O (2NT ), in the detection matrix. These extra degrading detection terms are absent in the
proposed QO-STBC scheme, leading to better performances in terms of BER and PAPR. The results
showed that the proposed method consistently outperforms the conventional ISI-free EVD QO-STBC
in the order of NT -times the received SNR for all Eb/N0 investigated and increasingly outperformed
earlier QO-STBC schemes that used Hadamard matrices. Thus, the interference terms are a limitation
in the QO-STBC design as they degrade the true power gains on every antenna at the receiver;
especially in earlier DHSTBC. In all the MIMO cases reported with MRC at the receiver, it is found
that proposed QO-STBC is a better MIMO technique by at least 9dB at 10−4 BER. With the style
of higher antenna orders discussed, our proposal therefore shows the potentials for supporting massive
MIMO system configurations.
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